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ABSTRACT AnewPlug-and-Play (PnP) alternating direction ofmultipliers (ADMM) scheme is proposed in
this paper, by embedding a recently introduced adaptive denoiser using the Schroedinger equation’s solutions
of quantum physics. The potential of the proposed model is studied for Poisson image deconvolution, which
is a common problem occurring in number of imaging applications, such as limited photon acquisition or
X-ray computed tomography. Numerical results show the efficiency and good adaptability of the proposed
scheme compared to recent state-of-the-art techniques, for both high and low signal-to-noise ratio scenarios.
This performance gain regardless of the amount of noise affecting the observations is explained by the
flexibility of the embedded quantum denoiser constructed without anticipating any prior statistics about
the noise, which is one of the main advantages of this method. The main novelty of this work resided in
the integration of a modified quantum denoiser into the PnP-ADMM framework and the numerical proof of
convergence of the resulting algorithm.

INDEX TERMS Poisson deconvolution, plug-and-play, ADMM, quantum denoiser, adaptive denoiser,
quantum image processing.

I. INTRODUCTION
Restoration of a distorted image is one of the most fundamen-
tal tasks in inverse problems related to imaging applications
such as denoising, deblurring, super-resolution, compres-
sion or compressed sensing. In number of applications such
as limited photon acquisition, X-ray computed tomography,
positron emission tomography, etc., the noise degrading the
acquired data follows a Poisson distribution. These Pois-
sonian models have been extensively studied in the fields
of astronomical [1]–[3], photographic [4], [5] or biomedi-
cal [6]–[11] imaging. The inversion process is expressed as
the estimation of a clean image x ∈ Rn from observed
degraded image y ∈ Rm. The estimation of the underlying
hidden image from this distorted observation is often for-
mulated as the optimization of a cost function implementing
the idea of the maximum a posteriori (MAP) estimator [12],
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i.e., the maximization of the posterior probability, defined as

x̂ = arg max
x

P(x|y), (1)

where P(x|y) is the posterior probability density function that
defines x for a given measurement y and x̂ represents the esti-
mation of the unobserved image x. Taking −log(·) element
wise and applying the Bayes’ theorem, the maximization
problem above becomes

x̂ = arg min
x

(
−log (P(y|x))−log (P(x))+ log (P(y))

)
. (2)

f (x) = −log (P(y|x)) is the negative log-likelihood function
whose expression depends on the observation (degradation)
model, and g(x) = −log (P(x)) is the a priori log-distribution
of x, that only depends on some prior knowledge on the image
to estimate and is also called regularization function. Note
that P(y) does not depend on x and is usually ignored in
the estimation of x̂. With these notations, the optimization
problem to solve can be expressed as

x̂ = arg min
x

(
f (x)+ g(x)

)
. (3)
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Using a suitable choice of the regularization function,
based for example on the a priori statistics of the image
to estimate, proximal operator- [13] based iterative schemes
have been extensively studied to solve (3) [14]–[24].
In particular, the alternating direction method of multipliers
(ADMM) [18]–[24] has been largely used, by redefining
the optimization problem (3) into a constrained optimization
framework. During the last decade, a new approach was
proposed in the literature, enabling the use of state-of-the-
art denoisers instead of the proximal operator, known as the
plug-and-play (PnP) scheme [25]. PnP paves the way of using
a wide range of state-of-the-art denoisers such as patch-based
dictionary learning methods [26], block-matching 3D filter-
ing (BM3D) [27], non-local means (NLM) [28], high-order
variational models [29], etc. The interest of PnP schemes in
image restoration have been shown by number of studies,
e.g., [30]–[45]. Interestingly, these PnP-ADMM methods do
not require any prior information about the hidden image
x, as a consequence of the intrinsic association between the
regularizer and the external denoiser.

More recently, alternative learning-based approaches were
developed in the literature using deep learning (convolutional
neural network (CNN)) techniques for tackling inverse prob-
lems [46]–[50]. During the past few years the implemen-
tation of these Deep-CNN networks has been introduced
for image denoising [51], [52] and further extended to the
PnP schemes [53]. These Deep-CNN networks give several
advantages such as reconstruction accuracy and convergence
speed [54]. However, more often they suffer from some
drawbacks. First, such denoisers should be trained using the
noise variance in each iteration. Hence, during the iterative
process of the PnP framework, the noise variance is usually
unknown since it varies at each iteration, and leads to a diver-
gence of the algorithm for a pre-trained Deep-CNN architec-
ture [55]. Second, the training procedure is very costly since
Deep-CNN denoisers require expensive retraining whenever
the noise level or noise type change. Also, each iteration
involves a Deep-CNN denoising process, so using a large
neural network and/or too many iterative operations leads
to a time consuming task. Third, the theoretical aspects of
Deep-CNN denoiser-based PnP models are still not clear.

This work focuses on PnP-ADMM algorithms applied to
Poisson deconvolution problems, i.e., recover an image from
a blurred observation contaminated by Poisson noise. Since
the state-of-the-art denoisers (e.g., BM3D [27]) used within
PnP schemes were primarily designed for additive Gaussian
noise, they consequently exhibit inconsistency with a non-
Gaussian model. Furthermore, decoupling the restoration and
denoising steps within PnP frameworks alternatively con-
verts the noise distribution affecting the observed distorted
image into a possibly different noise model, and in partic-
ularly into a non-Gaussian noise. To mitigate this limitation,
a variance stabilizing transformation (VST) [56]–[59], known
as the Anscombe transformation, was embedded in several
PnP-ADMM algorithms to adapt them to a data-dependent
model. Indeed, VST was designed to remodel approximately

a random data-dependent noise into an additive Gaus-
sian noise, before processing through a Gaussian denoiser.
Although these refined VST-based PnP schemes exhibit very
good performance for low-intensity noise [30]–[32] and out-
perform existing state-of-the-art prior based models, they
are less accurate while dealing with high-intensity noise
(i.e., low SNR) [60]. Furthermore, the nonuniform nature of
the convolution operator under a VST leads to fundamental
flaws in the deconvolution algorithms [31], [32], [61].

In this paper, we address these shortcomings by embedding
into a PnP-ADMM scheme a new adaptive denoiser [62],
[63] designed by borrowing tools from quantum mechanics.
The adaptive nature of this denoiser makes it highly effi-
cient at selectively eliminating noise from higher intensity
pixels, without relying on any statistical assumption about
the noise [64]. Its efficiency regardless of the assumption of
Gaussian noise represents the main motivation of its interest
in Poisson deconvolution PnP-ADMM algorithms, discard-
ing the necessity of a VST. To summarize, the main novelty
of the paper is the use of quantum mechanical concepts
in the field of image restoration. The primary contributions
are the quantum denoiser, its integration into a PnP-ADMM
scheme, and the experimental proof of convergence of the
final algorithm.

The remainder of the paper is organized as follows. After
a brief discussion on PnP-ADMM algorithms in Section II,
the construction of the proposed method referred to as QAB-
PnP is illustrated for Poisson inverse problems in Section III.
Section IV regroups the numerical experiments and SectionV
draws the conclusions and the perspectives.

