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ABSTRACT Multiple sensors are often used in robotic applications for better situational awareness. Hence,
sensor fusion becomes a key technology to manage multiple sources of information and plays a critical role
to the success in robotic tasks such as object detection and tracking, autonomous navigation, and interaction
with humans. With these capabilities, wheeled autonomous vehicles can be used to automate some public
services. However, there are still challenges for wheeled vehicles to safely and agilely maneuvering in
human-centered environments. One of these challenges is lacking the capability of autonomously opening
doors and traversing doorways without using a general-purpose robotic arm (manipulator). An autonomous
door-opening operation is a complex task consisting of identifying the door and door handle, navigating the
vehicle to the door, operating the door handle, and pulling or pushing the door to open while traversing the
doorway. A self-closing door adds significant difficulty for the last step because the door usually needs to
be held open while the vehicle is traversing the doorway. This paper presents a method using force-vision
sensor fusion to enhance a deep reinforcement learning (RL) process for a wheeled vehicle to perform the
most difficult step of a door-opening and pass-through operation. That step is to pull and hold a self-closing
door open while the vehicle is traversing the doorway. In our solution, the vehicle is equipped with a camera,
a force sensor, and a concise door-opening mechanism. The method was simulated in Gazebo and the results
demonstrated that the deep RL-based force-vision sensor fusion method can be successfully applied to the
task of self-closing door pulling by a wheeled vehicle without using a robotic arm and without a pre-planned
trajectory. The vehicle control was trained without using domain randomization, but it still works in variant
environments.

INDEX TERMS Force-vision sensor fusion, door opening, door pulling, deep reinforcement learning,

autonomous mobile vehicle.

I. INTRODUCTION

Mobile vehicles equipped with multiple exteroceptive sensors
(such as camera and LiDAR) for situational awareness, can be
used in public services, such as material transportation, room
cleaning, disinfection, and many other tasks. This is one of the
promising solutions in the COVID-19 pandemic for reducing
the need for human contact with the environment. However,
it is still a big challenge to widely apply such servicing vehi-
cles in human-centered environments, such as schools, office
buildings, and hospitals. One of the challenging tasks is that
the vehicles must be able to autonomously open doors and
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traverse the doorways so that they can extend their working
area to different rooms without human assistance. Because
doors vary in size and types (such as push-/pull- doors, self-
closing doors, and sliding doors), the strategies for opening a
door are complicated and heavily rely on the vehicles and the
sensor capabilities. Many studies [1]-[7] have investigated
the door-opening problem with a mobile vehicle equipped
with a manipulator, where the task was divided into four
essential subtasks as shown in Fig. 1: 1) detecting the door
handle, which is an object detection problem; 2) approaching
the door and the door handle, which is a navigation prob-
lem; 3) operating the door handle and unlatching the door,
which usually requires a multiple degrees of freedom (DOFs)
manipulator to interact with the door handle; 4) opening the
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FIGURE 1. Workflow of door opening by mobile vehicles.

door and traversing the doorway, which relies on the cooper-
ation of the manipulator and the vehicle for pulling/pushing
and holding the door. To address these problems in an
autonomous door-opening task, most solutions adopted in
the aforementioned studies relied on two costly conditions:
(1) a general-purpose robotic arm of 6 or more DOFs and
(2) precise modeling of the mobile manipulator and the envi-
ronment. Such conditions make these solution techniques dif-
ficult to disseminate in real-world environments for broader
impact due to the complexity of the control strategies and high
cost of the 6-DOF manipulators. In addition, some solutions
employed vision sensors for environment perception and
some solutions used force sensors to address the problem of
door handle operation, but none of these solutions combined
the vision sensors and force sensors. We believe that the
combination of the sensors can better serve in the task of
autonomous door manipulation even in the most challenging
case: pulling a self-closing door.

