
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received September 21, 2021, accepted October 4, 2021, date of publication October 6, 2021, date of current version October 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118596

Time- and Computation-Efficient Data
Localization at Vehicular Networks’ Edge
ROMARIC DUVIGNAU 1, BASTIAN HAVERS 1,2, VINCENZO GULISANO 1,
AND MARINA PAPATRIANTAFILOU 1
1Department of Computer Science and Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
2Volvo Car Corporation, 40531 Gothenburg, Sweden

Corresponding author: Romaric Duvignau (duvignau@chalmers.se)

This work was supported in part by Volvo Car Corporation; in part by the Swedish Government Agency for Innovation Systems VINNOVA
under the funding Program FFI ‘‘Strategic Vehicle Research and Innovation’’, Project ‘‘Onboard/Offboard Distributed Data Analytics
(OODIDA)’’ under Grant DNR 2016-04260; in part by the ‘‘Automotive Stream Processing and Distributed Analytics (AutoSPADA)’’
under Grant DNR 2019-05884; in part by the Swedish Foundation for Strategic Research, Project ‘‘Future factories in the cloud (FiC)’’
under Grant GMT14-0032; and in part by the Swedish Research Council (Vetenskapsrådet), Project ‘‘HARE: Self-deploying and Adaptive
Data Streaming Analytics in Fog Architectures’’ under Grant 2016-03800.

ABSTRACT As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety,
efficient and distributed data analysis is needed to effectively leverage new technologies in real-world
applications. Considering the tens of GBs per hour sensed bymodern connected vehicles, traditional analysis,
based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming
increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at
alleviating this drawback by leveraging vehicles’ computational power, we are the first to study how to
localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is
achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time
needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network.
We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles
join or leave the fleet during the distributed data localization process. As we show, our algorithms are both
efficient and configurable, outperforming the baseline algorithms by up to a 40× speedup while reducing
computational overhead by up to 3×, while providing good estimates for the fraction of vehicles with relevant
data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available
at https://github.com/dcs-chalmers/dataloc_vn.

INDEX TERMS Connected vehicles, data analysis, edge computing, query processing.

I. INTRODUCTION
With the recent advancements in connected Vehicular
Networks [1], often facilitated by Vehicular Ad Hoc Net-
works (or VANETs) [2], the automotive industry is witness-
ing an unprecedented growth of possible ways for leveraging
the fine-grained data sensed in modern vehicles and enhance
drivers’ safety and experience. If accessed in a real-time
fashion as it is being sensed, such data can lead to fresh, up-
to-date insights for analysts and practitioners [3]. Similarly
to how Mobile Edge Computing [4] pushes parts of data
analysis applications, previously run entirely in the cloud,
towardsmobile users, to achieve lower latency and bandwidth

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Gao .

consumption, Vehicular Edge Computing [5] aims at better
utilizing the cumulative computational power of Vehicular
Networks while coping with high-mobility networks and
the challenges stemming from their dynamic topologies and
communications. When focusing on data analysis in the con-
text of Vehicular Networks, a critical challenge is that of data
gathering [6], [7] for subsequent analysis. While in the past
companies could potentially afford the central gathering of
all the data sensed by an entire fleet of vehicles (see [8], [9]
for applications and services in VANETs), a modern vehicle
can now generate several gigabytes of data per hour [1],
making this approach infeasible in terms of infrastructure and
costs - which could be alleviated by enforcing the collection
of just enough data from relevant vehicles only. Several
recent studies in the literature are focusing on how to avoid

137714 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-1268-9311
https://orcid.org/0000-0002-9326-4739
https://orcid.org/0000-0002-2136-9179
https://orcid.org/0000-0001-9094-8871
https://orcid.org/0000-0001-6095-2968

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

general central data gathering by transitioning to models
in which the data selection processes, or even the analysis
itself, are pushed towards the vehicles [10]–[12], for effi-
cient and continuous filtering [13], preprocessing through
online compression [7], [14], and conversion of raw data into
information in Federated Learning [15]. However, these dis-
tributed analysis models often lack mechanisms that attempt
to involve only valid vehicles into the analysis, to thus avoid
unnecessary computational load and data transfers or other
hindrances to the analysis. As an example, Federated Learn-
ing on vehicles [16] requires the involvement of vehicles
that have gathered sufficient suitable data in order not to
hinder the learning process [17]. Furthermore exacerbating
the issue of vehicle selection are skewed data distributions on
vehicles [18], [19] and data minimization directives such as
the European GDPR, which dictate to minimize exposure risk
and thus overall involvement of customer vehicles. To find
vehicles possessing data relevant to an analysis task, one has
to overcome the lack of a-priori knowledge about which vehi-
cle has collected which data, without centrally gathering said
data first, by leveraging the vehicles’ computational power.
As vehicles possess only application-specific computational
hardware that is not provisioned for more general tasks, it is
furthermore paramount to avoid unnecessary computational
strain on the fleet.
Contribution: In light of the present challenges concerning

the transition from central to distributed, edge data gathering
and analysis in large fleets of vehicles, we pose the following
question:

How can data residing on the edge nodes of a Vehicular
Network be localized efficiently through request-spreading

from a central coordinator to the vehicles?

The manner of spreading requests is regulated by a data
localization algorithm orchestrated at a central coordinator
that has to be aware of the completion time and the com-
putational overheads induced on the fleet of vehicles. Once
a request is sent from the coordinator to a vehicle, the latter
checks locally whether a set of conditions is satisfied by the
stored data (e.g., whether the data spans a given time interval,
or whether the data indicates that the vehicle is associated
with a specified geographical position, speed, driving mode,
etc.), and returns a compact answer indicating whether the
conditions hold. When performing traffic flow analysis, for
instance, this could be used to efficiently compute a certain
statistic (e.g., the average speed) only based on vehicles
driving above a certain speed, within a city center, or during
rush hour, or to mark these vehicles for a subsequent analysis.
With the ultimate goal of collecting a certain amount of
answers from vehicles matching a given set of conditions,
we propose efficient data localization algorithms, that can
also cope with dynamic connectivity, and benchmark them
against baseline algorithms. Our evaluation, based on realistic
queries and also assessing the spreading of requests using real
vehicular data, shows that our data localization algorithms
provide up to a 40× speedup and less than one-third of the

computational overhead, compared with baseline algorithms
optimizing only one of the metrics.

The typical characteristics of Vehicular Networks include
recurrent topology changes due to vehicles’ high-speed
mobility and properties of the underlying road network
(including communication-challenging environments such as
bridges, tunnels, etc.). Though this challenging aspect can
impede successful communication between a central coordi-
nator and vehicles, our work accounts for it with algorithms
able to react rapidly to dynamic connectivity issues. To the
best of our knowledge, we are the first to formulate and
analyse the problem of localizing data in a vehicular fleet,
as well as to propose algorithms that can tune the key trade-
off between resolution time and overhead on the vehicles and
the communication network. The remainder of the paper
is organized as follows: We introduce the System Model in
Section II. We present in Section III baselines and propose
novel algorithms for solving data localization queries by
spreading a set of requests over a fleet of vehicles. We lay out
our evaluation methodology in Section IV and cover the eval-
uation of the proposed algorithms in Section V. We discuss
related work in Section VI, before concluding the paper with
a summary in Section VII. In the Appendix, we discuss the
relation of the present paper to an earlier conference article
that presented first results on a preliminary formulation of the
problem for a subset of the system types considered here.

II. SYSTEM MODEL
A. PROBLEM DEFINITION
We consider the following model: a fleet V of k vehicles,
also referred to as nodes, is equipped with different types of
sensors s1, s2, . . . from the fixed sensor set S, e.g., S = {GPS,
steer, break, . . . }. We define the continuous timestamped
record sequence recorded by the sensor si ∈ S at vehicle
v ∈ V as

si(v) = (t0, x0), (t1, x1), . . .

where xj is the sensor reading at time point tj. All vehicles are
connected via a two-way communication channel to a central
coordinator C , e.g., a datacenter. Data analysts require C to
process data localization queries q1, . . . , qr , with each query
focusing on some subset of the possible sensors for some time
span of recorded data.

A (data localization) query here corresponds to the task of
identifying n vehicles in the fleet with relevant data. In more
detail, a query q carries a specific condition P that must be
fulfilled by vehicles’ data to be relevant for q and every query
specifies some number of positive answers n (responses from
distinct vehicles with relevant data, where a ‘‘positive’’ or
yes-answer implies that P holds locally) that must be col-
lected to resolve q before a potential next analysis step involv-
ing only these n vehicles with relevant data can follow. kq
is the number of vehicles in the fleet on which P holds, and
QR = kq/k is the query rate or average answer rate of a query
q. We assume k � kq > n, thus n vehicles with relevant data
can indeed be found for a query q. To check if a particular

VOLUME 9, 2021 137715

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

vehicle v fulfills q’s condition P for some query q, a request
r(q) is sent to v and after checking P locally, v responds to
C with its yes- or no-answer (and potentially some additional
data). If a vehicle v receives a new request r(q′) corresponding
to another query q′ while already processing a previously
received one r(q), then r(q′) is added to v’s local task queue;
once v has terminated its processing of r(q), v’s task queue
is then processed in FIFO order. Naturally, not every vehicle
can answer positively to every request, because of lack of
data or because the data is found not suitable to answer that
particular query. The required number of answers is meant
to localize a sufficient amount of data from the vehicles to
be meaningful for the analysis task at hand, while avoiding
excessive participation.

Notice that contacting exactly the number of vehicles given
by the analyst is not necessarily enough, as some might not
answer or have data that does not satisfy the condition. On the
other hand, contacting too many vehicles might result in
some of them wasting some of their computational power
to inspect data that is not actually needed by the analyst.
Thus, we need to require just enough positive answers (e.g.,
for statistical significance or for reducing the likelihood of
identifying individuals in the data), but not toomany (because
of the time needed to collect all the data [7], [20], the induced
computational load, and potential network stress).

We will use the notation q.P for the condition and q.n for
the minimum number of answers required to complete the
data localization query q. The condition P specifies (i) which
sensors are relevant to the query and (ii) an overall condition
that local datamust satisfy for the vehicle to acknowledge that
its data can be part of the desired analysis. In the following:
Sq ⊆ S is a subset of sensors which are relevant for the
query q (by default Sq = S); and (tstart , tend) are time bounds
spanning q’s time interval of interest such that for every
participating node v and every sensor of type si ∈ Sq, only
the portion of local data {(t, x) ∈ si(v) | tstart ≤ t ≤
tend } is examined (if not specified, the full recorded data is
considered).

1) EXAMPLE QUERY
To interactively check the traffic flow within a certain area A
of a city, an analyst wishes to identify n = 100 vehicles in a
k = 100, 000 vehicles fleet, with P = ‘‘driven within area A
in the last hour, with an average speed greater than 50km/h
over a 10 minutes window, and with GPS measurements
spaced by at most 5s from each other’’. In this query, assum-
ing the query is created at 9:00, Sq = {GPS}, (tstart , tend) =
(8:00, 9:00), and A is a bounding box or geofence approx-
imating the area of interest. Notice that, in this example,
to check if any period of 10 minutes (representing only 12000
data points for 100 cars with 5 seconds GPS readings) within
the last hour fulfills the condition, a centralized solution
requires between n · 3600/5 (considering at least n vehicles
need to answer) and k · 3600/5 data points to be transmitted,
i.e., 72000 to 7200000 data points; that is, in order to check
the existence of any period of 10 minutes of consecutive

readings with speed greater than 50km/h, since the coordi-
nator has no information whether they exist (and in which
portion of the hour), the entire hour needs to be retrieved
and checked. Checking the condition on-board the vehicles
alleviates this data transfer and only short yes/no answer
messages need to be communicated with the coordinator.