II. BACKGROUND
A. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
ADMM is an iterative convex optimization algorithm, result-
ing from the fusion of the dual decomposition method with
the method of multipliers [65]–[70]. Several developments
have been proposed during the last few decades, resulting into
a rapidly growing literature [16]–[20]. ADMM algorithm is
able to solve constrained optimization problems of the form

minimize
x,z

f (x)+ g(z)

subject to Ax+ Bz = c, (4)

where f and g are assumed to be closed convex functions of
variables x ∈ Rn and z ∈ Rm, with A ∈ Rp×n, B ∈ Rp×m

and c ∈ Rp. The associated augmented Lagrangian function
is defined as

Lλ(x, z, v) = f (x)+ g(z)+
λ

2

∥∥∥Ax+ Bz− c+ v
λ

∥∥∥2
2

−
1
2λ
‖v‖22 , (5)

where v ∈ Rp is the Lagrangian multiplier, and λ ∈ R+ is the
penalty parameter of the augmented Lagrangian. An equiva-
lent expression of the augmented Lagrangian Lλ(x, z, v) can
be obtained by scaling the Lagrangian multiplier u = (1/λ)v,
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as follows:

Lλ(x, z, v) = f (x)+ g(z)+ (λ/2) ‖Ax+ Bz− c+ u‖22
−constantv

def
= Lλ(x, z,u) (6)

ADMM algorithm decouples the augmented Lagrangian
into three iterative steps as follows:

xk+1 = arg min
x

Lλ(x, zk ,uk ) (7)

zk+1 = arg min
z

Lλ(xk+1, z,uk ) (8)

uk+1 = uk + Axk+1 + Bzk+1 − c. (9)

The convergence of this iterative scheme has been widely
discussed in the literature of convex programming and within
various statistical problems [71]–[73]. ADMM technique has
a broad spectrum of applications in the context of signal and
image restoration applications [74]–[78].

B. ADMM APPLICATION TO IMAGE RESTORATION
Let us consider the following general image restoration prob-
lem, characterized by the forward model

y = Ox, (10)

where y is the observed image related to the underlying image
x through the degradation operator O. ADMM can be used to
estimate the MAP solution of such an image restoration task
by reformulating it as (4) using the following parameteriza-
tion: z = x, thus A = −B = In×n, c = 0n, where In×n is the
identity matrix of size n× n and 0n is a zero vector of size n.
The associated augmented Lagrangian is given by

Lλ(x, z,u) = f (x)+ g(z)+
λ

2
‖x− z+ u‖22 , (11)

where f (x) = −log (P(y|x)) is the data fidelity term depend-
ing on O and g(z) the regularization function. To accelerate
the convergence, the penalty parameter λ is usually increased
at each iteration, by multiplication by a factor of γ > 1 [39],
instead of using a fixed value. At each iteration, ADMM
performs the following steps:

xk+1 = arg min
x

f (x)+
λk

2

∥∥∥x− zk + uk∥∥∥2
2

(12)

zk+1 = arg min
z

g(z)+
λk

2

∥∥∥xk+1 − z+ uk∥∥∥2
2

(13)

uk+1 = uk + xk+1 − zk+1 (14)

λk+1 = γ λk (15)

C. PLUG-AND-PLAY (PnP) FRAMEWORK
Since its initial development, the PnP scheme [25] is largely
accepted for signal and image restoration problems due to
its extremely promising performance [30]–[45]. The primary
goal of PnP is to consider a state-of-the-art denoiser as the
prior of a constrained optimization process. Interestingly,
no prior knowledge is required about the image to estimate

to derive the regularization function g, since g is intrinsically
defined through the external denoiser used.

The efficiency of ADMM algorithm mainly reposes on its
ability of decoupling the optimization processes over each
variable, as shown in the previous section. ADMM steps
performed at each iteration, (12), (13) and (14), can be inter-
preted as follows. (12) is originally an inversion step to get the
best possible primary image satisfying the data through the
data fidelity function f (x), while the third step (14) updates
the Lagrangianmultiplier. The second step (13) can be rewrit-
ten as

zk+1 = arg min
z

g(z)+
λk

2

∥∥∥z− (xk+1 + uk )
∥∥∥2
2
. (16)

The expression on the right hand side of (16) fundamen-
tally intends to find the solution that optimizes the compro-
mise between the difference between z and (xk+1 + uk ) and
the regularization function g(z). Thus, it can be associated to a
denoising problem designed to denoise (xk+1+uk ). Therefore
it is possible to rewrite this step as

zk+1 = D
(
xk+1 + uk

)
, (17)

where D(·) is a denoising operator. Hence it is feasible to
implement a state-of-the-art denoiser to handle the denoising
operation as proposed in [25]. The most interesting feature
representing the key benefit of this approach is that this PnP
model does not require the prior term g(z) explicitly, rather
it is indirectly related to the choice of the denoiser D(·)
(see, e.g., [27], [28], [79], [80]).

Despite its interest shown in number of imaging applica-
tions, PnP-ADMM still presents important theoretical chal-
lenges while dealing with Poisson deconvolution. Indeed,
most advanced denoisers available in the literature generally
consider additive Gaussian models and cannot be imple-
mented directly for other noise removal processes which do
not follow Gaussian statistics. Furthermore, despite observ-
ing an image degraded by a specific noise model (e.g., Pois-
son in our case), the image (xk+1+uk ) to be denoised at each
iteration in (17) does not necessarily follow the same noise
distribution. Therefore, handling an inverse problem using the
PnP-ADMM algorithm requires to transform the unknown
noise distribution of the noisy image (xk+1 + uk ) into an
additive Gaussian distribution before implementing a Gaus-
sian denoiser. In this context VST-like [56] transformations
propose an efficient way of estimating approximately a Gaus-
sian distribution from other types of data-dependent models.
The convolution product is however not invariant under this
VST and consequently leads to theoretical flaws. Therefore,
a versatile denoiser adapted to different noisemodels, without
a priori hypothesis about the noise statistics, is desirable to
be efficient regardless of the prior noise distribution in this
PnP framework.

In this work, our primary focus will be on the formulation
of a PnP-ADMM model using an adaptive denoiser, con-
structed from the principles of quantummechanics [62], [63],
and its implementation into Poisson deconvolution processes.
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This quantum adaptive basis (QAB)-based denoiser does not
require any explicit noise model. Therefore, while included
in an PnP-ADMM scheme, it does not need the use of a VST
before denoising and mitigates this theoretical limitation.

D. CONVERGENCE OF PnP-ADMM ALGORITHMS
One major challenge of PnP-ADMM algorithms is to prove
their convergence, due to the implicit relation between the
regularization function g(z) and the denoising operator D(·).
Note that the convergence of conventional ADMM has been
largely discussed in the literature, primarily in [71] and [16]
and more recently in [18] based on the proximal opera-
tor [81] or in [82]. The proof of global convergence of PnP-
ADMM algorithm [38] has been shown in the case of non-
expansive denoisers belonging to the family of symmetric
smoothing filters [83]–[86]. Yet these conditions are too
restrictive for generalisation to all the denoisers. To over-
come this issue, a series of works has been published dur-
ing the last few years showing the fixed point convergence
of PnP-ADMM algorithms for bounded denoisers not nec-
essarily symmetric and non-expansive [39]–[45], but we
stress that all these algorithms were constructed for Gaussian
noise.

