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ABSTRACT Detecting intrusion in network traffic has remained a problematic task for years. Progress
in the field of machine learning is paving the way for enhancing intrusion detection systems. Due to this
progress intrusion detection has become an integral part of network security. Intrusion detection has achieved
high detection accuracy with the help of supervised machine learning methods. A key factor in enhancing
the performance of supervised classifiers is how data is augmented for training the classification model.
Data in real-world networks or publicly available datasets are not always normally (Gaussian) distributed.
Instead, the distributions of variables are more likely to be skewed. To achieve a high detection rate, data
normalization or transformation plays an important role for machine learning-based intrusion detection
systems. Several methods are available to normalize the attributes of the data before training a classification
model. However, opting for the most suitable normalization technique is still a questionable task. In this
paper, a statistical method is proposed that can identify the most suitable normalization method for the
dataset. The normalization method identified by the proposed approach gives the highest accuracy for
an intrusion detection system. To highlight the efficiency of the proposed method, five different datasets
were used with two different feature selection methods. The datasets belong to both Internet of things and
traditional network environments. The proposed method is also able to identify hybrid normalizations to
achieve even improved intrusion detection results.

INDEX TERMS Anomaly detection, Bot-IoT, CIC-IDS 2017, intrusion detection, IoT, ISCX-IDS 2012,

normalization, NSL KDD, skewness, scaling, transformation, UNSW-NB15.

I. INTRODUCTION

Studies on machine learning (ML) and deep neural net-
works (DNN) for intrusion detection systems (IDS) have
become prominent due to an increase in knowledge on neural
networks [1]. IDS play a significant role in securing a network
since they aim to identify and highlight elements that can
disrupt network communication. With the efficiency of ML-
based IDS, the applications of IDS are no longer limited
to traditional networks. The Internet of Things (IoT), which
represents a large portion of today’s world of interconnected
devices represents a unique challenge for security require-
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ments. Due to the limitations of resources in IoT and low-cost
production, IoT devices are being targeted by a high number
of attacks [2]. However, several researchers have proposed
effective methods for IoT security [3]-[5]. A key element of
training any ML-based IDS is the pre-processing of training
data [6]. Various factors can influence the training model
of an ML-based IDS. This is why it is vital to provide the
training model with data that is normalized and contains rele-
vant features [7]. Hence, researchers have pursued exploring
pre-processing methods, feature selection methods, and data
normalization methods to achieve a high anomaly detection
rate [8], [9]. Normalization or transformation plays a vital
role in network security, as normalization forces integrity
which tends to increase the general cleanliness and structure
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for each feature [10]. Data normalization leads to improved
representation of data and allows ML-based algorithms to
get most of the data, resulting in enhanced predictions. Var-
ious publicly available datasets for IDS contain numerous
features (variables) whose distribution is outlying from nor-
mal (Gaussian) and asymmetric (skewed) [11]. Such factors
make things complicated for achieving high detection in an
IDS. Normalization helps in improving the interpretation of
data, getting insights about the bond between variables in
a feature, and meeting norms for statistical inference [12].
However, selecting a normalization or sequence of normal-
ization is quite challenging [13], [14]. The absence of any
standard method for evaluating the effects of normalization
for the dataset classification results in a selection based on
the hit and trial method [15], [16]. Such an approach can be a
time-consuming process with no guarantee that the selected
normalization is the most suitable for the ML model and
dataset. In this paper, a statistical method to identify a suitable
normalization method is suggested. The proposed method can
be used to identify the most suitable normalization, transfor-
mation, or scaling method to achieve a high detection rate
in ML-based IDS. The proposed method identifies not only
single but also hybrid normalization methods for the dataset.
The key contributions of the paper are:

e Identifying a statistical matrix that can assist in finding
the most suitable normalization for the data at hand.

e Based on the computed ranks one can identify the most
effective single or hybrid normalization for data in hand.

e To prove the validity and generality of the proposed
statistical method, five different datasets with both numerical
and non-numerical feature attributes were selected. Then,
two different feature selection methods were employed for
feature selection and three different ML classifiers were
implemented to verify the selected normalization method.

The rest of the paper is structured as follows. Section II
covers the related work on methods that are used for iden-
tifying the normality of the dataset with some prominent
data normalization methods. Section III describes the details
of the proposed process to identify data normalization.
Section IV briefs about the experiments for the proposed pro-
cess. Section V covers the experiments conducted to evaluate
and validate the proposed technique. Section VI represents
the results of the evaluation and validation process of the
proposed method. Section VII set forth the discussion on
the proposed model and a comparison between the proposed
model and similar approaches. In the end, section VIII con-
cludes the paper.

Il. RELATED WORK

With the rapid expansion of the internet and interconnected
devices, network security has come to be increasingly chal-
lenging. Network intrusion detection (NIDS) has proven to
be an effective method to achieve high accuracy in classi-
fying network anomalies. Most of the supervised classifi-
cation methods rely on prior normalized datasets to train
the model for classification. However, real-world network
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FIGURE 1. QQ-plotting of ISCX 2012 dataset feature ‘Pkt index per flow
with normalization (single and hybrid).

data do not contain any normalization pre-process. Suitable
normalization for publicly available IDS datasets can easily
be established based on available research work. On the
other hand, identifying suitable normalization methods for
real-world or new datasets remains a concern. Generally,
ML methods tend to perform well on a dataset with normal
distribution [17], [18]. Distance from normality in a dataset
can be illustrated in several different methods; however,
the most prominent measures are skewness and kurtosis [19].
The skewness defines the asymmetry of a distribution in a
dataset and zero skewness indicates symmetric distribution.
Asymmetric distribution with a larger tail on the right has
positive skewness and a dataset with a larger left tail has
negative skewness. On the other hand, kurtosis deals with
both tail heaviness and peakedness of a distribution associ-
ated with that of the normal distribution. Therefore, kurtosis
is restricted to symmetric distributions [20]. Generally, if the
values of skewness and kurtosis significantly diverge from
zero and three respectively, it is expected that the dataset in
hand may not be normally distributed. However, no official
guidelines are specified for the values of kurtosis or skewness
to indicate the non-normality of a dataset [21]. Other com-
mon methods to check normality before classification of the
dataset are histogram, Box plot, QQ (quantile-quantile) plot,
Kolmogorov Smirnov test, Lilliefors test, and Shapiro Wilk
test [22], [23]. The mentioned methods suffer from diverse
limitations. Histogram can be deceptive since changing the
graph scale can alter the shape of the distribution and may
lead to misperception [24]. Box-plot generates limited infor-
mation to understand or conclude normality [24]. Similarly,
QQ-plot can be a little tricky in identifying the right normal-
ization method as shown in Figure 1. As seen in Figure 1, all
three representations of the QQ plot are quite similar yet the
classification results are different.

Among the tests Kolmogorov Smirnov, Lilliefors, and
Shapiro Wilk, the Shapiro test is the most powerful [23]. The
Shapiro-Wilk assessment is based on a random sample from
the dataset. The null hypothesis [25] of the Shapiro-Wilk test
is that the data is normally distributed. If the p-value [26]
of the sample data is lower than 0.05 then the distribution
is not normal. However, based on sample size it is possible
that the p-value can identify a normally distributed dataset
as not normally distributed and vice versa [22]. As a result,
the method to identify a fitting normalization method for a
dataset before classification is unclear. Transformation and
normalization techniques implemented in this paper include
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L2-normalization, Yeo-Johnson, Min-Max, Robust scaler,
and Standard scaler. The Yeo-Johnson transformation [27] is
an extension of the Box-Cox transformation. Mathematically
Yeo-Johnson can be represented as Equation 1, where ‘y’ are
the values, ‘A’ can be any real number, and A = 1 gives the
identity transformation [11].