2) APPLICATIONS
In the aforementioned example query, the mere collection of
affirmative or negative answers from the fleet can already
provide a good estimation of the fraction of vehicles that
satisfy P in the fleet (and thus quantify the traffic flow in
the area in question). This defines a first set of applications,
in which a query itself gives rise to a statistical insight by
providing a population estimate. As hinted in the example,
transmitting raw data from a random sample of the fleet in
the above example to check at the coordinator whether P
holds for a vehicle would incur significantly higher commu-
nication costs, while yielding the same insight. In addition
to the first set of applications, the coordinator node C can
ask the vehicles which answer positively to subsequently
perform tasks suitable only to them. These tasks can include
transmitting raw data, performing statistical summaries such
as averages or other aggregate functions over the local data,
or higher-level computations on-board the vehicle over the
relevant data, such as training an Artificial Neural Network.
However, we do not consider the query post-treatment in
this work and concentrate on the aspect of data localiza-
tion. That is, we focus on finding a suitable set of vehi-
cles that will participate in the query resolution process.
One may note that some of the subsequent tasks could be
answered alongside P’s verification, entailing minor changes
in the processing time of the query. The aggregated value
could be transmitted with the vehicle’s yes/no-answer to
C without significantly changing the resolution time. For
computationally heavier analysis tasks or those requiring
substantially longer time (such as data transfers from the
vehicles), we consider that the post-treatment is executed in
a way independent of the selection process, i.e., vehicles will
always first inform C if they validate P before executing the
post-treatment.

B. FLEET MODEL
The fleet V of vehicles that can be contacted encompasses the
totality of vehicles that are equipped to take part in answering
requests incoming from the coordinator C . As vehicles in V
may be switched off, we introduce the active set of vehicles
Vt ⊆ V at a time t as the ones switched on and willing to
participate in the data localization queries’ resolution process.
A realistic fleet is a dynamic entity where vehicles leave and
join impromptu (thus, vehicles are being switched on and off).
We differentiate two variants of the underlying system model
depending on how the fleet Vt evolves during the resolution
of a batch of queries.

We first consider a static fleetmodel. In that model, the set
of contactable participants is always fixed, hence we do not

137716 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

consider that new vehicles may join the fleet or that vehicles
may leave within the time interval spent resolving a particular
query. Thus, Vt = V for all t .

In the dynamic fleetmodel, the setV of all vehicles (such as
all vehicles from a company fleet) is larger than the active set
Vt at time t , unlike in the static model. The active set evolves
through time with the possibility for new vehicles to join and
for old ones to leave. Contrary to the static model, a vehicle
may be switched off (that is, leaving the active set) during the
resolution of a particular query q and may not send its answer
for q to C ; similarly, new vehicles that were absent at the start
of q’s resolution may join the active fleet at any time during
q’s resolution process.

To quantify the amount of vehicles leaving the fleet over
time, we rely on the notion of churn. Given a period 1,
we define the churn at time t based on the number of vehicles
that leave the fleet during the period [t −1, t) but that were
part of the fleet during the period [t − 21, t − 1). More
formally:
Definition 1 (Churn1(t)): The number of vehicles that

were part of Vt ′ for all t ′ ∈ [t − 21, t −1) but that leave the
fleet at any t ′′ ∈ [t −1, t), divided by the size of Vt .

Note that while the churn takes into account only vehicles
leaving the fleet, the number of vehicles joining the fleet can
be obtained through the size of the active fleet and the value
of the churn.

C. COMMUNICATION MODEL
We assume that the coordinator C has no access to the
vehicles’ local data other than through communication with
them; thus, the amount of work needed to test q.P for a
query q cannot be estimated before checking P locally on the
appropriate vehicle. We further assume that C will always
successfully contact any active vehicles and as soon as a
vehicle does not communicate for a certain period of time,
it is considered inactive.

In the likely event that the local requested data is missing,
the involved vehicle does not satisfy q.P and it answers
negatively. Similarly, active vehicles unwilling to participate
in a query’s task (for privacy or other reasons) can bemodeled
by negative answers.

In the dynamic fleet model, new vehicles signal their pres-
ence once they become active and ready to answer poten-
tial requests. Since connection to C can be lost at any
point in time (e.g., driving through a tunnel or reaching
a poorly covered geographical area), we assume that once
a vehicle v has become inactive, it cannot be reached by
C and drops all currently processed queries; hence, C will
not receive any answers from v for the queries it was pro-
cessing at the time. This allows abstracting the high degree
of node mobility and its effect on communication by pos-
sibly short interruptions in the active status of the vehi-
cles; here, individual packet losses are neglected as overall
they can be compensated by configuring a lower transfer
rate and higher latency for the underlying communication
channel.

D. PERFORMANCE METRICS
We associate with each query three performance metrics:

1) Query Resolution Time, the elapsed time between
deploying a particular query q at C and q’s resolution,
i.e., when q.n positive answers have been collected at
C .

2) Fleet Workload, the overall computing load on the
vehicles defined as the sum of individual processing
times (local workloads) of all vehicles involved in pro-
cessing the received requests associated with the query.

3) Fairness of the algorithms, the standard deviation of
the cumulative local workloads between the vehicles
that received a request, representing how fair the spread
of the fleet workload is.

Notice that optimizing for both (1) and (2) at the same
time is not straightforward, as they compete. More con-
cretely, query resolution time is minimized by simply ask-
ing all vehicles in the fleet and ignoring answers after n
positive answers are retrieved (thereby maximizing the Fleet
Workload required per query, which is further exacerbated
when queries are executed in parallel or are computationally
expensive, see Section IV-C2) while the fleet workload is
minimized for instance by asking one vehicle at a time in a
round-robin fashion (implying high time overhead).

The amount of uncertainty in the model is an additional
challenge: each query requires different amounts of time per
vehicle that can hardly be foreseen. The reasons for this are
twofold:

(i) Query semantics. As it is unknown how much relevant
data a vehicle has collected, it cannot be estimated before-
hand how long it will take for this vehicle to search for the
property required by the request. Likewise, some queries may
be answered positively as soon as the first matching instance
is found in the data, whereas a negative answer requires
checking all potentially relevant data.

(ii)Computing capacity.A vehicle that is contacted may be
performing other processing with higher priority and equally
unknown completion time before it can start answering the
latest received request at hand.

III. DATA LOCALIZATION ALGORITHMS
We present here algorithms that select a subset of vehicles
among the kq vehicles satisfying P for a single query q =
(P, n) assuming kq ≥ n. For a set of queries q1, . . . , qr , each
query can be resolved by executing at C , either sequentially
or concurrently, the procedures described hereafter. Without
further assumptions on the distribution of nodes satisfying
P, it is natural to randomly and uniformly send requests to
nodes within the pool of nodes that have not been requested
yet. However, other factors (such as the number of requests
currently being processed on the vehicle, historical local com-
putation load, etc.) can be used to bias the selection process.
Since in our setting, queries are relatively short to solve
(from a few seconds to minutes at most), we consider that
algorithms do not need to send another request to a vehicle
that has answered negatively, in case its newest acquired data

VOLUME 9, 2021 137717

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

now satisfies the property P. We hence assume in our analysis
that a vehicle’s to a query q does not change over the whole
period of the algorithms’ execution.

We present in this section four algorithms focusing on
different measures:
• BASEEAGER, a baseline approach that optimizes the reso-
lution time needed to answer q,

• BASELAZY, a baseline approach that optimizes the num-
ber of contacted vehicles (hence minimizing required
communication and reducing fleet workload), and
ensures no more than n positive answers are ever
received,

• BALANCEREQUESTS, a new approach that balances the
trade-off identified through the two baseline algorithms,
in order to quickly collect n answers without inducing
excessive load on the vehicular nodes, and

• BALANCELOAD, an approach that extends
BALANCEREQUESTS by prioritizing the least-used vehicles
during the selection process to balance the workload.

The Base* algorithms introduced in this work are meant
to benchmark the Balance* algorithms against edge cases
(i.e., optimizing only one aspect) of the spectrum of possible
trade-offs.

The four algorithms canmaintain the following sets in each
execution:
• F ⊆ V , the set of contacted vehicles since the beginning
of the algorithm;

• A, the set of all answers from vehicles v ∈ F that have
been received by the coordinator;

• R ⊆ A, the subset of positive answers (where each
answer contains whether P holds plus metadata identify-
ing the sending vehicle, see subsection II-A) among all
the ones received.

We begin by introducing these algorithms in the context of
an idealizedmodel in which the fleet is static and the on-board
execution is synchronous, before presenting the algorithms
in our complete static (Section III-B) and dynamic model
(Section III-C).

A. DATA LOCALIZATION IN THE SYNCHRONOUS
STATIC MODEL
To ease the introduction of the algorithms, we consider in
this subsection a synchronous model (in the next subsec-
tions we present the generalization of the algorithms for the

Algorithm 1 BASEEAGER
1: function BASEEAGER(V , q) F fleet V , query q with n = q.n
2: R← ∅ F set of collected positive answers
3: for v ∈ V do
4: send(q, v) F send request r(q) to vehicle v
5: while |R| < n do
6: r ← receive() F block till receiving next answer
7: if positive(r) then
8: R← R ∪ {r}
9: return R

asynchronous model): communications with C are instanta-
neous and all nodes need a constant amount of time to check
the property P, i.e., one ‘‘round’’ is the time to check any
request on one vehicle. Hence, after a round of time has
elapsed, C has received answers (yes/no) from all nodes that
were asked during that round. In this simplified situation,
only two aspects have to be considered in order to measure
the performance of data localization procedures: (1) the total
number of rounds needed at C to receive n answers, and (2)
the number of nodes m that have checked if q.P holds (which
is equivalent to the fleet workload on the vehicles, since each
contacted vehicle has spent exactly one round checking the
request). Note that for clarity we discuss the behavior of the
algorithms in the case of answering a single data localization
query q.

1) BASEEAGER - SYNCHRONOUS, STATIC
Presented in pseudocode in Algorithm 1, BASEEAGER aims to
optimize a query’s resolution time, by immediately querying
all available nodes; this resolves the query in a single round
(under our assumption that enough vehicles with relevant
data are in the fleet). Indeed, consider any other algorithm
A that does not contact at least one node v during the first
round. In the situation that kq = n and P holds on v,
only kq − 1 answers are received after a single round of
communication and a second one is required to retrieve all
required answers; hence, A is not optimal in regards of the
resolution time. Executing Algorithm 1 to obtain all needed
answers leads nonetheless to a large strain on the vehicular
nodes. In particular, the number of queried nodes is always k ,
independently of kq and n. Thus, all nodes always participate
in q’s resolution, even though the number of required answers
n might be relatively small.