Pulling a self-closing door requires complex trajectory
planning and coordinated control of both the manipulator
and the mobile vehicle, thus, it was considered the most
difficult part of the door-opening operation. Since a robotic
system has to physically interact with the door in the door-
pulling operation, force sensors can be employed as they
are used in applications of high-precision manufacturing [8]
and collaborative robots [9], [10] for collision detection and
safety control. Vision sensors (such as cameras) are also
necessary for observing the status of the door and its sur-
rounding environment. In addition, combining the data from
vision and force sensors will result in a more confident
decision on the robot’s motion control, just like the fact
that a human relies not only on vision but also on hand
sensation of force and touch when opening a door. Such a
combination will benefit the robot control in terms of both
safety and performance, because multiple sensors with data
fusion technology can not only extract more features of the
environment but also enhance understanding of the sensed
environment [11], [12]. Based on this thinking, we propose
a Deep Neural Network (DNN)-based force-vision sensor
fusion method for enhancing a wheeled vehicle’s learning
to pull a self-closing door without using a general-purpose
robotic arm. Instead, the vehicle is equipped with a cam-
era, a force sensor, and a portable and cost-effective door-
opening mechanism. The purpose of pulling the door is to
allow the vehicle to traverse the doorway; however, we do
not include the doorway traversing in this paper. One reason
is that it is complicated and difficult to train the vehicle to
pull the door while traversing the doorway at the same time;
in addition, the vehicle does not really need to physically
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hold the door during a quick traversing of the already opened
doorway before the door swings back; and hence, the force
information may not be useful. Another reason is that the
doorway traversing can be easier (as the above mentioned
quick traversing without touching the already opened door),
and it can be achieved by using a different approach without
training. Focusing on door-pulling process, we adopt the
Proximal Policy Optimization (PPO) [27] to train an end-to-
end control policy (meaning from task definition and sensor
raw data to vehicle control commands). Such a deep RL
method does not require a system dynamics model and thus,
it is naturally robust against small variations of the system’s
dynamics properties. The sensor fusion based control policy
trained in a single simulated environment can generally work
in varied environments with different visual appearances and
physical properties.

The key contributions of this research are: 1) uses a
cost-effective simple mechanism instead of an expensive
robotic arm to help pull a self-closing door; 2) addresses
the problem of door pulling using a deep RL algorithm;
3) proposes a DNN-based force-vision sensor fusion method
to enhance the learning of the vehicle’s control policy for
the door-pulling operation; 4) demonstrates that the proposed
method is robust against environment variations, sensor noise
and small camera installation offsets. To our best knowledge,
this is the first end-to-end solution for a wheeled vehicle to
accomplish such a task.

Il. RELATED WORKS

A. DOOR PULLING

Researchers have investigated the door-opening problem and
developed different solutions for wheeled vehicles (with
a robotic arm) [1]-[7], humanoid robots [13], [14], and
legged robots [15]. In the solutions using wheeled vehicles,
Chitta et al. presented a door-opening method by using a
7-DOF manipulator [1]. They used a graph-based represen-
tation of the three-dimensional search space to plan the tra-
jectory of the mobile base and the robotic arm. For pulling
the door open, the system checked for collision of the arm
with the door and released the handle on one side of the door
if a collision was detected, then moved the arm so that it can
grasp the handle on the opposite side of the door. The oper-
ation only requires arm movement while keeping the mobile
base stationary. Such a mobile manipulator-based “‘re-grasp”
solution was also used in [3] for pulling a door and an extra
flipper was used to hold the door open against possible self-
closing forces. Different solutions were presented in [2], [4],
the manipulator and wheeled vehicle were controlled simul-
taneously to generate a circular trajectory in Cartesian space
for pulling the door open with an assumption of knowing the
radius and the open angle of the door. Such solutions based on
modeling of the environments are expensive and less practical
in real-world applications because an accurate model of the
environment is difficult to obtain. In addition, among all the
above prior studies, only [3] considered self-closing doors.
In fact, the self-closing function of a door adds significant
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difficulty to the door-opening task, because the door has to
be held open by the arm while the arm’s mobile base (the
vehicle) is traversing the doorway.

To address the difficulties in dynamics modeling and/or
trajectory planning for door opening operations, solutions
leveraging the advancement of RL techniques were pre-
sented [16], [17]. These solutions employed 7-DOF robotic
arms to learn control policies for operating the door handles
and pushing/pulling the door without modeling the dynamics
of the robotic system and the environment nor requiring task-
specific knowledge. A simulation environment “DoorGym”
was also presented in [17], which supported a variety of
randomized domains and difficulties. A control policy for
unlatching a door using the Berkley BLUE robot arm was
trained in this virtual environment and a zero-shot sim-to-
real policy transfer was performed to check the robustness
of the trained policy. However, these studies only focused
on opening normal doors by controlling a robotic arm, they
considered neither the mobile base control nor self-closing
door opening.