-1
(%) ifA#0,y>0
o _ ) logyi+1) ifA=0,y>0
(= 12— () -1
<( [(y1+2)_/\() ]> ifA#£2,y<0
—log(—y; +1) ifA=2,y<0
(1)

The Min-Max normalization [28] is among the most com-
monly used normalization [29]-[31]. Min-Max implements
linear transformation on the data. Mathematically Min-Max
can be represented as Equation 2.

x — min(x)
Xscaler = max(x) — min(x) (2)

The Robust scaler [32] approach to normalizing data is
similar to min-max. The only difference is that the Robust
scaler scales data based on the quintile range. Equation 3 rep-
resents the Robust scaler, where ‘x’ represent the values while
Q1 = 25" quantile and Q3 = 75" quantile.

I Ty 10
03(x) — Q1(x)
The Standard scaler [33] normalizes the data by removing
the mean and scaling the data to unit variance. Mathemati-
cally Standard scaler can be represented as Equation 4, where
‘s’ is the standard deviation and ‘i’ is the mean.
X — mean

Xscaler = T “)
stddiv

3

The L2-standardization [34] normalizes the dataset in a
way that in each row the sum of the square of each value will
be one. Equation 5 represent L2-standardization, where ‘x’
represent the values of features in the dataset.

lIxll2 = (e + el + . )72 )

Data pre-processing plays a vital role in an IDS and for
several data mining-related operations. Data normalization
is an essential part of data pre-processing, particularly for
intrusion detection methods that rely on statistical attributes
extracted from the data at hand. As in paper [35], the authors
highlighted the importance of data normalization and how it
can affect the performance of anomaly detection. The authors
implemented four different normalization methods with three
different classifiers. This paper was aimed to answer two
questions. First, whether attribute normalization is crucial
for intrusion detection performance. Second, which tech-
nique of attribute normalization is most effective. The authors
concluded the paper by providing experimental proof that
attribute normalization plays a role in improving anomaly
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detection. Among the implemented normalization methods,
statistical-based normalization resulted in achieving the high-
est accuracy results. The only downside of this paper was
that the authors identified the most suitable normalization
based on classification results. This approach of identifying
normalization based on classification is not a proficient pro-
cess. A study by B. Setiawan et al. [36], used the informa-
tion gain method to select the most suitable normalization
method. In this research, the authors used information gain on
the log normalization, min-max, and z-score normalization
schemes. After implementing normalization, attributes were
rounded off by 2 to 10 decimals, and Information gain was
used on each decimal alteration. Based on the information
gain method the quality of attributes was computed. As per
results, the highest risk of rounding the normalization was
displayed by log normalization and z-score. Yet, the authors
implemented log normalization for the intrusion detection
system. The authors justified the use of log normalization
by stating that it had the three decimal place-safe threshold.
Despite the justification, implementing log normalization is
a concern as the information gain implemented by authors
highlighted that rounding log normalization is not suitable.
In a paper by Yu Liping et al. [37], they evaluated several
normalization methods and concluded that each evaluation
purpose requires a different data normalization procedure.
Compared to the mentioned papers, this paper presents a
more precise statistical approach to identify the most suitable
normalization method for the dataset in hand.

llIl. PROPOSED METHOD

In this article, a statistical method is proposed to identify
the most suitable normalization, transformation, or scaling
method for the data at hand. The proposed statistical model
is not limited to a specific format of a dataset. As the
model is validated on datasets that cover both numeric and
non-numeric feature attributes. The proposed model is also
implanted on IoT-based datasets to further validate the gen-
eral application of the suggested approach. The flow of the
proposed method can be seen in Figure 2.

Initially, a dataset is pre-processed by applying basic data
cleaning. Details of data pre-processing are included in the
experiment section of the paper. After data cleaning, feature
selection is applied to the dataset. After feature selection,
the normalization, transformation, or scaling methods are
applied to the dataset. To find the most suitable normalization
approach, two or three most common normalization methods
can be applied separately on the dataset. This will result in
multiple datasets based on the number of selected normaliza-
tion methods. The following two steps will be applied to each
dataset separately. First, the mean, median, and skewness of
each feature of the datasets are computed. Second, the overall
average of mean, median, and skewness of the features in
the datasets are computed. This will result in a matrix of the
average mean, median, and skewness of the features from
each dataset. The skewness in the proposed model is taken
as an absolute value. The reason is later discussed in the
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FIGURE 2. Proposed method flow.

sub-section data normalization and encoding. After comput-
ing the average mean, median, and skewness of the features
of all the datasets the Ranking and Percentile method are
applied on the computed matrix. The Rank and Percentile
methods assign ranks based on descending order i.e. the
highest value in the column will be ranked first. To identify
the most suitable normalization method, the sum of the ranks
is calculated. As a result, the normalization with the largest
sum of ranks is the most suitable normalization for the data
at hand. Based on the flow diagram in Figure 2, the proposed
statistical model is shown in Algorithm 1.

IV. EXPERIMENTATION

In this paper, we analytically evaluate the effect of differ-
ent methods of attribute normalization on the performance
of ML-based IDS. Three ML algorithms, Support Vector
Machine (SVM), Random Forest (RF), and Deep Neural
Network (DNN) were employed to validate the proposed
statistical method. The reason for implementing three differ-
ent classifiers is to highlight that the proposed model is not
dependent on a particular ML algorithm. As each of the men-
tioned ML algorithms belongs to a different category of ML
classification method. The SVM is associated with spatial
regression-based algorithms, RF represents a decision-based
classifier, and DNN belongs to supervised deep learning
ML algorithms. Attribute normalization schemed used were
Yeo-Johnson, Min-Max, Robust scaler, Standard scaler, and
L2 normalization. The stated normalization methods are
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selected because they cover the core techniques for data
normalization methods i.e. scaling, clipping, and log-based
scaling. The datasets used for the experiment were CIC-IDS
2017 [38], ISCX-IDS 2012 [39], NSL-KDD [40], UNSW-
NB 15 [41], and Bot-IoT [42]. All the mentioned datasets
are well-known and specifically developed for testing net-
work security-based algorithms. Further, the Bot-IoT dataset
was designed particularly for IoT-based security algorithms.
Datasets CIC-IDS 2017, ISCX-IDS 2012, and Bot-IoT were
created by modeling a real network environment contain-
ing both normal and attack traffic. The NSL-KDD dataset
is an improved version of the KDD’99 dataset [40]. The
KDD’99 dataset suffered from a high number of redundant
records, duplicate values, and biased sampling. The Per-
fectStorm tool created the UNSW-NB 15 dataset. The tool
generated a mixture of both normal and attack traffic behav-
iors to create the UNSW-NB 15 dataset. The details of the
attacks simulated in each dataset are shown in Table 1. The
motive behind implementing multiple datasets, feature selec-
tion methods, and classifiers is to highlight the generality and
flexibility of the proposed method. The paper’s contribution
is twofold. First, the proposed statistical method is imple-
mented to identify the most suitable normalization method
for each dataset. Secondly, multiple ML-based IDS are
implemented to validate the results of the proposed method.
The hardware used for the experiments was an Intel Xeon
Gold 32 core (64 threads) processor with 192GB RAM and
RTX2080ti GPU. The programming language used for the

137497



IEEE Access

M. A. Siddiqi, W. Pak: Agile Approach to Identify Single and Hybrid Normalization

Algorithm 1 Proposed Statistical Model

1: Input: Dataset, “x”

2: Output: Most suitable normalization method for the dataset.
3: Where;
4: X 2 (x1,x2, ..., x%), k(e N): datasets.
5: ith data: x; £ (ff , f2i e f,f), n is the total number of features.
6: N,, = m-th normalization.
7: Step 1: Apply Pre-Processing on the dataset.
8: x' < Pre — Processing(x)
9: Step 2: Apply feature selection on dataset.
10: x" <« FeatureSelection(x")
11: Step 3: Apply normalization, transformation or scaling on dataset, N,.
12: x™ « N,.(x"), where xl-(m) £ l(m)”, z(m)”, Sy
13: Step 4: Compute Mean, Median and, Skewness of each feature.
14: mean](-m) = mean(f»(m)‘] ,]3.('")’2, - ,ﬁ(m)’k)
15: median;m) = median(}j-(m)’1 ,]3-("1)’2, - ,f-(m)’k)
16: skewnessj(.m) = abs(skewness()j.(m)’l), j;-(m)’z), el j;(m) ’k)))
17: Step 5: Compute average Mean, Median and Skewness of the dataset.
18: mean™ = mean(meangm), mean(zm), AU meanﬁ,m))
19: median(m) = median(median(lm), median(zm), el medianﬁlm))
20: skewness(m) = skewness(skewness(lm), skewness(zm), e, skewness;m))

21: Step 6: Get Rank on mean™, median‘m), and skenewss™ of each N, Vm.

