
Received September 21, 2021, accepted October 2, 2021, date of publication October 6, 2021, date of current version October 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118605

A Critical Review on the Implementation of Static
Data Sampling Techniques to Detect
Network Attacks
SUZAN HAJJ 1, RAYANE EL SIBAI 2, JACQUES BOU ABDO 3,
JACQUES DEMERJIAN4, (Senior Member, IEEE), CHRISTOPHE GUYEUX 5,
ABDALLAH MAKHOUL 5, AND DOMINIQUE GINHAC 1
1ImViA, Université de Bourgogne Franche-Comté, 21078 Dijon, France
2Computer Science Department, Faculty of Sciences, Al Maaref University, Beirut 1002, Lebanon
3College of Business and Technology, University of Nebraska at Kearney, Kearney, NE 68849, USA
4LaRRIS, Faculty of Sciences, Lebanese University, Fanar, Lebanon
5Femto-ST Institute, UMR CNRS 6174, Université de Bourgogne Franche-Comté, 25000 Besançcon, France

Corresponding author: Rayane El Sibai (rayane.elsibai@mu.edu.lb)

ABSTRACT Given that Internet traffic speed and volume are growing at a rapid pace, monitoring the
network in a real-time manner has introduced several issues in terms of computing and storage capabilities.
Fast processing of traffic data and early warnings on the detected attacks are required while maintaining a
single pass over the traffic measurements. To alleviate these problems, one can reduce the amount of traffic
to be processed using a sampling technique and detect the attacks based on the sampled traffic. Different
parameters have an impact on the efficiency of this process, mainly the applied sampling policy and sampling
ratio. In this study, we investigate the statistical impact of sampling network traffic and quantify the amount
of deterioration that the sampling process introduces. In this context, an experimental comparison of existing
sampling techniques is performed based on their impact on several well-known statistical measures.

INDEX TERMS Data sampling, data streams, intrusion detection system (IDS), statistical analysis.

I. INTRODUCTION
With the emergence of new technologies and applications,
the speed and volume of Internet traffic are increasing
rapidly. Current businesses’ needs require the devel-
opment of advanced information networks integrating
various technologies such as distributed storage systems,
encryption/decryption mechanisms, and remote and wireless
access. Consequently, Internet service providers and net-
work managers are encouraged to better understand network
behavior through the analysis and monitoring of traffic inside
the network. Hence, there is a need for network-based secu-
rity systems, such as Intrusion Detection Systems (IDSs) [1].

Network attacks can be caused by external intruders
attempting to access the network or from legitimate users
trying to misuse their granted permissions and to gain more
privileges for which they are not authorized. Such abnormal
activities are manifested by a higher consumption of network

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

resources and many undesired requests overloading them.
For instance, the main objective of a DoS attack is to deny
end-users from benefiting from network services [2].

Usually, Intrusion Prevention Systems (IPSs) can be used
first to ensure the safety of the network and protect it from
attacks. For instance, a firewall can be used to manage access
inside a private network. It prevents end-users inside a pro-
tected network from sending or receiving messages forbidden
by the predefined network security policy, without any capa-
bility of detecting anomalies or any specific pattern among
the network traffic data [3]. The network is becoming increas-
ingly complex, and, therefore, more vulnerable to attacks.
Hence, IDSs play an important role in ensuring network
security, as they observe user activity on the network and
detect any security violation based on data patterns.

The success of an IDS is challenged by the network’s
implementation flaws and the complexity of the attacks,
where it also has to deal with the availability and heterogene-
ity of the traffic data sources to find malicious behaviors.
The performance of IDSs is another challenge, as real-time

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 138903

https://orcid.org/0000-0002-5627-2625
https://orcid.org/0000-0001-9948-3601
https://orcid.org/0000-0002-3482-9154
https://orcid.org/0000-0003-0195-4378
https://orcid.org/0000-0003-0485-097X
https://orcid.org/0000-0002-5911-2010
https://orcid.org/0000-0003-1118-7109

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

network monitoring requires very fast processing and inspec-
tion of network traffic. Thus, the amount of data generated
in a network represents a major problem. When the traffic is
large, the IDS will be unable to inspect every arriving packet.

As defined by the Institute of Electrical and Electronics
Engineers (IEEE), the Internet of Things (IoT) is a collection
of sensors that form networks connected to the Internet. IDSs
designed for IoT environments should be implemented on
programmable devices, such as FPGAs, to facilitate adap-
tation to IoT environments. Confidentiality, integrity, and
availability are three important security concepts for applica-
tions and services in intelligent IoT-based environments. The
implementation of a robust security mechanism in IoT sys-
tems depends on the security strength of IoT devices, which
in turn depends on several factors, such as power, memory,
hardware, software, and choice design. These present security
challenges in IoT systems and impact the performance of an
IDS [4]. Collaboration between IoT devices and the router to
shift the compute load from resource-constrained IoT devices
to the resource edge router is necessary to increase the net-
work lifespan and reduce the intrusion detection time.

Because intrusion detection is the process of monitoring
the network and detecting attacks, the data exchanged over
the network and coming from different sources such as cell
phones, computers, etc., as well as all network activities, have
to be measured and processed by the IDS. The latter detects
anomalies and sends security alerts to the network administra-
tor as soon as an attack is detected [5]. However, the extensive
applications of high-speed Internet make it impossible to
adopt traditional packet measuring and processing technolo-
gies for network traffic. In fact, these technologies are not
scalable to high-speed networks. The largest obstacles in
high-speed networks are the huge volume of traffic data to
deal with, and the rate at which information accumulates [6].

Real-time and fast processing of traffic data is required;
the analysis time of an IP packet must be shorter than the
packet inter-arrival time while maintaining a single pass over
the traffic data. In addition, early warnings on the detected
attacks and their sources must be triggered requiring a highly
scalable IDS with architecture, storage, and computing capa-
bilities and resources that can support very high throughput.
The reason for the inability of current solutions to detect
intrusions in high-speed networks is the high cost of using tra-
ditional network monitoring schemes. These schemes mea-
sure the network parameters of every packet that passes
through the network, making it challenging to monitor the
behavior of a large number of users in high-speed networks.
To keep track of the huge volume of network traffic, one
possible solution is to increase the storage and computing
resources of the IDS by distributing network packets to mul-
tiple IDSs [7], [8]. However, these solutions are expensive.

ApplyingMachine Learning (ML) approaches in IoT envi-
ronments is challenging because of the computing and energy
constraints of IoT devices. ML algorithms have complexity
issues such as memory complexity and computation. They
also lack scalability and are limited to low-dimensional

problems. Therefore, ML approaches may not be suitable
for environments with limited resources. As for intelli-
gent IoT devices, the detection of anomalies and intrusions
requires real-time data processing, however, ML approaches
are not designed to handle real-time data streams. In addition,
ML algorithms assume that the entire data is available for
processing during the learning phase, which is not true for
IoT data. This poses many challenges when ML approaches
have to process a large amount of data, especially, when the
data dimensionality is high [9]. This discussion is applicable
for security-related functions in IoT where real-time data
is processed to identify anomalies, intrusions, etc. Owing
to these limitations, it is important to combine ML with
streaming solutions, such as sampling algorithms. Therefore,
it is necessary to filter the data on the fly and store only those
that are relevant by carrying out summaries (samples) before
applying ML algorithms.

A. DATA SAMPLING
To address the issues presented above, and help the IDS
process the information gathered during the data fusion from
the routers, switches, firewalls, etc., network packets may be
sampled where the router inspects every n-th packet using
a sampling technique, and then, records its associated fea-
tures [10]. Thus, intrusions are detected based on the sampled
data instead of the entire traffic, as shown in Figure 1. There-
fore, an IDS can benefit from the available computing and
storage resources to analyze network traffic. The challenge
is to prevent the intrinsic loss of information during the
sampling process, which will lead to low detection accuracy.
Over the years, different sampling strategies have been inves-
tigated in the literature to improve attack detection accuracy.
Researchers have proposed a variety of static and dynamic
sampling algorithms for network traffic reduction.With static
sampling algorithms, trafficmeasurements are sampled either
periodically or randomly at a specific predefined interval or
using a specific rule. Using a static sampling algorithm to
reduce the network traffic volume reduces the bandwidth and
storage requirements, making this type of sampling algorithm
very efficient. In their turn, dynamic sampling algorithms,
also called adaptive sampling algorithms, use different sam-
pling intervals and/or rules to sample the data. In this study,
we focus on static sampling algorithms.

Selecting a sample of packets from the entire traffic is
a challenging task. For instance, if malicious packets are
not selected by the sampling algorithm, the attack may not
be detected, as the IDS only analyzes the sampled traffic.
Therefore, an efficient sampling algorithm must ensure the
sampling of packets that carry a malicious payload. Previ-
ous research studies have shown that the sampling process
can affect, skew, and distort anomaly detection metrics and
detection rates [11]–[13]. Therefore, choosing an appropriate
sampling algorithm and sampling interval that provides a
good representation of the overall and original traffic is very
important and delicate when a sampling process is to be
applied.

138904 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 1. Packets sampling of network traffic.

In recent years, the field of sampling network traffic has
been widely explored by the research community, which
has led to the publication of numerous studies and bench-
marking papers. Several studies have examined the impact
of data sampling. Mai et al. [13] evaluated in their work
the effect of sampling the traffic of high-speed IP-backbone
networks on the intrusion detection results, especially on
port scans and volume anomaly detection. Different sampling
algorithms were used to sample the traffic packets. [14], [15]
also assessed the impact of packet sampling on the anomaly
detection results. Roudiere and Owezarski [16] evaluated the
accuracy of the AATAC detector in detecting DDoS attacks
over sampled traffic. Different sampling policies were used
to sample the traffic. Bartos et al. [17] studied the effect
of traffic sampling on anomaly detection and proposed a
new adaptive flow-level sampling algorithm to enhance the
accuracy of the sampling process. Silva et al. [18] introduced
a framework to evaluate the impact of packet sampling. They
discussed the performance of each sampling algorithm and
proposed a set of metrics that allows the accurate evaluation
of each sampling technique in producing a representative
sample of the original traffic. Brauckhoff et al. [11] used
traces containing the Blaster worm to assess the accuracy of
different anomaly detection and data sampling algorithms.

