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ABSTRACT In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost
importance for a timely, effective and efficient clinical intervention. The continuous video electroencephalo-
gram (v-EEG) is the gold standard for monitoring neonatal seizures, but it requires specialized equipment
and expert staff available 24/24h. The purpose of this study is to present an overview of the main Neonatal
Seizure Detection (NSD) systems developed during the last ten years that implement Artificial Intelligence
techniques to detect and report the temporal occurrence of neonatal seizures. Expert systems based on the
analysis of EEG, ECG and video recordings are investigated, and their usefulness as support tools for the
medical staff in detecting and diagnosing neonatal seizures in NICUs is evaluated. EEG-based NSD systems
show better performance than systems based on other signals. Recently ECG analysis, particularly the related
HRV analysis, seems to be a promising marker of brain damage. Moreover, video analysis could be helpful to
identify inconspicuous but pathological movements. This study highlights possible future developments of
the NSD systems: a multimodal approach that exploits and combines the results of the EEG, ECG and video
approaches and a system able to automatically characterize etiologies might provide additional support to
clinicians in seizures diagnosis.

INDEX TERMS Deep learning, ECG, EEG, HRV, machine learning, neonatal seizures, neonatal seizure
detection, NICUs, NSD, video analysis, seizure detection.

I. INTRODUCTION
‘‘Neonatal seizures are defined as paroxysmal alterations
of neurological functions, that occur within the 28th day of
life in full-term newborns’’ [1]. The occurrence of seizures
is quite common during the neonatal period, especially
in preterm newborns: the estimated incidence is about
1-5/1000 live births, and 8.6/1000 in Neonatal Intensive Care
Units (NICUs) [2]. The immature brain is characterized by
high hyper-excitability due to poor inhibitory mechanisms
and a surplus of excitatory neurotransmitters. Thus, weakly
propagated fragmentary seizures can be generated [3], [4].

In NICUs, the early detection of neonatal seizures
is of utmost importance for an effective and efficient
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clinical intervention. Seizures occurring in newborns are
quite different from those of adults and children. Poor clin-
ical manifestations characterize up to 70% of all neonatal
seizures, thus they can be confused with normal neonatal
behaviour [5], [6]. For this reason, electroencephalographic
(EEG) monitoring is considered the most appropriate diag-
nostic technique to identify neonatal seizures. Specifically,
the American Clinical Neurophysiology Society (ACNS) has
recently defined continuous video EEG (vEEG) as the gold
standard in the diagnosis of neonatal seizures [7], [8]. In fact,
EEG records the spontaneous electrical cerebral activity, and
video recordings allow monitoring possible clinical manifes-
tation of seizures. Commonly, both video and EEG signals
are evaluated and interpreted by visual inspection. How-
ever, this process is time-consuming and requires expert staff
available 24/24h. Therefore, computer-based and machine
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learning techniques would be helpful to support seizure
detection [9], [10].

Over the years, several studies have proposed Neonatal
Seizure Detection (NSD) systems to automatically detect and
characterize critical events, using specific Artificial Intelli-
gence (AI) techniques. These systems are mainly based on
algorithms applied to EEG, electrocardiogram (ECG) and
video signal. Specifically, EEG is usually investigated to
identify the presence of irregularities or characteristic trends
due to seizures [9], [11]–[22]. ECG is analyzed to evaluate
alterations of the heart rate variability due to changes in the
control of the cardiovascular system [23]–[25]. Few studies in
the literature attempted to improve the NSD systems’ perfor-
mances by investigating the combination of EEG and ECG
signals [26]–[28]. Finally, video recordings are examined
to detect the presence of possible ‘‘unusual’’ movements of
the newborn induced by the seizure [29]–[36]. Some papers
describe the main existing approaches for neonatal seizure
detection [37], [38]. However, in the last years, the interest
in developing NSD systems increased thanks to the progress
in the artificial intelligence field, and several novel methods
have been introduced.

The purpose of this study is to present a survey of the main
NSD systems developed in the last ten years that implement
AI techniques to detect and report the temporal occurrence
of neonatal seizures. Expert systems based on the analysis of
EEG, ECG and video recordings are investigated, and their
usefulness as support tools for the clinical teams in diagnos-
ing neonatal seizures in NICUs is evaluated. The search was
performed in June 2021 based on the Scopus database using
the following keywords: ‘Neonatal seizure detection’. This
search identified about 1196 articles. The search was then
refined considering papers published in the last ten years and
using the MeSH terms: ‘Automated systems / EEG moni-
toring / HRV / motion detection’ AND ‘Neonatal seizure’,
‘Seizure detection’ AND ‘NICU’, ‘image/video’ AND ‘pro-
cessing’ AND ‘Neonatal seizure / NICU’. Some more papers
previously published were also considered to be milestones
in the development of NSD systems. Among all the papers,
those focusing on expert systems for the automatic analysis
of multi-channel EEG, ECG and video signals in NICUswere
selected. Papers based on the amplitude-EEG (aEEG) and
single-channel EEG were excluded. Thus, 27 papers were
retained for this survey and will be summarized here.

This paper is organized as follows: Section II introduces
and explains the main metrics used to report and evaluate the
NSD systems’ performances.

In Section III, 13 (Table 1, 2, 3) papers dealing with NSD
EEG-based systems are summarized. Several studies focus on
EEG signals, as they allow investigating the electrical activa-
tion of neuronal patterns that represents the main parameter
for a first assessment of brain function.

Section IV presents 3 (Table 4) NSD ECG-based systems.
The ECG-based analysis is of interest in NSD being routinely
performed without requiring specialized training. However,
identifying seizures through ECG analysis is still challenging.

Thus 3 studies (Table 5) attempt to improve the NSD sys-
tems’ performances by investigating the combination of EEG
and ECG signals. Eight NSD video-based systems (Table 6)
are presented in Section V. Video analysis is an appealing
contact-less approach for seizure detection based on neonatal
gestures. Finally, Sections VI, VII are devoted to discussing
the NSD systems as clinical decision support tools, highlight-
ing possible future developments of the NSD systems.

II. MATERIAL AND METHODS
A. PERFORMANCE ASSESSMENT
A standardized performance assessment framework for the
seizure detection task is currently missing, and the metrics
used to report NSD systems results vary in the literature [39].
Therefore, a comparison of the proposed approaches is chal-
lenging [39], [40].