Algorithm 2 BASELAZY
1: function REQUESTRANDVEHICLE(q,F)
2: v← random(V ,F) F random vehicle in V excluding F
3: send(q, v)
4: return v
1: function BASELAZY(V , q) F fleet V , query q with n = q.n
2: F ← ∅ F set of asked vehicles
3: R← ∅ F set of collected positive answers
4: for 1 ≤ i ≤ n do
5: F ← F ∪ { REQUESTRANDVEHICLE(q,F) }
6: while |R| < n do
7: r ← receive()
8: if positive(r) then
9: R← R ∪ {r}

10: else
11: F ← F ∪ { REQUESTRANDVEHICLE(q,F) }
12: return R

2) BASELAZY - SYNCHRONOUS, STATIC
This Algorithm is presented in pseudocode in Algorithm 2.
The focus of this algorithm is on reducing the computational
overhead and communication induced on the fleet. To ensure
that only the minimum number of nodes are being requested

137718 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

to check P, one must ask at most as many new nodes as the
number of currently missing positive answers. Any algorithm
satisfying such an assertion is associated with a minimal
fleet workload, and the best algorithm in this category selects
randomly as many nodes as possible by asking m ‘‘new
nodes’’ for each round where there are m missing answers.
Once n positive answers are received, the procedure stops.
In an edge case, every vehicle in the fleet has to be contacted
to achieve this. Since the algorithm contacts m vehicles per
round, the algorithm will proceed the slowest for m = 1.
When (n−1) yes-answers are collected in the first round and
the last yes-answer is obtained after asking every single other
vehicle in the subsequent rounds, this results in a resolution
time of k − n+ 1 rounds.

However, on average BASELAZY requires fewer rounds,
as claimed by Proposition 1 below. When sending a request
to a vehicle that has not participated so far, the probability of
receiving a yes-answer is in general (kq − r)/(k − f) where
f = |F | is the number of vehicles already requested and
r = |R| ≤ n the number of positive answers already received.
In the following, we assume for simplicity that the probability
of obtaining a yes-answer is constant and equal toQR = kq/k
during the full execution of the algorithm; this corresponds to
our typical use-case where n is much smaller in comparison
to both kq and k . The number of rounds used by the algo-
rithm can then intuitively be shown to be logarithmic by the
following reasoning: When requesting x vehicles in a round,
approximately x · QR positive answers are received, thus if
xi denotes the number of requests sent in round i, we have
xi ≈ xi−1 · (1−QR), as vehicles answering negatively trigger
another request. Setting x1 = n, we get xi ≈ n · (1−QR)i and
we obtain r ≈ log1/(1−QR)(n) when requiring xr = 1 (when
the algorithm roughly concludes). More formally, we argue
that:
Proposition 1: BASELAZY solves a single query in the static,

synchronous case on average in O(log(n)) rounds.
Proof: Let us visualize the query resolution as follows.

Let P = p1, . . . , pn be n random processes that aim to
retrieve one answer each to the query, and each process will
remain active until it acquires a positive answer. BASELAZY
can be seen as sending one request per round for each process
that is still active and doing nothing for the ones that have
already got a yes-answer. Under our assumptions, during a
certain round, pi ∈ P retrieves a positive answer with constant
probability p = QR and a negative answer with probability
1−p. Each process, being independent of the others, will need
1/p rounds on average to acquire a yes-answer (geometric
distribution with parameter p). The number of roundsM (p, n)
that is necessary for all processes to stop is thus the maximum
of n independent geometric random variables of parameter p.
The expected value E (M (p, n)) is known [21] to be bounded
by

Hn
ln 1

1−p

≤ E(M (p, n)) <
Hn

ln 1
1−p

+ 1

where Hn is the n-th harmonic number. Using Hn = ln n +
O(1), one obtains that E(M (p, n)) = log 1

1−QR
(n)+O(1) for a

constant QR.

Similarly, BASELAZY sends on average requests to signifi-
cantly fewer vehicles than in the extreme case, as shown by
the following Proposition 2:
Proposition 2: BASELAZY solves a single query in the static,

synchronous case asking on average n/QR vehicles.
Proof: Following the presentation of the previous proof,

the number of requested vehicles is obtained as the sum of n
independent geometric random variables, each of which has
an expected value of 1/p = 1/QR. By linearity of expecta-
tion, we obtain that n/QR vehicles will receive a request.

Algorithm 3 BALANCE*-Skeleton
1: function BALANCE*(V , q, α, β) F fleet V , query q with n =

q.n, α > 0, β ∈ (0, 1]
2: p← 1 F estimation of probability to answer yes
3: F ← ∅ F set of requested vehicles
4: A← ∅ F set of collected answers
5: R← ∅ F set of collected yes-answers
6: while |R| < n do F until n answers are collected
7: ASKNEWBATCH(α, p)
8: while WAITFORANSWERS() do
9: RECEIVEANDUPDATE()

10: p← max{ |R|
|A| ,

1
|A|+1 } F update probability

11: return R

3) BALANCEREQUESTS - SYNCHRONOUS, STATIC
We introduce now an efficient scheme to achieve a low
fleet workload while resolving queries within few processing
rounds, balancing the tradeoffs of BASEEAGER (high work-
load) and BASELAZY (slow query resolution time). The main
idea behind BALANCEREQUESTS is to employ QR, the share of
vehicles in the fleet on which q.P holds, to scale the number
of vehicles contacted in each round such that the expected
number of positive answers is equal to the number of total
outstanding positive answers. As QR is unknown during the
execution of the query, we replace it with the running estimate
p = |R|/|A|, and show in subsection V-D that p gives a
reasonable estimation of QR.

We will present various implementations of the Bal-
ance* algorithms based on the skeleton algorithm shown in
Algorithm 3, which proceeds as follows: Keeping track of
p,F,A,R, the algorithm concludes by returning R, the set
of yes-answers. To achieve this, the algorithm begins by
contacting a new batch of vehicles in askNewBatch(), and
then proceeds to receive answers from the contacted vehicles
using receiveAndUpdate until waitForAnswers() evaluates to
false. At this point, the algorithm updates the value of p using
the answers received so far, and loops back to the beginning;
the loop is continued until |R| = n, i.e., a sufficient number
of yes-answers has been acquired.

In the synchronous model and with a static fleet, algorithm
BALANCEREQUESTS employs those variants of askNewBatch()

VOLUME 9, 2021 137719

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

Algorithm 4 BALANCEREQUESTS - Synchronous, Static
1: procedure ASKNEWBATCHAUX(α, p,m)
2: `← dα · m/pe F new vehicles to contact
3: for 1 ≤ i ≤ ` do
4: if |F | < k then F if fleet not exhausted yet
5: F ← F ∪ { REQUESTRANDVEHICLE(q,F) }

1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| F remaining yes-answers to collect
3: ASKNEWBATCHAUX(α, p,m)

1: procedure RECEIVEANDUPDATE()
2: r ← receive()
3: A← A ∪ {r}
4: if positive(r) then
5: R← R ∪ {r}

1: function WAITFORANSWERS()
2: return |A| 6= |F |

and waitForAnswers() described in Algorithm 4. askNew-
Batch() has as input the running estimate p and a parameter
α, and proceeds as follows: m marks the currently missing
yes-answers n− |R|. We denote by

` =

⌈
α ·

m
p

⌉
(1)

the adjusted expected number of vehicles to contact to receive
the outstanding m answers, employing the running estimate
p. The parameter α > 0 allows the algorithm to depart
from the estimated expected number of vehicles to contact
to get the remaining answers, by sampling more or fewer
vehicles. This allows to either shorten (when α > 1) the
average number of rounds needed to resolve q while poten-
tially increasing the fleet workload, or on the contrary (when
α < 1) to slow down q’s processing by being more prudent
and avoiding requesting more vehicles than necessary (and
thus getting closer to receiving exactly n answers at the end).
Having contacted ` vehicles or exhausted the fleet of vehicles,
the function returns. BALANCEREQUESTS then enters a loop of
receiving answers until waitForAnswers() returns true, i.e.,
until all contacted vehicles have sent an answer.

Following the general logic of the Balance* algorithms
described in Algorithm 3, the value of p is then updated as

p = max
{
|R|
|A|
,

1
|A| + 1

}
, (2)

where the second case is used when no positive answers have
been received during the first round(s), i.e., |R| = 0. A next
batch of vehicles is then contacted, until n yes-answers are
received.

4) BALANCELOAD - SYNCHRONOUS, STATIC
This algorithm does not have an equivalent in the synchro-
nousmodel, as it attempts to balance the individual workloads
of each vehicle. In the synchronous model, the workload of
each vehicle answering a request is identical by assumption
(as all vehicles answer a request synchronously). We thus
defer introducing this algorithm to the following section.

B. DATA LOCALIZATION IN THE ASYNCHRONOUS
STATIC MODEL
We now generalize the algorithms presented in the previous
section to the asynchronous data localization model, i.e.,
when request processing time is both vehicle- and context-
dependent. In a typical vehicular environment, one can-
not generally assume bounds on neither the time a vehicle
needs to process a request nor on the communication delays
in the network. Consequently, the algorithms have to adapt
to the following scenarios: (1) how to avoid being blocked
by the slowest-answering vehicles; and (2) how to deal with
vehicles that answer late? While BASEEAGER and BASELAZY
achieve their respective goals without adaptations in the
asynchronous model, we tune BALANCEREQUESTS to the asyn-
chronicity and furthermore extend it to yieldBALANCELOAD. In
addition to asynchronicity, we now also extend to the more
general case of more than a single data localization query
deployed simultaneously. As a reminder, vehicles possess a
FIFO task queue (see subsection II-A) in which incoming
requests are stored and processed sequentially.

1) BASEEAGER - ASYNCHRONOUS, STATIC
Shown in pseudocode in Algorithm 1, BASEEAGER optimizes
the time required to answer a single query q by contacting
all vehicles upon receiving it. In our asynchronous model,
the query resolution time then needed for a single q is the best
possible and corresponds to the n-th fastest positive answer
received at C . In contrast to that, the fleet workload is also
the highest possible, as all k vehicles have processed r(q).
Note that the guarantee on fastest resolution does not hold in
the case of multiple simultaneous queries: Let us assume that
vehicle v gives the n-th fastest yes-answer to query q in the
single-query case. However, when r(q) is received by v, v is
busy processing another request r(q′); thus v will wait before
answering r(q), which would conclude the query q. Thus,
the execution time of q is dependent on the presence and order
of other concurrent queries on the requested vehicles.

2) BASELAZY - ASYNCHRONOUS, STATIC
Shown in pseudocode in Algorithm 2, BASELAZY optimizes
the number of requested vehicles (hence minimizing needed
communication to spread all requests) by contacting a new
vehicle only when strictly needed. Since in our asynchronous
model it is not guaranteed nor assumed that vehicles will
have similar answer times (only that they will answer at
some point), this algorithm does not necessarily imply a
minimum load on the network. Indeed, it might be the case
that requesting more vehicles that require shorter processing
times to answer will use fewer resources overall.