B. PROBLEM DEFINTION AND MOTIVATION
Currently, deploying IDSs inside companies is a common
practice to prevent and/or mitigate both internal and exter-
nal attacks. However, owing to the restricted bandwidth
of network links, and the limited storage and computing
resources of the IDSs, it has become difficult to efficiently
monitor and manage the network. A possible solution to
this problem is to apply a sampling strategy to decrease the
amount of traffic to be processed. Current research studies are
investigating which sampling policy and which parameters
provide the best compromise in terms of IDS perfor-
mance (response time) while having a high attack detection
rate.

A sampling policy aims to provide an estimation of ametric
of interest from a set of data while reducing the processing
cost. This is achieved by selecting a subset of data called
‘‘sample’’ and estimating the metric of interest from this
subset. The sampling strategy specifies how a subset of data is
selected [19]. More specifically, the packet sampling process
aims to construct a sample of data on which future analysis
tasks will be carried out. Different parameters affect the
efficiency of the sampling and the precision of the estimation

of the traffic characteristics, mainly the sampling strategy and
sampling rate. Thus, given the original set of packets, themost
difficult task is to select the correct sampling policy and the
relevant parameters.

Packet sampling is involved in large network monitoring,
management, and engineering tasks. It provides a dynamic
overview of the network by providing detailed information
that can be exploited to infer various estimates, statistics, and
aggregates of traffic. These include the number of packets,
the size of packets, the interarrival delays and protocols of
packets, and traffic flows. which can eventually be used to
detect particular network problems.

As stated by El Sibai et al. [20], a sampling algorithm
can be qualified according to the following metrics:
(1) Single-pass over the data: since it is almost impossible
to store all the traffic packets for further processing, any
sampling algorithm must be able to construct the sample
by making only one pass over the data. (2) Memory con-
sumption: sample size affects sample quality. The size is
usually proportional to the size of the traffic, and it depends
on the sampling ratio used. The higher the sampling ratio,
the higher the accuracy of the sample, but the larger the
sample size. (3) Skewing ability: A sample must represent the
entire network traffic. With probabilistic sampling methods,
all packets are sampled with the same probability. However,
in some cases, some packets should have a higher probability
of being sampled (depending on their values, arrival time,
etc.). One way to do this is to associate weights to pack-
ets and to sample them according to their relative weights.
(4) Complexity: Owing to the high traffic arrival rate, a low
complexity is required to decrease the execution time of
sampling. In many applications, packet sampling can be used
to provide accurate results while reducing data processing
costs. It can be used to control network congestion, detect bro-
ken links, misconfigured devices, and rouge network servers.
Packet sampling can also be used to verify the quality of
service in the network, build trends, forecast bandwidth, and
other resource requirements.

Packet sampling is a class of data sampling techniques
that considers packets as basic elements. Therefore, all the
packets observed are considered as the original dataset, and
the selected packets represent the sample. The target sample
size is usually affected by the sampling interval, which is
also denoted as the sampling ratio. However, with some
sampling algorithms, the obtained sample size can deviate
from the target. The sampling decision of a packet can be
of three types: count-based, time-based, and content-based.
With count-based sampling strategies, the sampling decision
of a packet is based on its position in the sequence of packets
called stream. With time-based sampling strategies, the sam-
pling decision is based on the packet arrival time. Finally, with
content-based sampling strategies, the sampling decision was
based on the content of the packet. Content-based sampling
strategies are also called filtering algorithms and are outside
the scope of this study.

VOLUME 9, 2021 138905

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

C. OBJECTIVE AND CONTRIBUTIONS
This study aims to check whether summarized (sampled)
data are sufficient to detect attacks in high-speed networks.
We aim to quantify the robustness of traffic characteristics
under different sampling strategies. The sampling process
selects some traffic items from the entire received traffic
based on the sampling policy used and the chosen sample
size. Thus, sampling is considered an approximate method
of measurement. Because many packets in the dataset are
not sampled, the traffic distribution of the sampled data may
deviate from the distribution and statistical characteristics of
the original traffic. Taking these sampled data as the input
of any attack detection algorithm will inevitably affect the
accuracy of the detection algorithm.

An effective sampling policy selects a subset of packets
with which the statistical parameters of traffic can be accu-
rately estimated. In this context, we focus on the statistical
impact of packet sampling on traffic analysis. The sampling
techniques were evaluated and compared in terms of the sim-
ilarity between the results of the aggregation query evaluated
for the original traffic and the sampled traffic. By building
a sample of the traffic and performing offline analysis of
the sampled packets, several statistical metrics gathered from
sampled traffic and non-sampled traffic can be measured and
compared to assess the level of degradation introduced by the
sampling process. This study was initiated with a survey of
the sampling algorithms. Then, an experimental comparison
of all these sampling methods was performed.

The recently published benchmarks, cited in Table 1, focus
on the most traditional sampling algorithms. However, none
of these studies have thoroughly reviewed all data sampling
approaches, their impact on detecting a variety of attacks, and
the behavior and robustness of the features under different
sampling strategies. Even if it is well known that the sampling
distorts the statistical measures, it was surprising that few
studies have explored how the network characteristics esti-
mation varies according to the sampling method used, sample
size, and so on, and how this affects statistical inference from
these data.

Pescape et al. [14] considered a list of traffic characteris-
tics. Two statistical metrics are used to assess feature distor-
tions, ‘‘Hellinger’’ for similarities and ‘‘Fleiss Chi-Square’’
for classification. The intersection of the chosen character-
istic sets in each database separately formed a robust final
feature set. Various sampling techniques were applied to
assess robust feature sets. The results showed that sampling
techniques have a slight impact on reducing the degradation
behavior of the anomaly detection process and that the char-
acteristics of many packets are most affected by distortion.
Data sampling depends on the data measurement method.
Therefore, sampling is subject to a certain variance in the total
traffic distribution, which affects the accuracy of the anomaly
detection results. To address this problem, Pan et al. [21]
suggested a method for measuring packet sampling based on
IP flow. The sampling rate is variable and depends on the
arrival process sequence of the IP flow at both the packet and

flow levels, and the flow size. Subsequently, the sampling
probability was adjusted based on the number of samples
in the stream. Two evaluation metrics were used; RMSE to
measure volume anomalies in the size of the IP stream and
the hit detection rate to measure the sequence of variance
in the stream. The results showed that for a sample rate
of 1%, the proposed solution detected 27 out of 30 worm
and DDoS attacks, while traditional random sampling only
detected three. Singh et al. [22] studied the statistical impact
of data sampling on traffic analysis by calculating the sta-
tistical parameters for an unsampled dataset and then for
sampled data. Subsequently, a comparative analysis of the
unsampled and sampled datasets was performed. The fol-
lowing sampling algorithms were used to sample the data:
Simple Random Sampling (SRS), Systematic sampling, and
under-over sampling. The following attributes from the NSL
KDDdataset were considered: duration, src_bytes, dst_bytes,
wrong_fragment, num_compromised, num_file_ creations,
and srv_count. The statistical parameters used to compare the
network characteristics before and after sampling were: the
mean, range including the minimum and maximum values
for each attribute, and the standard deviation showing the
distribution of the network. Silva et al. [18] developed a
data-sampling framework based on a multilayered design.
The framework selects the characteristics and sampling tech-
niques based on the measurement task. The implementation
of the framework is based on a sampling taxonomy that
determines the granularity, selection scheme, and selection
trigger.

A comparison between the above papers and our work is
summarized in Table 1.

In this study, the impact of sampling is studied in terms
of well-known statistical metrics, such as the mean, standard
deviation, median, etc. from the perspective of determining
the characteristics of the traffic before and after sampling.
Our main objective is to provide an up-to-date survey of static
sampling algorithms and evaluate the impact of data sampling
on network traffic analysis. Different sampling algorithms
and a variety of parameters were considered in our study.
Our contributions in this study can be summarized as follows.
(1) Presenting an exhaustive survey of existing data stream
sampling algorithms, (2) Elaborating on the following critical
question: Given the network traffic, what are the suitable
sampling policies and parameters to be applied to reduce the
network volume? (3) Evaluating the behavior and robustness
of various features characterizing the network, under
different sampling strategies and parameters, (4) Determin-
ing which attacks are more robust to the sampling process,
(5) Determining whether there exists a family of features that
are more robust to the sampling process, and (6) Exposing,
based on the obtained results, the research challenges and
possible solutions to handle them.

D. SUMMARY AND OUTLINE
The remainder of this paper is organized as follows.
Section I-B discusses the motivation and introduces the

138906 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

TABLE 1. Comparison of this and similar works, where C1 shows whether the benchmark evaluated all sampling algorithms, C2 represents whether the
benchmark studied the appropriate sampling policy and parameters, C3 indicates whether the benchmark presented an exhaustive study of the sampling
algorithms, C 4 shows if the benchmark evaluated the sampling impact on different types of attacks, C5 shows if the benchmark studied the sampling
impact on feature behavior, C6 shows whether the benchmark analyzed sampling performance with respect to accuracy, and C7 shows whether the
benchmark assessed sampling distortion.

contribution of our work. This section also shows the dif-
ferences between our work and the existing ones. Section II
presents a survey of existing sampling algorithms. Section III
elaborates on the experimental approach and methodology
that we apply in our work. Section IV illustrates and discusses
the results. Finally, Section V concludes the paper.