The main metrics used to describe the performance of
seizure detection systems can be divided into epoch-based
and event-based metrics [39], [40].

The epoch-based metrics are based on the segmentation of
the signals into specific time windows, called ‘‘epochs’’. This
technique is a typical pre-processing step in the NSD systems.
The set of analyzed epochs is divided into two classes: the
seizure epochs are conventionally named ‘‘positive’’, and the
non-seizure epochs as ‘‘negative’’. Seizure detection is thus
a binary problem. Generally, the classifiers developed for
seizure detection provide the probability that a certain epoch
belongs to the positive/negative class. The performance of the
systems is obtained by evaluating the decisions made by the
classifier against the manual labelling made by one or more
experts in neonatal EEG for each epoch.

The decision made by the classifier can be represented by
the so-called confusion matrix, made of four categories: true
positives (TP), i.e. epochs correctly labelled as seizures; false
positives (FP), i.e. epochs incorrectly labelled as seizure; true
negatives (TN) refer to correctly labelled non-seizure epochs;
false negatives (FN) that are epochs incorrectly labelled as
non-seizure [39].

In the literature, three main metrics are widely used:
Sensitivity (SEN), Specificity (SPE) and Accuracy (ACC).
SEN (1) is defined as the ratio of the number of epochs
correctly labelled as seizures and the total number of seizure
epochs [40]; SPE (2) is defined as the number of epochs
correctly labelled as non-seizures over the total number of
non-seizure epochs [39]; ACC (3) is defined as the ratio
of the number of epochs correctly labelled as seizures and
non-seizure and the total number of epochs.

SEN =
TP

(TP+ FN)
(1)

SPE =
TN

(TN+ FP)
(2)

(3)

ACC =
TP+ TN

(TP+ FN+ TN+ FP)
(4)
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Most papers also report the Receiver Operator Character-
istic (ROC) curves, obtained by plotting SEN against SPE
(or 1-SPE). The Area Under the ROCCurve (AUC) is another
crucial parameter for comparing the performances of differ-
ent systems [39]. Sometimes the Precision-Recall curves are
used as an alternative to ROC curves: Precision is defined
as the percentage of correctly labelled seizure epochs, and
Recall is the same as Sensitivity [39].

Usually, the time interval between the start and the end time
instant of a seizure labelled by the experts is called ‘‘event’’.
The main event-based metrics are:
• Good Detection Rate (GDR), which is the overall per-
centage of the seizure events correctly identified by the
system 40]. A seizure event is correctly identified if the
system detects at least one epoch during the event.

• False Discovery Rate (FDR), which is the overall per-
centage of the seizure events incorrectly identified by
the system [40].

• False Detection per Hour (FDH), which describes the
number of seizures events identified by the system in 1 h
that have no overlap with the events labelled by the
expert [39].

• Mean False Detection Duration (MFDD), proposed by
Temko et al. [39], ‘‘is assessed by averaging the dura-
tion of all false detections produced by the system at a
single operating point (with a chosen threshold)’’.

The existing NSD systems can be divided into patient-
independent and patient-specific ones.

The patient-independent approach aims at developing sys-
tems able to detect seizures across different subjects. Usu-
ally, these systems are validated by implementing the leave
one-subject out (LOSO) cross-validation: ‘‘this way, all but
one patients’ data is used for training and the remaining
patient’s data is used for testing. This procedure is repeated
until each patient has been a test subject and the mean
result is reported’’ [16]. This operation evaluates the systems’
ability to generalize the classification: once trained on all
available data, it allows achieving performances similar to
those obtained by the system with an unknown dataset [16].

The patient-specific approach aims at developing sys-
tems in which the classifiers’ architecture is designed for
each patient. In the patient-specific models, the k-fold
cross-validation and the hold out validation are usually imple-
mented [41]. The patient-specific approach shows higher per-
formances than the patient-independent one, but it requires
pre/peri-natal data that cannot be obtained [42].

Moreover, the comparison of the existing systems is chal-
lenging as open access neonatal datasets are rarely available.
The Helsinki dataset [43] is the only public one containing
neonatal EEG recordings with annotations of seizures to the
best of our knowledge. It collects multi-channel EEG signals
from 79 full-term newborns at the NICU of the Helsinki
University Central Hospital. The recordings have a mean
duration of 1 h and were obtained using 19 electrodes in
the so-called double-banana layout. Only critical events with
a duration > 10 s are considered. Three experts separately

annotated the signals: 39 out of 79 newborns have seizure
activity with the unanimous consensus of the three experts.

III. NSD EEG-BASED SYSTEMS
In this section, the main NSD systems based on the analysis
of the EEG recordings are summarized.

These systems aim at distinguishing the seizure epochs
from the non-seizure ones investigating EEG recordings.
Generally, algorithms developed for the seizure detection task
provide the probability that a certain epoch belongs to the
seizure / non-seizure class. Threshold values to take decisions
must be defined.

Several studies proposed computer-based systems based
on three approaches: the heuristic, the data-driven and the
deep-learning approaches.

A. THE HEURISTIC ALGORITHMS
The heuristic algorithms are based on the empirical definition
of rules, threshold values, and specific parameters obtained
testing the data. Specifically, these algorithms are usually
based on the morphology of the EEG traces, mimicking the
visual inspection made by the clinician that searches for a
variation in the signal trend from the regular background
activity, usually looking for repetitive waveforms character-
ized by the presence of spikes or regular oscillations [37].

Liu et al. [11] developed a system based on autocorre-
lation analysis to characterize periodic activity in neonatal
EEGs and distinguish seizures from background behaviour.
A dataset of 12-channels EEG signals from 14 newborns
was considered. The signal from each EEG channel was
separately pre-processed and segmented into 30 s epochs.
From the EEGs of 9 out of 14 newborns, 2-11 epochs contain-
ing seizure activity were selected; control EEG epochs were
extracted from recordings of 11 newborns. The system gave:
SEN = 84% and SPE = 98%.
Gotman et al. [12] presented three methods to detect

rhythmic discharges, multiple spikes, and very slow rhythmic
discharges. They compared some important features about
rhythmicity, power and stability of the spectrum of a specific
epoch with those of an earlier epoch in the background.
A dataset of 55 newborns was considered for the training
step, coming from 3 centers: Montreal Children’s Hospi-
tal, Montreal, Canada; Sydney Children’s Hospital, Sydney,
Australia; Texas Children’s Hospital, Houston, Texas. The
testing dataset was composed of EEG signals from 9 new-
borns at the Montreal Children’s Hospital, Montreal, Canada;
14 newborns at the Sydney Children’s Hospital, Sydney,
Australia; 18 newborns at the Texas Children’s Hospital,
Houston, Texas [44]. The EEG signals were segmented into
10 s epochs with 75% overlap. The system gave: SEN= 71%.