All the above studies employed multi-DOF general-
purpose robotic arms for door opening. A general-purpose
robotic arm of 6 or more DOFs is a solution for multi-purpose
applications which require flexibility, but it also requires
complex control effort and thus it is unnecessary if the robotic
arm is solely used for door opening. In addition, general-
purpose robotic arms are expensive and need significant
programming effort for complex tasks such as self-closing
door pulling. This is one of the reasons that none of the
robotic-arm based solutions has been adopted in practical
services or the commercial market. Instead, a simpler and
more cost-effective modular device can be designed for oper-
ating the door handle and opening the door. In this study,
we assume that the door has been unlatched by such a mod-
ular device, which is a necessary operation before pulling
a door but it is not a focus of this paper. In this paper,
we focus on the self-closing door pulling by leveraging the
vehicle’s locomotion. To demonstrate this solution, we pro-
pose a method of using a skid-steering vehicle to pull a
self-closing door with a passive side bar attached to the
vehicle to help holding the door. Thus, we only need to
develop the vehicle’s control policy which can be learned
from a RL process taking the information from a camera
and a force sensor installed on the modular door-opening
device.

B. SENSOR FUSION

Sensor fusion was defined as the cooperative use of the
information provided by multiple sensors to improve accu-
racy and quality content and thus enhance the performance
of the system [18]. It has been widely studied in object
recognition and autonomous navigation, and it has boarder
applications in Internet of Things (IoT), automotives, drones,
computer vision, virtual reality, and healthcare domains due
to its advantages of richer semantic and higher resolution
on observation, better confidence in certainty and accuracy
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of the data, and more comprehensive knowledge of the
environment [11]. There are three fundamental ways of fusing
sensor data: 1) complementary: combining the data from
each sensor which provides data about different aspects or
attributes of the environment; 2) competitive: fusing the data
from several sensors which measure the same or similar
attributes of the environment; 3) cooperative: deriving infor-
mation of the environment from the data from two or more
independent sensors in the system [12], [18]. Dasarathy et al.
classified sensor fusion architectures into three levels depend-
ing on the input/output characteristics [19], namely data-level
fusion, feature-level fusion, and decision-level fusion. Tra-
ditional sensor fusion algorithms, such as Kalman filter and
particle filter, focus on state estimation, and Bayesian infer-
ence technique and Dempster-Shafer theory of evidence are
decision fusion methods. These traditional methods of sensor
fusion may suffer from problems depending on the types
of sensor information to be fused. For example, 1) different
sensor data needs to be transformed into a common reference
frame; 2) diverse formats of the data may introduce noise
and ambiguity in the fusion process; 3) the level of detail
from different sensors is rarely similar. Compared with these
traditional methods, artificial neural network-based sensor
fusion techniques are more powerful and more adaptive for
robotics applications [11].

For robot autonomy in both indoor and outdoor environ-
ments, cameras are the most popular sensors as they pro-
vide rich information. Hence, sensor fusion techniques for
combining vision information and depth information from
LiDAR or ultrasonic distance data were usually applied to
autonomous navigation [20], [21] using the DNN-based sen-
sor fusion approach due to its capability of multi-level fea-
ture representation. Deep RL techniques were also utilized
to teach mobile vehicles to avoid obstacles and navigate in
indoor environments using sensors such as cameras and laser
range finders [22], [23]. Force-torque sensors were usually
installed on end-effectors or joints to indirectly measure the
gripper contact force for both safety control and force control
on workpieces [9], [10] in manufacturing applications and
collaborative robots. They are sometimes also combined with
vision sensors for better contact controlling of robot arms.
A hybrid force-vision control law was presented in [24] for
a robotic arm to perform grasping tasks, which used a Con-
volutional Neural Networks (CNN)-based vision controller
in the reaching stage, and a force-contact Proportional Inte-
gral (PI) controller in grasping stage of opening a drawer.
However, this sensor fusion method must be incorporated
with a low-level control law based on a computed torque
technique which requires a dynamics model of the robotic
arm. Similar hybrid force-vision feedback control methods
for robotic arm control were also presented in [25], [26],
where the vision systems were used to extract features for
estimating the systems’ motion states in closed-loop controls
which also involved the contact forces of the end-effectors.
These studies concluded that the hybrid force-vision control
methods could overcome the uncertainties of kinematics,
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FIGURE 2. A simulated environment for door-pulling task.

dynamics and camera models and resulted in a robust motion
control of the robotic arm.