II. TAXONOMY OF PACKETS SAMPLING POLICIES
In high-speed networks, network traffic arrives continuously,
at a high rate. The IDS receiving this traffic may not be
able to store them exhaustively, and/or have sufficient com-
puting resources to process them rapidly. Thus, processing
high-speed network traffic requires minimizing the volume of
traffic by building, storing, and maintaining a sample of this
traffic. An efficient sample should be able to answer, approx-
imately, to any query regardless of the period investigated.
The literature shows that most sampling techniques share the
following main components: sampling function, the temporal
aspect of packets, windowing model, and sample size [19].
Classifying and evaluating sampling policies according to
these components is an important step for achieving better
sampling accuracy.

Figure 2 presents our taxonomy that classifies the sam-
pling policies into four components: the sampling function,
the temporal aspect of packets, the windowing model, and the
sample size. Table 2 classifies the existing sampling policies
according to the proposed taxonomy.
• Sampling function: This identifies the policy defining
which packets will be added to the sample. This policy
may follow a static or dynamic approach. A static
approach can be either deterministic or random.

• Temporal aspect of packets: It can be physical or logical
(sequential). The physical aspect depicts the arrival time
of the packet, and the logical aspect describes the index
of the packet in the traffic stream.

• Windowingmodel: Sampling techniques use windowing
models and divide the traffic into successive windows
to limit the number of packets to be analyzed. There are
twomain windowingmodels: fixed and sliding [23]. The
window boundaries were absolute using a fixed window.
The traffic stream is partitioned into non-overlapping

windows, and the offset between two consecutive win-
dows is equal to the number of packets in the window.
Using the sliding window model, the window bound-
aries are updated over time: when a new packet arrives,
it is added to the window and the oldest one will be
removed. In this case, the shift between two consecutive
windows is less than the window size, and most often
equals 1. In this benchmark, two types of estimations
are considered: total traffic statistics and instantaneous
traffic statistics estimation. The overall traffic behavior
was predicted using, the total traffic statistics estimation.
The traffic stream is divided into successive fixed (non-
overlapping) windows, and, the sample of the traffic
stream is constructed by combining all the sub-samples
built over all the fixed windows. Network behavior
was analyzed based on the final sample. However, with
instantaneous traffic statistics estimation, the sample
is built over the most recent packets of the stream.
Thus, the network behavior is analyzed over each sliding
window, during the measurement process. In our work,
the sampling policies used to estimate the overall traffic
statistics are called ‘‘non-stream sampling algorithms’’,
while the sampling policies used to estimate instan-
taneous traffic statistics are called ‘‘stream sampling
algorithms’’.

• Sample size: The sample size is most often proportional
to the length of the traffic and depends on the sampling
ratio. The higher the sampling rate, the higher the accu-
racy of the sample; nevertheless, this requires more com-
putational resources. Note that some sampling policies
have a fixed and bounded sample size independent of
the sampling ratio. In this work, and without loss of
generality, all the algorithms will be adapted to provide
a sample with a ratio-dependent size.

In the following, we discuss in detail each one of these
sampling policies.

A. SIMPLE RANDOM SAMPLING (SRS) OVER A SLIDING
WINDOW (SRSSW)
The SRS algorithm [24] aims to construct a random sample.
It samples packets randomly and all packets have the same

VOLUME 9, 2021 138907

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 2. Taxonomy of sampling policies.

TABLE 2. Classification of static sampling policies.

probability p of being sampled. SRS can be performed with
and without a replacement.When applying SRSwith replace-
ment, the sample will contain redundant packets because
each packet may be selected at least once. However, with
SRS without replacement, each packet can be sampled only
once. In this study, we were concerned with SRS without
replacement.

B. SIMPLE RANDOM SAMPLING (SRS) OVER A FIXED
WINDOW (SRSFW)
The SRS without replacement algorithm can also be applied
to build a sample over a fixed window. This is done by con-
structing a sample over each window of the traffic stream and
removing the samples constructed on the former windows.
To sample k packets from a window of size n, each packet is
selected with a probability p equal to the sampling ratio k/n.

This step must be repeated until k distinct packets are
selected [20].

C. DETERMINISTIC SAMPLING OVER A
FIXED/SLIDING WINDOW
The deterministic algorithm is a non-probabilistic sampling
algorithm that constructs a sample without randomness.
It consists of constructing a sample of size k by select-
ing one packet from every x packet of the traffic stream.
Assuming that the traffic stream consists of packets with an
always-increasing index, to construct a sample of distinct
packets among the n most recent packets of the traffic, and
given the sampling ratio p, each 1/x packet is sampled. The
value of x is equal to 100/p. For instance, if p equals 20%,
then, the value of x will be equal to 100/20 = 5, and thus,
every 1/5 packet will be selected exactly. The selection of

138908 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

one packet from every x packets depends on the packet index.
If the packet index equals α × n/k , where α is a positive
integer, the packet will be selected.

D. SYSTEMATIC SAMPLING
Let k be the sample size and n the window size, the systematic
sampling algorithm partitions the traffic into x groups, each of
size x = n/k . Thereafter, it selects a random value j ∈ [1, x]
and adds the packets to the sample at the following indices: j,
j+ x, j+ 2x, j+ 3x, etc. [24].

Deterministic and systematic sampling algorithms have
several advantages; the samples are easy to build and are
faster than the SRS algorithm. However, the drawback of
these algorithms is that the sample lacks randomness. The
packets wer sampled periodically. If the periodicity of the
traffic stream is close to the size of sample k , the constructed
sample will be skewed and not representative of the original
traffic.

E. STRATIFIED SAMPLING
The stratified sampling algorithm [24] divides the traffic into
homogeneous subgroups and then randomly builds a sample
from each subgroup. Compared to SRS, the stratified sam-
pling algorithm enhances the sampling accuracy because it
ensures a high level of representativity of the entire traffic.
Using the stratified sampling algorithm is beneficial in many
cases, especially, when it is required to highlight a specific set
of packets within the traffic. Stratified sampling can also be
applied to ensure the representation of extreme or rare groups
of packets in the sample.

F. WEIGHTED RANDOM SAMPLING
WITHOUT REPLACEMENT
An effective sample must represent the entire traffic stream.
However, this requirement may not be satisfied: some packets
may be oversampled or undersampled. Consequently, the sta-
tistical information inferred from the constructed sample will
not be reliable. To deal with the lack of representativeness
of some packets in the sample, a correction of the sample
is required. This can be done using the Weighted Random
Sampling (WRS) algorithm by sampling each packet with a
probability based on the packet’s weight [25], [26].

Efraimidis et al. [25], [26] proposed two WRS algorithms.
WRS-N-P adds each element ek to the sample with a proba-
bility proportional to the weightwk of the element, as follows:

pk =
α × wk∑k
i=1 wi

(1)

where α is the sample size.
In turn, WRS-N-W adds each packet ek to the sample with

a probability proportional to the item’s weight wk and rela-
tive to the weights of the non-sampled items. The sampling
probability pk is calculated as follows:

pk =
wk∑

i∈v−S wi
(2)

where S represents the sample.

G. RESERVOIR SAMPLING
The reservoir sampling algorithm [27], [28] retains a uniform
and random sample of a fixed size of k from the whole stream.
First, the algorithm selects the first k received elements of
the stream and adds them to the sample. Subsequently, when
a new element arrives, it is sampled with a probability p =
k/i, where i is the index of the element in the stream, and an
element is randomly removed from the sample.

H. BACKING SAMPLING
Backing sampling [29], [30] samples the data as follows:
First, the first k elements of the stream are added to the
sample. Thereafter, a random number of elements is skipped
and the next element is added to the sample with a probability
equal to k/n. Another random number of elements is ignored,
and so forth.

I. CHAIN-SAMPLE
The chain-sample algorithm [31] provides, at any time, a ran-
dom sample of size k selected from the last elements of
the stream. It constructs a sample containing one element
selected from the last sliding window of the stream. First,
the algorithm samples one element from the first window
with a probability equal to min(i,n)

n , where n is the window
size, and i is the index of the element in the window. Once
selected, a successor’s index j is chosen at random for the ith

element from the elements with indexes∈ [i+1, i +n]. When
the element with index j arrives at the window, a random
successor will also be chosen for it. When the element with
index i is removed from the window, it will be removed
from the sample and substituted by its successor j. To build
a sample containing k > 1 elements, all the previous steps
must be repeated k times.

J. Chain+ SAMPLING
To build a sample containing k elements, the Chain+ sam-
pling algorithm [32] builds one sample of size k instead of
constructing and maintaining k independent samples, each of
size equal to 1. The algorithm samples each element in the
first sliding windowwith a probability equal to min(i,n)

n , where
n is the window size and i is the index of the element in the
window, if and only if it was not present in the sample. This
process is repeated until k distinct elements are sampled.

K. PRIORITY SAMPLING
Babcock et al. [31] introduced the priority sampling algo-
rithm that constructs and maintains a random sample over
a physical sliding window. To construct a sample contain-
ing one element, the priority sampling algorithm assigns a
random priority p ∈ [0, 1] for each element, then selects
the element with the highest priority in the sliding win-
dow. To construct a sample containing k elements, the pro-
cess must be repeated k times. In the old version of the
priority sampling algorithm, the weights are assigned ran-
domly without inspecting the arrival time of the element.

VOLUME 9, 2021 138909

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

In addition, this algorithm suffers from all the problems of
the chain-sample algorithm. These problems are presented in
section IV. Therefore, in this work, we implemented a new
version of the priority sampling algorithm proposed in [33].
The modified version of the Priority sampling algorithm
alters the traditional algorithm by assigning weights to the
packets according to their arrival time, their contents, and
their impact on the sample accuracy.