Deburchgraeve et al. [13] identified two major seizures
patterns and developed two separate detection algorithms
running in parallel. The first algorithm aimed at detect-
ing high-frequency activity and the so-called ‘‘spike train
seizures’’; the second aimed at detecting low-frequency activ-
ity, and the so-called ‘‘oscillatory seizures’’. The detection

138176 VOLUME 9, 2021



B. Olmi et al.: Automatic Detection of Epileptic Seizures in NICUs Through EEG, ECG and Video Recordings

TABLE 1. NSD EEG-based systems based on the heuristic approach. adopted method, size of the datasets, epochs duration and systems’ performances
are summarized.

occurred if one or both algorithms detected a seizure.
A dataset of EEG recordings of 26 full-term newborns at the
NICUs of the Sophia Children’s Hospital, Netherlands, was
considered, among which 21 newborns had seizures. The sig-
nal from each EEG channel was separately pre-processed and
segmented into 5 s epochs, with 4 s overlap. The combined
algorithms gave: SEN = 88%, FDH = 0.66 h−1.
Navakatikyan et al. [14] developed a neonatal detection

system in which the EEG traces were divided into parallel
wave sequences to mimic the manual segmentation made
by an expert clinician. The algorithm aimed at detecting
increased regularity in EEG wave sequences to detect seizure
discharges. A dataset of multi-channel EEG from 61 new-
borns at Royal Brisbane and Women’s Hospital, and Royal
Children’sHospital, Brisbane, Australia, was considered. The
recordings from 6 newbornswere selected for the training, the
recordings of the remaining 55 newborns were considered for
the testing. The algorithm’s performance was evaluated using
three different methods. In the first method, the sensitivity
was defined as the percentage of detected seizures marked
by the specialist [14]. In the second method, the sensitivity
was defined considering the duration of both seizures and
events instead of their number [14]. In the third one, only the
intersecting time of the detected event with a marked seizure
was considered a match, or a true-positive time interval [14].
The three methods gave sensitivity values ranging between
83% and 95%.

Table 1 summarizes methods, datasets, pre-processing and
performances of the studies mentioned above based on the
heuristic approach.

B. THE DATA-DRIVEN ALGORITHMS
The data-driven approaches use machine-learning techniques
based on the extraction of specific features to characterize
the data and thus to make decisions. The features, rules and
thresholds for the decision-making process are learned from
the data during the training step. Generally, the EEG traces
are segmented into epochs in which the signal is almost sta-
tionary, and the features are extracted from these epochs [37].

The features are defined in the frequency, time and informa-
tion theory domains.

Thomas et al. [15] presented a real-time NSD system
based on Gaussian Mixture Models (GMM) classifiers. The
dataset used in this study was recorded in the NICU at Cork
University Maternity Hospital, Cork, Ireland. It comprises
8-channel EEG signals from 55 full-term newborns with
Hypoxic-Ischemic Encephalopathy (HIE), of which 17 had
seizures. The dataset contained 267 h of EEG recordings
and a total of 705 seizure events with a duration average
of 3.89 min. This set was used for training and testing using
LOSO cross-validation. The signal from each EEG channel
was separately pre-processed and segmented into 8 s epochs
using a sliding window with 50% overlap between epochs.
From each epoch, 55 features were extracted, defined in time,
frequency and information theory domains. The Principal
Component Analysis (PCA) at 99% and the Linear Discrimi-
nant Analysis (LDA) were implemented to reduce the feature
space’s dimensionality and improve the classification, obtain-
ing a subspace of 30 features. The features from each epoch
and each channel were fed into Gaussian Mixture Model
(GMM) classifiers. Each classifier provided the probability
that a certain epoch belongs to the seizure/non-seizure class.
These decisions for single channels were combined into a
multi-channel decision. Then, the collar operation, which
consists of joining consecutive outputs of the classifier, was
implemented [39]. The system, trained on 30 features, gave:
GDR= 79%, FDH= 0.5 h−1, MFDD= 2 min, SPE= 93%,
SEN= 76%. The test was then applied to the signals of three
more patients, confirming these performances. This result
highlights that the LOSO operation appropriately describes
the system’s ability to generalize the classification. False
detections were caused by background activity, artefacts and
seizure-like patterns. Missed seizures were seizures of short
duration (< 1 min).
Temko et al. [16] replicated the above-mentioned study:

they replaced the GMM classifiers with Support Vector
Machine (SVM) classifiers. The proposed system correctly
detected 89% of seizure events (GDR) with 1 false detection

VOLUME 9, 2021 138177



B. Olmi et al.: Automatic Detection of Epileptic Seizures in NICUs Through EEG, ECG and Video Recordings

TABLE 2. Main NSD EEG-based systems based on the data-driven approach. adopted method, size of the datasets, epochs duration and the systems’
performance are summarized.

in 1 h (FDH), 96% with 2 false detections and the 100% with
4 false detections.