C. POLICY GENERALIZATION

Deep RL methods have been successfully applied in board
games, video games, and simulated control problems, but
they are inefficient and the learning process often requires
millions of attempts to solve a complex task. This is often
impossible for a real-world robotic application because the
cost of acquiring data is extremely high in the real world
and the number of duty cycles of robot hardware is also
limited. One solution is to train a control policy in a simulated
environment, and then transfer the learned policy to a physical
robot. This is known as simulation to reality (Sim2Real)
transfer [28], [29], which is still an open research problem.
To ensure the generalization capability of learned policies and
bridge the gap between the simulation and the reality, domain
randomization [30] is often used. However, it suffers from
high sample complexity and requires customizing software
which is capable of simulating the intricacies (i.e. visual
appearances and dynamics) of the real world, such as the
simulation environment ‘“DoorGym” . For the task of pulling
a self-closing door by a wheeled vehicle, it is cumbersome
to simulate visual appearances. However, the forces exerted
on the door and the vehicle do not vary too much. Based on
this thinking, we used the force-vision sensor fusion method
to improve the policy transferability. Using both vision and
force information, we trained the vehicle in a single sim-
ulated environment without randomizing the properties of
the environment and found out that the learned policy can
be applied to the environments that were never experienced
before.

lll. METHOD

A. ENVIRONMENT SETUP

Without loss of generality, a 4 meters x 4 meters room with a
self-closing and right-hand swing door was built in Gazebo.
The standard door is 4.5 centimeters thick, 0.9 meters wide,
and 2.1 meters high. It has a uniformally distributed mass
of 10 kilograms and needs to be pulled to open from inside of
the room as shown in Fig. 2. The door hinge axis is aligned
with the Z axis of the global coordinate system where the
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FIGURE 3. Configuration of the wheeled vehicle.

X axis is pointing to the inside of the room. The dynamics
of the door is modeled with a torsional spring for its self-
closing function. The door can swing about its hinge axis
and the door position can be represented by the hinge angle
with O radians in the fully closed position and 0.5z radians
in the fully open position. We assume that the door has
been unlatched and pulled to be slightly open by modular
door-opening device, which is realistically achievable but not
the focus of this paper. With this initial condition of door
position, a skid-steering wheeled vehicle equipped with a
camera, a force sensor, and a spring-loaded passive side bar
(for door holding) is placed at a certain position with small
uncertainty, but the side bar must be placed near the gap of
the door and door frame as the initial condition for pulling the
door.

B. WHEELED VEHICLE CONFIGURATION

Instead of using a mobile manipulator which was adopted in
other studies for the door-pulling operation, a pair of passive
side bars were installed on a wheeled vehicle to help pull
the door in our study. As shown in Fig. 3, the vehicle is
assumed to be in a square shape with 0.5 meters in length
and width. A 0.25 meters long side bar with a small hook
is attached on the vehicle for holding the door against its
self-closing force. Each spring-loaded side bar is normally
folded in in its home position parallel with the vertical edge
of the vehicle body, so that it will not touch the environment
when not in use. It will be released to its horizontal work
configuration, as shown in the figure, by the door-pulling
controller using a simple solenoid device. After completion
of a door opening task, the passive side bar can be retracted
and locked to its vertical home position. As a door can be
either left-hand swing or right-hand swing, a side bar can be
installed at each side of the vehicle. A force sensor is installed
near the joint of the side bar and the vehicle body, which can
detect the contact forces exerted on the side bar. A camera
(camera 1) is installed at the end of the side bar looking
upward to observe the status of the door, which is used in the
force-vision sensor fusion method for the door-pulling task.
Only for analytic purposes, we temporarily install two other
cameras (camera 2 and camera 3) on the vehicle body looking
forward and backward respectively and we assume that all the
cameras are well calibrated. We also developed a method of
using observations from all three cameras, a method of using
force only, and a method of using single camera (camera 1)
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FIGURE 4. Camera views of the door status.