III. PROPOSED PnP-ADMM ALGORITHM
A. POISSONIAN DECONVOLUTION MODEL
Let us denote by x ∈ Rn2 the image to be recovered from the
observation y ∈ Rn2 , a degraded version by a point spread
function (PSF) and Poisson process denoted byP(·). Without
loss of generality, we consider herein square images of size
n×n, written as vectors in lexicographical order. The resulting
image formation model is

y = P(Hx), (18)

where H ∈ Rn2×n2 is a block circulant with circulant
blocks (BCCB) matrix acounting for 2D circulant convolu-
tion with the PSF. The pixels of the observed blurry and
noisy image y are denoted by y[i], i = 1, 2, · · · , n2, and
are contemplated as the independent realizations of a Poisson
process with parameter (Hx)[i] ≥ 0 given by

P
(
y[i]

∣∣x[i])
for i=1,2,··· ,n2

=


e−(Hx)[i](Hx)[i]y[i]

y[i]!
if y[i] ≥ 0,

0 elsewhere,
(19)

where (·)[i] represents the i-th component of a vectorized
image. The restoration of x from the noisy-blurred obser-
vation y is the primary objective of Poisson deconvolution
methods.

One standard way to estimate x from the observation
model (18) is to use the MAP estimator in (1). The Poisson
noise probability density function is defined as

P(y|x) =
∏
i

e−(Hx)[i](Hx)[i]y[i]

y[i]!
. (20)

Thus, the log-likelihood term, i.e., the data fidelity term
f (x) used within the MAP estimator, is given by

f (x) = −log (P(y|x))

= −

∑
i

log

(
e−(Hx)[i](Hx)[i]y[i]

y[i]!

)
= −yT log(Hx)+ 1THx+ constant, (21)

where 1 is a vector of length n2 with all elements equal to 1.
As explained previously, the function g(x) in (3), a prior of x,
depends on some prior knowledge on the image to estimate.
In a PnP framework, this prior is intrinsically defined through
the external denoiser, removing the fact of defining the prior
term g(x) explicitly. Hence, using the data fidelity term f (x)
in (21), the PnP-ADMM steps depicted in (12), (14), (15) and
(17) become:

xk+1 = arg min
x

(
− yT log(Hx)+ 1THx

+
λk

2

∥∥∥x− zk + uk∥∥∥2
2

)
(22)

zk+1 = D
(
xk+1 + uk

)
(23)

uk+1 = uk + xk+1 − zk+1 (24)

λk+1 = γ λk , (25)

where D(·) is the denoising operator considered within the
PnP-ADMM algorithm. In this work, following [87], a gra-
dient descent algorithm is used to solve the minimization
problem (22), that requires the use of the gradient of the
augmented Lagrangian Lλ given by

∇xLλ = −HT (y/(Hx))+HT1+ λk (x− zk + uk ), (26)

where ∇x represents the derivative with respect to x and
y/(Hx) stands for element-wise division.

The following subsection describes the Poisson denoiser
inspired from quantum mechanics used within the proposed
PnP-ADMM algorithm for Poisson image deconvolution,
to solve the step in (23).

B. QUANTUM ADAPTATIVE BASIS (QAB) DENOISER
In the last decade, several works have been conducted to
use quantum mechanical principles in signal [88] and image
processing applications. More precisely, the interest in image
segmentation [89]–[92], restoration [93], [94] and denois-
ing [62], [63], [95] have been studied in the literature.

The denoiser embedded in the proposedmethod is based on
the construction of an adaptive basis inspired from quantum
mechanics, as originally proposed in [62], [63]. An illus-
tration of the adaptive basis construction is given in Fig. 1.
It displays the relationship between a clean and a noisy image
in the quantum mechanical framework. The basic idea is to
use the image as a potential of a quantum system, where the
height of the potential is determined by the pixel intensity.
For illustration purpose, we considered the Boat image with
half of it contaminated by Gaussian noise. Two patches, one
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FIGURE 1. Relationship between the clean and noisy images under the quantum mechanical framework and their effects on the wave functions: example
on Boat image.

clean and one noisy, are extracted from the image and plotted
as 3D surfaces, which will ultimately act as the potentials
of the system. In this system, the wave function governs the
probability of presence of a quantum particle with energy
E at some position on the surface. For a clean image, the
wave function uses a broad range of frequencies to probe
the surface. In presence of random noise, the wave function
collapses and becomes localized at some particular position
on the surface, as highlighted in Fig. 1. The salient feature of
the adaptive basis is the fact that the pixel intensity is directly
linked to the local frequency of the wave. The localization
property in the presence of noise is actually a hindrance, cured
by performing a pre-smoothing of the noisy potential in order
to create an adaptive basis extended over the whole image.
For more details on the construction of the basis, we refer the
reader to [62]. For self-consistency, we recall hereafter the
main steps of the QAB (quantum adaptive basis) technique.

1) BACKGROUND ON THE ADAPTIVE QAB TRANSFORM
In the non-relativistic quantum mechanics, the time-
independent Schroedinger equation yields an equation for the

stationary wave solution ψ(a), given by

−
h̄2

2m
∇

2ψ = −V (a)ψ + Eψ, (27)

where h̄ is the Planck constant and ψ(a) characterizes the
energy state E of the particle with mass m in a potential V .
The probability amplitude of the particle is given by |ψ(a) |2,
normalized under

∫
|ψ(a)|2da = 1. The wave function ψ(a)

is an element of the Hilbert space of square-integrable func-
tions. It is possible to rewrite the equation (27) as

HQABψ = Eψ, (28)

where HQAB = −
h̄2
2m∇

2
+ V is the Hamiltonian opera-

tor. One can conclude from (28) that the solution ψ(a) of
the equation (27) represents an eigen-state of the system
described by the Hamiltonian operator. These eigen-states
of (28) are oscillatory functions and primarily have two prop-
erties: i) the oscillation frequency increases with energy and
ii) for the same eigen-function, the local frequency depends
on the local value of the potential, and this dependence is reg-
ulated by the value of h̄2/2m which acts as a hyperparameter
herein.
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In the perspective of designing an adaptive transformation
for image processing, one may consider the image pixels’
values as the potential V in the Schroedinger equation (27)
for a discretized space. The stationary solutions of (27) can
be obtained by computing the eigen-pairs of the discretized
Hamiltonian operator defined as:

HQAB[i, j] =



x[i]+ 4
h̄2

2m
for i = j,

−
h̄2

2m
for i = j± 1,

−
h̄2

2m
for i = j± n,

0 otherwise,

(29)

where x ∈ Rn2 is an image (i.e., V = x), vectorized in
lexicographical order and HQAB[i, j] represents the (i, j)-th
element of the operator HQAB ∈ Rn2×n2 . Note that zero
padding is used to handle the boundary conditions. As a
consequence some violations of the rule (29) can be observed.
More precisely, HQAB[i, j] = x[i] + 2 h̄2

2m for i = j and

i ∈ {1, n, n2 − n+ 1, n2}, HQAB[i, j] = x[i]+ 3 h̄2
2m for i = j

and i ∈ {2, 3, . . . , n− 1, n2− n+ 2, n2− n+ 3, . . . , n2− 1},
HQAB[i, j] = x[i] + 3 h̄2

2m for i = j and i mod n ∈ {0, 1},
except for i ∈ {1, 2, . . . , n, n2 − n + 1, n2 − n + 2, . . . , n2}
in order to respect the boundary conditions, and HQAB[i, i+
1] = HQAB[i + 1, i] = 0 for any i multiple of n apart from
n2. More details about the construction of the Hamiltonian
operator associated to an image can be found in [62].