3) BALANCEREQUESTS - ASYNCHRONOUS, STATIC
The asynchronous variant of BALANCEREQUESTS (Algorithm 5)
is similar in essence to its round-based version described
in Section III-A but needs to take into account that not all
contacted nodes reply at the same time (as they do in the

137720 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

Algorithm 5 BALANCEREQUESTS - Asynchronous, Static
1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| − p · (|F | − |A|) F remaining yes-answers,

corrected by late ones
3: ASKNEWBATCHAUX(α, p,m) F cf. Algorithm 4

1: procedure RECEIVEANDUPDATE() F same as Algorithm 4

1: function WAITFORANSWERS(β)
2: return |A| < β · |F | F share β of contacted

vehicles has answered

synchronous model). To do so, we change the behavior of
the function waitForAnswers(), as shown in Algorithm 5; it
accepts a new parameter β ∈ (0, 1]: a certain proportion
of answers over all requested vehicles that we will wait
to receive before re-evaluating the running estimate of yes-
answer share p and proceeding to the next batch of selection
(see Algorithm 3). When β = 1, the algorithm waits for the
reception of all answers before continuing; this is effectively
the case in the synchronous model, Section III-A. Setting a
lower value for β allows us to make a decision without having
to wait for the slowest vehicles. Another change is about
taking into account vehicles that have not yet answered when
a new iteration starts. Based on previously received answers,
we estimate that a fraction p of the |F |−|A| requested vehicles
that have not yet answered, will eventually answer positively
while the next batch of vehicles is already being sent requests.
This allows to reduce the number of vehicles asked in the
next iteration, and thus reduce excessive participation. This
change is applied in askNewBatch() (Algorithm 4): we adjust
the number of vehicles to contact next, `, by

` =

⌈
α ·

(
n− |R|
p
− (|F | − |A|)

)⌉
(3)

Those dp · (|F | − |A|)e vehicles are hence counted as
expected answers when calculating `.

4) BALANCELOAD - ASYNCHRONOUS, STATIC
This is a variation of the previous algorithm that presents a
further refinement of vehicle selection, differing in how the
` vehicles are selected during each batch in askNewBatch(),
as shown in Algorithm 6. Instead of randomly selecting new
nodes to request, vehicles having low local workload or
involved in only a few concurrent data localization queries
are picked first in the selection phase. The main difference
with Algorithm 5 is that instead of requesting a random vehi-
cle using requestRandVehicle() among the not yet requested
ones (see requestRandVehicle() in Algorithm 2), vehicles are
selected in the order of their lowest local workloadmeasured
as (1) number of simultaneous requests being processed on
the vehicle (for the concurrent execution of several data
localization queries) and (2) reported local processing time
since the start. As shown in Algorithm 6, vehicles are for that
purpose stored in an updatable priority queueW (initialized in
a call to init()) where vehicle v’s priority is defined as a tuple
of [no. of parallel queries, total local workload]. As shown in
line 6 of askNewBatch() in Algorithm 6, the vehicle v with

Algorithm 6 BALANCELOAD - Asynchronous, Static
1: procedure INIT()
2: global W F priority queue
3: W .insertAll(V , [0, 0]) F initially, all vehicles

have same priority

1: procedure ASKNEWBATCH(α,p)
2: m← n− |R| − p · (|F | − |A|)
3: `← dα · m/pe
4: for 1 ≤ i ≤ ` do
5: if |F | < k then
6: v→ W .getLowestPriority() F get vehicle with

fewest parallel queries and lowest workload
7: send(q, v)
8: W .updatePriority(v,[+1,+0]) F increase no. of

parallel queries of v

1: procedure RECEIVEANDUPDATE()
2: r ← receive()
3: A← A ∪ {r}
4: if positive(r) then
5: R← R ∪ {r}
6: W .updatePriority(r .v, [−1,+r .workload]) F

decrease no. of parallel queries of r .v (sender of r), increase
r .v’s workload

1: function WAITFORANSWERS(β) F same as Algorithm 5

the lowest priority is contacted first. After sending a request
to v, its priority is updated by increasing the first field of the
priority tuple, no. of parallel requests, by one. Likewise at
line 6 of receiveAndUpdate(), upon reception of an answer
r from vehicle v, v’s priority is updated by reducing the
number of its parallel requests, and increasing the total local
workload registered in W for v by the workload transmitted
alongside r .

C. DATA LOCALIZATION IN THE ASYNCHRONOUS
DYNAMIC MODEL
The dynamic fleet model introduces vehicles dynamically
joining the fleet (which is detected at C) and leaving the fleet
(undetected). We describe here adaptations in the presented
data localization algorithms to handle both types of events,
i.e., vehicles joining and leaving the fleet.

1) BASEEAGER - ASYNCHRONOUS, DYNAMIC
The algorithm is a straightforward extension of BASEEAGER
defined for the dynamic model: all active vehicles get asked
upon starting processing a new query at C . Vehicles leaving
the fleet will not provide any answer whereas vehicles arriv-
ing receive all unresolved queries upon becoming available.

2) BASELAZY - ASYNCHRONOUS, DYNAMIC
This algorithm could be blocked indefinitely if any of the
involved vehicles leave the fleet before the moment when
all answers are collected: indeed, the algorithm waits for
receiving a negative answer before asking a new vehicle.
To deal with leaving vehicles, we introduce a timer set upon
sending a request. A timeout is then considered equivalent to a
negative answer and triggers requesting one of the remaining

VOLUME 9, 2021 137721

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

available vehicles; if the timeout vehicle answers later than
its corresponding timer, the answer is accepted in case of a
yes-answer and ignored in case of a negative one. Contrary to
BASEEAGER, new vehicles may get requested (upon receiving
a negative answer or timeout event at C) some time after
they become active. However, a new arrival by itself will
not trigger directly the transmission of a request, except in
the particular case of unresolved queries that have already
exhausted the pool of known active vehicles.

3) BALANCEREQUESTS AND BALANCELOAD -
ASYNCHRONOUS, DYNAMIC
Contrary to BASELAZY, the Balance* algorithms as designed
for the static setting are not at risk of becoming blocked by
vehicles exiting the fleet. Indeed, they both already have a
mechanism to ask a new batch of vehicles before having
answers from all the vehicles that had been requested earlier
(through the β parameter, cf. Algorithm 5) and can hence
deal with a dynamic fleet where some vehicles leave the fleet.
However, over the long run, the estimation of the probability
p of answering positively will be less accurate, as vehicles
that have left will be excluded from the estimation (only
received answers are taken into account); also, if a propor-
tion greater than 1 − β of the vehicles currently checking
requests associated with a particular query leaves the fleet
during the algorithm execution, no new batch of vehicles
will ever get contacted even though there might be plenty
of available vehicles. To circumvent these issues, we also
introduce timers in those algorithms: a timeout is equivalent
to receiving a negative answer, i.e., a negative answer is
added to the set of received answers A, which is used for p’s
computation and for testing when the β threshold has been
crossed. If a vehicle answers positively later than its timer,
it is added to the set of known positive answers R; this has no
further effect on A, but slightly modifies the calculated value
for p as

p = max
{
|R|
|A|
,

1
|A| + 1

}
.

We note that timers help the estimation p to take into
account both the positive answering rate and the fleet churn
rate when computing the size of the next vehicle batch
to request.

IV. METHODOLOGY OF THE EXPERIMENT STUDY
To investigate the performance of the proposed algorithms,
we evaluate them on two large real-world sets of vehicular
data. In this section, we first describe in detail the datasets
and the induced churn in each of them (see Definition 1) and
the experiment setup used for our study. We then present a set
of common queries that will serve to benchmark the different
algorithms, including longer-running versions of such queries
for our dynamic fleet model. Finally, we show the distribution
of data over the fleet and the query answer rates in the studied
datasets.

FIGURE 1. Number of active vehicles and churn during one day in the
(a) Geolife and (b) Volvo dataset (see Definition 1 for a formal definition
of churn).

A. DATASETS
Our evaluation encompasses two datasets (one public, one
proprietary) that differ in the number of active vehicles and
the rate of churn (see Figure 1), the distribution of data per
vehicle (see Figure 3), as well as the types of data included in
the dataset.

1) GEOLIFE DATASET
The first dataset consists of trajectories collected within
the scope of the Microsoft Research Asia Geolife (ver-
sion 1.3) project by 182 users over approximately four
years [22]. The trajectories were collected from diverse
users using different mobile devices and feature predomi-
nantly vehicular usage (by car, taxi, or bus). The original
dataset consists of 18670 GPS traces containing between
50 and 92,645 records of the form timestamp (s), latitude
(deg), longitude (deg). After pre-processing the data, we used
10528 files, each for one day of usage of one user (cf. Fig-
ure 1a for the number of vehicles over the course of 24h).

2) VOLVO DATASET
The second dataset consists of CAN data and GPS traces
from 20 hybrid cars internally collected by Volvo Car Cor-
poration [7], [20] in the year 2015. After pre-processing,
we generate 3462 trace files, each corresponding to a daily
usage of one vehicle (cf. Figure 1b). Among the large quantity
of CAN data, we have concentrated on two signals, the com-
bustion engine rotation and electric engine rotation. These

137722 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

can be combined, leading to three possible driving modes:
electric, combustion, and hybrid. Each trace in this dataset
hence contains records of the form timestamp (s), latitude
(deg), longitude (deg), driving mode (e/c/h) (cf. Figure 1b for
the vehicle number over the course of 24h).

3) VEHICLES LEAVING AND JOINING THE
FLEET IN THE DATASETS
Churn1(t), measuring the fraction of vehicles leaving the
fleet within a predefined time interval1, influences how fast
queries get resolved (see Definition 1). In the studied datasets,
the churn is evaluated to be between 2% (for1 = 30 seconds)
and 38% (1 = 15 minutes), see Figures 1a and 1b. In a
general sense, churn not only describes vehicles leaving the
fleet while the latter is processing requests but also associates
with communication issues due to the high node mobility,
with many vehicles featuring intermittent short activeness
periods, typical of dense urban driving. A non-negligible
churn causes problems to data localization algorithms as
explained in Section III-C. In the majority of our experiments
(Section IV-D to Section V-D), there is negligible churn in the
fleet during query execution when regarding the timescale
for query resolution (with queries lasting only up to 30s,
and 0.02 ≤ Churn30s ≤ 0.08 as shown in Figures 1a,1b).
Longer queries, subject to longer churn intervals, are studied
in Section V-E.

Dynamic changes to the active fleet pool are also based
on arriving vehicles. While vehicles joining the pool do
not alter the execution of the requests being currently pro-
cessed by the fleet, new vehicles support the execution of the
running queries when the number of vehicles with positive
answers to a query is scarce or declining due to non-negligible
churn (exacerbated for the Volvo dataset with its lower active
vehicles count).

B. EXPERIMENT SETUP
We will present here the components and key settings of the
evaluation of our proposed algorithms, involving the adapta-
tion of real-world datasets and parameters.

1) QUERY RESPONSE TIME CALCULATION
To evaluate our algorithms, we define 15 queries to be run
locally on the vehicles (presented in Section IV-C). The
requests are programs written in Python that are transferred
to the vehicle via mobile broadband communication, then
executed on-board the vehicle over their already stored data
(1 day each); size(q) denotes the amount of code and extra
data1 that needs to be transferred from C to each vehicle in
order for the latter to be able to process r(q) on-board. The
elapsed time R(v, q) (in milliseconds) needed between the
coordinator sending a request message r(q) for query q to a
vehicle v and the reception of the corresponding answer is

1For example, GPS positions of Points of Interests (POIs) such as parking
lots or fuel stations.