Pavel et al. [17] developed and evaluated a new NSD
system called ‘‘ANSeR’’ (Algorithm for Neonatal Seizure
Recognition). They performed a ‘‘multicentre, randomized,
two-arm, parallel, controlled study’’ [17] in eight NICUs
across Ireland, Netherlands, Sweden and the UK. A dataset
of 258 newborns (gestational age between 36 and 44 weeks)
was considered. The newborns were split into two groups:
‘‘the algorithm group’’ and the ‘‘non-algorithm group’’. The
first one was made of 128 newborns (32 of which with
seizures) monitored using both cEEG and ANSeR algorithm.
The other 130 newborns (38 with seizures) were assigned to
the ‘‘non-algorithm group’’ and controlled with routine cEEG
monitoring alone. The cEEG recordingswere annotated twice
by independent expert neurophysiologists. A patient was con-
sidered as a ‘‘neonate with seizures’’ if there was at least
one seizure with an overlap of 30 s between the two experts’
annotations (‘‘confirmed seizure’’). A time-interval of EEG
recordings lasting 1 hour was defined ‘‘seizure hour’’ if there
was at least one confirmed electrographic seizure within that
hour. The ANSeR system displayed the seizure probability
trend in real-time, and when a predefined threshold was
reached, an audible and visible alarm was activated. In this
study, only seizures with a duration > 30 s were considered.
Although the performance in distinguishing between patho-
logical and healthy newborns was not significantly different

between the two groups (in the non-algorithm group: SEN =
89.5%, SPE= 89.1%, FDR= 22.7%; in the algorithm group:
SEN = 81.3%, SPE = 84.4%, FDR = 36.6%), the use of
ANSeR enhanced the recognition of seizures’ hours. Specif-
ically, in the non-algorithm group: SEN = 45.3% and in the
algorithm group: SEN = 66%.

Tapani et al. [18] presented a NSD system based on
the autocorrelation analysis that aims at highlighting the
time-varying periodicity characteristic of seizure’s epochs.
They built a new and public database [43]. It was made of 18-
channel EEG signals from 79 full-term newborns admitted
in the NICU of the Helsinki University Central Hospital.
The recordings have a mean duration of 1 h and were made
using 19 electrodes in a double-banana layout. In this study,
only critical events with a duration > 10 s were considered.
Three experts annotated the dataset separately; 39 out of
79 newborns have seizure activity with unanimous consen-
sus by the three experts. The signal from each EEG chan-
nel was separately pre-processed and segmented into 32 s
epochs using a sliding window with 28 s of overlap between
epochs. From each epoch, 21 features were extracted, defined
in time, frequency and information theory domains, and
characteristics of autocorrelation analysis. These features
were fed into SVM classifiers. The single channel binary
decisions were combined into a multi-channel binary deci-
sion, and then the collar operation was implemented. The
system was trained and evaluated implementing the LOSO
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cross-validation, and it gave: AUC = 92%; SEN = 76%;
SPE = 99%.
In Table 2 a summary shows methods, datasets, validations

and performances of the above-mentioned studies based on
the data-driven approach.

C. THE DEEP-LEARNING ALGORITHMS
The choice of the features in data-driven methods is a crucial
operation as it determines the classifiers’ performances. The
need for feature extraction can be overcome by introducing
deep-learning algorithms that do not require hand-designed
features [44]. Among the different types of existing Deep
Neural Networks (DNN), the Convolutional Neural Net-
works (CNN) are the most used in image analysis and signal
processing, where time series can be processed as images
through spectrograms. Recently, CNNs and in general deep
neural networks were used to analyze EEG recordings too.

Ansari et al. [19] compared a novel algorithm
based on CNN, heuristic and data-driven algorithms.
They implemented the heuristic model developed by
Deburchgraeve et al. [13], based on the detection of ‘‘spike-
train seizures’’ and ‘‘oscillatory seizures’’ and the data-driven
one proposed by Thomas et al. [15], in which they replaced
the SVM classifiers with Random Forest ones. A dataset of
multi-channel EEG recordings from 48 full-term newborns
was used. These patients, with assumed HIE, were admitted
to the NICUS of Sophia Children’s Hospital, Rotterdam,
Netherlands. In the training step, 30.000 epochs of 90 s
duration each were selected from 26 newborns from all
available bipolar channels. For the test dataset, the recordings
of the 22 remaining patients were segmented into 90 s epochs,
with 60 s overlap. A CNN algorithm is proposed that does not
need hand-designed features. After the training, a Random
Forest classifier replaced the last five classifying layers to
improve the performances. In this way, the remaining layers
of the CNN work as an ‘‘automatic feature extractor’’. The
overall performances highlights that the CNN-based method
was more efficient than the data-driven ones (AUC = 83%;
SEN = 77%; SPE = 78%; GDR = 77%; FDH = 0.90 h−1),
but less than the heuristic one (AUC = 88%; SEN = 77%;
SPE = 90%; GDR = 77%; FDH = 0.63 h−1). This could
be due to the limited amount of data used for the study:
indeed, CNN requires a large, varied and balanced database.
Instead, the heuristic method, which aims at mimicking a
human observer, is based on the clinicians’ knowledge.

O’Shea et al. [20] presented a comparison between two
feature-based and data-driven machine learning algorithms
(Temko et al. [16], Tapani et al. [18]) and two novel systems
based on Fully Convolutional Neural Network (FCNN): the
1D FCNN architecture, and the 2D FCNN one. In the training
phase of the 1D FCNN, a single EEG channel was processed
at a time, needed for the so-called ‘‘strong labels’’ that are
seizure events annotated both in time and in space. The
2D FCNN architecture, which has multiple EEG channels
as input, could be trained using only the ‘‘weak labels’’: in
this case, the start and end time of the seizure were defined,

but the spatial location was not specified. In the FCNN sys-
tems, all the EEG channels were segmented in 8 s epochs
and sampled at 32 Hz. A number of 256 × 1 vectors was
used as input of the 1D architecture, and 256 × N arrays
as input of the 2D one, where N is the number of the EEG
channels. They were trained and evaluated implementing the
LOSO cross-validation on the Cork dataset [16] and tested
on the Helsinki dataset [43]. It was shown that the FCNN
architecture outperformed the other algorithms, confirming
that the FCNN-based approaches can overcome the problem
of finding appropriate features. Specifically, the 2D FCNN,
based on weakly labelled data, showed the best performance
(concatenated AUC = 95.6%). This architecture does not
need the time consuming ‘‘strong-labels’’, therefore reducing
the workload for the clinical annotators.