22: Step 7: Sum the ranking of mean™, median™ and, skenewss"” to identify the best normalization (N, ).
23: m* = argmax,,{Rank(mean"™) + Rank(median(m)) + Rank(skenewss(m))}

implementation was Python 3.6 on the Ubuntu operating sys-
tem. The DNN was executed using GPU-enabled TensorFlow
2.3.1 on the Keras framework. The RF and SVM classifiers
were implemented using Scikit-Learn 0.23.2 ML library. Ten-
sorFlow, Scikit-Learn, and Python are open-source software,
which is accessible online for free download. Minitab [43]
was used for extracting and analyzing dataset attribute values.
MS-Excel data analysis tool ‘Rank and Percentile’ was used
to calculate the ranks of the normalization methods.

A. DATA PRE-PROCESSING

This section covers the pre-process steps applied to the
dataset. In this paper, five datasets were used; CIC-IDS 2017,
ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT.
First basic data cleaning is applied on all five datasets. Basic
cleaning removed missing value samples, duplicate data sam-
ples and, infinite data samples from the datasets. Second neg-
ative time values are removed from the datasets. In the dataset
CIC-IDS 2017, the “BENIGN” class and in dataset ISCX-
IDS 2012 “NORMAL” class had a very high number of sam-
ples. To avoid biasing, 230124 samples of the “BENIGN”
class are used from CIC-IDS 2017 and 25,854 samples of
the “NORMAL” class are extracted from ISCX-IDS 2012.
In dataset CIC-IDS 2017, two classes “Infiltration” and
“Heartbleed” are dropped as they had very few samples.
All three classes of web attacks are combined into one class
“Web attack” in dataset CIC-IDS 2017. For the UNSW
NB-15 dataset the features ‘id’, ‘label’, and ‘service’ were
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dropped. As the ‘service’ column contained some missing
values. The ‘id’ column was the index and the ‘label’ column
was a binary representation of attacks, where ‘0’ represented
normal and ‘1’ as an attack. In the Bot-IoT dataset, fea-
tures ‘pkSeqID’, ‘saddr’, ‘daddr’, ‘category’, and ‘attack’ are
dropped. The categorical features are converted to numbers
with the help of label encoding. The ‘Data Exfiltration’ class
is dropped as it had only 6 samples. To avoid any biases the
samples of ‘TCP’, ‘UDP’, and ‘Service_Scan’ are reduced.
Atthe end of pre-processing, features with zero variance were
dropped for the datasets using zero-variance [44]. After pre-
processing, details of the dataset can be seen in Table 1.

To avoid any biasing, the synthetic minority over-sampling
technique (SMOTE) is implemented with edited nearest
neighbors (ENN) [8] to perform cleaning on the training set
of each dataset.

B. FEATURE SELECTION

In this research, two feature selection methods are employed.
The filter-based Pearson correlation [45] is applied on CIC-
IDS 2017, ISCX-IDS 2012, UNSW NB-15, and Bot-IoT
datasets. Whereas, wrapper-based Forward Selection with
Decision Tree (FS-DT) [46] is applied on NSL-KDD. Pear-
son correlation works by computing the correlation between
features. Features with a high correlation are more linearly
dependent and therefore have nearly the same effect on the
dependent variable. Hence, if two features show a high cor-
relation, the Pearson correlation drops one of those features.
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TABLE 1. Details of CIC-IDS 2017, ISCX-IDS 2012, and NSL-KDD datasets after pre-processing.

Number of each class

DoSSlowhttptest:5,499
DoSslowloris:5,796
FTP-Patator:7,935

DDoS:25,845
HTTPDoS:3,928
Infiltration:7,919

Attack:58,630

Fuzzers:20,957
Generic:7,599
Reconnaissance:9,991

Dataset CIC-IDS2017 ISCX-IDS2012 NSL-KDD UNSW NB-15 Bot-IoT
Number of features 79 82 41 42 14
Number of classes 11 5 2 10 7
Number of samples 786,633 73,566 125,973 162,724 74,680

Benign:230,124 Normal:85,720

Bot:1,956 Analysis:2,032

DDoS:128,025 Ba skfiso;,i 230 Normal:477
DoSGoldenEye:10,293 | Normal:25,845 DoS:5 49"‘ ’ HTTP:2,474
DoSHulk:230,124 BruteForceSSH:10,029 Normal:67.343 Exploits:27,424 Keylogging:73

OS_Fingerprint:17,914
Service_Scan:17,914
TCP:17,914

PortScan: 158,804
SSH-Patator:5,897
‘Web Attack:2,180

Shellcode: 1,456 UDP:17,914

Worms: 171

TABLE 2. Original number of dataset features vs features selected.

CIC-IDS | ISCX-IDS | NSL-KDD | UNSW | Bot-IoT
2017 2012 NB-15
Total 79 82 41 42 19
Features
Features 45 42 19 36 14
Selected

In this experiment, Pearson correlation was applied using the
python library with correlation coefficients 0.95 and —0.95.
Features within the defined correlation coefficient limits were
selected for the experiment. In datasets, CIC-IDS 2017 and
ISCX-IDS 2012 features were compared with each other in
the dataset to compute their correlation with each other. As a
result, features that have higher correlation such as Average
Backward Segment Size, Average Forward Segment Size,
Maximum Packet Length, Minimum Packet Length, etc in
datasets CIC-IDS 2017 and ISCX-IDS 2012 were dropped
by Pearson correlation. Pearson correlation can be computed
as shown in Equation 6.

Y (i — D) — )

I'xy = (6)
I i = 2 T = 92

where:

ryy = Pearson Correlation Coefficient Value,

x; = Individual Sample Points of Each Conditional
Attributes,

y; = Individual Sample Points of the Decision Attribute,

x = Average of all Sample Points of each Conditional
Attribute,

y = Average of all Sample Points of the Decision Attribute.

The wrapper-based FS-DT [47] is a greedy search algo-
rithm that tries to find the “optimum’ subset of features by
iteratively selecting features based on the classifier perfor-
mance. Table 2 shows the number of features selected after
the feature selection process.

C. DATA NORMALIZATION AND ENCODING
In this experiment, five data normalization methods i.e.
Yeo-Johnson, Robust scaler, Min-Max, Standard scaler, and
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L2 normalization are implemented. The NSL-KDD and
UNSW NB-15 datasets contained both numeric and nom-
inal features. Therefore, the one-hot encoding and label-
encoding [48] are applied to NSL-KDD and UNSW NB-
15 features respectively. Both one-hot encoding and label-
encoding were applied using the python libraries. The one-hot
encoding works by creating new binary columns to replace
the categorical feature in a dataset. For instance, in the NSL-
KDD dataset, the categorical feature ‘protocol_type’ had
three attributes tcp, udp, and icmp. So the one-hot encoding
encoded the attributes tcp as 001, udp as 010, and icmp
as 100 and aggregating one feature column to three feature
columns. Due to the one-hot encoding, NSL-KDD features
were increased from 19 to 98 On the other hand, the label-
encoding on the UNSW NB-15 dataset assigned a unique
numeric value to each attribute of the non-numeric feature.
For illustration, the feature ‘proto’ in UNSW NB-15 had non-
numeric attributes i.e tcp, udp, igmp, ospf, sctp, etc. the label
encoding simply encoded tcp as 0, udp as 1, igmp as 2, and
so on. The reason for applying different encoding techniques
on NSL-KDD and UNSW NB-15 datasets is due to the
difference in the ordinal nature of the categorical attributes.
Later, each normalization is applied to all five datasets. Soft-
ware ‘“Minitab’” was then used on the normalized datasets to
extract attribute mean, median, and skewness. The average
and middle values of the attribute are represented by mean
and median respectively. While the skewness as defined ear-
lier is the asymmetry of a distribution in a dataset and zero
skewness indicates symmetric distribution. Asymmetric dis-
tribution with a larger tail on the right has positive skewness
and a dataset with a larger left tail has negative skewness [21].
Equations 7, 8, and 9 were used to compute the mean, median,
and skewness respectively.