FIGURE 2. Distribution of wireless round-trip latencies Tl (modeled
after [23]).

approximated as

R(v, q) = Tl +
size(q)
Td

+ Tp(v, q) (4)

where Tl is a round-trip latency for wireless communication,
Td is the wireless link data rate, and finally Tp(v, q) is the time
needed by the vehicle to decide if it can answer positively to
r(q) or not. The transmission time of the answer, considering
that the answer is of constant and small size (for a yes/no
reply and a constant amount of additional information such
as the vehicle id, the time it took for the processing, etc.),
is neglected here (it can be accounted as part of Tl).

2) RESOLUTION TIME OF CONCURRENT QUERIES
The experiment process is done as follows. The coordinator
node C receives a certain number of queries in a random
uniform order and starts the batch of sending requests to
vehicles in the same order as the queries’ arrival times. The
queries are then resolved in parallel by the vehicles and C
reacts to each message reception by either just updating its
internal statistics for the corresponding query q or by spread-
ing the request r(q) over the fleet to a new set of vehicles.
As introduced in subsection II-A, vehicles possess a task
queue processed in FIFO order. This approach simplifies the
vehicles’ internal computing architecture and is well suited in
situations for which the remaining computing resources on-
board the vehicles (if any) can be used to process security-
sensitive applications. A vehicle v hence starts processing
a request as soon as v is done with the processing of its
already queued tasks. When considering multiple queries
concurrently processed at C , the reception time R′(v, qk) of
v’s answer to the request r(qk) corresponding to the k-th
received query qk at v is obtained as

R′(v, qk) = max{R′(v, qk−1)+ Tp(v, q), tk + R(v, q)} (5)

where t1 < t2 < · · · < tk indicate the sending times of
requests r(q1), . . . , r(qk) to vehicle v, and with R′(v, q1) =
R(v, q1) where R(v, q) is calculated using equation 4.

3) REAL-WORLD VALUES USED FOR THE PARAMETERS
In our set of experiments, we have set Td = 10Mb/s, which
is within current 4G/LTE download rates2 (similar results are
obtained using 5G parameters). To model a non-deterministic

2To take into account packet losses, Td is chosen inferior to typical
broadband bandwidth.

VOLUME 9, 2021 137723

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

TABLE 1. Selected query conditions and their parameters (QR = share of positive answers over the dataset, G = Geolife and V = Volvo).

but realistic 4G round-trip latency Tl , we sample Tl ran-
domly from the Gamma distribution shown in Figure 2,
as modeled after the results from a study of 4G latencies
across several mobile carriers in the UK [23]. To have a
fair estimation of Tp(v, q), we have computed all queries
on a vehicular processing unit representative [7], [20]: an
ODROID-XU4 single-board computer to approximate the
limited processing headroom of a vehicle, equipped with a
Samsung Exynos 5422 (Cortex-A15 2.1GHz Quad-Core and
1.4GHz Quad-Core CPUs) and 2 GB of LPDDR3 RAM at
933 MHz. We then use the computed time measured on the
vehicular stand-in as Tp(v, q) for every possible vehicle v and
query q. Based on themeasured transfer time (through an Eth-
ernet link with software-capped bandwidth to Td = 10Mb/s),
size(q)/Td expressed in ms is very well approximated by the
size of data to transfer expressed in Kb.

C. SELECTED DATA LOCALIZATION QUERIES
In this subsection, we present our selection of data local-
ization queries used for the static and dynamic fleet scenar-
ios. Please note that these queries are tailored to the two
datasets/fleets employed, each of which has a known (geo-
graphic) focus. In the general case, basic a-priori knowledge,
e.g., vehicle type or region (which can be assumed to be
known to the vehicle manufacturer), can be used to select a
subset of a fleet before deploying the actual query over the
now filtered fleet.

1) QUERIES FOR THE STATIC FLEET
We introduce here a set of 15 queries, representative of possi-
ble vehicular analysis tasks. The queries match typical inter-
esting events occurring in Vehicular Networks [24] (driving
close to POIs such as parking spaces, detecting traffic jams,
etc.), thus giving meaningful insights into the fleet’s behav-
ior. They were chosen to represent different requirements

(on time interval, queried sensors, geographic constraints,
sampling constraints, etc.). They furthermore have distinct
positive answer rates ranging from about 60% to about 1%.
Table 1 presents (cf. Section II for notations) the query q’s
key (Q1 to Q15), the time interval tstart − tend given in hours,
size(q) given in Kb, the description of the condition q.P, and
the average answer rate QR (rounded to closest percentage)
for Geolife and Volvo datasets. The parameters of the first
10 queries have been slightly tuned between the two datasets
(in Table 1 the additional column for q.P’s description indi-
cate differing parameters in the query’s condition in Volvo)
so that each query in both datasets has a similar fraction
of positive answers. Recall that size(q) corresponds to the
size of the program plus the extra data required to check
q.P, cf. Section IV-B. Of the queries, 10 are run over both
datasets whereas 5 additional queries focus on signals only
contained within the Volvo dataset. Two geographical zones
are defined for both datasets: City is the area of a large city
chosen within the dataset and Downtown is a sub-area within
City thought of as its heart. In our experiments, if not stated
otherwise, all queries will require n = 50 answers to get
resolved. Setting an adequate value for the parameter n is a
non-trivial task that is both query- and data-dependent and is
linked to the post-treatment of the vehicle selection process
and the end-application. For the case of statistical estimation
of the true answer rate QR, The impact of the choice of
n with the presented algorithms is explored thoroughly in
Section V-D, where the value n = 50 is shown to provide
a good trade-off between estimation accuracy and excessive
vehicle involvement over the queries analysed in this work.

2) QUERIES FOR THE DYNAMIC FLEET
As mentioned in Section IV-A3, short queries (in terms of
resolution time) entail a similar behavior in a dynamic fleet
as the fleet remains stable during the time used to resolve

137724 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

FIGURE 3. Left axis: Histogram of data volumes per car over each
respective dataset. Right: Average answer rate for a vehicle with a certain
amount of data. Results shown for the Geolife (red) and Volvo (blue)
datasets.

the query. All queries defined so far fall in this category,
as most of the time, they get resolved in less than one sec-
ond – whereas the churn for 30s is below 5% of vehicles
(cf. Section IV-A3). To be able to observe differences in the
algorithms’ behaviors, we introduce ‘‘long’’ versions of the
ad-hoc queries previously introduced and described in detail
in Table 1. The long versions are obtained by multiplying
both the transfer time of the requests and the time needed to
process them by a constant of 1000, for a realistic distribution
of answering times representative of a fleet with a higher
amount of local data or heavier computational tasks used for
queries’ conditions.

D. DISTRIBUTION OF DATA AND QUERY ANSWERS RATES
The average answer rates over all queries as well as the
distribution of the data volumes are presented in Figure 3
for the Volvo and Geolife dataset; the x-axes range over
data volumes in MB within Volvo (lower axis) and Geolife
(upper axis) datasets. For Geolife, the average query answer
rate (red line) appears to be positively linked to the data
volume (shaded red bars); thus, vehicles with larger amounts
of data will have a higher chance to answer requests. For
Volvo (blue line), the average query answer rate is almost
flat, which indicates that vehicles with a large amount of data
(shaded blue bars) are roughly as likely to answer ‘‘yes’’
to a request as vehicles with only little data. Concerning
the distribution of data volumes among the fleet (shaded
bars), the Volvo dataset presents a significantly longer tail,
indicating that inter-vehicular differences in data volume are
greater.

V. EVALUATION RESULTS
We show in this section the experiments’ results. To compare
the performance of the different algorithms, we will use the
evaluation metrics defined in Section II-D, namely the query
resolution time and the fleet workload. To show the results,
we will frequently use violin plots, which indicate the median
of a distribution with a horizontal bar, while the distribution
itself is shown vertically in shaded color.

FIGURE 4. Maximum query resolution time and fleet workload (static
model) needed to resolve all queries over the Geolife and Volvo datasets
for BALANCEREQUESTS for different α, β. Circle size scales with
maximum query resolution time (red) and fleet workload (blue),
respectively.

A. PARAMETRIZATION OF THE ALGORITHMS
To choose well-fitting parameters for our evaluation,
we explore the parameter space for BALANCEREQUESTS in the
Geolife and Volvo dataset. We run 10000 times the query
sets with different values for the parameter α (proportion
of vehicles to ask; higher value translates to asking more
vehicles) and β (fraction of vehicles to wait before asking
next batch; higher fraction translates to longer waiting time
between two request batches). For each run, we measure the
time needed to resolve all queries (i.e., the maximum query
resolution time among the query set) and the fleet workload
and present them on a 2D plot in Figures 4 (note that absolute
values are given in Figure 5).

Based on the fleet workload (blue) displayed in Figure 4,
in both datasets, for lower values for β and higher values
for α, more vehicles than necessary tend to be requested
while not waiting for everyone’s answer before requesting
a new batch of vehicles. The consequence in this setting
is on the one hand a high analysis cost, as more vehicles
participate in the queries resolving task, but on the other hand,
the resolution time is relatively lower than other configura-
tions of (α, β). Focusing on the maximum query resolution
time (red), the situation is different between the Geolife or

VOLUME 9, 2021 137725

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

FIGURE 5. Query resolution time (in ms) (static model) for all valid
queries executed over the (a) Geolife and (b) Volvo dataset for
(i) BASEEAGER, (ii) BASELAZY, (iii) BALANCEREQUESTS,
(iv) BALANCELOAD.

Volvo dataset: When vehicles tend to answer ‘‘no’’ because
of lack of data (as for the Geolife dataset, cf. Section IV-D),
hence responding much quicker than positive vehicles, and
β is rather small, the estimation p (cf. Algorithm 3) of pos-
itive answers will be too low; then (as β is small) many
vehicles are requested rapidly in the first few rounds. The
consequence is a shorter resolution time but higher fleet
workload, as seen in theGeolife experiments. On the contrary,
if the data is distributed over the fleet more fairly (as for
the Volvo dataset, cf. Section IV-D), and when β is low,
there will be a bias towards positive answers with queries
that require a full data scan before they can be answered
negatively, whereas vehicles answering positively need only
find the first matching record(s). The consequence is that p
becomes an overestimation of the real fraction of yes-answers
and one observes a succession of small batches of vehicles
being requested, as observed in the Volvo experiments. When
β approaches 1, the estimation p becomes unbiased and better
trade-offs are obtained; however, note that a high β is imprac-
tical for longer queries, as is shown in Section V-E. For the
remainder of this section, we set α = 1.25 and β = 0.7 as
these values present a suitably balanced trade-off between the
two measured performance metrics over both datasets; other
nearby values for (α, β) produce similar results that only
slightly advantage one metric over the other, as explained
above.

FIGURE 6. Query resolution time (left) and fleet workload (right) (static
model) of the four algorithms for the Geolife (red) and Volvo dataset
(blue). The starred algorithm is the respective baseline, the y-axis is
logarithmic to suit the different scales.