to control the vehicle for door pulling. The raw observation
from each camera is a three-channeled RGB image, which
partially represents the environment, as shown in Fig. 4.
The image is converted to a grayscale and fed into a CNN
which is specifically designed for door pulling. The output
of the neural network is a high-level control command in
the vehicle frame for maneuvering the vehicle in the 3-DOF
planar space. The control command is a desired velocity;
however, the actual velocity of the vehicle will be affected
by its physical properties and the environment. The uncer-
tain behaviors of the vehicle when responding to the control
commands is also expected to be handled in our DNN-based
sensor fusion method.

C. INITIAL CONDITION

In this paper, we only focus on the subtask of pulling a
self-closing door with a wheeled vehicle and a side bar,
so we assume that the door is already unlatched and slightly
open, which is the initial condition of the door-pulling task.
Such an initial condition can be achieved by controlling the
vehicle and the modular device which is a task less chal-
lenging than the door-pulling task. Assuming the vehicle is
in the room, it can be steered to search for the door and
door handle based on the camera image, as shown in Fig. 11
in Appendix A, using a vision-based door and door handle
detection method [7]. Once the door handle is identified in
the camera image, the distance to the door handle can be
measured by a RGB-D sensor, then feedback control can be
applied to drive the vehicle to approach the door handle. The
modular device with a force sensor is used to operate the door
handle to unlatch the door based on the force information.
After the door is unlatched, the vehicle can pull the door
slightly open by driving slightly backward. Thus, the ini-
tial condition of pulling a self-closing door can be set after
unfolding the side bar and rotating the vehicle to make the
side bar touch the edge of the door. Such an operation of the
vehicle for door unlatching is shown in Fig. 5.

D. DNN STRUCTURE FOR FORCE-VISION SENSOR FUSION
A DNN was designed for handling the vision and force inputs.
The vision input is a grayscale image with a size of 64 x
64 pixels and the camera captures images at a frequency
of 30 fps. The force input is a 3 x 1 vector which is the force
between the side bar and door. The force sensor collects data
at a frequency of 100 Hz and the force data is smoothed using
a simple moving average method. At a frequency of 2 Hz,
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FIGURE 6. DNN structure of the force-vision sensor fusion based control
policy.

the force-vision sensor fusion DNN takes the images and
force data as the input. The output of the neural network
is a probability of possible desired velocity commands for
controlling the vehicle. The possible control commands are
driving forward, driving backward, turning left, turning right,
driving left forward, driving right forward, driving left back-
ward, and driving right backward. Each control can be per-
formed in a low-speed mode with a desired linear speed of
1 meter per second and desired angular speed of 7 radians
per second and a high-speed mode with desired linear speed
of 3 meters per second and desired angular speed of 3x
radians per second, thus, the dimensions of the action space
is 16 in total. The DNN structure is given in Fig. 6, which
has 2 convolution layers for the image input followed with a
max pooling operation, and a third convolution layer reducing
the image size to 16 x 16 pixels before the flattening layer.
The force input is connected to a 2-level hidden layer and
then concatenated with a hidden layer for the image data after
the flattening layer and finally connected to the output layer,
resulting in more than one million trainable weights in the
whole neural network. A lighter version of DNN with a much
smaller number of weights was also designed and trained. The
trained model can also be applied for pulling the self-closing
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door in variant environments. However, the learning per-
formance decreased and the trajectory of pulling the door
became more costly.