N
Mean = % (7)
N o
X |:5 if N is even
Median = ()
([t [2])
7 if Nis odd
137499
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TABLE 3. Average mean, median, and skewness of each dataset based on different normalization methods.

TABLE 4. Average mean, median, and skewness of each dataset based on hybrid normalization methods.

CIC-IDS 2017 ISCX-IDS 2012 NSL-KDD
Normalization Average Mean | Average Median | Average Skewness | Average Mean | Average Median | Average Skewness | Average Mean | Average Median | Average Skewness
Yeo-Johnson 0 -0.279 5.017 0 -0.338 2.031 0.020 -0.029 32473
L2 Normalization 0.040 0.015 3.058 0.043 0.020 8.231 0.034 0.016 35.935
Robust Scaler 26581.63 0 15.235 54874 0 12.412 5.061 0.010 38.137
Standard Scaler 0 -0.277 15.235 0 0.064 12.412 0.020 -0.030 38.137
Min-Max 0.193 0.155 9.986 -0.806 -0.939 12.412 0.050 0.026 38.137
UNSW NB-15 Bot-IoT
Normalization Average Mean Average Median Average Skewness Average Mean Average Median Average Skewness
Yeo-Johnson -3.6696 0.0394 0.50142 5.6567 -0.2316 0.31974
L2 Normalization 0.0357 0.0288 32.1929 0.09929 0.1111 74.1810
Robust Scaler 79.1296 7.6941 12.3598 26.7954 4.5935 21.9743
Standard Scaler -1.3541 -0.1317 12.3598 -2.3284 -0.1956 21.9743
Min-Max 0.1342 0.1469 12.3598 0.3706 0.3226 21.9743

CIC-IDS 2017 Dataset

ISCX-IDS 2012 Dataset

Normalization Average Mean | Average Median | Average Skewness Normalization Average Mean | Average Median | Average Skewness
Yeo-Johnson + Min-Max -0.264 -0.477 5.017 Yeo-Johnson + Min-Max -0.41 -0.67 2.031
Min-Max + L2 Normalization 0.193 0.155 9.986 Min-Max + L2 Normalization -0.128 -0.147 6.326
L2 Normalization + Yeo-Johnson 0 -0.4 3.057 L2 Normalization + Yeo-Johnson 0 -0.4 3.057
L2 Normalization+Standard Scaler 0.074 -0.189 2.298 L2 Normalization + Min-Max -0.86 -0.95 8.321

NSL-KDD Dataset

UNSW NB-15 Dataset

Normalization

Average Mean

Average Median

Average Skewness

Normalization

Average Mean

Average Median

Average Skewness

Yeo-Johnson + Standard Scaler 0.02 -0.029 32.473 Min-Max+L2 Normalization 0.0706 0.0729 11.0353
Yeo-Johnson + Robust Scaler 0.045 0.0102 32473 Yeo-Johnson+Min-Max 0.3744 0.3560 0.5014
Min-Max + L2 Normalization 0.034 0.016 35.935 Yeo-Johnson+Standard Scaler 0.0394 -8.9229 0.5014

Standard Scaler + L2 Normalization 0.015 -0.005 33.781 L2 Normalization+Standard Scaler -2.2604 -0.0838 44.5423
Bot-IoT Dataset
Normalization Average Mean Average Median Average Skewness
Min-Max+L2 Normalization 0.1888 0.1560 21.6463
Yeo-Johnson+Min-Max 0.4502 0.3657 0.31974
Yeo-Johnson+Standard Scaler 5.6185 -0.2316 0.3197
L2 Normalization+Standard Scaler -2.9353 -0.0169 74.1810
N ZN ( . _ ¥ )3 . .
i=1Wi — X formula for percentile and ranking can be represented as
Skewness = ©)]

(N — DN —2)s3

where “N” represents the number of values in the dataset,
“x” represents the value in a dataset. Further in Equa-
tion 9, “x” represents the mean, and “s” represents the
standard deviation of the dataset. For the proposed statistical
method, skewness is taken as an absolute value. Negative
skew is generally considered problematic for statistical mod-
els [49], [50]. Table 3 represents the average mean, median,
and skewness of datasets after each normalization.

In this research, hybrid-normalization methods are also
implemented for two reasons. One, to check whether a com-
bination of two normalization methods can further improve
IDS performance. Second, to check the flexibility of the
proposed model. Based on the five normalization techniques
selected for experimentation, a high number of combinations
for hybrid normalization are possible. However, only a hand-
ful of combinations with high performance were selected as
shown in Table 4.

D. IDENTIFYING THE BEST NORMALIZATION

After computing the matrices shown in Tables 3 and 4 per-
centile ranking is applied to identify the most suitable nor-
malization method. Percentile rank [51] returns a score com-
pares to other scores in the same matrix or set. This method
can be used to calculate the relative standing of a value
within a matrix or set. In this experiment, the Rank and
Percentile data analysis tool from MS-Excel is used. The
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Equations 10 and 11.

P=2 %100 (10)
N
P
P — (11)
1002 + 1)

T3]

where “P” is the percentile, “x” represents the number of
values below the selected value, “N” represents the total
number of values, “r” represents the rank, and “n” is the
number of values. Ranks are assigned based on descend-
ing order. After applying the Rank and Percentile method
in Table 3, Table 5 was acquired. The normalization method
with the highest sum of rank in Table 5 represents the most
suitable normalization for the dataset.

Similarly, the Rank and Percentile method was applied on
Table 4 to compute Table 6. The hybrid normalization method
with the highest sum of rank in Table 6 represents the most
suitable hybrid normalization for the dataset.

Based on the proposed method, normalization methods that
achieved the maximum sum of rank in Tables 5 and 6 will
achieve the highest accuracy for the respective dataset with
ML-based IDS.

V. EVALUATING PROPOSED STATISTICAL MODEL

To evaluate and verify the proposed statistical model, three
ML-based IDS are implemented. The implemented IDS mod-
els are based on RF, SVM, and DNN. The DNN model for
IDS in this paper is the same as our earlier published work [6].
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TABLE 5. After applying the rank and percentile on table 3 and computing ranks for each normalization.