L. RANDOM PAIRING SAMPLING
The Random Pairing (RP) sampling algorithm [34], [35]
constructs and retains a random sample over the most recent
sliding window of the stream. To achieve this, three values are
calculated for each window: the number of expired elements
present in the sample (denoted by c1), the number of expired
elements not present in the sample (denoted by c2), and
the number of all expired elements (denoted by d). When a
sampled element expires, it is deleted from the sample. Each
new element was added to the sample based on the value of d .
If d = 0, sampling the new element follows the reservoir
sampling algorithm [28]. However, if d > 0, the new element
is added to the sample with a probability equal to c1

c1+c2
.

M. StreamSamp
StreamSamp [36] algorithm is a progressive sampling tech-
nique based on the Simple Random Sampling algorithm.
Once received, stream elements are sampled with a pre-
defined sampling ratio. When the sample size is reached,
the sample is stored with an order equal to 0, and a second
sample of the same size will be constructed. As the number
of stream elements increases, the number of samples of order
0 also increases. When this number exceeds a certain limit,
StreamSamp merges the two old samples of order 0 into
a single sample by performing a simple random sampling
of rate p = 0.5. The new sample obtained is of order 1,
and so on.

A comparison of the presented algorithms is provided by
Table 3.

III. METHODOLOGY
This study focuses on existing static sampling techniques.
The efficiency of a sampling policy depends on its capability
to balance its precision with the computational resources
required. This study investigates the statistical effect of sam-
pling the traffic stream and the execution time required to
sample the traffic. Our methodology consists of using the
sampling algorithms presented to summarize a real traffic
dataset. This allows us to understand the behavior of these
algorithms. To quantify the distortion introduced by the sam-
pling procedures, we compared different statistical metrics.
The overall quantification of statistical changes between
sampled and unsampled traffic is defined by the Overall
Statistic (OS) calculated as follows [37], [38]:

OS =
|(µ0 − µ)|

µ0
+
|(med0 − med)|

med0
+
|(std0 − std)|

std0
(3)

where µ0 is the real average value estimated before sampling
the traffic, µ is the estimated average value of the traffic
calculated after sampling, med0 and med are the median
values of a traffic parameter estimated before and after sam-
pling respectively, and std0 and std are the standard deviation
values of the traffic estimated before and after sampling
respectively.

Our experiment in Section IV can be thus summarized as
follows:

• Scenario 1 - Without sampling: In this scenario, the
mean, standard deviation, and median of the unsampled
dataset were calculated.

• Scenario 2 - With sampling: In this scenario, the mean,
standard deviation, median, and OS were calculated
based on the sampled data. Different sampling strategies
with different parameters are considered. The computa-
tional resources and execution time needed for sampling
were also calculated. Finally, a comparative analysis of
both scenarios is carried out.

The dataset used in this work is NSL-KDD [39], which
was developed to enhance the KDD CUP 99 dataset. The
main concern with the KDD CUP 99 is the huge number of
duplicate records in the training and testing subsets, which
leads to inaccurate intrusion detection results [39]. In the
NSL-KDD dataset, all redundant records have been removed.
The obtained dataset contains approximately 150K records
divided into training and testing subsets. The NSL-KDD
dataset consists of 41 attributes and includes 22 attack types.

IV. EXPERIMENTS AND RESULTS
In this section, we investigate the impact of different sam-
pling policies and sampling rates to measure the distortion
introduced by the sampling process. We aim to isolate a set
of features that are more robust (less distorted) to sampling.
The specifications of our machine are RAM: 8 GB, System
disk: 450 GB, and processor: 2.7 GHz Intel Core i7.

A. COMPUTATIONAL RESOURCES
The traffic scenario used to evaluate the sampling policies
is the training set of the NSL-KDD dataset, which consists
of 125.974 records with a size of 18.662 MB. The computa-
tional resources of packet sampling techniques are analyzed
according to the execution time, which depicts the time spent
in summarizing the traffic. A higher sampling ratio leads to
the selection of more packets. Thus, intuitively, the com-
putational resources of the sampling algorithms should be
proportional to the sampling rates. The execution times of
non-stream and stream policies presented in this study are
evaluated in Figures 3 and 4 respectively, based on the sam-
pling ratio andwindow size (for stream sampling algorithms).

Figures 3 and 4 confirm the relationship between the
sampling ratio and the computational resources. Since each
sampling policy selects the data samples differently, differ-
ent computations resources are required by each sampling
algorithm, even with the same sampling rate. The results

138910 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

TABLE 3. Advantages and weaknesses of data streams sampling algorithms.

in Figure 3 show that the deterministic and systematic sam-
pling algorithms have the lowest execution time. Based on the
SRSFW and stratified sampling algorithms, the sample may
contain duplicated elements. This redundancy occurs when
the sampling rate is > 0.1, and it arises when an element
is sampled many times in the same jumping window. This
problem becomes more serious when the values k (sample
size) and n (window size) are close to each other. To deal

with the redundancy problem, and to sample exactly k distinct
elements from each window, the sampling process on each
window should be repeated until an element is selected that
is not present in the sample. This process adds significant
overhead in terms of runtime, mainly when the values of k
and n are close to each other. Figure 5 shows the collision
rate of the SRSFW and stratified sampling algorithms and the
theoretical probability of collision for sampling k elements

VOLUME 9, 2021 138911

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 3. Execution time of non-stream sampling algorithms.

FIGURE 4. Execution time of stream sampling algorithms, using a window size = 10.

from a window of size n. Different sampling rates k/n are
used. The window size was fixed to 10 packets. The theoret-
ical probability of collision Pcollision is computed as follows:

Pcollision = 1− PSelecting k distinct items

= 1−
n!

nk (n− k)!
(4)

Figure 5 shows that when the sampling ratio (k/n) is
equal to 50%, 30% of the packets in the constructed sample
are redundant, which will greatly affect the accuracy of the
sample. Thus, the need to remove the duplicated elements.
Figure 5 and Equation 4 show that for a given sampling
ratio, when the values of k and n increase, the collision
rate also increases. Figure 5 also shows that the collision
rate of the SRSSW algorithm is a little bit higher than
that of the stratified sampling algorithm. In fact, with the

FIGURE 5. Collision rate of the SRSFW and stratified sampling algorithms.

stratified sampling algorithm, each packet in the traffic stream
must be added to the subgroup before sampling. After the

138912 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

subgroups were formed, some elements of each subgroup
were selected. Thus, the collision rate was lower. Because
of this process, building the sample using the stratified sam-
pling algorithm is more expensive than using the SRSWF
algorithm.

Figure 4 shows the execution times of the stream sam-
pling algorithms described in this study. The window size
was fixed at 10 packets. The results show that, similar to
SRSFW, the execution time of the SRSSW increases when
the sample size k and the sliding window size n are close
to each other, mainly, when the value of k/n is close to 1.
This problem also occurs because of the redundancy issue that
arises when the sampling rate is > 0.1. Similar to SRSFW
algorithm, and in order to avoid duplication in the sample,
the SRSSW selection process is repeated until an element is
selected that is not present in the current sample. Therefore,
a possible additional cost in terms of execution time is added,
mainly, when the value of k/n is high. Even if the SRSSW
and Chain+ sampling algorithms use very similar sampling
procedures, the results in Figure 4 show that the difference
in execution time for these two algorithms increases as k/n
increases, and becomes clearer when k/n is > 0.5. In fact,
the Chain+ sampling algorithm minimizes the collision rate
to be equal to that of k/n = k/n − 0.5, when k/n is
> 0.5, as proven in [32], which decreases the execution
time of this algorithm. It should be noted that the priority
and chain-sample algorithms have almost the same execution
time.

Figure 6 presents the execution time of the stream sampling
algorithms for various sampling rates and sliding window
sizes. Three window sizes were considered: 10, 100, and
1000. The results show a clear trade-off between the exe-
cution time of all these algorithms and the window size: the
execution time becomes longer for a larger window. In fact,
varying the window size leads to different sample sizes and,
therefore, to different computational requirements, even at the
same sampling rate. For instance, to sample 20% of the most
recent traffic leads to a data volume equal to 2/10, 20/100,
and 200/1000 for a window size equal to 10, 100, and 1000
respectively, the required execution times using the SRSSW
are 88, 95, and 111 ms, respectively. This behavior was
observed for all stream sampling policies. It is also observed
that there is a stabilization of the execution time for the
DETSW algorithm, as shown in Figure 7. This algorithm has
less variation in the execution time regardless of the sampling
ratio, whereas the SRSSW exhibits the highest variation.

B. ESTIMATING TOTAL TRAFFIC STATISTICS
Several monitoring and management activities were con-
ducted using the measurement of the network. Therefore,
the sampling policy should describe the behavior of the
network accurately despite the importance of reducing the
execution time of the sampling process. In this section,
we analyze and compare the ability of each sampling policy
to provide accurate estimations of traffic characteristics. Our

FIGURE 6. Execution time of stream sampling algorithms for different
window sizes.

FIGURE 7. Variation of the execution time of stream sampling algorithms,
using a window size equal 10.

work in this section consists of reducing the size of the
traffic using all the sampling policies described previously
and then, evaluating the statistical measures of the traffic. Our
benchmarking study considers the accuracy of the sampling
process regarding the unsampled (original) traffic stream,
while also comparing each sampling policy with the others.
All sampling policies are evaluated based on their ability to
provide samples that accurately represent traffic behavior.
The methodology adopted in this section is to sample the
NSL-KDD traffic using all the sampling techniques described
previously, and then calculate several statistical measures to
assess the accuracy of the sampling estimates for the unsam-
pled traffic while comparing each sampling policy with the
others. To achieve this goal, the mean, standard deviation,
and median of the traffic stream were estimated before and
after sampling, as shown in Figures 8 and 9. The sam-
pling accuracy is also evaluated through the Overall Statistic
(OS), which represents the relative error of the estimated
mean, median, and standard deviation of the original traffic,
as detailed in section III.