E. RL CONTEXT

In our study, the vehicle starts from the initial position and
maneuvers itself to pull the door until the door angle reaches
0.45m radians. For each time step, the vehicle observes the
current state (the image from camera 3 and the force data) and
takes an action (one of the 16 velocity commands) determined
by a control policy, then transfers to a new state, and receives
a reward at the next time step. The reward function (r) is
defined as

r=c; X 100 —c» x 104+ ¢3 x (10 x Aa—p —0.1) (1)

where c¢; is 1 when the door-pulling is successful (i.e.,
the door angle reaches 0.457), otherwise it is 0. ¢; is 1 when
the door-pulling failed (i.e., the door angle is less than 0.45x
and the side bar is away from the door with a distance greater
than 5 centimeters), otherwise itis 0. ¢z is 1 if ¢; = ¢ =0, itis
0if c; =1 or cp = 1. Aa denotes the door angle change after
each time step of driving the vehicle. A simple step penalty
with a constant value of 0.1 is added for achieving a goal of
optimizing control with fewer steps in an episode. A force
penalty p is added, where the value of p is 1 if the magni-
tude of the detected force in any direction exceeds a maxi-
mum value of 70 Newtons (a value established by ADAAG,
ICC/ANSI A117.1 Standard on Accessible and Usable Build-
ings and Facilities [31]), otherwise, p is 0, which means no
force related penalty will be applied. By considering the force
in the reward function, we expect a smooth motion control
in the door-pulling operation after training. We use a PPO
algorithm [27] to train the force-vision DNN model, because
PPO algorithms are more general and much simpler to imple-
ment and they have better sample complexity compared with
other policy gradient algorithms. We adopted Actor-Critic
implementation for the PPO agent. The “Actor” network rep-
resents the control policy, its architecture is shown in Fig. 6.
The “Critic” network is for state value evaluation, which
has the same architecture as the “Actor”” network except the
output layer. The output layer of “Critic”’ network is a scalar
which estimates how good the state is.

IV. SIMULATION AND RESULTS

The door-pulling operation by a wheeled vehicle was simu-
lated in Gazebo. We used a DNN-based force-vision sensor
fusion method (camera 1 and the force sensor were used in
our method) for developing the door-pulling control policy.
We used a specific simulated environment with unchangeable
visual appearances (e.g., color, texture), fixed door size, fixed
number of springs, and fixed friction coefficients between
wheels and ground for training. But the initial conditions can
change, we randomly initialized the pose (adding small varia-
tions in x, y and orientation) of the vehicle during the training
process. To verify the robustness of the force-vision sensor
fusion method, we also compared it with three other methods:
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FIGURE 7. Learning curves of different control policies.

1) using force sensor only; 2) using single camera (camera 1)
only; and 3) using multiple cameras (all three cameras),
in terms of the training performance, control optimization and
policy generalization in varied simulated environments with
different visual appearances and physical properties.

A. COMPARISON OF TRAINING PERFORMANCE
All the training was performed on a desktop computer with an
Intel i7-8700 CPU, an Nvidia GeForce GTX 1070 GPU and
32 GB memory. Each training was set to run 10,000 episodes
using the hyper-parameters listed in Table 4 in Appendix B.
The training using only the force sensor data failed to come
up with a useful policy for controlling the vehicle to pull
the door open due to the insufficient information provided
to the vehicle. The training for the other three methods were
successful for the door-pulling task. Overall, the method of
using force-vision fusion outperformed that of using multi
cameras and the method of using a single camera in terms
of both training efficiency and gained episodic total rewards,
as shown in Fig. 7. With more information from the envi-
ronment, the vehicle learned faster. As we can see, the force
information played an important role for the vehicle to under-
stand the environment from a different perspective even with
less vision information.

B. CONTROL POLICY ASSESSMENT
For the three successfully trained policies, we tested them in
the same training environment. We tested the performance of
each control policy for 100 times with a small variation to
the initial pose of the vehicle at each time. The success rate
and average steps required to complete the task can be used
to assess the control policy. As shown in Table 1, all the three
control policies achieve a high success rate over 98% in the
training environment. The simulation parameters are listed
in Table 3 and environment appearances are shown in Fig. 12
to Fig. 17 in Appendix C.

As we discretized the actions of moving the vehicle and
considered a constant step penalty for both angular and linear
movements, the trained door-pulling process should require
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TABLE 1. Success rate and number of required steps for door pulling.