CIC-IDS 2017 Dataset ISCX-IDS 2012 Dataset
Average Mean Average Median Average Skewness Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank || Rank | Percentile | Rank | Percentile | Rank | Percentile | ) Rank
Standard Scaler 4 0.00 4 25.00 1 75.00 9 3 25.00 1 100.0 1 75.00 5
Robust Scaler I 100.0 3 50.00 I 75.00 5 T 100.0 3 50.00 3 50.00 7
Yeo-Johnson 7l 0.00 5 0.00 q 25.00 3 3 25.00 7 25.00 3 0.00 12
Min-Max 2 75.00 1 100.0 3 50.00 6 5 0.00 5 0.00 1 75.00 11
L2 Normalization 3 50.00 2 75.00 5 0.00 10 2 75.00 2 75.00 7l 25.00 3
NSL-KDD Dataset UNSW NB-15 Dataset
Average Mean Average Median Average Skewness Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | ) Rank Rank | Percentile | Rank | Percentile | Rank | Percentile | D> Rank
Yeo-Johnson 4 0.00 4 25.00 5 0.00 13 5 0.00 3 50.00 5 0.00 13
L2 Normalization 3 50.00 75.00 1 25.00 9 3 50.00 7 25.00 T 100.0 8
Min-Max 2 75.00 1 100.0 1 50.00 4 2 75.00 2 75.00 2 25.00 6
Standard Scaler 7 0.00 3 0.00 i 50.00 10 7 75.00 3 0.00 2 25.00 il
Robust 1 100.0 3 50.00 1 50.00 5 1 100.0 1 100.0 2 25.00 4
Bot-IoT Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile >"Rank
Yeo-Johnson 2 75.00 5 0.00 5 0.00 12
L2 Normalization 4 25.00 3 50.00 1 100.0 8
Robust Scaler 1 100.0 1 100.0 2 25.00
Standard Scaler 5 0.00 4 25.00 2 25.00 11
Min-Max 3 50.00 2 75.00 2 25.00 7
TABLE 6. After applying the rank and percentile on table 4 and computing ranks for each hybrid normalization.
CIC-IDS 2017 Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank
Yeo-Johnson + Min-Max 4 0.00 4 0.00 2 66.60 10
Min-Max + L2 Normalization 1 100.0 1 100.0 1 100.0 3
L2 Normalization + Yeo-Johnson 3 33.30 3 33.30 3 33.30 9
L2 Normalization + Standard Scaler 2 66.60 2 66.60 4 0.00 8
ISCX-IDS 2012 Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank
Yeo-Johnson + Min-Max 3 33.30 3 33.30 4 0.00 10
Min-Max + L2 Normalization 2 66.60 1 100.0 2 66.60 5
L2 Normalization + Yeo-Johnson 1 100.0 2 66.60 3 33.30 6
L2 Normalization + Min-Max 4 0.00 4 0.00 1 100.0 9
NSL-KDD Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank
Yeo-Johnson + Standard Scaler 3 33.30 4 0.00 3 0.00 10
Yeo-Johnson + Robust Scaler 1 100.0 2 66.60 3 0.00 6
Min-Max + L2 Normalization 2 66.60 1 100.0 1 100.0 4
Standard Scaler + L2 Normalization 4 0.00 3 33.30 2 66.60 9
UNSW NB-15 Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank
Min-Max + L2 Normalization 2 66.60 2 66.60 2 66.60 6
Yeo-Johnson + Min-Max 1 100.0 1 100.0 3 0.00 5
Yeo-Johnson + Standard Scaler 3 33.30 4 0.00 3 0.00 10
L2 Normalization + Standard Scaler 4 0.00 3 33.30 1 100.0 8
Bot-IoT Dataset
Average Mean Average Median Average Skewness
Normalization Rank | Percentile | Rank | Percentile | Rank | Percentile | > Rank
Min-Max + L2 Normalization 3 33.30 2 66.60 2 66.60 7
Yeo-Johnson + Min-Max 2 66.60 1 100.0 3 33.30 6
Yeo-Johnson + Standard Scaler 1 100.0 4 0.00 4 0.00 9
L2 Normalization + Standard Scaler 4 0.00 3 33.30 1 100.0 8

The DNN used in earlier work had four dense layers with
120 nodes in an individual layer; other parameter specifics
can be seen in Table 7.

Apart from classification, the Cohen’s kappa coeffi-
cient [52], and receiver operating characteristics (ROC) [53]
were also computed to verify that the normalization selected
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by the proposed method is the most suitable for the dataset.
For the ML classification model accuracy, precision, recall,
and the F1-score were calculated using Equations (12)—(15).

Accuracy

TruePositive 4+ TrueNegative

Total

12)
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TABLE 7. DNN parameters for the experiments.

TABLE 8. Most suitable normalization method for all three datasets
based on the proposed method.

Activation Function | Epochs | Learning Batch size | Layers
rate Dataset Normalization Hybrid Normalization
Elu 100 0.0001 100 4 CIC-IDS 2017 Yeo-Johnson Yeo-Johnson + Min-Max
. ISCX-IDS 2012 Yeo-Johnson Yeo-Johnson + Min-Max
Precision — TruePositive (13) NSL-KDD Yeo-Johnson | Yeo-Johnson + Standard Scaler
TruePositive + FalsePositive UNSW NB-15 Yeo-Johnson Yeo-Johnson + Standard Scaler
Bot-IoT Yeo-Johnson Yeo-Johnson + Standard Scaler
TruePositive
Recall = (14)

TruePositive + FalseNegative

Precision.Recall
F1 — Score = 2. — (15)
Precision + Recall

where true positive is when an attack is correctly identified
as an attack and false positive is when normal traffic is
incorrectly identified as an attack. True negative is when
normal traffic is correctly identified as normal traffic and false
negative is when an attack is incorrectly identified as normal
traffic. The kappa coefficient score is a very handy measure of
an ML model’s capability when performing multi-class clas-
sification [54]. The kappa coefficient compares the predicted
and expected accuracy of an ML algorithm. Mathematically
kappa coefficient can be represented as Equation 16.

Kappa = (16)

where ‘pg’ is the overall accuracy of the ML model and
‘pe’ represents the agreement between the ML model esti-
mates and the authentic class values as if happening by
chance. On the other hand, the receiver operating character-
istic (ROC) curve is a graphical representation of the classi-
fication model at all classification thresholds [55].

VI. RESULTS

In this section results of the ML classifiers on CIC-IDS 2017,
ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT
datasets are presented. The reason behind using five different
datasets and multiple ML classifiers is to highlight the flex-
ibility and generality of the proposed method. Table 8 rep-
resents the most suitable normalization method based on the
proposed method ranking computation as shown in Table 5.

A. RANDOM FOREST BASED IDS MODEL

As a part of verifying the proposed statistical model, RF was
implemented for classification on all five datasets as shown
in Table 9. The normalization methods highlighted by the
proposed method (i.e. Table 8) achieved the highest accu-
racy. For the single normalization method, Yeo-Johnson
achieved the highest accuracy in all five datasets. While
for the hybrid normalization method, the combination of
Yeo-Johnson and Min-Max achieved the highest accuracy
for CIC-IDS 2017 and ISCX-IDS 2012 datasets. While the
combination of Yeo-Johnson + Standard was able to achieve
the highest accuracy on NSL-KDD.

Based on Equation 16, the Kappa coefficient score was
computed for all five datasets. Table 10 represents the Kappa
score of the normalization method which achieved the highest
accuracy based on the RF-based IDS model.
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To visualize the classification performance of RF-based
IDS, Figure 3 represents the classification matrix of
each dataset with both single and hybrid transformations.
Although achieving high accuracy is not the core purpose of
this research but, the RF-based IDS was able to achieve good
classification results on each dataset excluding the UNSW
NB-15 dataset. Figures 3 (a), (b), (c), (d), and (e) represents
the classification matrix of the datasets CIC-IDS 2017, ISCX-
IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT based on
Yeo-Johnson normalization. Figures 3 (f) and (g) represent
the classification matrix of the datasets CIC-IDS 2017, ISCX-
IDS 2012 based on Yeo-Johnson + Min-Max normaliza-
tions respectively. Figures 3 (h), (i), and (j) represent the
classification matrix of the NSL-KDD, UNSW NB-15, and
Bot-IoT datasets based on Yeo-Johnson 4+ Standard scaler
normalizations respectively.