The corresponding eigenbasis of the Hamiltonian opera-
tor (29) represents the adaptive transform. In the seminal
works [62], [63], it was shown that this adaptive basis gives an
efficient way of image denoising, especially in the presence of
Gaussian, Poisson or speckle noise. In this work, this adaptive
basis, referred to as quantum adaptive basis (QAB), is used
to construct the denoiserDQAB(·) embedded in the proposed
PnP-ADMM scheme.

These basis vectors belong to the family of oscillating
functions along with the Fourier and wavelet bases, but
with a local frequency depending on the local value of
√
2m(E − V )/h̄. Due to its dependence on the difference

between the energy E and potential V , in the same basis
vector the lower values of the potential are associated with
oscillations of higher frequency. Thus, the property of these
adaptive basis vectors able to describe different image pixels’
values using different frequency levels, makes it fundamen-
tally distinct from the Fourier and wavelet bases. From the
above discussion it is understandable that the local frequency
depends on the value of h̄2/2m, which is a hyperparameter.
Apart from that, the level of noise also has an impact on the
basis vectors. Indeed, the presence of random noise in the sys-
tem leads to a subtle quantum phenomenon [96] which makes
these vectors localize exponentially at different positions of
the potential in the system. To mitigate this phenomenon
which degrades the denoising, it is important to low-pass the
corrupted image using, for example, a Gaussian filter with

Algorithm 1: Modified Orthogonal Matching Pursuit
Algorithm

Input: v, T , DQAB

Initialization: r0 = v, 30
= ∅, 80 is an empty matrix

for l from 0 to T − 1 do
l = l + 1
λl = arg max

j=1,2,...,T
|〈rl−1,ψ j〉|, for

ψ j ∈ DQAB (Break ties deterministically)
3l
= 3l−1⋃ λl

8l
= [8l−1 ψλl ]

al = arg min
a

∥∥v−8la
∥∥2
2

rl = v−8lal

Output: α̂, which has nonzero elements only at 3l , i.e.,
α̂3l = al

Algorithm 2: QAB Denoising Algorithm

Input: z, DQAB, T , s, ρ

Compute the sparse coefficients α̂i with sparsity T by
using the measurement data z and the operator DQAB
following the modified orthogonal matching pursuit
method as illustrated in Algorithm 1.
Threshold the coefficients α̂i.
Compute ẑ following (31) and (30).

Output: ẑ

suitable standard deviation σQAB, before the computation of
the QAB from the Hamiltonian operator (29). The reader may
refer to [62] for an in-depth discussion about the QAB vector
localization in the presence of noise.

The QAB explained above is used to denoise an image,
as suggested in [62], as follows: project the noisy image onto
the QAB to identify the valuable information and the noise,
followed by a soft-thresholding of the projection coefficients,
before taking the inverse projection of the modified coeffi-
cients to recover the noise-free image. The denoised image is
retrieved as following:

x̂ =
n2∑
i=1

τiαiψ i, (30)

with

τi =


1 for i ≤ s,

1−
i− s
ρ

for i > s and for 1−
i− s
ρ

> 0,

0 otherwise,

(31)

where αi are the coefficients representing the image x in
QAB, whose basis vectors are ψ i. s and ρ are two threshold-
ing hyperparameters. The denoising process thus corresponds
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FIGURE 2. Flowchart of the proposed QAB-PnP algorithm.

to expanding the signal in the adaptative basis and threshold-
ing the coefficients according to an energy criterion (see [62]
for a detailed discussion of this procedure).

C. QAB-PnP ALGORITHM
This section illustrates, in the context of Poisson image
deconvolution, the proposed PnP-ADMMalgorithm, denoted
as QAB-PnP, incorporating the QAB denoiser introduced in
the previous section. In this particular context, various state-
of-the-art denoisers have been introduced in the literature,
such as Gaussian denoisers (e.g., BM3D [27], etc) fused with
VST-like transforms or not. Using QAB DQAB instead of a

classical denoiser is themain contribution of this work. It con-
sists in including amodified version of the QAB denoiser into
the deconvolution PnP-ADMM method from Section III-A,
more precisely to solve (23).

The denoising process integrated in the proposed
QAB-PnP algorithm requires the computation of the coef-
ficients αi, obtained by projecting the noisy image onto the
QAB. This is a time consuming task for a large image and
affects the computational load of the deconvolution algorithm
given that the denoising process is performed at each iter-
ation. However, one may note that most of the αi are not
used for reconstructing the denoised image given that they
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are discarded by the threshohlding operation. To increase
the computational efficiency of the proposed algorithm, only
the coefficients which contribute the most in the restoration
process are computed. To this end, let us focus on T basis
vectors αi from DQAB, corresponding to an energy level
below E , assuming that higher energy levels naturally cor-
respond to higher frequencies, where E is considered as a
free hyperparameter. The corresponding T coefficients will
be the most significant for the reconstruction of the clean
image, and can be computed using the orthogonal matching
pursuit (OMP) algorithm [97]–[100].

The OMP algorithm was fundamentally designed to obtain
a sparse approximation α̂i with sparsity T of the corre-
sponding coefficients αi while projecting the noisy image,
say v ∈ Rn2 onto the denoising basis DQAB. Therefore
the primary goal of OMP is to recover coefficients α̂i with
T non-zero elements, such that v ' DQABα̂i. To get the
best possible approximation, it is important to identify the
columns ψ i ∈ DQAB which contribute in the reconstruction
of v. The basic idea is to choose the column of DQAB
which is mostly correlated with v, followed by subtracting
its contribution and repeat the step on the residual. After
T iterations one can have the desired set of basis vectors
and projection coefficients. Within the adaptive basisDQAB,
the basis eigenvectors are organized in ascending order, the
first T basis vectors with energy less than E being the most
correlated with v. Therefore, the OMP algorithm is modified
herein so that it estimates only the projection coefficients onto
the subspace formed by these T basis vectors. This modified
OMP algorithm is detailed in Algorithm 1.
The sparse coefficients α̂i estimated by Algorithm 1 are

further used by the denoising method detailed in Algorithm 2,
integrated in the proposed QAB-PnP deconvolution method
in Fig. 2 and Algorithm 3.1

The computational complexity of the algorithm is dom-
inated by the eigendecomposition of the high dimensional
Hamiltonian matrix and the QAB image projection. For a
n× n image, the Hamiltonian matrix is of size n2× n2. Usual
textbook diagonalization methods would require O(n6) oper-
ations (time complexity) and O(n4) storage space. However,
the Hamiltonian matrix is extremely sparse, and is more
efficiently diagonalized by iterative methods such as the
Lanczos method (as we actually did). In this case the compu-
tational complexity would be O(n4) if we compute all eigen-
values and eigenvectors (and still O(n4) in storage space).
If we compute only T of these eigenvalues and eigenvectors
(with T ≤ n2), the time complexity becomes O(T n2) and
the storage space (space complexity) also O(T n2). The QAB
image projection is O(n4) with the simplest algorithm, and
becomes O(T n2) in time and space with the OMP algorithm.
We thus conclude that our algorithm requires O(T n2) time
and space resources, with T ≤ n2, for a n × n image.