Success Average Range
Policy rate number of steps
of steps
Single camera input 100% 16 13-20
Multi-camera fusion 98% 13 10-47
Force-vision fusion 100% 11 10-13
TABLE 2. Shortest travel distance.
Policy Vehicle Side bar
Single camera input  0.835m  1.247m
Multi-camera fusion 0.893m  1.108 m
Force-vision fusion  0.571m 1.105m

single-camera policy multi-camera policy  force-vision policy

door —— vehicle —— side bar
------ vehicle path ------ side bar path

FIGURE 8. Traces of the vehicle and side bar motion configurations for
maneuver distance comparison.

as few steps as possible. From Table 1, the force-vision
fusion method required the least average number of steps
and the smallest range from minimum to maximum steps for
completing the task, which was significantly more optimal
than the method of using a single camera. The method of
using all three cameras required fewer average steps than the
method of using a single camera but had the largest variance
of steps, which indicated that using multiple sensors of the
same type was not always better for a task such as door
pulling.

By analyzing the test scenarios with the shortest number
of steps under the control of all the three policies, as shown
in Table 2 and Fig. 8, we also found that the maneuver of
pulling a self-closing door under the policy of the force-vision
fusion method requires the shortest displacement of both the
vehicle itself and the end of the side bar, which infers that
the force-vision fusion based control policy provides the best
result in terms of travel distance.

The sensed force data of the test scenarios can also tell
us whether the door-pulling process was smooth or not.
As shown in Fig. 9, by taking the force information as input,
the door-pulling process trained with the force-vision sensor
fusion policy has smoother force curves in all the three direc-
tions, as there are less fluctuations in the contact force. It also
indicates that the actions with the force-vision sensor fusion
policy are more concise and efficient than those of the other
two policies using cameras only.
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FIGURE 9. Force data of the test scenarios under different control
policies.
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FIGURE 10. Success rate of different control policies.

C. POLICY GENERALIZATION

In order to verify the robustness of the trained policies against
environmental uncertainties, we did the same test in 8 differ-
ent simulated environments (simulation parameters are listed
in Table 3) besides the original training environment (env
0). These environments vary in door appearance (e.g., color,
texture), door width, number of door springs, ground friction,
and lighting conditions. Camera noise and small translational
and rotational offsets were also introduced in the tests. As we
trained the policies to pull a right-hand swing door, we also
tested the policies to pull a left-hand swing door without
retraining the network.

From the test results shown in Fig. 10, the single-camera
policy has the worst generalization capability as the vehicle
barely succeeded to pull the door open in the other environ-
ments. The vehicle performed better in most environments
using the multi-camera policy. However, in environment
2 which has more complex wall texture and worse lighting
conditions, the performance of the multi-camera policy is
even worse, which further indicates that it is not always better
to use multiple sensors of the same type. Unsurprisingly,
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TABLE 3. Simulation parameters.

Properties env) envl env2 env3 env4d envS env6 env7 env8
door mass 10 kg 10kg 20kg 15kg 30kg 20kg 10kg 10kg 10kg
door width 09m O09m O09m 075m 1.05m O09m O09m O09m O09m
door color yellow  wood red pallet gray red yellow yellow yellow
number of spring 2 2 3 2 3 3 2 2 2
door frame color gray wood  black  black black  black gray gray gray
door swing direction  right right right right right right right right left
door handle color white white ~ white  white gold white  white = white  white
wall color white  painted bricks yellow green bricks white  white  white
lighting constant 1 0.2 1 0.5 0.2 1 1 1 1
ground friction pig 0.98 0.98 0.5 0.7 0.7 0.7 0.98 0.98 0.98
ground friction pio 0.98 0.98 0.5 0.98 0.98 0.98 0.98 0.98 0.98
camera translation no no no no no no yes no no
camera rotation no no no no no no no yes no
camera noise no no no no no yes no no no