The ROC curves for each dataset classified by RF-based
IDS are presented in Figure 4. Each colored line in the ROC
graph represents a class in a dataset. Figures 4 (a), (b), (c),
(d), and (e) represent the ROC of the datasets CIC-IDS 2017,
ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT
based on Yeo-Johnson normalization. Figure 4 (f) and (g) rep-
resent the ROC of the datasets CIC-IDS 2017, ISCX-IDS
2012 based on Yeo-Johnson + Min-Max normalizations
respectively. Figures 4 (h), (i), and (j) represent the ROC of
the NSL-KDD, UNSW NB-15, and Bot-IoT datasets based
on Yeo-Johnson 4 Standard scaler normalizations respec-
tively.

B. SUPPORT VECTOR MACHINE BASED IDS MODEL

In this research, the SVM-based IDS model is executed
for 1000 epochs. As the main goal of performing classifi-
cation is to verify the proposed statistical model and not
to achieve high accuracy results. Based on Table 11, Yeo-
Johnson achieved the highest accuracy as highlighted by the
proposed method. However, in hybrid normalization for CIC-
IDS 2017 and BoT-IoT datasets the highlighted normalization
method (i.e. Table 8) did not achieved the best classifica-
tion results. For datasets, ISCX-IDS 2012, NSL-KDD, and
UNSW NB-15 the highest accuracy was achieved by the
normalization method identified by the proposed statistical
method as shown in Table 8.

Based on Equation 16, the Kappa coefficient score is com-
puted for all five datasets. Table 12 represents the Kappa
score of the normalization method which achieved the highest
accuracy based on the SVM-based IDS.

To visualize the classification performance of SVM-based
IDS, Figure 5 represents the classification matrix of each
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TABLE 9. Classification results of the RF-based IDS on all three datasets and normalizations.

Dataset CIC-IDS 2017 dataset
Normalization Min-Max Robust Standard L2 Yeo-Johnson Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max L2+Standard
Accuracy 99.64% 99.71% 99.75% 99.68% 99.87% 99.71% 99.71% 99.88% 99.65%
F1-Score 97.19% 97.28% | 97.41% | 97.73% 99.86% 98.61% 97.80% 99.13% 97.36%
Precision 95.58% 95.70% 95.97% 96.33% 98.54% 97.81% 96.60% 98.67% 95.84%
Recall 99.66% 99.62% 99.66% 99.48% 99.61% 99.54% 99.24% 99.62% 99.27%
Dataset ISCX-IDS 2012 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max | L2+Min-Max
Accuracy 95.72% 95.18% 95.75% 94.34% 95.89% 95.16% 95.05% 95.77% 94.92%
F1-Score 94.29% 93.02% | 94.01 % | 91.45% 94.27% 92.99% 92.68% 94.06% 95.20%
Precision 94.39% 92.73% 93.82% 91.08% 94.35% 92.53% 92.23% 93.98% 92.12%
Recall 94.22% 93.42% 94.22% 92.69% 94.22% 93.65% 93.37% 94.14% 93.17%
Dataset NSL-KDD dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 | Yeo-Johnson+Standard Yeo-Johnson+Robust Standard+L2
Accuracy 99.73% 99.87% 99.86% 99.82% 99.87% 99.71% 99.88% 99.86% 99.62%
F1-Score 99.72% 99.87% 99.86% 99.82% 99.87% 99.70% 99.88% 99.86% 99.62%
Precision 99.73% 99.87% 99.86% 99.83% 99.87% 99.71% 99.88% 99.87% 99.63%
Recall 99.72% 99.86% 99.85% 99.82% 99.86% 99.70% 99.88% 99.86% 99.61%
Dataset UNSW NB-15 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson MinMax+L2 Yeo-Johnson+MinMax Yeo-Jonson+Standard L2+Standard
Accuracy 75.79% 76.66% 75.53% 36.87% 76.92% 74.87% 76.57% 77.04% 63.25%
F1-Score 55.53% 56.44% 55.73% 31.66% 56.81% 54.40% 56.69% 56.87% 45.80%
Precision 54.20% 54.77% 54.32% 47.18% 54.93% 53.44% 54.79% 54.97% 48.31%
Recall 67.61% 67.93% 67.68% 42.92% 68.15% 64.72% 68.21% 68.20% 55.77%
Dataset Bot-IoT dataset
Normalization | Min-Max | Robust | Standard L2 Yeo-Johnson | MinMax+L2 Yeo-Johnson+MinMax Yeo-Jonson+Standard L2+ Standard
Accuracy 99.41% 98.73% 99.29% 98.33% 99.42% 98.57% 99.17% 99.25% 98.90%
F1-Score 98.25% 97.71% 96.28% 94.29% 98.34% 96.93% 96.36% 96.33% 95.50%
Precision 97.98% 97.33% 94.34% 91.48% 98.12% 95.80% 94.51% 94.42% 93.28%
Recall 98.67% 98.29% 98.60% 98.05% 98.68% 98.19% 98.56% 98.60% 98.37%
TABLE 10. Kappa coefficient score of the RF-based IDS on highest accuracy normalizations.
Datasets Normalization | Kappa Score Hybrid Normalization Kappa Score
CIC-IDS 2017 Yeo-Johnson 0.9983 Yeo-Johnson + Min-Max 0.9984
ISCX-IDS 2012 Yeo-Johnson 0.9429 Yeo-Johnson + Min-Max 0.9386
NSL-KDD Yeo-Johnson 0.9976 Yeo-Johnson + Standard Scaler 0.9976
UNSW NB-15 Yeo-Johnson 0.7213 Yeo-Johnson + Standard Scaler 0.7228
Bot-IoT Yeo-Johnson 0.9925 Yeo-Johnson + Standard Scaler 0.9902
TABLE 11. Classification results of the SVM-based IDS on all three datasets and normalizations.
Dataset CIC-IDS 2017 dataset
Normalization | Min-Max | Robust | Standard L2 Yeo-Johnson | Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max | L2+Standard
Accuracy 34.25% 20.73% 43.99% 46.22% 75.73% 49.65% 71.51% 71.30% 68.69%
F1-Score 28.45% 0391% | 31.92% | 25.17% 68.02% 38.52% 52.69% 56.59% 43.00%
Precision 38.65% 08.49% 36.93% 31.61% 67.27% 45.21% 56.95% 54.74% 44.29%
Recall 49.57% 09.74% 52.11% 41.67% 75.99% 56.66% 61.78% 64.09% 52.21%
Dataset ISCX-IDS 2012 dataset
Normalization Min-Max Robust Standard L2 Yeo-Johnson Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max L2+Min-Max
Accuracy 86.33% 18.93% 89.73% 90.22% 93.49% 86.45% 92.95% 93.57% 91.82%
F1-Score 83.67% 19.00% 88.55% 86.76% 90.05% 83.85% 89.60% 90.47% 89.05%
Precision 83.83% 48.39% 88.65% 85.90% 89.16% 84.26% 88.63% 89.97% 88.53%
Recall 84.21% 29.40% 88.68% 87.71% 91.04% 84.09% 90.78% 91.03% 89.60%
Dataset NSL-KDD dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 | Yeo-Johnson+Standard Yeo-Johnson+Robust Standard+L2
Accuracy 98.06% 98.06% 98.08% 98.78% 99.38% 98.09% 99.38% 99.25% 98.20%
F1-Score 97.99% 97.99% 98.07% 98.77% 99.38% 98.08% 99.38% 99.25% 98.19%
Precision 98.05% 98.05% 98.12% 98.80% 99.38% 98.14% 99.38% 99.24% 98.25%
Recall 97.95% 97.95% 98.03% 98.74% 99.39% 98.04% 99.39% 99.25% 98.15%
Dataset UNSW NB-15 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson MinMax+L2 Yeo-Johnson+MinMax Yeo-Jonson+Standard L2+ Standard
Accuracy 53.49% 03.86% 59.76% 24.11% 70.35% 53.47% 62.20% 70.32% 27.36%
F1-Score 30.36% 04.44% 38.44% 07.68% 49.95% 30.45% 39.55% 49.95% 12.59%
Precision 42.55% 25.28% 42.41% 08.89% 49.60% 37.61% 44.84% 49.60% 27.50%
Recall 33.66% 07.92% 48.68% 15.54% 63.04% 34.11% 49.49% 63.04% 26.28%
Dataset Bot-IoT dataset
Normalization | Min-Max | Robust | Standard L2 Yeo-Johnson | MinMax+L2 Yeo-Johnson+MinMax Yeo-Jonson+Standard L2+ Standard
Accuracy 72.89% 18.80% 72.73% 39.52% 72.92% 67.09% 77.00% 70.92% 44.39%
F1-Score 64.17% 09.34% 63.80% 25.14% 65.56% 68.62% 67.84% 65.56% 19.61%
Precision 59.11% 37.48% 59.02% 31.41% 63.38% 63.02% 65.08% 63.38% 24.03%
Recall 80.57% 12.61% 79.62% 37.90% 81.56% 79.20% 85.21% 81.56% 27.13%