Tanveer et al. [21] developed a system based on the public
dataset collected at the Helsinki University Hospital. Specif-
ically, only the 19-channel EEG signals of the 39 newborns
with seizure activity were considered. They presented three
different 2D CNNs. Each model was trained and tested on
one expert annotation. The EEG signals, sampled at 256 Hz,
were segmented into 1 s epochs. To increase the number of
seizure’s samples, an overlap of 50% was used for seizure
epochs. The models had as input all the EEG channels during
a certain time window: 256 × 19 arrays were the input of
the neural networks. To prevent overfitting, a categorical
cross-entropy based loss function was introduced. It mea-
sures the distance between the output probabilities of the
network and the truth values [45]. During the model training,
the model weights are tuned to minimize the cross-entropy
loss. The dataset was split into a training set (90%) and a
validation set (10%), using the 10-cross fold validation tech-
nique. To define an overall prediction, a method based on all
three model predictions was implemented that outperformed
the single CNNs, giving: ACC = 96.3% and AUC = 99.3%.
Caliskan and Rencuzogullari [9] introduced a novel

patient-specific NSD system based on the transfer learning
technique, overcoming the CNNs’ need for a large amount
of data samples for training. Transfer learning is a machine
learning tool that allows ‘‘to transfer the knowledge from the
source domain to the target domain by relaxing the assump-
tion that the training data and the test data must be indepen-
dent and identically distributed’’ [46]. They presented some
well-known pre-trained Deep CNNs (p-DCNNs) trained
on the ImageNet database, such as AlexNet, GoogleNet,
DenseNet and ResNet18. The last three layers of the net-
works were adapted to identify neonatal seizures. The public
dataset of the Helsinki University Hospital [43] was consid-
ered. Specifically, in this study, a subset of multi-channel
EEG signals from 39 epileptic newborns was considered
(mean duration per patient 74 min). The signal from each
EEG channel was separately pre-processed and segmented
into 30 s epochs, with a 2 s sliding interval. The networks’
inputs were created, converting the raw windowed EEG sig-
nals to 3 channel, 24 bits colour images. Specifically, a dataset
of 106.796 images was built, 37.269 of which were labelled

VOLUME 9, 2021 138179



B. Olmi et al.: Automatic Detection of Epileptic Seizures in NICUs Through EEG, ECG and Video Recordings

TABLE 3. Main NSD EEG-based systems based on the deep-learning approach. adopted method, size of the datasets, epochs duration and the systems’
performances are summarized.

as a seizure. 50% of images were randomly selected for each
patient to build the training and the test sets. To evaluate
the classification performance, Caliskan et al. compared the
results obtained using AlexNet, GoogleNet, Densenet and
ResNet18 and built a conventional CNN with 6 layer depth.
The accuracy and the AUC curve for all the 39 newborns
showed that the DenseNet-based method has the best perfor-
mance (mean AUC= 99%). A statistical analysis highlighted
that all the p-DCNNs have better performance than the CNN,
thus allowing the detection of neonatal seizures overcoming
the limited dimension of the training data set.

Recently, O’Shea et al. [22] presented a novel system
based on deep learning algorithms to detect neonatal seizures,
focusing on preterm infants. In this study, they considered
two of the above-mentioned algorithms, trained on datasets
of full-term patients: the SVM-based one [16] and the
FCNN-based one [20]. These approaches were tested on a
dataset of 8-channel EEG of 16 preterm newborns (gesta-
tional age < 32 weeks) admitted to the NICUs of the Cork
University Maternity Hospital, Ireland (total duration 575 h).
Six out of 16 patients had seizure events, and the remain-
ing 10 were control patients. The SVM-based algorithm
(called ‘‘SVM T-SDA’’, where T stands for full-term new-
borns) gave AUC= 88.3%, and the FCNN-based one (called
‘‘DL T-SDA’’, where T stands for full-term newborns) gave
AUC = 93.3%. Then, they retrained the algorithms on a
dataset of 14-channel EEG recordings from 17 preterm new-
borns (gestational age < 32 weeks) admitted in the NICUs
of Parma University Hospital, Italy (mean duration 1 h and
19 min). These algorithms were tested on the Cork preterm
dataset with the following results: AUC = 89.7% with
SVM P-SDA (where P stands for preterm newborns), and
AUC = 93.5% with DL P-SDA (where P stands for

preterm newborns). The gestational age (GA) strongly influ-
ences the morphology of the EEG signal. Therefore O’ Shea
et al. divided the training and test sets into 3 groups according
to the GA of the newborns and developed SVM-based and
FCNN-based specific algorithms for each GA group. Finally,
they evaluated the fusion between the FCNN trained on the
term newborns and the FCNN trained on the preterm new-
borns, divided into GA groups. The system obtained by the
fusion of classifiers gave AUC = 95.4%.
Table 3 summarizes methods, datasets, validation and per-

formance of thementioned studies based on the deep-learning
approach.

IV. NSD ECG-BASED SYSTEMS
This section describes the main NSD systems based on
ECG analysis. Indeed, several studies suggest that neona-
tal seizures strongly influence cardiocirculatory activity.
Goldberg et al. [47] considered a dataset of ECG signals
from 9 paralyzed newborns, finding changes in ECG rhyth-
micity, heart rate, blood pressure and oxygenation. There-
fore, they concluded that these fluctuations could be used as
indicators of critical events. Similarly, Watanabe et al. [48]
observed heart rate and respiratory rate changes during
seizures in 215 newborns.

Although many pacemaker tissues exist that control heart
contraction, heart rate and cardiac rhythmicity are largely
regulated by the Autonomic Nervous System (ANS). Indeed,
the sympathetic and parasympathetic nervous systems stim-
ulate the heart by increasing and decreasing heart rate.
Therefore, the evaluation of changes in inter-beat time inter-
vals (Heart Rate Variability – HRV) can provide impor-
tant information about the effects that seizures have on
ANS’s functions. For example, Bersani et al. [49] suggested
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the HRV analysis as ‘‘a possible marker of brain damage’’
in the case of HIE. In order to perform the HRV analysis,
the ECGs signals are usually pre-processed through a denois-
ing procedure that preserves clinically relevant information.
Afterwards, signals are segmented into individual beats [50],
highlighting the QRS complexes.

Generally, the HRV spectrum is divided into spectral
bands, and each of these bands is associated with different
activities of the sympathetic and parasympathetic nervous
systems [51]. In the literature, several ranges of frequency
bands have been defined. In fact, these values strongly depend
on the health of the ANS, age, and the patient’s physiological
conditions. The HRV signal can be obtained from the ECG,
and its characteristics can be analyzed with different algo-
rithms in the time or frequency domain. Several researchers
have recently focused their studies on HRV analysis to detect
seizures. ECG signal is routinely performed, and its recording
is easier and less invasive than EEG [25].