1The Matlab code of the proposed Plug-and-Play-ADMM algo-
rithm using the quantum-adaptive-basis denoiser is [Online]. Available:
https://github.com/SayantanDutta95/QAB-PnP-ADMM-Deconvolution.git

Algorithm 3: Poisson Deconvolution Using QAB-PnP
Algorithm

Input: y, E , λ0, γ ,
h̄2

2m
, σQAB, N

Initialization: x0, z0, u0

Compute a smooth version of y by low-pass Gaussian
filter with standard deviation σQAB
Form the Hamiltonian matrix HQAB based on the
smoothed version of y using (29)
Calculate the eigen-pairs of HQAB
Construct DQAB using the eigenvectors ψ i of HQAB
Find the total number of eigenvalue T , less than the
energy level E
begin

ADMM process:
for k from 0 to N − 1 do

Step 1:
xk+1 = arg min

x
− yT log(Hx)+ 1THx+

λk

2

∥∥x− zk + uk∥∥22
Step 2:
zk+1 = DQAB(xk+1 + uk ), following QAB
denoising Algorithm 2
Step 3:
uk+1 = uk + xk+1 − zk+1

λk+1 = γ λk

Output: x̂ = xN

FIGURE 3. Images used for deconvolution simulations.

To further decrease the complexity, a block-wise approach
could be used as proposed in [62], where a large image
is divided into smaller patches denoised independently by
the QAB denoiser. In this the complexity is O(T Pm2) for
P patches of size m (� n). Moreover, such a patch-based
architecture can be improved by considering the dependence
between neighboring patches by borrowing tools from the
quantum interaction theory as suggested in [101].

D. CONVERGENCE ANALYSIS OF QAB-PnP ALGORITHM
Despite their popularity during the last decade, the proof of
convergence of PnP-ADMM algorithms may still be an issue.
Some interesting developments have been proposed during
the last few years on global [38] and fixed point [39]–[45]
convergence of these algorithms, while imposing restrictions
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FIGURE 4. Numerical validation of the criteria,
∥∥∥DQAB(xk )− xk

∥∥∥
2
≤ σk M for any xk ∈ Rn2

, performed on the sample images in Fig. 3(a-c).

on the denoising operator. In this section, our goal is to anal-
yse the fixed point convergence of the proposed QAB-PnP
algorithm.

To enable the fixed point convergence and in particular
to avoid the issue of unbounded gradient in (26) for pixel
values equal to 0, i.e., to overcome the singularity problem
at x = 0, we slightly modify the observation model (18) by
introducing a small positive constant ε � 1, as suggested
in [102]:

y = P(Hx+ ε1). (32)

Therefore the negative Poisson log-likelihood (21)
becomes

f (x) = −yT log(Hx+ ε1)+ 1THx, (33)

and the corresponding gradient

∇f (x) = −HT (y/(Hx+ ε1))+HT1. (34)

One should note that within practical experiments, ε is
much smaller than any background value, so that its influence
on the final output is negligible [102].
Remark 1: For f (x) : [0, 1]n

2
→ R+, with nontrivial

constant vector y ∈ Rn2 and operator H ∈ Rn2×n2 , the
gradient ∇f (x) is bounded.

Proof:
Since ε is the lower bound of (Hx + ε1), therefore 1/ε is

the upper bound of 1/(Hx+ε1). Since y andH are constants,
they are bounded. Hence one can write:

‖∇f (x)‖2 =
∥∥∥−HT (y/(Hx+ ε1))+HT1

∥∥∥
2

≤

∥∥∥HT
∥∥∥
2

∥∥∥∥ y
Hx+ ε1

∥∥∥∥
2
+

∥∥∥HT
∥∥∥
2

≤
δ1

ε
+ δ2

≤ L <∞ (35)

where δ1, δ2,L ∈ R+.
Remark 2: Denoiser DQAB is a bounded denoising oper-

ator with a parameter σk .
We cannot offer a general proof of this statement, also

it intuitively appears highly likely. The denoising process

denoted byDQAB certainly reduces the level of noise at each
iteration and gets DQAB(xk ) closer and closer to xk . It is
therefore fair to consider that

∥∥DQAB(xk )− xk
∥∥
2 decreases

with k . It is also bounded by
∥∥xk∥∥2 since DQAB is a projec-

tion operator.
The rate of decrease is not a priori easy to bound, but we

offer numerical evidence that the decrease is fast. Indeed,
in all three examples shown in Fig. 4 the decrease is very
fast. In particular, it is much faster that the rate of decrease of
σk

def
= 1/λk . We thus generalize this result and take as generic

that
∥∥DQAB(xk )− xk

∥∥
2 ≤ σkM where M is a system-

dependent constant.
Remark 3 (Fixed Point Convergence of QAB-PnP

Algorithm): If

1) f (x) : [0, 1]n
2
→ R+ is analytic and has bounded

gradient, i.e., for all x ∈ [0, 1]n
2
, there exists L < ∞

such that ‖∇f (x)‖2 ≤ L, and
2) DQAB is a bounded denoising operator with a param-

eter σk ,
then QAB-PnP converges to a fixed point. That is, there exists
(x∗, z∗,u∗) such that

∥∥xk − x∗∥∥2 → 0,
∥∥zk − z∗∥∥2 → 0,∥∥uk − u∗∥∥2→ 0 as k →∞.

