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ABSTRACT This paper investigates the problem of a scalable distributed state estimation for a class of
discrete time-variant systems with state-saturation, quantization effects, and two redundant channels over a
sensor network. In transmission data from a sensor to its estimator, two phenomena are considered together.
First, the data of each sensor is transmitted to its estimator through two redundant communication channels.
Second, innovation data is quantized before being used by the estimator. These phenomena are beneficial
in alleviating the negative effects on measurements and reducing the energy consumption and bandwidth.
In the structure of proposed filter consensus is used on estimations in which consensus is first achieved on the
prediction estimation, then the accuracy of computed estimation is improved by two recursive equations. The
parameters of the proposed filter are obtained for each sensor node by employing an upper bound for common
error covariance, therefore less computational burden is required. Eventually, the comparative simulation
results are presented to show that our method has better performance compared with a rival one recently
published.

INDEX TERMS Sensor networks, distributed filtering, state-saturated systems, quantization effects.

I. INTRODUCTION
Distributed state estimation problem is a fundamental issue
over wireless sensor networks in control engineering and
signal processing. There is extensive research related to the
study of distributed state estimation because of its extensive
engineering applications in many fields, such as environ-
ment monitoring, target tracking, intelligent robotics, and
battlefield surveillance [1]–[3]. One of the major challenges
in distributed filtering is how to incorporate the informa-
tion obtained from each sensor and its neighbours based
on the given communication topology. Accordingly, several
approaches have been presented for this challenge consid-
ering how to exchange data between sensors or estimators.
The most popular method in the distributed state estimation
is called consensus which can be classified into three main
types: (1) consensus on estimation [4]–[7], in which the sum
of weighted differences between the local and neighbouring
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estimations is added to the estimator of each node. (2) con-
sensus on measurement [8], wherein consensus is obtained
on local measurements and innovation covariance. However,
it requires high communication costs and does not assure con-
vergence. Recently, a scalable distributed extended Kalman
filter with consensus on measurements is proposed in [9]. (3)
consensus on information [10], in which uniform local aver-
age of information is used such that the stability of algorithm
is provided.

On the other hand, state saturation as a common nonlinear
phenomenon appears in many practical systems because of
the inherent physical restrictions of components or techno-
logical limitations; for instance, a moving vehicle with the
state variables (i.e., speed and position) restrictions [11], [12].
The state saturation has a direct effect on the stability and per-
formance of the systems. Consequently, it is essential to take
the filtering process into account. So far, the problem of state
estimation for state-saturated systems is investigated by a
few researchers (see [13]–[19]). A time-varying filter related
to the problem of estimation for a class of state-saturated

138724 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4833-8783
https://orcid.org/0000-0002-9139-234X
https://orcid.org/0000-0003-0484-6444
https://orcid.org/0000-0001-7630-8579
https://orcid.org/0000-0003-1770-471X


H. Rezaei et al.: Scalable Distributed State Estimation for Class of State-Saturated Systems Subject

systems is considered in [13] by presenting a free matrix and
via a certain set of recursive nonlinear matrix inequalities.
In [14], an event-based distributed state estimation problem
is studied for the state-saturated systems with incomplete
measurements and redundant channels. A recursive filter for
discrete-time state-saturated systems with both missing mea-
surements and randomly occurring nonlinearities is studied
in [16]. In [17], the problem of an event-triggered distributed
state estimation over sensor networks is derived for a class
of discrete time-varying nonlinear systems, where noises and
sensor saturations are supposed to be unknown and bounded.
Also, a distributed recursive filtering is derived for the time-
varying state-saturated systems under round-robin communi-
cation protocol over sensor networks in [19].

Another phenomenon that inevitably occurs in networked
systems due to limited bandwidth is quantization. Some
approaches are proposed to model this kind of error. For
instance in [20], the quantization errors aremodelled as sector
bound uncertainties without any conservatism. Subsequently,
the idea of the proposed approach in [20] is extensively
employed in the estimation problems where communication
is modelled with quantized transmissions [21]–[24]. A robust
extended Kalman filter for a class of discrete time-varying
nonlinear complex networks with event-triggered commu-
nication and quantization effects is investigated in [24].
In [25], a distributed Kalman filter is proposed for a class
of state-saturated systems with fading measurements and
quantization effects, and an augmented vector is used to
compute the parameters of filter. Therefore, in the mentioned
reference the cross-covariance matrices between coupling
nodes are obtained recursively and used to obtain the gain
matrices of the nodes simultaneously. Hence, a significant
amount of communication and a high calculation burden is
required. The design of distributed estimator with low com-
putation cost for multi-sensor networks with a large number
of nodes is one of the most important challenges in practical
applications.

Motivated by the aforementioned discussions, this paper is
purposed to derive a novel distributed state estimation for a
class of state-saturated systems subject to both quantization
effects and two redundant channels over a sensor network.
By implementing state-saturation phenomena, two redundant
channels and quantization effects in the design of filter bring
substantial difficulties to performance analysis, but the prob-
lem would be more applicable. The main contributions of
proposed approach can be stated as follows:

(1) A novel approach is proposed in which a two-layer
structure is employed for the distributed filter such that the
consensus is first achieved on the prediction estimation, then
this value is refined by using the recursive equations to obtain
a more accurate estimation.