Malarvili et al. [23] investigated the HRV signals by eval-
uating the Time-Frequency Distribution (TFD). The TFD is
a bidimensional function that describes the instantaneous fre-
quency of the signal in the combined time-frequency domain.
This study considered a dataset of one-channel ECG signal
of 5 newborns collected at the Royal Children’s Hospital,
Brisbane, Australia. This dataset consisted of 6 seizure events
and 4 non-seizure events of 64 s each from 5 different new-
borns. All ECG traces were processed to extract the HRV sig-
nal. To analyse the HRV signal and recognize seizure events,
the selected features were the first and the second conditional
moments of the three spectral components: Low Frequency
(0.03–0.07 Hz), Mid Frequency (0.07–0.15 Hz) and High
Frequency (0.15–0.6 Hz). The LOSO cross-validation was
implemented. By evaluating the overall performances, it was
shown that the first conditional moment allows discriminat-
ing critical events from non-critical ones at low frequencies.
This suggests that neonatal seizures mainly affect the HRV
components in the low-frequency band, which are attributed
to sympathetic activity by the authors (SEN = 83.33%,
SPE = 100%).
Greene et al. [24] introduced a NSD ECG-based sys-

tem using a Linear Discriminant (LD) classifier. A dataset
of 8 ECG recordings from 7 full-term newborns admitted in
NICU for HIE was considered. It was made of 520 seizure
events (mean duration 3.86 min). Seven out of 8 ECG sig-
nals were recorded in the NICUs of the Unified Mater-
nity Hospitals in Cork, Ireland, the remaining one was
recorded in the NICU of Kings College Hospital, London.
The ECG signals were segmented into 60 s epochs. An epoch
was defined as a seizure epoch if 50% of its duration was
interested in the critical activity. The R peaks were detected
using an appropriate QRS detection algorithm, and fea-
tures describing RR intervals’ properties in time, frequency
and information theory domains were extracted. These fea-
tures were fed into a supervised LD classifier that looks
for the best linear combination of features to distinguish
seizure and non-seizure classes. Greene et al. developed

a patient-specific and a patient-independent system. The
patient-specific approach showed better results than the
patient-independent one. It was evaluated by implementing
a ten-fold cross-validation on each record. Specifically, each
record was iteratively and randomly split into 10 folds, and
9 of these folds were used to train the classifier; the remain-
ing one was used to test the classification. The obtained
results were averaged, and the classifier’s performance for
each patient was evaluated. The patient-specific system gave:
ACC = 66.04%; SEN = 75.52%; SPE = 57.70%. The
patient-independent systems were validated implementing
the LOSO operation, giving ACC = 61.80%; SEN = 78%;
SPE = 51.75%. The patient-specific approach shows higher
performances than the patient-independent one: however,
it requires patient-specific data that cannot be obtained before
the baby is born [42].

Doyle et al. [25] investigated the utility of HRV analysis
to develop a NSD based on a SVM classifier. The Cork
dataset was considered [16]. Specifically, only the record-
ings of 14 out of 17 newborns were considered with a total
duration of 207.86 h. They are characterized by the pres-
ence of 697 seizure events (mean duration 3.83 min). Firstly,
the HRV signal was extracted from the ECGs and segmented
into 60 s epochs. Then, from each epoch, 62 features defined
in time and frequency domains were extracted. These features
were fed into two SVM classifiers: one characterized by a
linear kernel and the other by a non-linear kernel. The two
systems were evaluated by implementing the LOSO cross-
validation. Both the systems gave: mean AUC = 60% and
mean SEN= 60%. Later, the feature selection operation was
implemented to select the most suitable features to discrim-
inate between seizure and non-seizures epochs and prevent
redundancy problems. Therefore, the non-linear SVM system
was re-trained with a subset of 35 features, giving a lower
value of AUC (55%): in fact, some features relevant for some
patients were removed by the selection operation.

Table 4 summarizes methods, datasets, pre-processing
and performances of the mentioned studies based on the
ECG analysis.

A. NSD SYSTEMS BASED ON THE COMBINATION
OF EEG AND ECG
Few studies in the literature attempted to improve the NSD
systems’ performances by investigating the combination of
EEG and ECG signals.

Greene et al. [26] considered two methods for combining
ECG and EEG signals: the early integration (EI) and the late
integration (LI). The first one is based on a single feature vec-
tor, obtained concatenating the EEG and ECG features and
fed them into a classifier. The late integration made use of one
classifier for each signal: two output probabilities are com-
bined to define an overall probability of seizure. A dataset
of 12 recordings from 10 full-term newborns admitted to
NICU for HIE was considered. Ten out of 12 recordings were
made in the Unified Maternity Hospitals in Cork, Ireland
(sampled at 256 Hz); the remaining one was made at Kings
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TABLE 4. Main NSD ECG-based systems. method, size of the datasets, validation methods and the systems’ performances are summarized.

College Hospital, London (sampled at 200 Hz). Each record-
ing was composed of multi-channel EEGs and one-channel
ECGs. The EEG signals were annotated by expert clinicians
that detected 633 seizure events (mean duration 4.60 min).
The ECG signals were segmented into non-overlapping 60 s
epochs as described in [24]. A total of 16.384 samples
was obtained: 15.360 for a record sampled at 256 Hz and
12.000 for a record sampled at 200 Hz. The R peaks were
detected from each epoch, and 6 features describing RR
intervals’ properties in time, frequency and information the-
ory domains were extracted. The signal from each EEG
channel was separately pre-processed and segmented into
non-overlapping 8 s epochs (2048 samples at 256 Hz). From
each epoch, 6 features defined in time, frequency and infor-
mation theory domains were extracted. Each feature vector
from different channels was concatenated to create a single
‘‘super feature vector’’. A sorting function was implemented
to remove information about the spatial location of the seizure
by distinguishing feature values of ‘‘channel involved in a
seizure’’ and ‘‘channels not-involved’’. The ECG signal was
segmented into non-overlapping 60 s epochs and the EEG sig-
nal into non-overlapping 8 s epochs: to combine the informa-
tion of the two signals, the ECG frame rate wasmatched to the
EEG frame rate by interpolation. The EI and LI frameworks
were developed using LD classifiers, and both approaches
were evaluated in patient-specific and patient-independent
configurations. The 10-fold cross-validation was imple-
mented for the patient-specific classifier, while for the
patient-independent one, the LOSO cross-validation was
implemented. The performances were evaluated by aver-
aging the results across recordings. In the patient-specific
framework the EI approach gave: GDR = 95.82%; FDR =
11.23%; ACC = 86.32%; SEN = 76.37%; SPE = 88.77%,
while the LI approach gave: GDR = 97.52%; FDR =
13.18%; ACC = 84.66%; SEN = 74.08%; SPE = 86.82%.
In the patient-independent framework the EI approach gave:

GDR = 81.44%; FDR = 28.57%; ACC = 71.51%; SEN =
71.73%; SPE= 71.43% while the LI approach gave: GDR=
81.27%; FDR = 33.05%; ACC = 68.89%; SEN = 74.39%;
SPE = 66.95%. The patient-specific approach shows higher
performances than the patient-independent one. However,
as mentioned above, the patient-specific approach is not suit-
able for neonatal application [42]. The patient-independent
performances result appealing, but their clinical utility is
limited by the high FDR.

Based on the above-mentioned study [26],
Mesbah et al. [27] investigated the early integration
(‘‘feature fusion’’) and the late integration (‘‘classifier
fusion’’), introducing some changes and novelties. They
considered a different dataset and segmented the EEG and
ECG signal into epochs of different duration. Moreover,
they selected different sets of features to analyse the signals
and considered different types of classifiers. The dataset
was made of EEG-ECG recordings from 8 full-term new-
borns admitted to the Royal Brisbane Hospital, Brisbane,
Australia. A paediatric neurologist annotated the EEG, hence
13 seizure events were identified (mean duration 2.54 min).
Then, the ECG signals were segmented into 64 s epochs.
Twenty-one seizure epochs and 13 non-seizure epochs were
randomly selected and considered. The EEG signals were
segmented into 64 s epochs too, and each epoch was fur-
ther divided into non-overlapping 12.8 s epochs. Moreover,
Mesbah et al. introduced some non-stationary features: in
ECG analysis, they considered features defined in time and
in time-frequency domains; in EEG analysis, they considered
features defined in time, frequency, time–frequency, and
time-scale domains. For both signals, the feature selection
operation was implemented to prevent redundancy problems,
and the LOSO cross-validationwas implemented. The feature
fusion framework, based on 1-NN classifier trained on the
selected features, gave: SEN= 95.20%; SPE= 88.60%. The
classifier fusion framework, based on linear classifier (ECG)
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TABLE 5. Main NSD systems based on the combination between eeg and ecg. method, size of the datasets, validation methods and the systems’
performances are summarized.

and 1-NN classifier (EEG) trained on the selected features,
gave: SEN = 95.20%; SPE = 94.30%.
Temko et al. [28] investigated automated multimodal

prediction of outcome in newborns with HIE, based on
features extracted from clinical analysis, EEG and ECG
signals. A dataset of video-multichannel-EEGs and ECGs
from 38 full-term newborns admitted in the NICUs of Cork
University Maternity Hospital was considered. From these
recordings, 1-h segments per patient free from visual arte-
facts were selected. The 1-h segments from each EEG
channel were further segmented into 60 s non-overlapping
epochs. A set of 57 features defined in time, frequency, and
information theory domains describing the brain symmetry
were extracted from each epoch. To combine the informa-
tion across channels, the mean value of the features was
considered. The R peaks were detected using an appro-
priate QRS detection algorithm, defining the HRV signal.
As for the EEG signal, the 1-h recording was segmented into
60 s non-overlapping epochs. A set of 60 features defined
in time, frequency, and information theory domains was
extracted from each epoch. Regarding the clinical features,
the Apgar score, the initial pH and the Base deficit were
analyzed. The EEG and HR features were synchronized,
and the clinical features were characterized by one value
per patient that was replicated for each epoch. The SVM
classifier and the LOSO cross-validation were implemented.
The feature selection operation, named Recursive Feature
Elimination (RFE), was applied in each iteration to the EEG
and HRV sets. The classifier trained on 12 features from

EEG, HR and Apgar showed the best performances, giving
AUC = 86.8%.
Table 5 summarizes methods, datasets, pre-processing and

performances of the mentioned studies based on the com-
bined ECG-EEG analysis.

V. NSD VIDEO-BASED SYSTEMS
This section aims at outlining the most significant
papers about NSD video-based systems. The newborns’
movements can provide crucial information about their
physio-pathological state. The analysis of movement char-
acteristics and properties can be useful for a timely diagnosis
of neurological and neurodevelopmental disorders.

Over the years, many approaches were proposed to eval-
uate the newborns’ movements involving their body and
head through video analysis. Indeed ‘‘limbs and head are
the infant body parts mostly affected by seizure-caused
motion’’ [29]. At present, the detection and classification of
neonatal seizures based on video recordings cannot replace
EEG analysis but allows creating a contact-less seizure detec-
tion system as a support to the clinical decision [52]. Indeed,
Malone et al. [53] showed that ‘‘health care professionals
have difficulty in discriminating between neonatal seizure
and non-seizure movements’’ analyzing video recordings of
themovements only. They considered a dataset made of video
clips of 11 newborns with EEG-confirmed seizures (clonic
and subtle), and 9 newborns with random movements. These
videos were recorded at King’s College Hospital London,
United Kingdom, and at Cork University Maternity Hospital,
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Ireland. The recordings were examined by 137 health care
professionals: the seizure events were correctly identified
only by 20% to 50% of the professionals (41% on average).
Therefore, developing additional systems based on video
analysis capable of identifying even inconspicuous move-
ments would be useful.

Three main approaches in newborns motion detection can
be found:
• frame differencing that aims at highlighting the patient’s
movement by evaluating the difference between consec-
utive video-frames.

• optical flow, based on the relative movement between
the observer and the scene. It allows computing the
speed vector associated with each pixel of the frame.

• tracking methods, based on the selection of regions
of interest and their tracking in a sequence of
frames [38], [33].