Table 4 presents the most important numeric features of
the NSL-KDD dataset that can be used to detect DoS, Probe,
R2L, and U2R attacks, according to Ao et al. [40].

VOLUME 9, 2021 138913

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

TABLE 4. Relevant features for each attack type in the NSl-KDD dataset.

FIGURE 8. Traffic statistics estimation for unsampled data.

FIGURE 9. Traffic statistics estimation for sampled data.

1) DoS ATTACK
Figures 10.c, 11.c, and 12.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 5, 7, and 8, respectively. Different
non-stream sampling policies and various sampling rates ∈
[10, 90] were considered. The results in these figures show
that, regardless of the non-stream sampling policy used,
the level of distortion introduced by the sampling process
decreases significantly when the sampling ratio increases.
In fact, when the interval in which packets are sampled from
the network increases, significant periods of network activity
are considered by the sampling process. The results also
show that, for a given sampling strategy, the estimated OS
metric for features 7 and 8 does not vary significantly when
the sampling ratio was ∈ [70, 90]. For feature 5, the vari-
ation in the OS metric was small when the sampling ratio
was ∈ [80, 90]. All these results demonstrate that sampling
fewer packets (less than 90%) does not lead to a less accu-
rate estimation. Thus, it is possible to save computational
resources by collecting fewer packets and achieving high
sampling accuracy. Figures 10, 11, and 12 show in detail
the accuracy of the estimated mean, standard deviation, and
median of the features 5, 7, and 8, according to the sampling
strategy and sampling ratio. The results in Figure 10 show
that when the sampling ratio is ∈ [80, 90], the accuracy of
the mean and standard deviation metrics is approximately the
same and very close to the real mean and standard deviation
values of the unsampled traffic. Figure 11 shows that for a
sampling ratio ∈ [60, 90], the level of distortion introduced
by the sampling process using deterministic and systematic
sampling is null. In addition, for a given sampling ratio of

less than 50%, the estimation accuracy of all algorithms
is highly variable. The results also show that WRS-N-W
is the worst sampling strategy because it gives the highest
OS value, regardless of the sampling ratio. According to
Figures 11.c, one can notice that like feature 5, and for a
sampling ratio ∈ [60, 90], the level of distortion introduced
by the sampling process using deterministic and systematic
sampling is null. For a given sampling ratio of less than
50%, the estimation accuracy of all algorithms is also highly
variable. According to Figure 12.c, one can notice that like
features 5 and 7, and for a sampling ratio ∈ [60, 90], the level
of distortion introduced by the sampling process using the
deterministic and systematic sampling is null. For a given
sampling ratio of less than 50%, the estimation accuracy of
all algorithms is highly variable. The results also show that
the SRSFW andWRS-N-W are the worst sampling strategies
because they provide the highest OS value, regardless of
the sampling ratio. Based on the above discussion, one can
conclude that to estimate the values of features 5, 7, and 8
needed to detect the DoS attack, the best sampling strategy,
and sampling ratio to apply in order to achieve the lowest dis-
tortion level is the deterministic/systematic sampling with a
sampling ratio of 60%. Because the deterministic and system-
atic strategies require the lowest execution time and computa-
tional resources, there is a possibility of saving computational
resources by collecting fewer packets and achieving a very
high sampling accuracy when using these strategies.

2) PROBE ATTACK
Figures 10.c, 13.c, 14.c, and 15.c show the variation of the
OS metric based on the estimated mean, standard deviation,
and median values of features 5, 28, 30, and 36 using sam-
pled data while considering different non-stream sampling
policies and various sampling rates ∈ [10, 90]. The results
show that regardless of the non-stream sampling policy used,
the level of distortion introduced by the sampling process
does not vary significantly when the sampling ratio is ∈
[70, 90]. The results also show that for a given sampling
strategy, the estimated OS metric for feature 28 does not
vary significantly when the sampling ratio is ∈ [60, 90]. For
feature 5, the variation in the OS metric was small when the
sampling ratio was ∈ [80, 90]. All these results show that
sampling fewer packets will not lead to a less precise estimate.
Thus, there is a possibility to save computational resources
by collecting fewer packets and achieving high sampling
accuracy.

138914 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 10. Statistical metrics estimation of feature 5 using non-stream sampling policies.

3) R2L ATTACK
Figures 16.c, 17.c, 18.c, and 19.c show the variation of
the OS metric based on the estimated mean, standard devi-
ation, and median values of features 6, 11, 23, and 39
using sampled data while considering different non-stream

sampling policies and various sampling rates ∈ [10, 90]. The
results also show that regardless of the non-stream sampling
policy used, the level of distortion introduced by the sampling
process does not vary significantly when the sampling ratio
is ∈ [70, 90].

VOLUME 9, 2021 138915

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 11. Statistical metrics estimation of feature 7 using non-stream sampling policies.

4) U2R ATTACK
Figures 20.c, 21.c, and 15.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 14, 24, and 36 using sampled data
while considering different non-stream sampling policies and
various sampling rates ∈ [10, 90]. The results also show that

regardless of the non-stream sampling policy used, the level
of distortion introduced by the sampling process does not
vary significantly when the sampling ratio is ∈ [70, 90].
A comparison of the different sampling algorithms shows that
in general, the sampling precision is high and less variable
when the sampling ratio is ∈ [50, 90].

138916 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 12. Statistical metrics estimation of feature 8 using non-stream sampling policies.

C. ESTIMATING INSTANTANEOUS TRAFFIC STATISTICS
A common way to understand the traffic behavior is to
estimate the traffic statistics instantaneously, in a time inter-
val. Thereby, the accuracy in estimating the traffic behavior
over time is analyzed through instantaneous mean, median,
standard deviation, and OS metric constantly calculated dur-
ing the measurement process.

1) DoS ATTACK
Figures 22.c, 23.c, and 24.c show the variation of the OS
metric based on the estimated mean, standard deviation,
and median values of features 5, 7, and 8 using sampled
data. Different stream sampling policies, various sampling
rates ∈ [10, 90], and various window sizes were considered.
The results in these figures show that the chain-sample

VOLUME 9, 2021 138917

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 13. Statistical metrics estimation of feature 28 using non-stream sampling policies.

algorithm has the highest OS value, regardless of the sam-
pling rate (∈ [20%, 90%]) and window size, and the perfor-
mance of this algorithm in terms of the OS value decreases
when the sampling rate increases and/or when the window is
large. This is because of the poor quality of the constructed

sample because the number of collisions increases when the
value of k/n increases. It should be noted that for a sampling
rate equal to 10% and window size equal to 10, the OS
value of the chain-sample algorithm is very close to that of
the SRSSW algorithm since the collision rate, in this case,

138918 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 14. Statistical metrics estimation of feature 30 using non-stream sampling policies.

is equal to 0%. When the sampling rate increases or when
the window size increases, the collision rate will be higher,
thus, leading to a higher OS metric. Figures 22, 23, and 24,
and Tables 5, 6, and 7 show that for all the stream algorithms,
except the DETSW the chain-sample algorithms, the win-
dow size has no considerable impact on the OS value of

features 5, 7, and 8. Changing the window size did not change
the OS value. This can be explained by the fact that the
elements are selected in a deterministic manner. Regarding
the chain-sample algorithm, the OS value increases when
the value of the window increases because of the collision
problem. The results also show that the OS value of the

VOLUME 9, 2021 138919

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 15. Statistical metrics estimation of feature 36 using non-stream sampling policies.

priority sampling algorithm is almost zero when the sampling
rate is ∈ [60, 90]. The results also show that the OS value
of the DETSW algorithm is stable and very close to 0 when
the sampling ratio is ∈ [60%, 90%]. The results in Figure 22
show that while for all the stream algorithms the OS value
reaches almost its minimum when the sampling rate is equal

90%, the OS value’s variation according to the sampling
ratio is dependent on the sampling policy. For instance, for
the SRSSW, Chain+, reservoir, and RP sampling algorithms,
the minimum OS value is achieved when the sampling rate is
equal to 80%. For the backing algorithms, it was achieved for
a sampling rate equal to 60%. For the StreamSamp algorithm,

138920 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 16. Statistical metrics estimation of feature 6 using non-stream sampling policies.

it was achieved for a sampling rate equal to 70%. The results
in Figure 23 show that while for all the stream algorithms the
OS value reaches almost its minimumwhen the sampling rate
is equal to 90%, and the variation in the OS value according
to the sampling ratio is dependent on the sampling policy.
For instance, for the SRSSW, Chain+, and RP sampling

algorithms, the minimum OS value was achieved when the
sampling rate is equal to 80%. For the reservoir algorithm,
it was achieved for a sampling rate equal to 60%. For the
backing algorithm, it was achieved for a sampling rate equal
to 20%. For the StreamSamp algorithm, it was achieved for
a sampling rate equal to 30%. The results in Figure 24 show

VOLUME 9, 2021 138921

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 17. Statistical metrics estimation of feature 11 using non-stream sampling policies.

that, for all stream algorithms, the OS value reaches almost
its minimum when the sampling rate is equal to 90%, and the
variation in the OS value according to the sampling ratio is
dependent on the sampling policy. For instance, for SRSSW
and Chain+ sampling algorithms, the minimum OS value

was achieved when the sampling rate was equal to 70%. For
the reservoir and StreamSamp algorithms, it was achieved
for a sampling rate equal to 80%. For the backing algorithm,
it was achieved for a sampling rate equal to 30%. For the RP
algorithm, it was achieved for a sampling rate equal to 60%.