B. COMPARISON OF THE ALGORITHMS IN THE
STATIC MODEL
To give a general idea of the resolution time for the dif-
ferent queries, we present quantitative results in Figure 5
(an intra-algorithms comparison is done in Figure 6): the
query resolution time is measured over 10000 experiment
repetitions consisting in resolving all 10 (Geolife, a) / 15
(Volvo, b) queries arriving in random order; for the Volvo
dataset, Q9 and Q10 have been removed here and for all
following experiments as all vehicles end up being contacted
(there are fewer than 50 positive answers in this case, violat-
ing the assumption kq > n from subsection II-A). The main
findings to note are: BASEEAGER’s and BASELAZY’s resolution
time varies clearly depending on the queries’ answer rate
(lower answer rate QR is associated with larger resolution
times, see Table 1 for QR per query), while BASELAZY is one
to two orders of magnitude slower; and BALANCEREQUESTS and
BALANCELOAD present similar query resolution times that do
not vary significantly with the queries’ answer rate (except
for Q2 and Q10 [Geolife]). Also, note these computationally
heavier queries Q2, Q10 (requiring to check spatial proxim-
ity to multiple points of interest) get resolved significantly
slower than lightweight queries. BASEEAGER shows large vari-
ations in resolution time for the same algorithm and query
because, contrary to all other algorithms, the algorithm itself
is purely deterministic and highly dependent on the order in
which queries arrive: indeed, if a ‘‘heavy’’ query is sent first
to every vehicle, all the nodes will need to process it before
moving on to the next query (cf. the FIFO task queue as
described in subsection II-A), potentially slowing down sub-
sequent lighter queries (this also explains why the balanced-
algorithms may outperform BASEEAGER by contacting smaller
subsets of vehicles, see Figure 10).

As a summary, Figure 6 presents the query resolution time
(left side) and fleet workload (right side) over all queries for
the four algorithms relative to the average resolution time
of BASEEAGER and the average fleet workload of BASELAZY,
respectively (marked by stars). The query resolution time is
almost two orders of magnitude higher for BASELAZY (in the

137726 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

FIGURE 7. Standard deviation σload of local workloads (static model)
between vehicles over both datasets and 10000 experiments.

Geolife dataset) than for BASEEAGER, whereas the Balance-
algorithms are almost as fast as BASEEAGER, which shows the
best resolution times in both datasets. For the fleet workload,
BASELAZY outperforms BASEEAGER by a factor of up to 17. The
Balance* algorithms perform againwell in thismetric on both
datasets, having an average cost close to the baseline.

Finally, BALANCEREQUESTS’s fleet workload shows the
dependence on the distribution of data in the fleet: with
skewed data (as in the Geolife dataset), it outperforms
BALANCELOAD by a margin of 40%, whereas in a uniformly
spread dataset (e.g., Volvo) it performs marginally worse.

C. FAIRNESS OF THE ALGORITHMS
The presented algorithms distribute clearly differently the
workload over the vehicles. We measured the standard
deviation σload of the local workloads between the vehi-
cles with non-zero workloads, for executing all queries
(cf. Section IV-C1) over 10000 experiments and for both
datasets, presented by Figure 7. Low values of σload indicate
that all vehicles have a similar workload, and vice versa
for high σload . In BASEEAGER, the workload is distributed
deterministically as every vehicle checks every query (even
though the execution order may vary in different runs), and
thus the value for BASEEAGER results only from vehicles need-
ing different times to execute all queries. The inter-dataset
differences may be explained by the fact thatGeolife exhibits
larger variance in the average answer rate between vehicles,
cf. Figure 3. All other data localization algorithms show a
smaller spread of the workload, hence a fairer distribution,
as more vehicles have similar workloads. BASELAZY provides
the fairest outcome in this sense in theGeolife dataset, closely
matched by BALANCEREQUESTS and BALANCELOAD, while the
latter provides small improvements over the three in the Volvo
dataset.

D. ESTIMATION OF THE FRACTION OF YES-ANSWERS
In all previous experiments, the number n of required answers
was set to 50. This section now investigates how this param-
eter influences the outcome of the different presented data
localization algorithms. Recall that the number of required
answers allows one to select a fixed number of vehicles
from the fleet satisfying the query’s condition for further
analysis. One may estimate in this fashion the true fraction
QR of vehicles satisfying the query in the full fleet, with a

FIGURE 8. (a) Average absolute error 1QR and (b) relative error 1QR/QR
of the estimation of yes-answers (static model) for queries Q1 −Q5 with
different data localziation algorithms over both datasets.

higher number of required answers providing intuitively a
better estimation of that fraction. The estimation is given by
n/m, where n yes-answers have been collected over m total
received answers. Here, the validity of the aforementioned
intuition will be investigated. Figure 8a presents the average
absolute error 1QR = |QR− n/m| on the estimation of yes-
answers among the fleet for the first five defined queries with
QR = 56/60%, 42/43%, 29/28%, 18% and 12%, respectively
(Geolife/Volvo, cf. Table 1 for details about the queries), and
n ranging from 10 to 175 required answers. For each n and
each algorithm, 10000 experiments were conducted where
all 5 queries are being resolved in parallel. Then, for each
experiment and each query, the share n/m of yes-answers pro-
vided by the algorithm at the moment that the particular query
is resolved is recorded. Since BASEEAGER asks every vehicle
in the fleet, the estimation is provided based only upon the
fastest vehicles to answer and ends up providing the least
precise estimation of all tested algorithms. On the contrary,
BASELAZY, by asking one vehicle at a time chosen randomly
upon receiving negative answers, bases its estimation on a
purely random pool of vehicles, hence providing the best
estimation unbiased by the time vehicles require to answer
the query. In between, BALANCEREQUESTS and BALANCELOAD
provide reasonable trade-offs; as both base their estimation
on the first 70% of vehicles to answer a particular query

VOLUME 9, 2021 137727

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

FIGURE 9. Query resolution time (in s) (dynamic model) and all valid
queries executed over the (a) Geolife and (b) Volvo dataset for
(i) BASEEAGER, (ii) BASELAZY, (iii) BALANCEREQUESTS, (iv)
BALANCELOAD.

(as β = 0.7), they both feature bias as BASEEAGER, but to
a lesser degree. The main difference between the two algo-
rithms is that BALANCELOAD introduces another bias on top
of using the 70% fastest vehicles, which is selecting vehicles
with a current lower load rather than random ones as in
BALANCEREQUESTS; this additional bias seems strongest in Q2
in theVolvo dataset. Onmost queries, the balanced algorithms
perform nearly as well as BASELAZY. We note that they present
almost identical estimations except for query Q2, where
BALANCELOAD, prioritizing spreading the queries fairly among
the fleet, under-performs in the Volvo dataset. Figure 8b
summarizes the estimation performance of all four algorithms
on both datasets by presenting the average relative error
1QR/QR of the estimation of yes-answers for the 10000
experiments. The advantage of the introduced algorithms is
clear: they provide mostly good estimates independently of
the required number of answers, especially considering the
low values of n compared to the size of the fleets (Geo-
life: 10528; Volvo: 3462), while the disadvantage of the sec-
ondary bias of BALANCELOAD becomes apparent again in the
Volvo dataset.

E. COMPARISON OF THE ALGORITHMS
IN THE DYNAMIC MODEL
Recall that in the dynamic model, vehicles may join and
leave the fleet at any time during a query’s resolution. For the

churn values to be in line with those observed in real setups
(cf. Section IV-C2), we have modeled the arrival and depar-
ture of vehicles during a time interval by using real-world
traces: in the following experiments, the set Vt representing
the fleet at time t consists of all vehicles that have records
within 7.5s of t . Furthermore, here long queries defined in
Section IV-C2 have been used where the multiplicative factor
has been set to 1000. This shifts the fastest vehicles from
answering within milliseconds to seconds and the slowest
from a few hundreds of milliseconds to minutes (on selected
queries); similarly, the transfer time of 1-20ms becomes 1-20s
(the equivalent of 1-20 MB of data having to be transferred
per query). The timeout (introduced in Section III-C) is set to
100s and the number of answers required per query is set to
n = 50 as in previous experiments.
Figure 9 presents the query resolution time in the dynamic

model following the same conventions as Figure 5. We use
in the experiments a query batch of 7 queries (Geolife
dataset) and 6 queries (Volvo) with a starting time of 18:00;
the remaining other queries were discarded as not solvable
considering only vehicles active past that point in time.
The main outcomes in regards to the adaptation of the
algorithms to dynamicity are as follows: (i) BASEEAGER’s
and BASELAZY’s resolution time is less dependent on the
queries’ positive answer rate; (ii) BALANCELOAD performs
similarly to BALANCEREQUESTS with a slight improvement
thanks to spreading the requests over more vehicles, which
then decreases the chance that a vehicle leaves the net-
work before having emptied its local request queue; and
(iii) queries that require new arrivals to get resolved, such as
Q12, display high resolution times regardless of the spreading
algorithm used (however, we note that in these situations,
BALANCEREQUESTS is more likely to fail to collect enough
answers, as it does for Q12 in Figure 9 b).
Figure 10 shows, as a summary, the average query reso-

lution time and fleet workload over all selected queries3 of
both datasets for each algorithm relative to BASEEAGER and
BASELAZY, respectively (in a similar fashion as Figure 6).
Contrary to the static setting, where the best-performing of
the Balance- algorithms varies depending on the distribution
of data over the fleet (cf. Section V-B), in a dynamic environ-
ment, BALANCELOAD clearly performs best. BALANCEREQUESTS

displays overall favorable trade-offs, performing close to
each baseline, but slightly slower and with a higher cost than
BALANCELOAD. The latter performs close to or better than
BASEEAGER in terms of time, and better than BASELAZY in
terms of load. This is the consequence of the way the vehicles
are selected in the algorithm; those with the lowest current
local load are requested first (hence favoring freshly arrived
vehicles), which in our datasets biases the selection process
towards vehicles with higher chances of answering positively
or vehicles answering faster (see discussion in Section V-A).

3All queries described in Figure 9, except for Volvo where Q12 has been
excluded from the resolution time plot, as it did not always terminate.

137728 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

FIGURE 10. Query resolution time (left) and fleet workload (right)
(dynamic model) of the four algorithms for the Geolife (red) and Volvo
dataset (blue). The starred algorithm is the respective baseline.

TABLE 2. Summary of the results (average over all queries) for both
datasets, all algorithms, and static & dynamic models.

A clustering of relevant data in those vehicles may further
exhibit the causes of BALANCELOAD’s higher performance.

F. SUMMARY OF THE RESULTS
Table 2 summarizes the average resolution time and relative
fleet workload (compared to BASEEAGER) over all queries
for all algorithms and datasets in the static and dynamic
fleet model. On average, the proposed algorithms resolve
queries up to 40 times faster than BASELAZY while consuming
only 1/3rd of the resources of BASEEAGER (BALANCEREQUESTS,
static model, Geolife).

The presented solutions (a well-tuned BALANCEREQUESTS

and BALANCELOAD) provide substantially improved trade-offs
of query resolution time versus on-board workload compared
to baseline solutions, and allow tuning between the tradeoffs
by varying the estimation of required vehicles to ask in the
next iteration (via the parameter α) and the waiting times
for slow-processing vehicles (via β). Furthermore, a query’s
resolution time in the proposed algorithms is shown to not
be negatively impacted by a low positive answer rate among
the fleet.