Proof:
∗ First condition: The first condition holds as shown in

Remark 1.
∗ Second condition: The second condition should hold

generically as discussed in Remark 2.
Given that the two conditions are satisfied within the pro-

posed framework, let us move to the proof of the fixed point
convergence in Remark 3. We start by proving the following
statements: ∥∥∥zk+1 − zk∥∥∥ ≤ C2

λk
(36)∥∥∥xk+1 − xk∥∥∥ ≤ C1

λk
(37)∥∥∥uk+1 − uk∥∥∥ ≤ C3

λk
(38)

where C1, C2 and C3 are constants and λk is the penalty
parameter with λk+1 = γ λk , where γ > 1.
∗ First step: Proof of condition (36).
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From (12), we have

xk+1 = arg min
x

f (x)+
λk

2

∥∥∥x− zk + uk∥∥∥2
2
. (39)

The first order optimality implies

x− (zk − uk ) = −
∇f (x)
λk

. (40)

Since theminimizer is obtained in x = xk+1, replacing x by
xk+1 and using the boundedness property of ∇f (x), we have∥∥∥xk+1 − (zk − uk )

∥∥∥
2
=

∥∥∇f (xk+1)∥∥2
λk

≤
L
λk
. (41)

Furthermore, since the denoiser DQAB is bounded and
zk+1 = DQAB(xk+1 + uk ), one can write∥∥∥zk+1 − (xk+1 + uk )

∥∥∥
2

=

∥∥∥DQAB(xk+1 + uk )− (xk+1 + uk )
∥∥∥
2

≤ σkM =
M
λk
. (42)

One also has∥∥∥zk+1 − zk∥∥∥
2
≤

∥∥∥zk+1 − (xk+1 + uk )
∥∥∥
2

+

∥∥∥(xk+1 + uk )− zk∥∥∥
2
. (43)

Finally, using (41) and (42), we obtain∥∥∥zk+1 − zk∥∥∥
2
≤

L
λk
+
M
λk
=
C2

λk
. (44)

∗ Second step: Proof of condition (38).
From (14), we get∥∥∥uk+1∥∥∥

2
=

∥∥∥uk + xk+1 − zk+1∥∥∥
2

=

∥∥∥(xk+1 + uk )−DQAB(xk+1 + uk )
∥∥∥
2

≤
M
λk
. (45)

Using (45), we have∥∥∥uk+1 − uk∥∥∥
2
≤

∥∥∥uk+1∥∥∥+ ∥∥∥uk∥∥∥
2
≤
M
λk
+
M
λk
=
C3

λk
. (46)

∗ Third step: Proof of condition (37).
(14) can be written as

xk+1 = uk+1 − uk + zk+1. (47)

Using (47), we have∥∥∥xk+1 − xk∥∥∥
2

=

∥∥∥(uk+1 − uk + zk+1)− (uk − uk−1 + zk )
∥∥∥
2

≤

∥∥∥uk+1 − uk∥∥∥
2
+

∥∥∥zk+1 − zk∥∥∥
2
+

∥∥∥uk − uk−1∥∥∥
2

≤
C3

λk
+
C2

λk
+

C3

λk−1
≤
C3

λk
+
C2

λk
+
γC3

λk
=
C1

λk
(48)

Hence all three conditions (36), (37) and (38) are true.

Next, we aim at proving that {xk}∞k=1 is a Cauchy sequence.
Therefore, one has to show that for all integer n > k ,∥∥xn − xk∥∥2→ 0 as n→∞ and k →∞.

For any finite n and k , one can write using the condition
(37)∥∥∥xn − xk∥∥∥

2
≤

n−1∑
l=k

C1

λl
= C1

n−1∑
l=k

1
λ0γ l

=
C1

λ0γ k

n−k−1∑
l=0

1
γ l
.

(49)

Therefore, as n → ∞ and k → ∞,
∥∥xn − xk∥∥2 → 0,

since γ > 1, so {xk}∞k=1 is a Cauchy sequence. Hence, the
sequence {xk}∞k=1 is convergent, thus there exits x

∗
∈ [0, 1]n

2

such that
∥∥xk − x∗∥∥2→ 0 as k →∞.

Similarly, one can show that the sequence {zk}∞k=1 and
{uk}∞k=1 are convergent, so there exit z∗,u∗ ∈ [0, 1]n

2
such

that
∥∥zk − z∗∥∥2→ 0 and

∥∥uk − u∗∥∥2→ 0 as k →∞.
Therefore we can conclude that the proposed QAB-PnP

algorithm converges to a fixed point.
The proof we propose is not a convergence proof in the

mathematical sense, since it reposes on Remark 2 for which
we only have plausibility arguments and numerical evidence.
Nevertheless, the discussion above and the numerical results
in Fig. 4 for three very different images, indicate that with
high confidence the algorithm should converge in practice for
any image.

IV. SIMULATION RESULTS
This section illustrates the efficiency of the proposed
QAB-PnP algorithm for Poisson image deconvolution.
An analysis of the influence of the hyperparameters on the
deconvolution accuracy is first provided in Subsection IV-A,
before comparing its performance to several state-of-the-art
methods in Subsection IV-B. In [62] we already performed a
detailed analysis of the hyperparameters σQAB, s and ρ for
the efficiency of the denoiser. We recall that these hyperpa-
rameters control respectively the smoothing of the potential
to avoid localization effects in the expansion basis, and the
cutoff in energy which leads to denoising. We therefore chose
these hyperparameters to be optimal according to the study
in [62]. However, the computational method used in the
present work (OMP algorithm) introduces a new hyperparam-
eter E which controls the accuracy and efficiency of the OMP
process. The accuracy of OMP increases for increasing E , but
at the cost of higher computational time. A trade-off is thus
necessary, and we will show that the optimal value of E is also
influenced by the value of the hyperparameter h̄2/2m, which
fixes how the local frequencies of the basis vectors vary as a
function of pixels’ amplitudes.

The simulations are conducted on three images, shown
in Fig. 3. Two of them represent cropped versions of the
standard Lena and fruits images. The third one was syntheti-
cally constructed so that it contains high frequencies for low
gray levels and, vice versa, low frequencies for high intensity
pixels. Its purpose is to illustrate the ability of the proposed
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FIGURE 5. PSNR mean and standard deviation values for all the three
sample images in Fig. 3 as a function of Poisson noise level.

deconvolution method, and in particular of the embedded
quantum-based denoiser, to handle such images. All the sam-
ple images are distorted with two Gaussian blurring kernel
h4×4σ of size 4 × 4 and standard deviation σ = 3 and
σ = 5 respectively. The study was conducted with three
different Poisson noise levels corresponding to SNRs of 20,
15 and 10 dB. Note that the noise was image-dependent
Poisson distributed and that the SNRs of the observations
was computed a posteriori to emphasize the amount of noise.
Finally, Subsection IV-C shows the abbility of the proposed
method to enhance experimental fluorescence microscopy
images.

A. HYPERPARAMETER ANALYSIS
This subsection presents a detailed analysis on the influence
of the hyperparameters on the proposedmethod. In particular,
the role of the hyperparameter E will be evaluated, given its
important impact on the compromise between accuracy and
computational time, and its relationship with the hyperpa-
rameter h̄2/2m will be assessed. It is important to mention
that in general the hyperparameter h̄2/2m and the number of
significant wave vectors T vary in an opposite way, one of
them increasing when the other one decreases. In addition,
there is a linear relation between T and the processing time.
Therefore, to achieve an optimal behaviour of the algorithm,
a good balance between the hyperparameters h̄2/2m and E
needs to be achieved. We will also discuss the choice of
the hyperparameter λ0 which controls the iterations of the
ADMM algorithm described in Section II.