of the datasets CIC-IDS 2017, ISCX-IDS 2012, NSL-KDD,
UNSW NB-15, and Bot-IoT based on Yeo-Johnson normal-

dataset with both single and hybrid transformations. Figure 5
(a), (b), (c), (d), and (e) represent the classification matrix
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FIGURE 3. Classification matrix of highest accuracy normalization methods based on the RF-based IDS model.
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TABLE 12. Kappa coefficient score of the SVM-based IDS on highest accuracy normalizations.

Datasets Normalization | Kappa Score Hybrid Normalization Kappa Score
CIC-IDS 2017 Yeo-Johnson 0.6831 Yeo-Johnson + Min-Max 0.6234
ISCX-IDS 2012 Yeo-Johnson 0.9099 Yeo-Johnson + Min-Max 0.9109
NSL-KDD Yeo-Johnson 0.9991 Yeo-Johnson + Standard Scaler 0.9877
UNSW NB-15 Yeo-Johnson 0.6451 Yeo-Johnson + Standard Scaler 0.6451
Bot-IoT Yeo-Johnson 0.6477 Yeo-Johnson + Standard Scaler 0.6277
TABLE 13. Classification results of the DNN-based IDS on all three datasets and normalizations.
Dataset CIC-IDS 2017 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max L2+Standard
Accuracy 98.90% 94.36% 98.76% 98.18% 99.75% 98.69% 99.58% 99.57% 98.87%
F1-Score 94.65% 81.25% 93.05% 90.73% 97.80% 94.12% 97.25% 96.29% 93.12%
Precision 91.54% 85.38% | 89.50% | 85.88% 96.28% 90.75% 95.36% 93.84% 89.61%
Recall 99.34% 86.94% 98.85% 98.47% 99.64% 98.85% 99.62% 99.65% 98.82%
Dataset ISCX-IDS 2012 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 L2+Yeo-Johnson Yeo-Johnson+Min-Max | L2+Min-Max
Accuracy 94.35% 90.47% 94.46% 91.68% 95.37% 93.11% 94.13% 95.16% 93.10%
F1-Score 92.34% 86.57% 92.30% 87.69% 93.42% 90.42% 91.44% 92.84% 90.79%
Precision 92.52% 84.92% 91.68% 87.70% 93.27% 91.05% 90.33% 92.15% 90.40%
Recall 92.24% 90.51% 93.16% 89.12% 93.62% 90.12% 92.72% 93.60% 91.20%
Dataset NSL-KDD dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 | Yeo-Johnson+Standard Yeo-Johnson+Robust Standard+L2
Accuracy 98.95% 99.15% 99.36% 99.07% 99.75% 98.86% 99.74% 99.72% 99.09%
F1-Score 98.94% 99.15% | 99.36% | 99.06% 99.75% 98.85% 99.74% 99.72% 99.09%
Precision 98.93% 99.13% 99.36% 99.10% 99.75% 98.85% 99.74% 99.72% 99.07%
Recall 98.96% 99.16% 99.36% 99.03% 99.74% 98.86% 99.73% 99.71% 99.12%
Dataset UNSW NB-15 dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 Yeo+Min-Max Yeo+Standard L2+Standard
Accuracy 71.21% 69.23% | 70.64% | 26.94% 75.24% 69.17% 73.43% 75.20% 42.98%
F1-Score 52.04% 51.53% 51.32% 19.44% 54.64% 50.69% 53.89% 54.90% 31.51%
Precision 52.32% 52.04% 50.97% 27.12% 52.99% 51.40% 52.81% 53.69% 40.39%
Recall 67.53% 64.93% 62.45% 35.54% 64.79% 68.40% 69.82% 64.88% 43.88%
Dataset Bot-1oT dataset
Normalization | Min-Max Robust Standard L2 Yeo-Johnson | Min-Max+L2 Yeo+Min-Max Yeo+Standard L2+Standard
Accuracy 96.51% 97.55% 97.27% 66.12% 98.57% 96.86% 97.77% 98.67% 95.88%
F1-Score 92.77% 92.42% | 95.49% | 66.58% 94.11% 93.35% 92.54% 94.46% 91.47%
Precision 90.07% 89.00% 93.89% 63.82% 91.15% 90.53% 89.26% 91.73% 88.51%
Recall 96.92% 97.56% | 97.37% | 78.89% 98.17% 96.98% 97.69% 98.06% 95.44%
TABLE 14. Kappa coefficient score of the DNN-based IDS on highest accuracy normalizations.
Datasets Normalization | Kappa Score Hybrid Normalization Kappa Score
CIC-IDS 2017 Yeo-Johnson 0.9967 Yeo-Johnson + Min-Max 0.9930
ISCX-IDS 2012 Yeo-Johnson 0.9357 Yeo-Johnson + Min-Max 0.9329
NSL-KDD Yeo-Johnson 0.9954 Yeo-Johnson + Standard Scaler 0.9948
UNSW NB-15 Yeo-Johnson 0.7020 Yeo-Johnson + Standard Scaler 0.7016
Bot-IoT Yeo-Johnson 0.9814 Yeo-Johnson + Standard Scaler 0.9827

ization. Figure 5 (f) and (g) represent the classification matrix
of the datasets CIC-IDS 2017 and ISCX-IDS 2012 based on
Yeo-Johnson 4+ Min-Max normalizations respectively. Fig-
ure 5 (h), (i), and (j) represent the classification matrix of
the NSL-KDD, UNSW NB-15, and BoT-IoT dataset based on
Yeo-Johnson + Standard scaler normalizations respectively.
The ROC curves for each dataset classified by SVM-based
IDS are presented in Figure 6. Each colored line in the ROC
graph represents a class in a dataset. Figures 6 (a), (b), (c),
(d), and (e) represent the ROC of the datasets CIC-IDS 2017,
ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT
based on Yeo-Johnson normalization. Figure 6 (f) and (g) rep-
resent the ROC of the datasets CIC-IDS 2017 and ISCX-
IDS 2012 based on Yeo-Johnson + Min-Max normalizations
respectively. Figures 6 (h), (i), and (j) represent the ROC of
the NSL-KDD, UNSW NB-15, and Bot-IoT dataset based on
Yeo-Johnson + Standard scaler normalizations respectively.

C. DEEP NEURAL NETWORK-BASED IDS MODEL
The DNN-based IDS model implemented in this paper is
based on our earlier work [8]. Table 13 represents the
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classification results achieved by the DNN-based IDS model.
The DNN-based IDS model validated the Yeo-Johnson nor-
malization as the most suitable normalization method for all
five datasets as predicted by the proposed model (i.e. Table 8).
On the other hand, in hybrid normalization for CIC-IDS
2017 dataset, L2 normalization + Yeo-Johnson achieved the
highest accuracy rather than Yeo-Johnson 4+ Min-Max. For
datasets, ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and
Bot-IoT the highest accuracy was achieved by the normal-
ization method identified by the proposed statistical method
as highlighted in Table 8.