(2) In order to transmit data from a sensor to its estimator,
two phenomena are tackled simultaneously. First, each sen-
sor sends local information to its estimator over two redun-
dant communication channels. Second, the innovation data is
quantized before being used by the estimator.

(3) The parameters of proposed estimator are obtained at
each sensor by solving three Riccati-like difference equations
using an upper bound for the cross-covariance.

It is worth mentioning that the proposed method is scalable
for multi-sensor networked systems with large nodes because
of using an upper bound for the cross-covariance.

The remaining sections of this paper are structured as
follows: The necessary background materials are recalled
and the problem of a class of discrete systems with
state-saturation is formulated in section 2. The structure of
proposed distributed state estimation is presented in section 3.
In section 4, simulation results are provided to illustrate the
applicability of the suggested approach. Ultimately, the con-
clusion is given in section 5.
Notations: The notations employed in this paper are quite

standard. For a matrix B, ‖B‖ and tr(B) show the spectral
norm and the trace, respectively. E{ξ} symbolizes the expec-
tation of the random variable ξ . I indicates the identity matrix
with appropriate dimension.

II. PROBLEM SETUP
In this paper, the sensor network is modelled as an undirected
graph � = (ν, ϑ) where ν = {1, . . . ,m} and ϑ ⊂ ν × ν

are the nodes and the edges, respectively. Two nodes are
connected if and only if they can exchange data between
each other. The set of nodes linked to the node i is called the
neighborhood of node i and is represented by 3i. Ni shows
the number of neighbors of node i. It is emphasized that we
consider an undirected graph in this study.

Consider the following discrete time-variant system with
state-saturation:

xs+1 = σ (Asxs + Bsws) (1)

where xs ∈ Rn is the state vector of system that should
be estimated, As and Bs are known time-variant matrices
with appropriate dimensions and ws is the process noise. The
saturation function σ (.) : Rn→ Rn is denoted as follows:

σ (τ ) , [σ1(τ1) σ2(τ2) . . . σn(τn)] (2)

in which

σi(τi) = sign(τi) min
{
ςi,max , |τi|

}
(3)

where sign denotes the signum function, ςi,max is the i-th
element of vector τmax and it shows the saturation level.
The measurement of the i-th sensor can be depicted as

follows:

zi,s = ξ1i,s(Ci,sxs + D
1
i,svs)+ (1− ξ1i,s)ξ

2
i,s(Ci,sxs

+D2
i,svs), i = 1, . . . ,m (4)

zi,s ∈ Rp is the output of the i-th sensor, Ci,s, D1
i,s and D

2
i,s

are known time-variant matrices with appropriate dimensions
and vs is the measurement noise. We assume that ws and vs
are uncorrelated white noises with zero means and variances
that are equal to Qw and Rv. ξ1i,s and ξ2i,s are uncorrelated
scalar random variables having Bernoulli distribution with

VOLUME 9, 2021 138725



H. Rezaei et al.: Scalable Distributed State Estimation for Class of State-Saturated Systems Subject

mean ξ̄ ji , ξ̄
j
i ∈ [0 1] , j = 1, 2. i.e. prob

{
ξ
j
i,s = 1

}
= ξ̄

j
i and

prob
{
ξ
j
i,s = 0

}
= 1− ξ̄ ji . We assume that ξ ji,s is uncorrelated

with ws and vs.
Remark 1: In Eq. (4), It is assumed that the data of each

sensor can be sent to its estimator through two redundant
communication channels. If the transmitted state informa-
tion is delivered by the first channel, other channel will be
inactive, otherwise the second channel will be automatically
enabled to send the state data. Redundant communication
channels can help to alleviate the negative effects of packet
dropouts and disconnection of partial channels in perfor-
mance of networked systems [26]. It is worth noting, to avoid
text clutter, we only consider two channels and adding more
channels does not make a difference in the structure of the
proposed method.

For the sake of brevity, lets define φi,s = (1 − ξ1i,s)ξ
2
i,s,

therefore the measurement output in Eq. (4) can be rewritten
as follows:

zi,s = ξ1i,s(Ci,sxs + D
1
i,svs)+ φi,s(Ci,sxs + D

2
i,svs). (5)

In the networked systems, when each sensor exchanges
data with its estimators/neighbors, too much energy will
inevitably be consumed. To reduce the consumed energy and
enhance bandwidth efficiently, the data is quantized before
being transmitted. In this paper, we employ a logarithmic
quantizer which is described for the i-th sensor as follows:

qi(ui) =
[
qi,1(u1i ) qi,2(u

2
i ) . . . qi,pi (u

pi
i )
]
,

where uji, (j = 1, . . . , pi) represents the j-th element of ui and
the set of quantization levels for each qi,j(.) are defined as
follows:

9i,j =

{
±µi,jr , µ

i,j
r = σ

r
i,jµ

i,j
0 , r = ±1,±2, . . .

}⋃
{0}

0 < σi,j < 1, µ
i,j
0 > 0, (6)

in which σi,j describes the quantization density. The loga-
rithmic quantizer connected with the quantization level (6)
is defined as the following representation:

qi,j(u
j
i) =


µi,jr ,

1
1+ δi,j

µi,jr < uji <
1

1− δi,j
µi,jr

0 uji = 0

−qi,j(−u
j
i) uji < 0

(7)

where δi,j =
1−σi,j
1+σi,j

.