138922 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 18. Statistical metrics estimation of feature 23 using non-stream sampling policies.

In conclusion, Table 8 shows the stream sampling policies and
the corresponding sampling rates (∈ [10%, 80%]) that can be
used to achieve low OS values for features 5, 7, and 8.

2) PROBE ATTACK
Figures 22, 25, 26, 27, and Tables 5, 9, 10, and 11 show
that for all the stream algorithms, except the DETSW the

chain-sample algorithms, the window size has no consid-
erable impact on the OS value for features 5, 28, 30, and
36. Regarding the DETSW, the OS value remains the same
when the window size changes. This can be explained by
the fact that the elements are selected in a deterministic
manner. Regarding the chain-sample algorithm, the OS value
increases when the value of the window increases. The results

VOLUME 9, 2021 138923

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 19. Statistical metrics estimation of feature 39 using non-stream sampling policies.

TABLE 5. Variation of the OS value of feature 5 for stream algorithms for different window sizes.

138924 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 20. Statistical metrics estimation of feature 14 using non-stream sampling policies.

TABLE 6. Variation of the OS value of feature 7 for stream algorithms for different window sizes.

VOLUME 9, 2021 138925

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 21. Statistical metrics estimation of feature 24 using non-stream sampling policies.

TABLE 7. Variation of the OS value of feature 8 for stream algorithms for different window sizes.

138926 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 22. Statistical metrics estimation of feature 5 using stream sampling policies.

TABLE 8. Lowest achieved OS values according to the stream policies and sampling rates, for DoS attack features.

also show that the OS value of the priority sampling algorithm
is almost zero when the sampling rate is ∈ [60, 90]. The
results in Figures 22, 25, 26, and 27 show that the OS value
of the priority sampling algorithm is almost zero when the
sampling rate is ∈ [60, 90]. The results also show that the OS
value of the DETSW and priority algorithms is stable when
the sampling ratio is ∈ [60%, 90%]. The results in Figure 25
show that while for all the algorithms the OS value reaches
almost its minimum when the sampling rate is equal 90%,
the variation in the OS value according to the sampling ratio
is dependent on the sampling policy. For instance, for the
SRSSW and Chain+ sampling algorithms, the minimum OS
value was achieved when the sampling rate is equal to 70%.
For the reservoir and RP algorithms, it was achieved for a
sampling rate equal to 80%. For the backing and StreamSamp
algorithms, it was achieved for a sampling rate equal to 40%.
The results in Figure 26 show that while for all the algorithms

the OS value reaches almost its minimum when the sampling
rate was equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW,Chain+, and StreamSamp sampling
algorithms, the minimum OS value was achieved when the
sampling rate is of 80%. For the reservoir algorithm, it was
achieved for a sampling rate of 40%. For the backing algo-
rithm, it was achieved for a sampling rate of 60%. For the
RP it was achieved for a sampling rate equal to 70%. The
results in Figure 27 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW and Chain+ sampling algorithms,
the minimum OS value is achieved when the sampling rate
is equal to 70%. For the reservoir algorithm, it was achieved
for a sampling rate of 80%. For the backing and StreamSamp

VOLUME 9, 2021 138927

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 23. Statistical metrics estimation of feature 7 using stream sampling policies.

algorithm, it was achieved for a sampling rate of 50%. For
the RP it was achieved for a sampling rate equal to 40%.
In conclusion, Table 12 shows the stream sampling policies
and the corresponding sampling rates (∈ [10%, 80%]) that
can be used to achieve low OS values for features 5, 28, 30,
and 36.

3) R2L ATTACK
Figures 28, 29, 30, and 31, and Tables 13, 14, 15, and 16
show that for all the stream algorithms, except the DETSW
the chain-sample algorithms, the window size has no con-
siderable impact on the OS value for features 6, 11, 12,
and 39. Regarding the DETSW, the OS value remains the
same when the window size changes. This can be explained
by the fact that the elements are selected in a deterministic
manner. Regarding the chain-sample algorithm, the OS value
increases when the value of the window increases. The results
also show that the OS value of the priority sampling algo-
rithm is almost zero when the sampling rate is ∈ [60, 90].
The results also show that the backing sampling algorithm
presents the highest OS value regardless of the sampling
ratio. The results in Figures 28, 29, 30, and 31 show that the
OS value of the priority sampling algorithm is almost zero
when the sampling rate is ∈ [60, 90]. The results also show
that the OS value of the DETSW and priority algorithms is
stable when the sampling ratio is ∈ [60%, 90%]. The results

in Figure 28 show that while for all the algorithms the OS
value reaches almost its minimum when the sampling rate is
equal 90%, theOS value’s variation according to the sampling
ratio is dependent on the sampling policy. For instance, for the
SRSSW and Chain+ sampling algorithms, the minimum OS
value is achieved when the sampling rate was equal to 70%.
For the reservoir and backing algorithms, it was achieved for
a sampling rate equal to 60%. For the RP and StreamSamp
algorithms, it was achieved for a sampling rate equal to 80%.
The results in Figure 29 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW, Chain+, and backing sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 60%. For the reservoir sampling,
it was achieved for a sampling rate equal to 80%. For the RP
and StreamSamp sampling algorithms, it was achieved for a
sampling rate equal to 70%. The results in Figure 30 show
that while for all the algorithms the OS value reaches almost
its minimum when the sampling rate is equal 90%, the OS
value’s variation according to the sampling ratio is dependent
on the sampling policy. For instance, for the SRSSW,Chain+,
and reservoir sampling algorithms, the minimum OS value
is achieved when the sampling rate is equal to 80%. For
the backing sampling, it was achieved for a sampling rate

138928 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 24. Statistical metrics estimation of feature 8 using stream sampling policies.

TABLE 9. Variation of the OS value of feature 28 for stream algorithms for different window sizes.

TABLE 10. Variation of the OS value of feature 30 for stream algorithms for different window sizes.

TABLE 11. Variation of the OS value of feature 36 for stream algorithms for different window sizes.

equal to 50%, for the RP sampling, it was achieved for a
sampling rate equal to 60%, for the StreamSamp sampling,
it was achieved for a sampling rate equal to 70%. The results
in Figure 31 show that while for all the algorithms the OS
value reaches almost its minimum when the sampling rate is
equal 90%, theOS value’s variation according to the sampling

ratio is dependent on the sampling policy. For instance, for
the SRSSW, Chain+, and StreamSamp sampling algorithms,
the minimum OS value is achieved when the sampling rate is
equal to 70%. For the reservoir and RP sampling algorithms,
it was achieved for a sampling rate equal to 80%. For the
backing sampling, it was achieved for a sampling rate equal to

VOLUME 9, 2021 138929

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 25. Statistical metrics estimation of feature 28 using stream sampling policies.

TABLE 12. Lowest achieved OS values according to the stream policies and sampling rates, for Probe attack features.

30%. In conclusion, Table 17 shows the stream sampling poli-
cies and the corresponding sampling rates (∈ [10%, 80%])
that can be used to achieve low OS values for features 6, 11,
23, and 39.

4) U2R ATTACK
Figures 32, 33, 27, and Tables 18, 19, and 11 show that for all
the stream algorithms, except the DETSW the chain-sample
algorithms, the window size has no considerable impact on
the OS value for features 14, 24, and 36. Regarding the
DETSW, the OS value remains the same when the window
size changes. This can be explained by the fact that the
elements are selected in a deterministic manner. Regarding
the chain-sample algorithm, the OS value increases when the
value of the window increases. The results also show that the
OS value of the priority sampling algorithm is almost zero

when the sampling rate is ∈ [60, 90]. The results also show
that the backing sampling algorithm presents the highest
OS value regardless of the sampling ratio. The results in
Figures 32, 33, and 27 show that the OS value of the priority
sampling algorithm is almost zero when the sampling rate is
∈ [60, 90]. The results also show that the OS value of the
DETSW and priority algorithms is stable when the sampling
ratio is ∈ [60%, 90%]. The results in Figure 32 show that
while for all the algorithms the OS value reaches almost its
minimum when the sampling rate is equal 90%, the OS value
variation according to the sampling ratio is dependent on the
sampling policy. For instance, for the SRSSW, Chain+, and
RP sampling algorithms, the minimum OS value is achieved
when the sampling rate is equal to 80%. For the StreamSamp
algorithm, it was achieved for a sampling rate equal to 50%.
For the reservoir and backing sampling, it was achieved for a

138930 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 26. Statistical metrics estimation of feature 30 using stream sampling policies.

FIGURE 27. Statistical metrics estimation of feature 36 using stream sampling policies.

VOLUME 9, 2021 138931

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 28. Statistical metrics estimation of feature 6 using stream sampling policies.

TABLE 13. Variation of the OS value of feature 6 for stream algorithms for different window sizes.

TABLE 14. Variation of the OS value of feature 11 for stream algorithms for different window sizes.

TABLE 15. Variation of the OS value of feature 23 for stream algorithms for different window sizes.

TABLE 16. Variation of the OS value of feature 39 for stream algorithms for different window sizes.

138932 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 29. Statistical metrics estimation of feature 11 using stream sampling policies.

FIGURE 30. Statistical metrics estimation of feature 23 using stream sampling policies.

VOLUME 9, 2021 138933

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 31. Statistical metrics estimation of feature 39 using stream sampling policies.

FIGURE 32. Statistical metrics estimation of feature 14 using stream sampling policies.

138934 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

FIGURE 33. Statistical metrics estimation of feature 24 using stream sampling policies.