BALANCELOAD, presenting shorter resolution time and
slightly larger fleet workload, produces a workload more
fairly spread over the vehicles; however, it may provide a less
accurate estimation of the fraction of positively answering
vehicles once queries are resolved. BALANCEREQUESTS pro-
vides the most balanced trade-offs overall, performing almost
as good as each baseline solution both when considering a
uniform distribution of positive answers (Volvo dataset) or a

skewed distribution (Geolife dataset). Finally, BALANCELOAD
is overall more suited to ‘‘dynamic’’ scenarios, i.e.,when the
queries require long enough processing times for the fleet
churn to become noticeable.

VI. RELATED WORK
Having studied in this work the problem of how to localize,
efficiently and in a distributed manner, relevant data in a
vehicular fleet for analysis applications, in the following
paragraphs we discuss work about topics that associate with
or have similarities to the problem.

The traditional approach to query a set of vehicles has
been through SQL-inspired languages [25]–[27] to process
continuous queries on live vehicular sensors’ data. Two main
differences with the current work are that in previous works
(i) ‘‘queries’’ were usually initiated by vehicles themselves
(e.g., [28]–[33]) and (ii) the full fleet was queried upon
receiving new queries (as in [34]), contrary to our work in
which a known and fixed set of general queries is deployed
from a centralized point to the fleet and only some vehicles in
the current fleet may have relevant data to answer the queries.
Also, many works in the field are based on an advantageous
usage of geographical properties of the distribution of Road
Side-Units (among others [31]–[33], [35]), whereas our work
is only based on the already widespread mobile broadband
infrastructure as well as data analysis capabilities already in
place at car manufacturers’ data centers. Query-answering
mechanisms for Vehicular Networks in the literature also
predominantly concentrate on using the architecture of the
network (for instance using pre-existing P2P approaches,
as in [36]–[38] or 2-tier architectures [39], [40]) to resolve
the query. In this work, we do not presume any connections
between vehicles; this positions our work in readily deploy-
able technologies on modern vehicles. A querying approach
for vehicle selection was recently studied in [18] in which a
request is sent to all available vehicles to detect candidates to
participate in Federated Learning. The vehicles send updated
responses to the query over time as they are collecting new
data, and eventually a subset of the vehicles that answered
positively is chosen. In contrast, our algorithms attempt to
limit the number of vehicles that are queried for data, thus
allowing for more concurrent queries, while novel data dis-
covery is only supported via new queries.

The problem of localizing the relevant data or ‘‘data local-
ization’’ features many similarities with the concept of data
aggregation in wireless sensor networks [41]–[45]. Usual
aspects of data aggregation that differ from data localization
include a continuous aspect (rather than an on-the-fly query
approach for data localization) and dissemination of informa-
tion to nearby nodes (rather than to a single sink node for data
localization). Since the focus taken here is on the localization
of data, approaches for efficient data gathering [7], [14], [20]
and aggregation do well complement the initial localization
phase. The way our algorithms have been designed also
relates to the large field of information gathering (see [46]
and references therein). In both concepts, online decisions

VOLUME 9, 2021 137729

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

are iteratively taken to gain knowledge of a hidden state. For
instance, in [47], the authors design near-optimal algorithms
to pick the right set of tests in order to maximize the value
of information, with applications to medical diagnosis and
troubleshooting. Note such approaches can be used to design
the right set of queries (similar to the aforementioned tests)
to resolve a particular task whereas our work concentrates on
how to efficiently and distributively resolved those queries.

The fundamental opposing metrics studied in our paper
that are the time to resolve the queries and the computational
overhead induced on the fleet are similarly observed in the
field of job scheduling in distributed computing. Parallel and
redundant job execution can decrease job execution times
in heterogeneous environments (e.g., through speculative
scheduling in MapReduce [48]), at the cost of increasing
contention and overall workload [49]. In contrast, in our work
parallel execution is always required, and no node is a priori
known to be fundamentally able to fulfill a given task.

In vehicle data analysis, privacy aspects are important
when dealing with for example location-based services
[50]–[52] and privacy-preserving cloud-based query process-
ing [35]. We suggest that our work, by allowing to check
whether a certain number (chosen by the analyst) of vehicles
meets a given condition, can complement applications where
privacy is supported by aggregating data from many sources.

VII. CONCLUSION
This work proposes two distributed algorithms for data local-
ization in Vehicular Networks. To the best of our knowledge,
this paper is the first to propose a data localizationmechanism
over a Vehicular Network through request spreading, focus-
ing on acquiring only a limited number of answers from the
fleet and considering as a performance metric the comput-
ing workload of the vehicles. The focus lies on the vehicle
selection phase necessarily performed prior to data gathering
over large vehicular fleets, typically for selecting vehicles
that triggered a particular condition or event [6], [7], [20].
As this work also shows, this vehicle selection mechanism
can be used as-is for estimating the occurrence of particular
events in the vehicles’ recent data while incurring low over-
head on the Vehicular Network as a whole. The proposed
algorithms balance (i) the overall time needed to identify
a subset of vehicles holding relevant data and (ii) the local
computational overhead each vehicle pays to check whether
a set of properties hold for its data. As shown with analyt-
ical argumentation and experimental evaluation, conducted
with real-world data traces, the algorithms provide means to
tune the trade-off between (i) and (ii) in interesting ways.
In particular, it appears that it is possible to significantly
reduce the query resolution time, with only a small extra load
imposed on the vehicles, compared to the baselines that can
optimize only one of these metrics (achieving for example
up to 40 times faster resolution while saving more than 65%
of the computing resources). These results indicate that the
adoption of a data localization phase prior to the execution of
additional analysis steps for example in a Federated Learning

scenario can occur with little overhead with respect to time
and computing resources, thus enabling better learning out-
comes for a comparably small price. Furthermore, our results
show that the distribution of the work to the vehicles can
happen fairly, even for skewed data distributions, to alleviate
the risk of overloading individual vehicles. This work sets
the basis for several paths to investigate in the future. One
avenue is the porting of the proposed algorithms to V2V [53]
rather than centralized V2I setups. A second direction is to
explore how our algorithms can be integrated within existing
simulators (e.g., with a traffic and/or network simulator) to
produce richer simulation environments for benchmarking
smart analysis in Vehicular Networks. Lastly, investigating
the use of correlations between queries could be a promising
way of efficiently selecting those vehicles for a query that
have answered positively to a similar query in an earlier
execution by adaptively changing the parameters of our algo-
rithms during a data localization query’s resolution.

APPENDIX
A preliminary formulation of the problem was presented
in [54]. The present article builds on those test results and
presents an extensive study that includes a detailed problem
formulation, as well as varying system models and parame-
ters along with algorithmic designs for them. For comparison,
we list here the main novel contributions of the present work:

1) the systemmodel is made more realistic by introducing
a dynamic fleet model where vehicles can leave and
join at any time (subsection II-B);

2) the data localization algorithms presented here are
enhanced to adapt to changes in the set of available
vehicles (Section III-C), in accordance with the new
system model;

3) the evaluation has been updated with use-cases that
account for the new system model (subsection V-E);

4) the evaluation is extended with a thorough compari-
son of the algorithms’ behaviour, using a larger set
of performance metrics, as well as enhanced experi-
ment repetitions for higher statistical certainty, and a
more extensive analysis of the parametrization of the
proposed algorithms (Section V-C, subsection V-D);

5) the study includes more realistic modeling of the
communication delays (Section IV-B); and lastly

6) the evaluation framework and algorithms are openly
published4 to enable replicability of our experiments
as well as to spark further research.

REFERENCES
[1] R. Coppola and M. Morisio, ‘‘Connected car: Technologies, issues, future

trends,’’ ACM Comput. Surv., vol. 49, no. 3, p. 46, 2016.
[2] M. S. Kakkasageri and S. S.Manvi, ‘‘Informationmanagement in vehicular

ad hoc networks: A review,’’ J. Netw. Comput. Appl., vol. 39, no. 1,
pp. 334–350, Mar. 2014.

4All code and detailed useage instructions are available at
https://github.com/dcs-chalmers/dataloc_vn.

137730 VOLUME 9, 2021

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

[3] D. Palyvos-Giannas, B. Havers, M. Papatriantafilou, and V. Gulisano,
‘‘Ananke: A streaming framework for live forward provenance,’’ Proc.
VLDB Endowment, vol. 14, no. 3, pp. 391–403, 2020.

[4] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang,
‘‘A survey on mobile edge networks: Convergence of computing, caching
and communications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, ‘‘Vehicular edge
computing and networking: A survey,’’Mobile Netw. Appl., vol. 26, no. 3,
pp. 1145–1168, 2020.

[6] Y. Lai, F. Yang, J. Su, Q. Zhou, T. Wang, L. Zhang, and Y. Xu, ‘‘Fog-
based two-phase event monitoring and data gathering in vehicular sensor
networks,’’ Sensors, vol. 18, no. 2, p. 82, Dec. 2017.

[7] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, M. Papatriantafilou,
and A. C. Koppisetty, ‘‘DRIVEN: A framework for efficient data retrieval
and clustering in vehicular networks,’’ Future Gener. Comput. Syst.,
vol. 107, pp. 1–17, Jun. 2020.

[8] E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, ‘‘Communication
patterns in VANETs,’’ IEEE Commun. Mag., vol. 46, no. 11, pp. 119–125,
Nov. 2008.

[9] M. Gerla and L. Kleinrock, ‘‘Vehicular networks and the future of the
mobile internet,’’ Comput. Netw. J., vol. 55, no. 2, pp. 457–469, 2011.

[10] S. Costache, V. Gulisano, and M. Papatriantafilou, ‘‘Understanding the
data-processing challenges in intelligent vehicular systems,’’ in Proc.
Intell. Veh. Symp., 2016, pp. 611–618.

[11] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, ‘‘Haren:
A framework for ad-hoc thread scheduling policies for data streaming
applications,’’ in Proc. 13th ACM Int. Conf. Distrib. Event-Based Syst.,
Jun. 2019, pp. 19–30.

[12] G. Ulm, S. Smith, A. Nilsson, E. Gustavsson, and M. Jirstrand,
‘‘OODIDA: On-board/off-board distributed real-time data analytics
for connected vehicles,’’ 2019, arXiv:1902.00319. [Online]. Available:
http://arxiv.org/abs/1902.00319

[13] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou, ‘‘GeneaLog:
Fine-grained data streaming provenance at the edge,’’ in Proc. 19th Int.
Middleware Conf., New York, NY, USA, Nov. 2018, pp. 227–238, doi:
10.1145/3274808.3274826.

[14] R. Duvignau, V. Gulisano, M. Papatriantafilou, and V. Savic, ‘‘Streaming
piecewise linear approximation for efficient data management in edge
computing,’’ in Proc. 34th ACM/SIGAPP Symp. Appl. Comput., Apr. 2019,
pp. 593–596.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[16] S. Lu, Y. Yao, and W. Shi, ‘‘Collaborative learning on the edges: A case
study on connected vehicles,’’ in Proc. 2nd Workshop Hot Topics Edge
Comput., 2019, pp. 1–8.