It is straightforward to derive qi,j(u
j
i,s) = (1 + 2j

i,s)u
j
i,s

with
∣∣∣2j

i,s

∣∣∣ < δi,j, by defining 2i,s = diag
{
21
i,s, . . . ,2

pi
i,s

}
,

δi = diag
{
δi,1, . . . , δi,pi

}
and Fi,s = 2i,sδ

−1
i which satisfy

Fi,sFTi,s ≤ I .
Before ending this section, some necessary lemmas are

recalled from literature.

Lemma 1 [16]: suppose that there exists a real number
εi ∈ [0, 1] for all y, x ∈ R, such that:

σi(x)− σi(y) = εi(x − y), i = 1, 2, . . . ,m

in which the saturation function (σi(.), i = 1, . . . , n) is
described in Eq. (3).
Lemma 2 [27]: For given matrices B,C,D and M satis-

fying M MT
≤ I , X is considered as a symmetric positive

definite matrix, and having a scalar a > 0 such that a−1I −
DXDT > 0, then we can derive an inequality in the following
form:

(B+ CMD)X (B+ CMD)T ≤ B(X−1 − aDTD)
−1
BT

+ a−1CCT .

III. MAIN RESULTS
In this section, first a novel scalable distributed state estima-
tion is presented for a linear system with state-saturated, then
we obtain upper bounds for common, prediction and filter
error covariances and finally the parameters of proposed filter
are calculated such that the upper bounds of the estimation
error covariances are minimized. The proposed distributed
state estimation equations are defined as follows:

x̂−i,s|s = x̂i,s|s−1 + Gi,s
∑
j∈3i

(x̂j,s|s−1 − x̂i,s|s−1) (8a)

x̂i,s+1|s = σ (Asx̂
−

i,s|s )+ Li,sq(z̃i,s) (8b)

x̂i,s|s = x̂−i,s|s + Ki,sq(z̃i,s) (8c)

x̂-i,s|s is the common estimation, x̂i,s|s and x̂i,s+1|s are the cur-
rent estimation of state, and its one-step ahead prediction at
i-th sensor, respectively. z̃i,s = zi,s−(ξ̄1i +φ̄i)Ci,sx̂

−

i,s|s denotes
the innovation sequence before being quantized,Gi,s,Li,s and
Ki,s are the time-varying parameters of proposed filter which
will be determined later by minimizing the error covariance
matrices.
Remark 2: In the proposed method, differently from exist-

ing consensus on estimation algorithms, the consensus is
first done on the prediction estimations based on the given
topology called common estimation in Eq. (8a). Then the
common estimation is used with the prediction estimation in
Eq. (8b) and the current estimation in Eq. (8c) to improve the
accuracy of computed estimation. As can be seen similarly
to [28]–[31], differently from traditional Kalman filter, term
Li,sq(z̃i,s) is added to the prediction estimation equation to
obtain more accurate estimation.
Based on Eqs. (6)-(7) and (8a), the quantized signal q(z̃i,s)

is described as follows:

qi(z̃i,s) = (I +2i,s)(zi,s − (ξ̄1i + φ̄i)Ci,sx̂
−

i,s|s ). (9)

By merging Eqs. (1)-(9), the common error e−i,s|s = xs −
x̂−i,s|s , the prediction error ei,s+1|s = xs− x̂i,s+1|s and the filter
error ei,s|s = xs − x̂i,s|s are defined as follows:

e−i,s|s = (I − NiGi,s)ei,s|s−1 + Gi,s
∑
j∈3i

ej,s|s−1 (10)

138726 VOLUME 9, 2021



H. Rezaei et al.: Scalable Distributed State Estimation for Class of State-Saturated Systems Subject

ei,s+1|s = Eεs(Ase
−

i,s|s + Bsws)+ (As − (ξ̄1i + φ̄i)Li,sCi,s)

× e−i,s|s − Ase
−

i,s|s − Li,s(I +2i,s)((ξ̃1i,s + φ̃i,s)

×Ci,sxs − (ξ1i,sD
1
i,s + φi,sD

2
i,s)vs)

− (ξ̄1i + φ̄i)Li,s2i,sCi,se
−

i,s|s (11)

ei,s|s = (I − (ξ̄1i + φ̄i)Ki,sCi,s)e
−

i,s|s − (ξ̄1i + φ̄i)

×Ki,s2i,sCi,se
−

i,s|s − Ki,s(I +2i,s)((ξ̃1i,s
+ φ̃i,s)(Ci,sxs − (ξ1i,sD

1
i,s + φi,sD

2
i,s)vs), (12)

where ξ̃1i,s = ξ1i,s − ξ̄1i , φ̃i,s = φi,s − φ̄i and Eεs =
diag

{
ε1,s, . . . , εn,s

}
, εi,s ∈ [0, 1], (i = 1, . . . , n). The

covariances of the common, prediction and filtering errors are
defined as follows:

p−i,s|s = E
{
e−i,s|s e

−
T

i,s|s

}
(13)

pi,s+1|s = E
{
ei,s+1|s eTi,s+1|s

}
(14)

pi,s|s = E
{
ei,s|s eTi,s|s

}
(15)

based on Eqs. (10)-(15), the common, prediction and filter
error covariances are obtained as follows:

p−i,s|s = (I − NiGi,s)pi,s|s−1 (I − NiGi,s)T

+

∑
j∈3i

∑
l∈3i

Gi,sE
{
ej,s|s−1eTl,s+1|s

}
GTi,s

+

∑
j∈3i

(
((I − NiGi,s)E

{
ei,s|s−1eTj,s+1|s

}
GTi,s

+Gi,sE
{
ej,s|s−1eTi,s+1|s

}
(I − NiGi,s)T )