TABLE 17. Lowest achieved OS values according to the stream policies and sampling rates, for R2L attack features.

TABLE 18. Variation of the OS value of feature 14 for stream algorithms for different window sizes.

TABLE 19. Variation of the OS value of feature 24 for stream algorithms for different window sizes.

sampling rate equal to 70%. The results in Figure 33 show that
while for all the algorithms the OS value reaches almost its
minimum when the sampling rate is equal 90%, the OS value

variation according to the sampling ratio is dependent on the
sampling policy. For instance, for the SRSSW, Chain+, and
RP sampling algorithms, the minimum OS value is achieved

VOLUME 9, 2021 138935

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

TABLE 20. Lowest achieved OS values according to the stream policies and sampling rates, for U2R attack features.

when the sampling rate is equal to 70%. For the reservoir
and StreamSamp algorithm, it was achieved for a sampling
rate equal to 80%. For the backing, it was achieved for a
sampling rate equal to 50%. In conclusion, Table 20 shows
the stream sampling policies and the corresponding sampling
rates (∈ [10%, 80%]) that can be used to achieve low OS
values for features 14, 24, and 36.

V. CONCLUSION AND OPEN RESEARCH CHALLENGES
In this paper, we investigated the statistical impact of network
traffic sampling to quantify the amount of deterioration that
the sampling process introduces with respect to non-sampled
traffic. By performing an offline analysis of the NSL-KDD
dataset, we carried out an experimental comparison of exist-
ing sampling techniques and studied their impact on several
well-known statistical measures to assess the level of degra-
dation introduced by sampling. Different sampling poli-
cies were evaluated, and different features and attacks were
considered.

Our study suffers from the following limitations:

• Without loss of generality, in our work, we evaluated
the performance of sampling algorithms for intrusion
detection using the NSl-KDD database. However, there
are other datasets, such as CAIDA [41], CIDDS [42],
etc. In our future work, we aim to consider data from
other modern networks or even real networks.

• Feature preprocessing and feature selection processes
should be conducted prior to intrusion detection.
Because the network traffic is enormous, analysis and
intrusion detection are difficult. On the other hand, there
could be a relationship between the network character-
istics. Some of these features may even be redundant or
irrelevant. Thus, it is necessary to reduce the volume of
traffic data to be processed and analyzed using a feature
selection process. This process identifies the relevant
characteristics of the traffic and will lead to improved
performance of the IDS. In this work, we referred to
many recent studies to determine the appropriate fea-
tures of each form of attack. In our future work, we plan
to study different feature selection algorithms to deter-
mine the most precise features, and therefore, to select
the most relevant features for each attack.

• The NSL-KDD database contains approximately 150K
records divided into training and testing subsets. It con-
sists of 41 attributes and includes 22 attack types. These
attacks are of four categories: DoS, probe, R2L, and

U2R. In our future work, we aim to test the impact
of sampling on the detection of many other types of
network attacks.

Knowing the traffic parameters, a convenient sampling
algorithm with a calculated compromise (accuracy vs. com-
putational cost) can be configured and fine-tuned accord-
ingly. Several open issues that could benefit from further
studies can be identified.

• Static vs. dynamic packet sampling. The sampling ratio
directly affects the accuracy of the built sample [43],
[44]. Static packet sampling algorithms have been used
for many years. With these algorithms, all items are
selected randomly, except for deterministic sampling,
with a predefined sampling ratio. Nevertheless, given
the dynamic nature of network traffic, static sampling
cannot guarantee the estimation accuracy and is, thus,
poorly suited for network monitoring. During periods
of idle activity or low network loads, a long sampling
interval provides sufficient accuracy at minimal over-
head. However, bursts of high activity require shorter
sampling intervals to accurately measure the network
status at the expense of increased sampling overhead.
To preserve the accuracy and provide accurate estima-
tions, the sampling policy should adapt to the network
state. It is worth noting that network devices have cer-
tain limits in terms of resources available for sampling.
Some network devices may even stop sampling during
traffic bursts. To address these issues, adaptive sampling
algorithms can be designed and applied to dynamically
adjust the sampling interval and optimize the sampling
and traffic classification accuracy. Dynamic sampling
algorithms have dynamic sampling rates, which allow
them to control the accuracy of the sample by controlling
the number of measurements to be sampled. A decision
should be made in advance to adjust the sampling ratio
before network traffic change.

• On-the-fly learning. High-speed network traffic is
dynamic and volatile; thus, a responsive packet sam-
pling algorithm is vital for robust and timely anomaly
detection. For a sampling algorithm to be responsive,
fast traffic feature learning is a prerequisite. Fast and
accurate on-the-fly feature learning is an open challenge
to be studied, especially with the adequacy of data
mining (such as time series) and artificial intelligence
algorithms for this task. In this context, various pre-
diction and forecasting techniques can be used to

138936 VOLUME 9, 2021

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

predict network traffic and any potential changes in its
characteristics.

• Weighted sampling algorithm. As the benchmarking
results showed, not all features were equal in predicting
anomalies. Some features are more sensitive to change
and thus can be used as an early warning for poten-
tial anomalies. In addition, not all packets were equal.
Designing a multi-feature weighted sampling algorithm
can benefit from sensitivity and accuracy if successfully
configured.

• Data Quality. The arriving packets can be contaminated
(i.e. delayed or distorted) or even lost before reaching
the IDS. This is very frequent in the case of network
congestion, noisy channels, and unstable changes to the
network topology. The missing data can be very random
and sporadic, resulting in very distorted measurements
by the IDS, following survivor bias. Studying the impact
of missing data or, more generally, data quality is also an
open issue.

REFERENCES
[1] M. F. Elrawy, A. I. Awad, andH. F. A.Hamed, ‘‘Intrusion detection systems

for IoT-based smart environments: A survey,’’ J. Cloud Comput., vol. 7,
no. 1, pp. 1–20, Dec. 2018.

[2] M. Masdari and M. Jalali, ‘‘A survey and taxonomy of DoS attacks in
cloud computing,’’ Secur. Commun. Netw., vol. 9, no. 16, pp. 3724–3751,
Nov. 2016.

[3] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, ‘‘Deterministic
memory-efficient string matching algorithms for intrusion detection,’’ in
Proc. Int. Conf. Comput. Commun., vol. 4, Mar. 2004, pp. 2628–2639.

[4] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape, ‘‘A hier-
archical hybrid intrusion detection approach in IoT scenarios,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2020, pp. 1–7.

[5] A. Thakkar and R. Lohiya, ‘‘A survey on intrusion detection system:
Feature selection, model, performance measures, application perspective,
challenges, and future research directions,’’ Artif. Intell. Rev., pp. 1–111,
Jul. 2021.

[6] S. Chen and K. Nahrstedt, ‘‘An overview of quality of service routing
for next-generation high-speed networks: Problems and solutions,’’ IEEE
Netw., vol. 12, no. 6, pp. 64–79, Nov./Dec. 1998.

[7] M. Colajanni and M. Marchetti, ‘‘A parallel architecture for stateful intru-
sion detection in high traffic networks,’’ in Proc. IEEE/IST Workshop
Monitor., Attack Detection Mitigation (MonAM), Tuebingen, Germany,
Sep. 2006, pp. 1–7.

[8] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney, ‘‘The
NIDS cluster: Scalable, stateful network intrusion detection on commodity
hardware,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection. USA:
Springer, 2007, pp. 107–126.

[9] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,’’ IEEE Trans. Netw. ServiceManag., vol. 16, no. 2,
pp. 445–458, Feb. 2019.

[10] P. D. Amer and L. N. Cassel, ‘‘Management of sampled real-time network
measurements,’’ in Proc. 14th Conf. Local Comput. Netw., Jan. 1989,
pp. 62–63.

[11] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
‘‘Impact of packet sampling on anomaly detection metrics,’’ in Proc. 6th
ACM SIGCOMM Internet Meas. (IMC), 2006, pp. 159–164.

[12] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye, ‘‘Impact of packet
sampling on portscan detection,’’ IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2285–2298, Dec. 2006.

[13] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, ‘‘Is sampled data
sufficient for anomaly detection?’’ in Proc. 6th ACM SIGCOMM Internet
Meas. (IMC), 2006, pp. 165–176.

[14] A. Pescape, D. Rossi, D. Tammaro, and S. Valenti, ‘‘On the impact of
sampling on traffic monitoring and analysis,’’ in Proc. 22nd Int. Teletraffic
Congr. (lTC 22), Sep. 2010, pp. 1–8.

[15] H. Zhang, J. Liu, W. Zhou, and S. Zhang, ‘‘Sampling method in traffic
logs analyzing,’’ in Proc. 8th Int. Conf. Intell. Hum.-Mach. Syst. Cybern.
(IHMSC), Aug. 2016, pp. 554–558.

[16] G. Roudière and P. Owezarski, ‘‘Evaluating the impact of traffic sampling
on AATAC’s DDoS detection,’’ in Proc. Workshop Traffic Meas. Cyberse-
cur., Aug. 2018, pp. 27–32.

[17] K. Bartos, M. Rehak, and V. Krmicek, ‘‘Optimizing flow sampling for
network anomaly detection,’’ in Proc. 7th Int. Wireless Commun. Mobile
Comput. Conf., Jul. 2011, pp. 1304–1309.

[18] J. M. C. Silva, P. Carvalho, and S. R. Lima, ‘‘A modular sampling
framework for flexible traffic analysis,’’ in Proc. 23rd Int. Conf. Softw.,
Telecommun. Comput. Netw. (SoftCOM), Sep. 2015, pp. 200–204.

[19] R. E. Sibai, ‘‘Sampling, qualification and analysis of data streams,’’ Ph.D.
dissertation, Dept. LISITE, Sorbonne Université, Université Libanaise,
Paris, France, 2018.