Based on Equation 16, the Kappa coefficient score was
computed for all five datasets. Table 14 represents the Kappa
score of the normalization method which achieved the highest
accuracy based on the DNN-based IDS.

To visualize the classification performance of DNN-based
IDS, Figure 7 represents the classification matrix of each
dataset with both single and hybrid transformations. Even
though achieving high accuracy is not the main purpose of
this research but, the DNN-based IDS was able to perform
with good accuracy on each dataset excluding the UNSW
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(i) UNSW NB-15 dataset with
Yeo-Johnson + Standard Scaler

(j) Bot-IoT dataset with
Yeo-Johnson + Standard Scaler
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SVM-based IDS model.
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FIGURE 7. Classification matrix of highest accuracy normalization methods based on the DNN-based IDS model.

(i) UNSW NB-15 dataset with
Yeo-Johnson + Standard Scaler

(j) Bot-IoT dataset with
Yeo-Johnson + Standard Scaler
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FIGURE 8. ROC (receiver operating characteristic curve) of highest accuracy normalization methods based on the
DNN-based IDS model.
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TABLE 15. Comparison and discussion on papers adopting different methods for identifying dataset normalization.

Reference| Method to identify Nor- | Normalization Methods Comparison
malization

[11] Visual graphs i.e. QQ-plot, | A combination of the ob- | Concern: Missing Validation method i.e. classification, regression, etc.
heatmap, and graphs jective function, the rec- | In this article, multiple classifiers and datasets are implemented to validate

tified Box-Cox and Yeo- | the identified normalization method.
Johnson transforms
[20] Statistics i.e. Jarque-Bera No normalization applied | Concern: The selected method was not able to identify normality in presence
to the self-generated | of outlying attributes. The method was yet to be tested with a small dataset.
dataset On the other hand in this article, the proposed method is validated on
datasets containing outlying attributes and a comparatively small dataset i.e.
NSL-KDD.
[58] Applied all normalization | Normalization function, z- | Concern: Suitable normalization was identified based on classification re-
methods one by one score, Categorical trans- | sults. Such an approach is quite extensive, as each normalization is ap-
formation plied and classification is performed to identify the suitable normalization
method.
However, in this article, the suggested method identifies the most suitable
normalization without performing classification.

[59] Applied all normalization | MinMax (0,1), MinMax (- | Concern: Suitable normalization was identified based on classification re-
methods one by one 1,1), Standardization (0,1), | sults. Such an approach is quite extensive, as each normalization is ap-

Standardization (-1,1) plied and classification is performed to identify the suitable normalization
method. Experimentation was done on one dataset.
In contrast, the proposed method in this article was applied on five differ-
ent datasets with some well-known normalization methods. The proposed
model was also able to identify the most suitable normalization without
performing classification.

[60] Jarque-Bera (JB), Robust | Self-modification Concern: Use of only one dataset, self-modification to introduce non-
Jarque-Bera (RIB), normalization in the dataset, and the absence of a validation method i.e.
Shapiro-Wilk (SW), classification, regression, etc.

Kolmogorov—Smirnov While in this article, the proposed method is implemented on five different
(KS), Lilliefors (LF), datasets with a comprehensive validation method.
Anderson-Darling (AD)

NB-15 dataset. Figure 7 (a), (b), (c), (d), and (e) represent
the classification matrix of the datasets CIC-IDS 2017, ISCX-
IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT based on
Yeo-Johnson normalization. Figure 7 (f) and (g) represent
the classification matrix of the datasets CIC-IDS 2017 and
ISCX-IDS 2012 based on Yeo-Johnson + Min-Max normal-
izations respectively. Figure 7 (h), (i), and (j) represent the
classification matrix of the NSL-KDD, UNSW NB-15, and
Bot-IoT datasets based on Yeo-Johnson + Standard scaler
normalization.

The ROC curves for each dataset classified by DNN-based
IDS are presented in Figure 8. Each colored line in the ROC
graph represents a class in a dataset. Figure 8 (a), (b), (c),
(d), and (e) represent the ROC of the datasets CIC-IDS 2017,
ISCX-IDS 2012, NSL-KDD, UNSW NB-15, and Bot-IoT
based on Yeo-Johnson normalization. Figure 8 (f) and (g) rep-
resent the ROC of the datasets CIC-IDS 2017 and ISCX-IDS
2012 based on Yeo-Johnson + Min-Max normalizations
respectively. Figure 8 (h), (i), and (j) represent the ROC
of the NSL-KDD, UNSW NB-15, and Bot-IoT dataset
based on Yeo-Johnson + Standard scaler normalizations
respectively.

VII. DISCUSSION

Conventionally the Min-Max and standardization are con-
sidered as the most common normalization methods [56].
Even though the general application of the mentioned method
can be questioned. In comparison to the existing methods
highlighted in related work and Table 15, the study conducted
in this paper is much more comprehensive and generally

VOLUME 9, 2021

applicable for improving an ML-based IDS. To corrobo-
rate the generalization of the proposed model, five differ-
ent datasets with two different feature selection methods
were used. The datasets contained both numeric and nomi-
nal features. After applying the proposed statistical method,
the most suitable normalization method for the datasets was
highlighted in the form of ranks with the help of the Rank and
Percentile method. To validate the proposed model, three dif-
ferent ML-based IDS were implemented. Based on the vali-
dation procedure, the normalization methods identified by the
proposed statistical model achieved higher accuracy as com-
pared to the other normalization methods. On the other hand,
not all hybrid normalizations were identified successfully.
The proposed model successfully identified eighteen hybrid
normalizations out of the twenty hybrid normalizations.
However, it is possible to further improve hybrid normaliza-
tion detection by testing a few more potential combinations of
normalizations. Some of the hybrid normalizations were even
able to achieve improved classification results as compared to
the single normalization methods. The reason behind imple-
menting the hybrid normalization method was to check the
ability of the proposed model to identify non-standard nor-
malization methods. Therefore, researchers can also compare
newly proposed normalization methods with existing stan-
dardized methods. As the proposed method deals with a very
specific aspect of the ML pre-processing chain, it can also
be used to improve domains other than security. Such areas
may include network traffic classification using ML [57],
ML for low power devices [2], etc. as the proposed model
is computationally efficient. The computational complexity
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of our proposed algorithm can be presented as follow:

Ok - n - mlog(m)) (17)
where k, n, m are dataset size, feature number, and the num-
ber of attributes normalized. Noting that m < n < k,
we can say that the complexity is defined by ‘.4’ only. Which
means that the proposed algorithm is very efficient in term of
computation complexity as it is 1st order of the polynomial,
i.e. ®(k). In contrast, other normality testing algorithms such
as Q-Q plot, D’ Agostino’s K-squared test, Jarque-Bera test,
etc, cannot have a computational complexity lower than ®(k).
Table 15 represents a comprehensive comparison between the
existing methods to identify suitable normalization methods
and the proposed algorithm.

VIIl. CONCLUSION

The rising rate of complex attacks on networks has truly
tested the limitations of network security. The ML-based
IDS can play an integral part in providing enhanced security
measures. Normalization, which is a part of pre-processing,
plays an important part in improving ML-Based IDS. While
identifying which normalization method is suitable for the
data at hand is quite challenging. In this study, a statistical
model to identify the most suitable normalization method to
enhance the performance of ML-based IDS is proposed. The
proposed model is agile and does not require high computa-
tion. The proposed model used a matrix of mean, median, and
skewness with the Rank and Percentile method to identify the
most suitable normalization method for the selected dataset.
To validate the proposed statistical model three classifiers
are also implemented. Based on the validation results the
proposed model was able to identify the most suitable normal-
ization method with high accuracy. Such statistical methods
open opportunities for researchers to further improve existing
methods to assist pre-processing methods to improve ML-
based IDS. For future research, we are looking to further
improve the algorithm’s ability to identifying hybrid nor-
malizations and to identify the most suitable combination of
normalization methods that can improve the performance of
an ML-based IDS.
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