)
(16)

pi,s+1|s = (As − (ξ̄1i + φ̄i)Li,sCi,s)p
−

i,s|s (As − (ξ̄1i + φ̄i)

×Li,sCi,s)T + Asp
−

i,s|sA
T
s

+E
{
Eεs(Ase

−

i,s|s + Bsws)(Ase
−

i,s|s + Bsws)
T
EεTs

}
+ℵ1 + ℵ

T
1 − ℵ2 − ℵ

T
2

+E{(ξ̄1i + φ̄i)
2Li,s2i,sCi,se

−

i,s|s e
−
T

i,s|s

× (Li,s2i,sCi,s)T } − ℵ3 − ℵT3 + E{(I +2i,s)

× (ξ1i,sD
1
i,s + φi,sD

2
i,s)vs(Li,s(I +2i,s)

× (ξ1i,sD
1
i,s + φi,sD

2
i,s)vs)

T
} + E{(ξ̃1i,s + φ̃i,s)

2

×Li,s(I +2i,s)Ci,sxs(Li,s(I +2i,s)Ci,sxs)T }

(17)

pi,s|s = (I − (ξ̄1i + φ̄i)Ki,sCi,s)p
−

i,s|s (I − (ξ̄1i + φ̄i)

×Ki,sCi,s)T − ℵ̃1 − ℵ̃T1

+E{(ξ̃1i,s + φ̃i,s)
2
Ki,s(I +2i,s)Ci,sxs(Ki,s

× (I +2i,s)Ci,sxs)T } + E{Ki,s(I +2i,s)

× (ξ1i,sD
1
i,s + φi,sD

2
i,s)vs(Ki,s(I +2i,s)(ξ1i,s

×D1
i,s + φi,sD

2
i,s)vs)

T
} + E{(ξ̄1i + φ̄i)Ki,s2i,s

×Ci,se
−

i,s|s e
−
T

i,s|s (Ki,s2i,sCi,s)T } (18)

in which

ℵ1 = E{(Eεs − I )Ase
−

i,s|s e
−
T

i,s|s (As − (ξ̄1i + φ̄i)Li,sCi,s)
T
}

ℵ2 = E{(Eεs − I )Ase
−

i,s|s e
−
T

i,s|s ((ξ̄
1
i + φ̄i)Li,s2i,sCi,s)T }

ℵ3 = E{(As − (ξ̄1i + φ̄i)Li,sCi,s)e
−

i,s|s e
−
T

i,s|s ((ξ̄
1
i + φ̄i)

×Li,s2i,sCi,s)T }

ℵ̃1 = E{(I − (ξ̄1i + φ̄i)Ki,sCi,s)e
−

i,s|s e
−
T

i,s|s ((ξ̄
1
i + φ̄i)

×Ki,s2i,sCi,s)T }.

According to Eqs. (16)-(18), due to the existence of uncer-
tainty matrix 2i,s and unknown terms ℵ̃1, ℵl, l = 1, .., 3
the common, prediction and filter error covariances cannot be
obtained in an explicit way. Therefore, we will obtain upper
bounds for them in Theorem 1. Before proceeding further,
we introduce a useful lemma that will be used for computing
the parameters of proposed filter.
Lemma 3: The state covariancematrix Eqi,s = E

{
xsxTs

}
for

Eq. (1) can be calculated as follows:

Eqi,s = min
{
26−i,s|s + 2x̂−i,s|s x̂

−
T

i,s|s , dI
}

(19)

where d =
n∑
i=1
ςi

2 and 6−i,s|s is an upper bound for the

common error covariance that will be introduced later.
Proof: Based on Eq. (1) the state covariance matrix is

obtained as follows:

E
{
xsxTs

}
= E

{
σ (As−1xs−1 + Bs−1ws−1)

× σ T (As−1xs−1 + Bs−1ws−1)
}

≤ E
{
tr
{
σ (As−1xs−1 + Bs−1ws−1)σ T

× (As−1xs−1 + Bs−1ws−1)
}}

I

= E
{
[ς1, . . . , ςn] [ς1, . . . , ςn]T

}
I = dI (20)

On the other hand, according to the definition of common
error xs = e−i,s|s − x̂

−

i,s|s , we have:

E
{
xsxTs

}
= E

{
(e−i,s|s − x̂

−

i,s|s )(e
−

i,s|s − x̂
−

i,s|s )
T
}

= 6−i,s|s + x̂
−

i,s|s x̂
−
T

i,s|s

+ e−i,s|s x̂
−
T

i,s|s + x̂
−

i,s|s e
−
T

i,s|s (21)

using elementary inequality xyT + yxT ≤ xxT + yyT and
selecting the third and fourth terms on the right-hand side of
Eq. (21), one can conclude that:

e−i,s|s x̂
−
T

i,s|s + x̂
−

i,s|s e
−
T

i,s|s ≤ 6
−

i,s|s + x̂
−

i,s|s x̂
−
T

i,s|s (22)

substituting Eqs. (22) into (21), we have:

E
{
xsxTs

}
= 26−i,s|s + 2x̂−i,s|s x̂

−
T

i,s|s , (23)

merging Eqs. (20)-(23), we can obtain Eq. (19).
Theorem 1: If there exists a positive scalar αi,s such that

((Ci,sEqi,sCT
i,s)
−1
− ai,sδTi δi) > 0 and (R̄−1i,s − ai,sδ

T
i δi) > 0,
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then p−i,s|s ≤ 6−i,s|s , pi,s+1|s ≤ 6i,s+1|s and pi,s|s ≤ 6i,s|s ,
where p−i,s|s , pi,s+1|s and pi,s|s are defined in Eqs. (16)-(18),
respectively. Moreover, 6−i,s|s and 6i,s+1|s are the solutions
of the following recursive equations:

6−i,s|s = (1+ Ni)((I − NiGi,s)6i,s|s−1 (I − NiGi,s)T

×

∑
j∈3i

Gi,s6j,s|s−1GTi,s) (24)

6i,s+1|s = 3(As − (ξ̄1i + φ̄i)Li,sCi,s)6
−

i,s|s (As − (ξ̄1i + φ̄i)

×Li,sCi,s)T + 3As6
−

i,s|sA
T
s + λ̄iLi,s[((Ci,sEqi,s

×CT
i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I ]L

T
i,s

+ 3(ξ̄1i + φ̄i)
2
Li,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )L

T
i,s

+Li,s[(R̄
−1
i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I ]L

T
i,s

+ tr(3As6
−

i,s|sA
T
s + BsQwB

T
s )I . (25)

The parameters of proposed filter in Eqs. (8a)-(8c) are
obtained as follows:

Li,s = 3(ξ̄1i + φ̄i)As6
−

i,s|sC
T
i,sπ̃
−1
i,s (26)

Ki,s = 2(ξ̄1i + φ̄i)6
−

i,s|sC
T
i,sπ
−1
i,s (27)

Gi,s = Ni(1+ Ni)6i,s|s−1 ((1+ Ni)(N 2
i 6i,s|s−1

+ (1+ Ni)
∑
j∈3i

6j,s|s−1 ))−1 (28)

where

R̄i,s = ξ̄1i D
1
i,sRvD

1T
i,s + φ̄iD

2
i,sRvD

2T
i,s

π̃i,s = 3(ξ̄1i + φ̄i)
2
Ci,s6

−

i,s|sC
T
i,s + λ̄i[((Ci,sEqi,sC

T
i,s)
−1

− ai,sδTi δi)
−1
+ a−1i,s I ]+ 3(ξ̄1i + φ̄i)

2
tr(δiCi,s

×6−i,s|sC
T
i,sδ

T
i )+ [(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I ]

πi,s = (ξ̄1i + φ̄i)
2
Ci,s6

−

i,s|sC
T
i,s + λ̄i[((Ci,sEqi,sC

T
i,s)
−1

− ai,sδTi δi)
−1
+ a−1i,s I ]+ 2(ξ̄1i + φ̄i)

2
tr(δiCi,s

×6−i,s|sC
T
i,sδ

T
i )+

[
(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I

]
λ̄i = E{(ξ̃1i,s + φ̃i,s)

2
} = (ξ̄i + φ̄i)(1− ξ̄i − φ̄i)

Proof: Using elementary inequality xyT + yxT ≤ xxT +
yyT and selecting the second and third terms on the right-hand
side of Eq. (16), we have:∑
j∈3i

∑
l∈3i

Gi,sE
{
ej,s|s−1 eTl,s|s−1

}
GTi,s

≤
1
2

∑
j∈3i

∑
l∈3i

Gi,s(pj,s|s−1 + pl,s|s−1)GTi,s

= Ni
∑
j∈3i

Gi,spj,s|s−1GTi,s (29)

∑
j∈3i

(
(I − NiGi,s)ei,s|s−1 eTj,s|s−1G

T
i,s + Gi,sej,s|s−1

× eTi,s|s−1 (I − NiGi,s)
T )
≤

∑
j∈3i

(
(I − NiGi,s)ei,s|s−1

× eTi,s|s−1 (I − NiGi,s)
T
+ Gi,sej,s|s−1 eTj,s|s−1G

T
i,s
)

= Ni(I − NiGi,s)pi,s|s−1 (I − NiGi,s)T

+

∑
j∈3i

Gi,spj,s|s−1GTi,s (30)

Now, substituting Eqs. (29)-(30) into Eq. (16), we can
obtain Eq. (24). The common gain Gi,s is attained by setting
the first variation of Eq. (24) to zero as follows:

∂6−i,s|s

∂Gi,s
= (1+ Ni)((I − NiGi,s)6i,s|s−1 (−NiI )T

+

∑
j∈3i

Gi,s6j,s|s−1 ) = 0 (31)

Gi,s in Eq. (28) is achieved by straightforward manipula-
tion of Eq. (31).