[17] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘‘Federated
learning with non-IID data,’’ 2018, arXiv:1806.00582. [Online]. Available:
http://arxiv.org/abs/1806.00582

[18] D. Deveaux, T. Higuchi, S. Uçar, C.-H. Wang, J. Härri, and O. Altintas,
‘‘On the orchestration of federated learning through vehicular knowledge
networking,’’ in Proc. Veh. Netw. Conf. (VNC), 2020, pp. 1–8.

[19] A. M. Elbir, B. Soner, and S. Coleri, ‘‘Federated learning in
vehicular networks,’’ 2020, arXiv:2006.01412. [Online]. Available:
http://arxiv.org/abs/2006.01412

[20] B. Havers, R. Duvignau, H. Najdataei, V. Gulisano, A. C. Koppisetty, and
M. Papatriantafilou, ‘‘DRIVEN: A framework for efficient data retrieval
and clustering in vehicular networks,’’ in Proc. IEEE 35th Int. Conf. Data
Eng. (ICDE), Apr. 2019, pp. 1850–1861.

[21] B. Eisenberg, ‘‘On the expectation of the maximum of IID geometric
random variables,’’ Statist. Probab. Lett., vol. 78, no. 2, pp. 135–143,
Feb. 2008.

[22] Y. Zheng, X.Xie, andW.-Y.Ma, ‘‘GeoLife: A collaborative social network-
ing service among user, location and trajectory,’’ IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32–39, Jun. 2010.

[23] (2014). Measuring Mobile Broadband Performance in the UK—4G
and 3G Network Performance. [Online]. Available: http://static.ofcom.
org.uk/static/research/mbb.pdf

[24] S. Ilarri, T. Delot, and R. Trillo-Lado, ‘‘A data management perspective
on vehicular networks,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2420–2460, 4th Quart., 2015.

[25] Y. Yao and J. Gehrke, ‘‘The cougar approach to in-network query process-
ing in sensor networks,’’ ACM SIGMOD Rec., vol. 31, no. 3, pp. 9–18,
2002.

[26] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A.Miu, E. Shih,
H. Balakrishnan, and S. Madden, ‘‘CarTel: A distributed mobile sensor
computing system,’’ in Proc. 4th Int. Conf. Embedded networked sensor
Syst., 2006, pp. 125–138.

[27] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden, ‘‘ICEDB:
Intermittently-connected continuous query processing,’’ in Proc. IEEE
23rd Int. Conf. Data Eng., Apr. 2007, pp. 166–175.

[28] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, and A. Corradi, ‘‘Dissem-
ination and harvesting of urban data using vehicular sensing platforms,’’
IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 882–901, Feb. 2009.

[29] U. Lee, J. Lee, J.-S. Park, and M. Gerla, ‘‘FleaNet: A virtual market
place on vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 59, no. 1,
pp. 344–355, Jan. 2010.

[30] Y. Zhang, J. Zhao, and G. Cao, ‘‘RoadCast: A popularity aware content
sharing scheme in vanets,’’ ACM SIGMOBILE Mobile Comput. Commun.
Rev., vol. 13, no. 4, pp. 1–14, 2010.

[31] T. Delot, N. Mitton, S. Ilarri, and T. Hien, ‘‘Decentralized pull-based
information gathering in vehicular networks using GeoVanet,’’ in Proc.
IEEE 12th Int. Conf. Mobile Data Manage., Jun. 2011, pp. 174–183.

[32] G. G. M. N. Ali, E. Chan, and W. Li, ‘‘Supporting real-time multiple data
items query in multi-RSU vehicular ad hoc networks (VANETs),’’ J. Syst.
Softw., vol. 86, no. 8, pp. 2127–2142, Aug. 2013.

[33] Y. Lai, L. Zhang, F. Yang, L. Zheng, T.Wang, andK.-C. Li, ‘‘CASQ: Adap-
tive and cloud-assisted query processing in vehicular sensor networks,’’
Future Gener. Comput. Syst., vol. 94, pp. 237–249, May 2019.

[34] Y. Lai, L. Zheng, T. Wang, F. Yang, and Q. Zhou, ‘‘Cloud-assisted data
storage and query processing at vehicular ad-hoc sensor networks,’’ in
Proc. Int. Conf. Secur., Privacy Anonymity Comput., Commun. Storage.
Guangzhou, China: Springer, 2017, pp. 692–702.

[35] Y. Lai, Y. Xu, F. Yang, W. Lu, and Q. Yu, ‘‘Privacy-aware query process-
ing in vehicular ad-hoc networks,’’ Ad Hoc Netw., vol. 91, Aug. 2019,
Art. no. 101876.

[36] C.-L. Liu, C.-Y. Wang, and H.-Y. Wei, ‘‘Cross-layer mobile chord P2P
protocol design for VANET,’’ Int. J. Ad Hoc Ubiquitous Comput., vol. 6,
no. 3, pp. 150–163, 2010.

[37] T. Wang, L. Song, and Z. Han, ‘‘Collaborative data dissemination in
cognitive VANETs with sensing-throughput tradeoff,’’ in Proc. 1st IEEE
Int. Conf. Commun. China (ICCC), Aug. 2012, pp. 41–45.

[38] N. Kumar and J.-H. Lee, ‘‘Peer-to-peer cooperative caching for data dis-
semination in urban vehicular communications,’’ IEEE Syst. J., vol. 8,
no. 4, pp. 1136–1144, Dec. 2014.

[39] S.-L. Tsao and C.-M. Cheng, ‘‘Design and evaluation of a two-tier peer-
to-peer traffic information system,’’ IEEE Commun. Mag., vol. 49, no. 5,
pp. 165–172, May 2011.

[40] C.-M. Cheng and S.-L. Tsao, ‘‘Adaptive lookup protocol for two-tier
VANET/P2P information retrieval services,’’ IEEE Trans. Veh. Technol.,
vol. 64, no. 3, pp. 1051–1064, Mar. 2015.

[41] L. Krishnamachari, D. Estrin, and S.Wicker, ‘‘The impact of data aggrega-
tion in wireless sensor networks,’’ inProc. 22nd Int. Conf. Distrib. Comput.
Syst. Workshops, 2002, pp. 575–578.

[42] R. Rajagopalan and P. K. Varshney, ‘‘Data-aggregation techniques in sen-
sor networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 8, no. 4,
pp. 48–63, 4th Quart., 2006.

[43] S. Ozdemir and Y. Xiao, ‘‘Secure data aggregation in wireless sensor
networks: A comprehensive overview,’’ Comput. Netw., vol. 53, no. 12,
pp. 2022–2037, Aug. 2009.

[44] J. He, S. Ji, Y. Pan, and Y. Li, ‘‘Constructing load-balanced data aggrega-
tion trees in probabilistic wireless sensor networks,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 7, pp. 1681–1690, Jul. 2014.

[45] R. Kumar and M. Dave, ‘‘A framework for handling local broadcast storm
using probabilistic data aggregation in VANET,’’Wireless Pers. Commun.,
vol. 72, no. 1, pp. 315–341, Sep. 2013.

[46] Y. Chen, ‘‘Near-optimal adaptive information acquisition: Theory and
applications,’’ Ph.D. dissertation, Dept. Comput. Sci., ETH Zurich, Zürich,
Switzerland, 2017.

[47] Y. Chen, J.-M. Renders, M. Haghir Chehreghani, and A. Krause, ‘‘Efficient
online learning for optimizing value of information: Theory and appli-
cation to interactive troubleshooting,’’ 2017, arXiv:1703.05452. [Online].
Available: http://arxiv.org/abs/1703.05452

[48] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
‘‘Improving mapreduce performance in heterogeneous environments,’’ in
Proc. OSDI, 2008, vol. 8, no. 4, p. 7.

VOLUME 9, 2021 137731

http://dx.doi.org/10.1145/3274808.3274826

R. Duvignau et al.: Time- and Computation-Efficient Data Localization at Vehicular Networks’ Edge

[49] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, ‘‘Why let
resources idle aggressive cloning of jobs with dolly,’’ in Proc. USENIX
HotCloud, 2012, pp. 1–6.

[50] J. Xu, Z. Jin, M. Xu, and N. Zheng, ‘‘Mobile-aware anonymous peer
selecting algorithm for enhancing privacy and connectivity in location-
based service,’’ in Proc. 7th Int. Conf. E-Bus. Eng., 2010, pp. 172–177.

[51] X. Huang, R. Yu, J. Kang, and Y. Zhang, ‘‘Distributed reputation manage-
ment for secure and efficient vehicular edge computing and networks,’’
IEEE Access, vol. 5, pp. 25408–25420, 2017.

[52] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, ‘‘A survey
on privacy in mobile participatory sensing applications,’’ J. Syst. Softw.,
vol. 84, no. 11, pp. 1928–1946, 2011.

[53] A. Gidenstam, B. Koldehofe, M. Papatriantafilou, and P. Tsigas, ‘‘Scal-
able group communication supporting configurable levels of consis-
tency,’’ Concurrency Comput., Pract. Exper., vol. 25, no. 5, pp. 649–671,
Apr. 2013.

[54] R. Duvignau, B. Havers, V. Gulisano, and M. Papatriantafilou, ‘‘Query-
ing large vehicular networks: How to balance on-board workload and
queries response time?’’ in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC),
Oct. 2019, pp. 2604–2611.

ROMARIC DUVIGNAU received the Ph.D.
degree in computer science from the University
of Bordeaux (LaBRI), France, in 2015. He is
currently an Assistant Professor with the Networks
and Systems Division, Chalmers University of
Technology. He was previously affiliated with
Aix-Marseille University (LIF) and the Univer-
sity of Bordeaux (LaBRI). His research interests
include data stream processing, edge computing,
p2p energy trading, and continuous distributed
monitoring.

BASTIAN HAVERS received the B.Sc. degree
in physics from RWTH Aachen University and
the M.Sc. degree in physics from Bonn Uni-
versity, Germany. He is currently pursuing the
Ph.D. degree with the Networks and Systems Divi-
sion, Chalmers University of Technology, and a
Researcher at Volvo Car Corporation, Sweden.
His research interests include data stream process-
ing, cyber-physical systems, and distributed data
analysis.

VINCENZO GULISANO received the Ph.D.
degree in computer science from the Polytechnic
University of Madrid, Spain. He is currently an
Associate Professor with the Networks and Sys-
tems Division, Chalmers University of Technol-
ogy. His research interests include data processing
and distributed/parallel/elastic and fault-tolerant
data streaming.

MARINA PAPATRIANTAFILOU received the
Ph.D. degree from the Computer Science and
Informatics Department, Patras University. She is
currently an Associate Professor with the Net-
works and Systems Division, Chalmers University
of Technology. Earlier, she was with Max-Planck
Institute for Computer Science, Saarbruecken and
CWI, Amsterdam. Her research interests include
efficient and robust parallel, distributed, stream
processing and applications in multiprocessor,

multicore and distributed, cyber-physical systems, synchronization, consis-
tency, and fault-tolerance. She is a member of Network of National Contacts
ACM-WE NeNaC.

137732 VOLUME 9, 2021