[20] R. E. Sibai, Y. Chabchoub, J. Demerjian, R. Chiky, and K. Barbar,
‘‘A performance evaluation of data streams sampling algorithms over a
sliding window,’’ in Proc. IEEE Middle East North Afr. Commun. Conf.
(MENACOMM), Apr. 2018, pp. 1–6.

[21] Q. Pan, H. Yong-Feng, and Z. Pei-Feng, ‘‘Reduction of traffic sampling
impact on anomaly detection,’’ in Proc. 7th Int. Conf. Comput. Sci. Educ.
(ICCSE), Jul. 2012, pp. 438–443.

[22] R. Singh, H. Kumar, and R. Singla, ‘‘Analyzing statistical effect of sam-
pling on network traffic dataset,’’ in Proc. ICT Crit. Infrastruct. 48th Annu.
Conv. Comput. Soc. India, vol. 1. USA: Springer, 2014, pp. 401–408.

[23] R. E. Sibai, Y. Chabchoub, J. Demerjian, Z. Kazi-Aoul, and K. Barbar,
‘‘Sampling algorithms in data stream environments,’’ in Proc. Int. Conf.
Digit. Economy (ICDEc), Apr. 2016, pp. 29–36.

[24] W. Cochran, Sampling Techniques. Hoboken, NJ, USA: Wiley, 1977.
[25] P. S. Efraimidis and P. G. Spirakis, ‘‘Weighted random sampling with a

reservoir,’’ Inf. Process. Lett., vol. 97, no. 5, pp. 181–185, Mar. 2006.
[26] P. S. Efraimidis, ‘‘Weighted random sampling over data streams,’’ in

Algorithms, Probability, Networks, and Games. USA: Springer, 2015,
pp. 183–195.

[27] A. I. McLeod and D. R. Bellhouse, ‘‘A convenient algorithm for drawing
a simple random sample,’’ J. Roy. Stat. Soc., Ser. C Appl. Statist., vol. 32,
no. 2, pp. 182–184, 1983.

[28] J. S. Vitter, ‘‘Random sampling with a reservoir,’’ ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985.

[29] P. B. Gibbons, Y. Matias, and V. Poosala, ‘‘Fast incremental maintenance
of approximate histograms,’’ in Proc. VLDB, vol. 97, 1997, pp. 466–475.

[30] P. B. Gibbons, Y. Matias, and V. Poosala, ‘‘Fast incremental maintenance
of approximate histograms,’’ ACM Trans. Database Syst., vol. 27, no. 3,
pp. 261–298, Sep. 2002.

[31] B. Babcock,M. Datar, and R.Motwani, ‘‘Sampling from amoving window
over streaming data,’’ in Proc. 13th Annu. ACM-SIAM Symp. Discrete
Algorithms, 2002, pp. 633–634.

[32] R. El Sibai, Y. Chabchoub, J. Demerjian, Z. Kazi-Aoul, and K. Barbar,
‘‘A performance study of the chain sampling algorithm,’’ in Proc. IEEE
7th Int. Conf. Intell. Comput. Inf. Syst. (ICICIS), Dec. 2015, pp. 487–494.

[33] R. E. Sibai, J. B. Abdo, and J. Demerjian, ‘‘A new priority sampling
algorithm for the Internet of Things,’’ Tech. Rep., 2021.

[34] R. Gemulla, W. Lehner, and P. J. Haas, ‘‘A dip in the reservoir: Maintaining
sample synopses of evolving datasets,’’ in Proc. 32nd Int. Conf. Very Large
Data Bases, 2006, pp. 595–606.

[35] R. Gemulla, ‘‘Sampling algorithms for evolving datasets,’’ Ph.D. dis-
sertation, Dept. Informatique, Technischen Universitat Dresden Fakultat
Informatik, Dresden, Germany, 2008.

[36] B. Csernel, F. Clerot, and G. Hébrail, ‘‘Datastream clustering over tilted
windows through sampling,’’ in Proc. Workshop Knowl. Discovery Data
Streams (ECML PKDD), to be published.

[37] A. Dogman, R. Saatchi, and S. Al-Khayatt, ‘‘An adaptive statistical
sampling technique for computer network traffic,’’ in Proc. 7th Int.
Symp. Commun. Syst., Netw. Digit. Signal Process. (CSNDSP), Jul. 2010,
pp. 479–483.

[38] A. Dogman and R. Saatchi, ‘‘Multimedia traffic quality of service manage-
ment using statistical and artificial intelligence techniques,’’ IET Circuits,
Devices Syst., vol. 8, no. 5, pp. 367–377, 2014.

[39] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Jul. 2009, pp. 1–6.

[40] S.-I. Ao, M. Amouzegar, and B. B. Rieger, Intelligent Automation and
Systems Engineering, vol. 103. USA: Springer, 2011.

VOLUME 9, 2021 138937

S. Hajj et al.: Critical Review on Implementation of Static Data Sampling Techniques

[41] P. Hick, E. Aben, K. Claffy, and J. Polterock, ‘‘The caida ddos attack 2007
dataset,’’ UCSD-Center Appl. Internet Data Anal., USA, Tech. Rep., 2007.

[42] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, ‘‘Flow-based
benchmark data sets for intrusion detection,’’ in Proc. 16th Eur. Conf.
Cyber Warfare Secur. (ACPI), 2017, pp. 361–369.

[43] J. Jedwab, P. Phaal, and B. Pinna, Traffic Estimation for the Largest Sources
on a Network, Using Packet SamplingWith Limited Storage. Palo Alto, CA,
USA: Hewlett-Packard Laboratories, Technical Publications Department,
1992.

[44] B.-Y. Choi and Z.-L. Zhang, ‘‘Adaptive random sampling for traffic volume
measurement,’’ Telecommun. Syst., vol. 34, nos. 1–2, pp. 71–80, 2007.

SUZAN HAJJ received the master’s degree in
engineering from Lebanese University, in 2000.
She is currently pursuing the Ph.D. degree with the
Université de Bourgogne Franche-Comté (UBFC),
France. Her research interests include intrusion
detection systems, data streams pre-processing,
and deep learning.

RAYANE EL SIBAI received the master’s
degree in software engineering from Antonine
University, Beirut, Lebanon, in 2014, and the
Ph.D. degree in computer sciences from Pierre and
Marie Curie–Sorbonne University, Paris, France,
in 2018. She is currently an Instructor at Al
Maaref University, Beirut. Her research interests
include data streams processing, data summariza-
tion, anomaly detection, and data quality.

JACQUES BOU ABDO received the Ph.D. degree
(Hons.) in communication engineering and com-
puter science with emphasis on cybersecurity from
Sorbonne University, and the Ph.D. degree in
management sciences from Paris-Saclay Univer-
sity. He is an Interdisciplinary Researcher with
expertise in cybersecurity, blockchain, recom-
mender systems, machine learning and network
economics. Previously, he worked as an Assistant
Professor in computer science at Notre Dame Uni-

versity. He also worked as a Fulbright visiting Scholar with the University of
Kentucky. He is currently working as an Assistant Professor in cyber systems
with the University of Nebraska at Kearney. He is also the Founder of two
technology startups specialized in cybersecurity and rural entrepreneurship.

JACQUES DEMERJIAN (Senior Member, IEEE)
received the Ph.D. degree in network and computer
science from Telecom ParisTech-France, in 2004.
He is currently a Full Professor in computer
science and the Director of the Laboratoire de
Recherche en Réseaux, Informatique et Sécurité
(LaRRIS) Research Laboratory, Faculty of Sci-
ences, Lebanese University (LU), Lebanon. He has
published more than 70 scientific articles in inter-
national journals/conferences/books chapters. His

research interests include body sensor networks, intrusion detection system,
and mobile cloud computing.

CHRISTOPHE GUYEUX received the Agrégation
degree in mathematics, in 2001, and he defended
his thesis in computer science with the University
of Franche-Comté, in 2010. He was recruited as an
Assistant Professor, in 2011, then as a Full Profes-
sor with the University of Franche-Comté, in 2014.
His work initially was about computer security and
wireless sensor networks and is currently focus-
ing on artificial intelligence and bioinformatics.
He has authored 90 international peer-reviewed
journals and as many conference proceedings.

ABDALLAH MAKHOUL received the Ph.D.
degree in computer science from the University
of Franche-Comté (UFC), France, in 2008. He is
currently a Full Professor in computer science
with the University of Bourgogne–Franche-Comté
(UBFC), France. From 2009 to 2019, he was
an Associate Professor with the University of
Franche-Comté. He is also a member of the
Department of Computer Science and Complex
Systems (DISC Department), Femto-St Institute,

France. He is also the Head of the Research Team Optimization, Mobility
and Networking (OMNI). His research focuses upon the following areas,
such as distributed algorithms, the Internet of Things, programmable matter,
e-Healthmonitoring, and real-time issues inwireless sensor networks. He has
been a TPC chair and amember of several networking conferences andwork-
shops and a guest editor and a reviewer for several international journals.
He participated in several national and international research projects.

DOMINIQUE GINHAC received the master’s
degree in engineering and the Ph.D. degree in
computer vision from the University of Clermont
Auvergne, France, in 1995 and 1999, respectively.
Then, he joined Université Bourgogne as an Assis-
tant Professor, in 2000, and he was promoted to a
Full Professor in computer vision, in 2009. He was
the Head of the Le2i Laboratory, from 2016 to
2019. He has recognized expertise in embed-
ded computer vision, computational imaging, and

real-time image processing. He has authored 40 international peer-reviewed
journals and over 100 conference proceedings. Recently, he has become
interested in deep learning on the edge applied to the analysis of human
activities.

138938 VOLUME 9, 2021