For computing 6i,s+1|s , selecting the first term on the
right-hand side of Eq. (17) and using lemma 1, we can
conclude that:

E
{
Eεs(Ase

−

i,s|s + Bsws)(Ase
−

i,s|s + Bsws)
T
EεTs

}
≤ E

{∥∥∥Eεs(Ase−i,s|s + Bsws)∥∥∥2} I
≤ E

{
‖Eεs‖

2
∥∥∥(Ase−i,s|s + Bsws)∥∥∥2} I

≤ E
{∥∥∥(Ase−i,s|s + Bsws)∥∥∥2} I

= tr(As6
−

i,s|sA
T
s + BsQwB

T
s )I (32)

using the aforementioned inequality for unknown terms
ℵj, j = 1, . . . , 3, we have:

ℵ1 + ℵ
T
1 ≤ (Eεs − I )Ase

−

i,s|s e
−
T

i,s|sA
T
s (Eεs − I )

T

+ (As − (ξ̄1i + φ̄i)Li,sCi,s)e
−

i,s|s e
−
T

i,s|s

× (As − (ξ̄1i + φ̄i)Li,sCi,s)
T
. (33)

−ℵ2 − ℵ
T
2 ≤ (Eεs − I )Ase

−

i,s|s e
−
T

i,s|sA
T
s (Eεs − I )

T

+ ((ξ̄1i + φ̄i)Li,s2i,sCi,s)e
−

i,s|s e
−
T

i,s|s

× ((ξ̄1i + φ̄i)Li,s2i,sCi,s)
T
. (34)

−ℵ3 − ℵ
T
3 ≤ ((ξ̄1i + φ̄i)Li,s2i,sCi,s)e

−

i,s|s e
−
T

i,s|s ((ξ̄
1
i + φ̄i)

×Li,s2i,sCi,s)T + (As − (ξ̄1i + φ̄i)Li,sCi,s)

× e−i,s|s e
−
T

i,s|s (As − (ξ̄1i + φ̄i)Li,sCi,s)
T
. (35)

Moreover, an upper bound for the third term on the
right-hand side of Eq. (17) is obtained as follows:

E
{
(ξ̄1i + φ̄i)

2
Li,s2i,sCi,se

−

i,s|s e
−
T

i,s|s (Li,s2i,sCi,s)T
}

≤ (ξ̄1i + φ̄i)
2
Li,sE

{
tr(2i,sCi,se

−

i,s|s e
−
T

i,s|s (2i,sCi,s)T )
}

×LTi,s = (ξ̄1i + φ̄i)
2
Li,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )L

T
i,s.
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And finally, using lemma 2 in the fourth and fifth terms on
the right-hand side of Eq. (17), we have:

E{(ξ̃1i,s + φ̃i,s)
2
Li,s(I +2i,s)Ci,sxsxTs (Li,s(I +2i,s)

×Ci,s)T } = E{(ξ̃1i,s + φ̃i,s)
2
}Li,s(I + Fi,sδi)

×E
{
Ci,sxsxTs C

T
i,s

}
(I + Fi,sδi)TLTi,s

≤ λ̄iLi,s

[
((Ci,sEqi,sCT

i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I

]
LTi,s.

(36)

E{Li,s(I +2i,s)(ξ1i,sD
1
i,s + φi,sD

2
i,s)vsv

T
s (Li,s(I +2i,s)

× (ξ1i,sD
1
i,s + φi,sD

2
i,s))

T
} = Li,s(I + Fi,sδi)E{(ξ1i,sD

1
i,s

+φi,sD2
i,s)vsv

T
s (ξ

1
i,sD

1
i,s + φi,sD

2
i,s)

T
}(I + Fi,sδi)TLTi,s

≤ Li,s
[
(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I

]
LTi,s. (37)

Eq. (25) can be attained by substituting Eqs. (32)-(37) into
Eq. (17). Similarly, for computing 6i,s|s , based on Eq. (21)
and utilizing the abovementioned inequality for ℵ̃1, we have:

−ℵ̃1 − ℵ̃
T
1 ≤ ((ξ̄1i + φ̄i)Ki,s2i,sCi,s)e

−

i,s|s e
−
T

i,s|s ((ξ̄
1
i + φ̄i)

×Ki,s2i,sCi,s)T + (I − (ξ̄1i + φ̄i)Ki,sCi,s)

× e−i,s|s e
−
T

i,s|s (I − (ξ̄1i + φ̄i)Ki,sCi,s)
T . (38)

using lemma 2, the upper bounds are calculated for other
terms on the right-hand side of Eq. (18) as follows:

E
{
(ξ̄1i + φ̄i)

2
Ki,s2i,sCi,se

−

i,s|s e
−
T

i,s|s (Ki,s2i,sCi,s)T
}

≤ (ξ̄1i + φ̄i)
2
Ki,sE

{
tr(2i,sCi,se

−

i,s|s e
−
T

i,s|s (2i,sCi,s)T )
}

×KT
i,s = (ξ̄1i + φ̄i)

2
Ki,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )K

T
i,s (39)

E{(ξ̃1i,s + φ̃i,s)
2
Ki,s(I +2i,s)Ci,sxsxTs ((I +2i,s)Ci,s)T

×KT
i,s} = E{(ξ̃1i,s + φ̃i,s)

2
}Ki,s(I + Fi,sδi)E{Ci,sxsxTs

×CT
i,s}(I + Fi,sδi)

TKT
i,s

≤ λ̄iKi,s

[
((Ci,sEqi,sCT

i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I

]
KT
i,s

(40)