From this perspective, we first show that considering the
wave vectors up to the energy level E and evaluating only the
corresponding coefficients αi following the modified OMP
algorithm in Algo. 1 helps reducing the computation time
with minimal accuracy loss. Quantitative results showing the
influence of E on the simulations performed over the three
sample images in Fig. 3, distorted by a Gaussian blurring
kernel h4×4σ of size 4 × 4 and standard deviation σ = 3, and
corrupted by Poisson noise corresponding to a SNR of 20 dB,

TABLE 1. Quantitative measurements obtained using the proposed
QAB-PnP algorithm with and without modified OMP.

15 dB, and 10 dB, have been regrouped in Table 1, where
the best results have been highlighted in bold. Similarly, the
average peak signal to noise ratios (PSNR) values for differ-
ent SNR, obtained with the proposed deconvolution method
with and without the modified OMP algorithm, are shown
in Fig. 5. The results in Fig. 5 and Table 1 prove that the
accuracy loss, caused by the use of the parameter E within
the modified OMP algorithm, is very limited. This accuracy
loss is caused by the denoising process that reconstructs the
denoised image only from the wave functions associated with
an energy level lower than E . Indeed, althoughwave functions
associated with higher energies are dominated by noise, they
may still carry information about certain features of the clean
image. The average computation time for different images
obtained with a Matlab implementation on a desktop com-
puter, with and without E , given in Table 2, confirms the
computational efficiency gain enabled by the modified OMP
algorithm embedded in QAB-PnP method.

In addition to E , as stated previously, h̄2/2m is also an
important hyperparameter of the proposed deconvolution
technique. The hyperparameter h̄2/2m dictates how the local
frequencies of the basis vectors vary with the amplitude of
the image pixel values. On the other hand, E is associated
with the sparsity. Given their mutual dependence, Fig. 6(a)
shows the accuracy of QAB-PnP algorithm for different cou-
ple values of these two hyperparameters over an acceptable
range. This experiment consisted in recovering the image in
Fig. 3(a) from a degraded version blurred by a 4×4 Gaussian
kernel with standard deviation equal to 3 and Poisson noise
corresponding to a SNR of 20 dB.

Similarly, Figs. 6(b) and (c) show the variation of the num-
ber of the significant wave vectors T and of the computation
time. These results also justify the linear proportionality of
T and processing time. Note that as explained previously,
the other hyperparameters, σQAB, s and ρ, were chosen as
suggested in [62].

Finally, the choice of the hyperparameter λ0 used within
the iterations of the ADMM algorithm described in Section II
is important to accelerate the convergence. The curves in
Fig. 7 show, within a logarithmic scale, the evolution of the
root mean square error (RMSE) over the iterations of the
proposed deconvolution method, for different values of λ0.
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FIGURE 6. Experiment performed on the image in Fig. 3(a) blurred by a Gaussian kernel h4×4
σ of size 4× 4 with standard deviation σ = 3, and

corrupted by Poisson noise corresponding to a SNR of 20 dB. QAB-PnP was performed with λ0 = 1.5, and γ , σQAB , s and ρ manually tuned to
their best possible values for each set of experiments.

These simulations were performed for the three images in
Fig. 3, distorted by a Gaussian blurring kernel h4×4σ of size

4×4 and standard deviation σ = 3, and corrupted by Poisson
process corresponding to a SNR of 20 dB.
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FIGURE 7. Evolution of the RMSE (logarithmic scale) for different values of the hyperparameter λ0, for a Gaussian blurring kernel h4×4
σ of size 4× 4 with

standard deviation σ = 3 and Poisson noise corresponding to a SNR of 20 dB. The other hyperparameters γ , σQAB , s and ρ have been manually tuned to
their best possible values for each set of experiments.

TABLE 2. Average computation time (all the algorithms have been implemented in Matlab and tested on a computer with an Intel(R) Core(TM) i7-10510U
CPU of 4 cores each with 1.80 GHz, 16 GB memory and using Windows 10 Pro version 20H2 as operating system) and required number of iterations for
different images.

The studies performed in this subsection show that a certain
range of optimal choice of the hyperparameters considered is
possible. Without a priori knowledge, it should be possible to
use values in this range for arbitrary images, taking care to
choose E and h̄2/2m in a correlated way. As a further note,
keeping the hyperparameters constant to the same values for
all the images considered hereafter leads to a very low PSNR
degradation of about 0.1 dB. From the discussions above, one
may note that the hyperparameters h̄2/2m and E are primarily
associated with the construction of the quantum adaptive
basis and the sparsity of the clean image in this basis, both
related to the denoising process. In contrast, λ0, the penalty
parameter, regulates the restoration process by accelerating
the convergence. Therefore, the optimal choice of h̄2/2m and
E discussed above is independent of the value of λ0.

B. POISSON DECONVOLUTION RESULTS
Poisson deconvolution is a well discussed domain in the liter-
ature where PnP algorithms implanting a Gaussian denoiser
with or without a VST transformation have exhibited promis-
ing outcomes [31], [32]. The proposed method is intrinsi-
cally adaptive, which makes it well-adapted to different noise
statistics for the problem addressed and does not require using
any additional transformation in the denoising step.

This subsection regroups image deconvolution results
obtained with the proposed method and five approaches from
the literature. The experiments consisted in recovering the
images in Fig. 3 from degraded versions by Gaussian blur-
ring kernels with different variances and Poisson noise at
different SNRs. The first comparative method is a standard

FIGURE 8. RMSE in logarithmic scale as a function of iteration number for
TV-ADMM, ADMM+BM3D, ADMM+TNRD, ADMM+VST+TNRD, P4IP and
proposed QAB-PnP methods. The results correspond to the restoration of
the image in Fig. 3(a) from a degraded image by a Gaussian blurring
kernel h4×4

σ of size 4× 4 and standard deviation σ = 3, and Poisson noise
corresponding to a SNR of 20 dB. All hyperparameters were manually
tuned to their best possible values for all the methods.

Poisson deconvolution method that consists in estimating the
image that minimizes a cost function formed by the data
fidelity term in (21) and the classical total variation regu-
larization [11]. This method will be denoted by TV-ADMM
hereafter. The second method denoted by ADMM+BM3D is
an integration of the BM3Ddenoiser in the PnP-ADMMalgo-
rithm. Similarly, a deep learning denoiser trained on natural
images was integrated into the PnP-ADMM scheme and used
as comparison method. In particular, the CNN-based flexi-
ble learning method, known as the trainable nonlinear reac-
tion diffusion (TNRD) [103], was used given its efficiency
within regularization by denoising approaches [104]. Finally,
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FIGURE 9. Deconvolution result for Lena image, blurred by a Gaussian kernel h4×4
σ=3 and corrupted by Poisson noise corresponding to

a SNR of 10 dB. The proposed QAB-PnP algorithm used E = 3.9, λ0 = 1.5, h̄2/2m = 4 and γ = 1.01, σQAB = 7.