the force-vision sensor fusion policy shows the best general-
izing capability as it achieved over 98% success rate in most
environments except environments 4 and 5. In environment
4, the door width was increased to 1.05 meters, and the
number of springs were increased as well. Thus, the vehicle
demanded a larger force to pull the door open, so that it failed
in some test cases but still achieved an 83% success rate.
Environment 5 is the same as environment 2, but with noise
added to the cameras (a Gaussian distribution noise mode
with a zero mean and 0.02 variance in images). It turned
out that the polices based on vision alone cannot handle the
camera noise at all, but the force-vision fusion policy still
achieved 53% chance to pull the door open. This also tells
us that the force information from the interaction is very
important in the task of door pulling by a wheeled vehicle. It is
worthy of mentioning that, by slightly changing the height
(5 centimeter lower) and position (2 centimeters back) of
camera 1, as in environment 6, the vehicle could still succeed
under the control of all policies. And in environment 7,
a small angular offset of camera 1 was considered to verify
the robustness of the trained policies. By rotating the camera
about the z-axis by 5 degrees, the success rate of the originally
trained single-camera input policy remained 100%, while the
success rates of the originally trained multiple-camera fusion
and the force-vision sensor fusion policies slightly dropped
to 98%. These results indicate that the trained policies are
robust against small translational and rotational offsets of the
camera pose. In addition, we tested the trained policies in
environment 8 with a left-hand swing door by using the same
vehicle with the side bar installed on the left. We simply
flipped the image from camera 1, reversed the measured
force value with respect to the y-axis, and also flipped the
rotation direction of the vehicle. The test results show that
the resulting success rate of the force-vision sensor fusion
policy is 92%, which is higher than the single-camera input
policy (87%), and the multi-camera fusion policy (55%).
The lower success rate with the multi-camera fusion policy
may be caused by the other two cameras having different
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observations in the new test environment. These results indi-
cate that, for the left-hand side bar control, the policy trained
with the right-hand side bar case can be reused as is (with-
out retraining), providing simply “mirroring” the inputs and
outputs.

Different from the approach of using domain randomiza-
tion to achieve better policy generalization, our force-vision
sensor fusion method can achieve good policy generalization
by only training in a single simulated environment. This is
extremely important for DRL-based approaches in robotic
applications, where domain randomization currently is a pop-
ular solution for bridging the Sim2Real gap although it suffers
from high sample complexity.

V. CONCLUSION

This paper presents an autonomous wheeled vehicle using
reinforcement learning and deep neural network-based force-
vision sensor fusion to address the problem of pulling a
self-closing door, which is the most challenging task in a
door-opening operation. Our approach relies only on a sim-
ple passive side bar attached to the vehicle instead of an
expensive multi-DOF manipulator. The method can success-
fully train a robust control policy from a specifically sim-
ulated environment without using domain randomization or
other main-stream transfer learning techniques. The learned
force-vision sensor fusion-based control policy can success-
fully perform the operation in other environments with differ-
ent visual appearances, door width, ground friction, number
of door springs, and lighting conditions than those in the train-
ing environment. In addition, the tests have also shown that
the force-vision sensor fusion-based control policy is robust
against sensor noise and small translational and rotational
offsets of the camera. It can also be reused as is to pull a
left-hand swing door, which is different from the one used in
training the policy, simply by mirroring the inputs and outputs
without retraining the policy. Further, the trained policy does
not need a preplanned motion trajectory for the vehicle to
perform the operation.
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FIGURE 11. Door handle detection in a camera image.

TABLE 4. Hyper-parameters of PPO learning.

Parameter Value
discount rate y 0.99
clip ratio 0.2
batch size 500
learning rate of actor le-4
learning rate of critic 3e-4

cross entropy influence 8 1e-3

FIGURE 12. Env 0 (for training) and env 6-7 (for test).

The future work will be to transfer the learned policies from
the simulation domain to a real-world door pulling exper-
iment, which is still an open research problem. To deploy
the solution on a real-world mobile vehicle, a lighter version
of the force-vision sensor fusion based DNN may be imple-
mented using weight pruning techniques. We anticipate that
the force-vision sensor fusion method can be transferred to
a real hardware environment without too much tuning as it
has been shown robust against environment variations, sensor
noise and small camera installation offsets.

APPENDIX A
DOOR HANDLE DETECTION IN A CAMERA IMAGE
See Figure 11.

APPENDIX B
HYPER-PARAMETERS OF PPO LEARNING
See Table 4

APPENDIX C
APPEARANCES OF SIMULATION ENVIRONMENTS
See Figures 12-17.
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FIGURE 13. Env 1 (for test.)

FIGURE 14. Env 2 (for test) and env 5 (for test).

FIGURE 15. Env 3 (for test).

FIGURE 16. Env 4 (for test).

FIGURE 17. Env 8 (for test).
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