E{Ki,s(I +2i,s)(ξ1i,sD
1
i,s + φi,sD

2
i,s)

× vsvTs (Ki,s(I +2i,s)(ξ1i,sD
1
i,s + φi,sD

2
i,s))

T
}

= Ki,s(I + Fi,sδi)E{(ξ1i,sD
1
i,s + φi,sD

2
i,s)

× vsvTs (ξ
1
i,sD

1
i,s + φi,sD

2
i,s)

T
}(I + Fi,sδi)T

×KT
i,s ≤ Ki,s

[
(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I

]
KT
i,s. (41)

Therefore, substituting Eqs. (38)-(41) into Eq. (18),
the upper bound of filter error covariance is obtained as
follows:

6i,s|s = 2(I − (ξ̄1i + φ̄i)Ki,sCi,s)6
−

i,s|s (I − (ξ̄1i + φ̄i)

×Ki,sCi,s)T + BsQwBTs + λ̄iKi,s

×

[
((Ci,sEqi,sCT

i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I

]
KT
i,s

+ 2(ξ̄1i + φ̄i)
2
Ki,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )K

T
i,s

+Ki,s
[
(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I

]
KT
i,s. (42)

The prediction and filter gains are calculated by setting the
first variation of Eqs.(24) and (42) to zero as follows:
∂6i,s+1|s

∂Li,s

= 3(As − (ξ̄1i + φ̄i)Li,sCi,s)6
−

i,s|s (−(ξ̄
1
i + φ̄i)Ci,s)

T

+ λ̄iLi,s[((Ci,sEqi,sCT
i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I ]

+ 3(ξ̄1i + φ̄i)
2
Li,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )

+Li,s
[
(R̄−1i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I

]
= 0 (43)

∂6i,s|s

∂Ki,s

= 2(I − (ξ̄1i + φ̄i)Ki,sCi,s)6
−

i,s|s (−(ξ̄
1
i + φ̄i)Ci,s)

T

+ λ̄iKi,s[((Ci,sEqi,sCT
i,s)
−1
− ai,sδTi δi)

−1
+ a−1i,s I ]

+ 2(ξ̄1i + φ̄i)
2
Ki,str(δiCi,s6

−

i,s|sC
T
i,sδ

T
i )

+Ki,s[(R̄
−1
i,s − ai,sδ

T
i δi)
−1
+ a−1i,s I ] = 0 (44)

Li,s and Ki,s in Eqs. (26)-(27) are obtained by straightfor-
ward manipulation of Eqs. (43) and (44).
Remark 3: The main issue of this paper is also exam-

ined in [25]. In [25], a distributed filter with consensus on
measurements is presented and an augment vector is used
to calculate the parameters of proposed filter. In the men-
tioned method the cross-covariance matrices between cou-
pling nodes are calculated recursively and used to obtain the
gain matrices of nodes simultaneously, but in our method an
upper bound is implemented for cross-covariance to compute
gain matrix. Therefore, computational burden of our method
is remarkably less than [25]. Moreover, other challenge in
the method proposed in [25] is that the gain matrix can
be non-singular in the case of a link failure or the loss of
information from the neighbours, but our method overcomes
this challenge. Also, the augmented approach in [25] cannot
be applied for a graph with a lot of nodes.
Remark 4: For computing the parameters of the proposed

filter, the common, prediction and filter error covariances are
computed in Eqs. (16)- (18). According to Eqs. (16)-(18), due
to the existence of the uncertainty matrix 2i,s and unknown
terms ℵ̃1,ℵl, l = 1, . . . , 3 the common, prediction and
filter error covariances cannot be obtained in an explicit
way. To overcome this challenge, in Theorem 1 we obtained
upper bounds for the common, prediction and filter error
covariances. On the other hand, the cross-covariance matrices
appear in the second and the third terms on the right-hand
side of Eq. (16). If the cross-covariance matrices are directly
computed, then the proposed distributed filter is not scalable.
Therefore, we attain upper bounds for them in Eqs. (21)-(22)
using the inequality xyT + yxT ≤ xxT + yyT . Therefore,
the parameters of the proposed filter are obtained by mini-
mizing Eqs. (24)-(25) and (42).
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IV. SIMULATION RESULTS
In this section, numerical simulation results are employed to
indicate the merits of proposed method in Eqs. (8a)-(8c).
Example 1: Consider the following discrete time system:

As =
[
0.96+ 0.05 sin(0.12s) 0.4
0.15 −0.75

]
, Bs =

[
0.16
0.18

]
C1,s =

[
0.9 0.62+ 0.05cos(0.12s)

]
C2,s =

[
0.74+ 0.04 sin(0.1s) 0.8

]
C3,s =

[
0.75+ 0.04 sin(0.1s) 0.74+ 0.04cos(0.1s)