FIGURE 10. Deconvolution result for Synthetic image, blurred by a Gaussian kernel h4×4
σ=5 and corrupted by Poisson noise

corresponding to a SNR of 15 dB. The proposed QAB-PnP algorithm used E = 4.1, λ0 = 1.3, h̄2/2m = 4 and γ = 1.01, σQAB = 7.

FIGURE 11. Deconvolution result for Fruits image, blurred by a Gaussian kernel h4×4
σ=3 and corrupted by Poisson noise corresponding

to a SNR of 20 dB. The proposed QAB-PnP algorithm used E = 4.5, λ0 = 3.15, h̄2/2m = 4.3 and γ = 1.01, σQAB = 8.

a PnP-ADMM algorithm coupled with an Anscombe trans-
formation (VST) and a BM3D denoiser, denoted by P4IP
in [32] was used for comparison. Note that TNRD has been
also used with and without VST. The resulting algorithms
are denoted by ADMM+TNRD and ADMM+VST+TNRD.
It is important to mention that the methods used for compar-
isons such as TV-ADMM, P4IP and ADMM+VST+TNRD

are particularly designed for handling data degraded by Pois-
son noise, and are therefore appropriate choices as com-
parative methods to the proposed Poisson deconvolution
algorithm.

As explained previsouly, the proposed method does not
require such a VST-like transformation due to the adap-
tive nature of the embedded denoiser [62]. Therefore, the
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FIGURE 12. The best, the worst and an intermediate deconvolution results over 200 noise realizations obtained using TV-ADMM, ADMM+BM3D,
ADMM+TNRD, ADMM+VST+TNRD, P4IP and the proposed QAB-PnP method for Lena image degraded by a Gaussian blurring kernel h4×4

σ=3 and
Poisson noise corresponding to a SNR of 15 dB.

proposed algorithm is expected to present better generic
convergence properties compared to P4IP. In the example

in Fig. 8, where P4IP had fast convergence, the rate of
convergence of QAB-PnP is similar to P4IP and faster
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TABLE 3. Quantitative results (average over 200 noise realizations). Best results are shown in bold.

TABLE 4. Quantitative deconvolution results when images are corrupted
with high intensity noise.

than TV-ADMM, ADMM+BM3D, ADMM+TNRD and
ADMM+VST+TNRD. To evaluate the computational com-
plexity of the proposed algorithm in comparison with
other standard techniques, the average computational time
and required number of iterations before convergence
are given in Table 2 with respect to different images.
The results confirm the faster convergence of the proposed
method, albeit, at the cost of higher computational time per
iteration.

The deconvolution results obtained with the six meth-
ods can be visually appreciated in Figs. 9, 10 and 11. The
PSNR and the structure similarity (SSIM) [105] were used to
evaluate the deconvolution accuracy. The resulting numerical
results, for two different blurring kernels and three differ-
ent SNRs, are regroupped in Table 3. In particular, average
and standard deviation values are reported for 200 noise
realizations. For further investigation, the quantitative results
obtained with the proposed method in presence of very
high-intensity noise, in particular, with SNRs close to 5 dB
and 0 dB, are provided in Table 4.
One may observe that the proposed scheme is capable to

adapt both to low and high level of noise and outperforms
the five other methods in almost all the simulations. It is
important to note that QAB-PnP not only provides the best
average values, but also the lowest standard deviations, in par-
ticular compared to P4IP. This observation is confirmed by
the results in Fig. 12, that displays, for a given simulation,
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FIGURE 13. Deconvolution results for experimental fluorescence microscopy images using TV-ADMM, ADMM+BM3D,
ADMM+TNRD, ADMM+VST+TNRD, P4IP and the proposed QAB-PnP method. The proposed QAB-PnP algorithm used E = 4.1,
λ0 = 1.3, h̄2/2m = 4 and γ = 1.01, σQAB = 7.

the best, the worst and an intermediate result over 200 noise
realizations. While the difference between these three results
is barely observable for the proposed method, this is not the
case for P4IP. Finally, one may observe the big accuracy
difference between the proposed method and the five others
for the synthetic image.

C. APPLICATION TO FLUORESCENCE MICROSCOPY
IMAGING
This section highlights the applicability of the proposed
deconvolution method to real-life imaging applications,
in particular to fluorescence microscopy imaging using,
e.g., confocal [106] or two-photon [107] microscopes.
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TABLE 5. Quantitative results for experimental fluorescence microscopy images. Best results are shown in bold.

Fluorescence microscopy images are intrinsically noisy, con-
taminated by Poisson-Gaussian noise. Poisson noise is the
dominating source of noise [11], [108], [109], due to a limited
number (∼ 102 per pixel) of quantized photons captured
by a microscopic detector compared to normal photography
(∼ 105 per pixel). Therefore, enhancing such contaminated
fluorescence images is of interest for manymodern biological
studies.

Herein, we used three microscopy images from the online
available data-set2 to illustrate the potential of the proposed
method. Fig. 13 regroups the observed distorted images, their
corresponding ground truth, and the deblurred images esti-
mated by the six methods. PSNR and SSIM values comparing
the observed and the deblurred images to the clean ones are
given in Table 5. These results clearly show the efficiency
of the proposed algorithm in real fluorescence microscopy
image enhancement.

V. CONCLUSION
This paper proposed a new PnP-ADMM scheme to han-
dle Poisson deconvolution problems. Although Gaussian
denoiser-based PnP-ADMM algorithms have achieved enor-
mous success in this domain of image restoration, they are
still facing a theoretical limitation related to the Anscombe
transformation used to approximately transform the Poisson
noise into additive Gaussian noise. Under this transforma-
tion, the convolution operation is not invariant. To overcome
this drawback, we proposed in this work the QAB denoiser
derived from principles of quantum mechanics, whose archi-
tecture makes it well adapted to different noise statistics,
explaining its good behavious as denoiser embedded in a
PnP-ADMM algorithm.

The simulation results allowed to provide an in-depth anal-
ysis of the impact of the hyperparameters on the accuracy and
computation efficiency of the proposed method. They also
allowed to show its interest compared to five existing meth-
ods. An issue of our proposal is the computational burden.

2http://tinyurl.com/y6mwqcjs

The use of the OMP algorithm already dramatically decreases
this time compared to earlier implementations [62], but other
improvements are certainly possible. As shown in our pre-
vious work [62] in the proposed quantum adaptive basis is
equally efficient for Gaussian, Poisson and speckle noise
removal problems without considering any prior information
about the noise statistics. Therefore, the proposed decon-
volution method could be suitable for other noise degra-
dation than Poisson, and its evaluation in such conditions
represents an interesting perspective. As another future per-
spective of this work one may think of implementing a
more advanced inversion algorithm for a Poissonian model
(e.g., SPIRAL-TAP [102]) instead of using a gradient descent
method. Moreover, blind deconvolution is also an interest-
ing perspective for future study, by coupling the proposed
deconvolution algorithmwith a PSF estimationmethod [110],
[111]. Finally, such a PnP scheme can be further extended to
other reconstruction problems, such as compressed sensing
or super-resolution, using more efficient quantum mechanics
based algorithms or by absorbing the patch-based procedure
to the proposed framework, using for example the many-body
quantum theory.
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