]
C4,s =

[
0.75 0.65

]
The uncorrelated noises ws and vs have zero-mean and

unity covariances. The initial values of the states and the
estimators are considered as follows:

x(0) = [1 1]T , x̂i,0|−1 = [0 0]T , i = 1, . . . , 4

The saturation levels are ς1,max = 10 and ς2,max = 2. ξ1i,s
and ξ2i,s are chosen 0.85 and 0, respectively. Also, the param-
eters of quantization are specified as µi0 = 0.1, σi =
0.15. The network graph, � = (ν, ϑ) is built from the
set of nodes ν = {1, 2, 3, 4} and the set of edges ϑ =
{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 3), (3, 1), (4, 4), (4, 1)}
with the adjacency elements aij = 1.
Figure.1 illustrates the trajectories of the states and their

corresponding estimation versus time samples, obtained from
100 Monte Carlo simulation. As seen, the proposed filter
has acceptable performance for four different sensor nodes.
In the following to demonstrate the scalability of our method,
we consider a new sensor network topology with 50 nodes.
As shown in Figure. 2, all 50 sensors are organized in a
network with 273 edges. Figure. 3 illustrates the averaged
root mean square errors (RMSE) of estimations obtained by
our method and a rival method [25]. It is worth noting our
method is implemented by two different topologies while
the algorithm proposed in [25] is not scalable for the net-
work graph of 50 nodes. The averaged root mean square

FIGURE 1. Trajectories of states and their estimations.

FIGURE 2. Simulated sensor network with 50 nodes and 273 edges.

FIGURE 3. RMSE of estimation for two different filters.

TABLE 1. The averages of MSEs for different sensors.

error (RMSE) is calculated by:

RMSE :
1
4

4∑
i=1

√√√√√ 1
200

200∑
j=1

(x1i,s − x̂
1j
i,s|s )

2
+ (x2i,s − x̂

2j
i,s|s )

2

where x1s and x2s denote the first and second states, and
(x̂1

j

i,s|s , x̂
2j
i,s|s ) denotes the first and second estimates of

the i-th sensor at the j-th Monte Carlo run. The mean
square errors (MSEs) for different sensor nodes are reported
in Table 1 to demonstrate estimation accuracy for each sensor
node in the given topology. As it is obvious, each sensor
node has a different accuracy depending on the number of
its neighbours and its local information such as measurement
of matrix and noise. It should be noted that if we consider a
topology with more nodes, theMSEs of sensor nodes become
more accurate.
Example 2: Consider the wheeled mobile robot (WMR)

in Figure. 4 which consists of two rear driving wheels
(A1,A2) [32].
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FIGURE 4. Diagram of the wheeled mobile robot.

The parameters of the WMR are reported as follows: F
and P are the projection of the mass center and the center of
two front wheels of the robot, respectively. Also, (xP, yP) and
(xF , yF ) symbolize the coordinates of P and the coordinates
of F , respectively. lF stands for the distance between the
points F and P. θP denotes the heading angle of the robot and
vP is the transitional speed at the point P.ω shows the angular
speed of WMR. If the state variables of the system are taken
as x =

[
θp, ẋf , ẏf , θ̇f

]T , then, the dynamical equations of a
typical WMR can be obtained. Discretization of the WMR
model with sampling interval T = 0.1 yields to:

xs+1 =


1 0 0 0.1
0 1 −0.00175 −0.001
0 0.00175 1 0
0 0 0 1

 xs

+


0.01771
0.0381
−0.0319
0.3542

ws,

yi,s =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 xs +


0.2 sin(ik)
0.3 cos(ik)
0.9 sin(2ik)
1.2 cos(2ik)

 vs,
i = 1, . . . , 5

The uncorrelated noises, ws and vs have zero-mean and
unity covariances. Filter parameters are as the following:

x(0) = [4 1 0.5 − 0.5]T ,

x̂1,0|−1 = x̂2,0|−1 = x̂3,0|−1 = x̂4,0|−1 = x̂5,0|−1
x̂5,0|−1 = [4 1 0.5 − 0.5]T

ς1,max = 3, ςr,max = 0.5, r = 2, 3, 4

The topology of the sensor network with five nodes
is ϑ = {(1, 4) , (2, 1) , (3, 2) , (4, 3) , (5, 4) , (5, 1) , (5, 3)}.
Figure. 5 and Figure. 6 illustrate the trajectories for the actual
states and the corresponding estimates for three randomly
selected nodes from 500 Monte Carlo simulation.

FIGURE 5. Trajectories of states for the first, second and their estimations.

FIGURE 6. Trajectories of states for the third, fourth and their estimations.

V. CONCLUSION
In this paper, a novel scalable distributed state estimation
has been presented for a class of state-saturated systems
with quantization effects and two redundant channels. Both
state-saturation and quantization phenomena have been con-
sidered in the proposed estimator. In our approach, the con-
sensus is first achieved on the prediction estimate which is
subsequently improved by two successive relations. Finally,
by solving three Riccati-like difference equations, the param-
eters of filter have been determined at each sensor node by
utilizing an upper bound for the common error covariance.
Comparative simulation results have been reported to show
that the averaged root mean square errors (RMSE) of estima-
tion gets decreased by our method compared to a rival one in
literature. The main results of this paper can be developed to
the following issues in order to improve the proposed method
in the future works: (1) consideration of the round-robin
protocol for reducing the data exchange between nodes [19],
[33], (2) attachment of the gain variations that usually occur
in the practical system because of computational or imple-
mentation uncertainties in the hardware [34], [35], (3) con-
sideration of the issue that when data is exchanged among the
sensors, due to the vulnerability of communication networks,
the information can be overheard and modified by the adver-
sary [36], [37], (4) consideration of the Fault Estimation [38].
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Thus, based on the view of the author, considering the above
topics can improve the performance of the proposed method
in practical applications.
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