Ntonfo et al. [29] developed a system that aimed at dis-
tinguishing the clonic (‘‘periodic seizures over short time
intervals’’) and myoclonic (‘‘seizures that are brief, rapid,
single or arrhythmic repetitive jerks’’) seizures. This system
applies the optical flow technique to define the maximum
optical flow vector amplitude (MIMP) to detect the part of
the body interested by a strong and pathological movement.
Around the MIMP, the Region of Interest (ROI) was selected
on which the subsequent analysis was focused. Moreover,
the ROI was tracked in the image sequences using the tem-
plate matching technique that is based on the Mean Absolute
Difference (MAD) similarity measure. To characterize the
motion, each RGB frame of the sequences was converted
into the greyscale, and then the frame difference between two
consecutive frames was computed. In this way, a sequence of
frames in which the movement was highlighted was obtained.
These frames were converted into a binary scale by selecting
a suitable threshold [1]. Taking into account that the bright
binary pixels were related to the moving body parts, the aver-
age luminosity motion signal was defined by evaluating the
average number of white pixels in each frame. To distinguish
the clonic and myoclonic seizures, the periodicity of the
average luminosity motion signal was evaluated by defining
the Broadening Factor, ‘‘an indicator of how impulsive the
entire movement is’’ [29], and themaximumdistance between
consecutive pairs of zeros of the average luminosity motion
signal.

Later, Ntonfo et al. [30] presented another system that
distinguished between clonic and myoclonic seizures by ana-
lyzing gesture trajectories. They defined theMIMPs as in [29]
and tracked them in the frame sequences using the template
matching technique. The final movement trajectories were
formed ‘‘by joining all the points given by consecutive MIMP
coordinates in a sequential manner’’ [30]. Some trajectory
features were defined and analyzed by clustering to create
groups of movements with similar characteristics. A clus-
ter with high cardinality highlights a repetitive movement.
A dataset of 2 recordings from 2 newborns at the Depart-
ment of Gynecology, Obstetric, and Neonatal Sciences of

the University of Parma, Italy, was considered. One patient
was affected by clonic seizures, the other one by random
movements.

Pisani et al. [31] developed and validated a system that
aims at identifying clonic seizures from other movements
and noise. A dataset of 23 video recordings was analyzed
from 12 full-term newborns admitted to the NICUs of Parma
University Hospital. These videos, containing 78 seizures of
clonic type, were analyzed by visual inspection. 502 noise
events, with a total duration of 04:44:08 h (mean dura-
tion 00:00:34) and 668 motor events with a total duration
of 04:15:22 h (mean duration 00:00:23) were identified. Each
frame of the video recordings was converted into a grey
scale, and the frame difference between two consecutive
frames was computed. The average luminosity motion signal
was obtained as described in [29]. The periodicity of the
signal was evaluated by defining the Normalized AutoCor-
relation Function (NACF) and the Cumulative Mean Nor-
malized Difference Function (CMNDF) [1]. The periodicity
was analyzed considering: ‘‘disjoint consecutive frame win-
dows, where each window lasts 10 s; two interlaced win-
dows, with 50% overlapping; three consecutive interlaced
windows, with 50% overlap between consecutive pairs’’ [31].
The described procedure was also applied to 6 video record-
ings of 5 healthy newborns (total duration 04:34:29 h, mean
duration 00:45:45 h). In these videos, 426 motor events
(total duration 01:19:02 h, mean duration 00:00:11 h) and
99 noise events (total duration 00:14:00 h, mean duration
00:00:08 h) were detected. The system developed using two
interlaced windows gave the best performances in detecting
clonic seizures: AUC = 79.6%; SEN = 71%; SPE = 69%.
In detectingmotor and environmental phenomena, the system
developed using three interlaced windows gave: SPE= 97%.

Cattani et al. [32] developed a system based on the aver-
age luminosity motion signal analysis, obtained as described
in [30]. To study the periodicity of the signal and detect
the clonic seizures, the Maximum Likelihood criterion was
adopted. The motion signals were acquired through multiple
cameras, and depth sensors were considered. Specifically,
three video cameras were set up in the NICUs of the Univer-
sity Hospital of Parma: two cameras recorded the newborn
from the front and the side and the third camera was attached
to the cot to focus on the face. A dataset of 4 recordings of
a newborn with the three cameras was collected. The first
2 videos were characterized by the presence of pathological
movements related to clonic seizures, while physiological
movements characterized the remaining 2 videos. The anal-
ysis was performed considering two 10 s interlaced win-
dows with 50% overlapping. The system gave: SEN ≈ 90%,
SPE ≈ 90%, outperforming the systems based on one or two
cameras only.

To ease the distinction between seizure and non-seizure
events, Karayiannis et al. [33] presented a system performing
a post-seizure analysis based on newborns’ motor activity.
They defined the temporal motion strength through the spa-
tiotemporal decomposition of an image sequence. In this
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way, a specific subband of the decomposed image sequence
was identified, detectingmotion between consecutive frames.
The subband was processed by applying median filters and
segmented, implementing an adaptive version of the k-means
algorithm (k = 3). The white areas in the segmented frames
display the moving parts of the body. The temporal motion
strength was defined by evaluating the average of white areas
in consecutive frames. Moreover, the temporal motor activity
signal was defined by tracking anatomical sites, such as right
leg, left hand, and right hand, through a modified version of
the Kanade-Lucas-Thomasi (KLT) algorithm. These anatom-
ical sites were projected to both the horizontal and the ver-
tical axes across the frames. Four video recordings from the
Clinical Research Centers for Neonatal Seizures (CRCNS),
Houston, TX, were considered: 2 out of 4 were characterized
by the presence of myoclonic seizures, the other 2 by the
presence of focal clonic seizures.

Later, Karayiannis and Tao [34], [35] proposed an
improved method to extract the temporal motion strength
signal. As above, frame differencing was implemented to
highlight the moving parts of the body, but the resulting
frames were segmented with the vector form of the k-means
algorithm (k= 4 clusters of vectors). In this way, the number
of vectors made of background pixels erroneously classified
as moving body parts was reduced.

Moreover, Karayiannis et al. [36] developed a Feed-
Forward Neural Network (FFNN) to classify and recognize
myoclonic, focal clonic seizures and physiological motion.
Two different approaches were compared regarding the tem-
poral motion strength signal: the one described in [34] and
another based on the optical flow [54]. In the latter, the
velocity vectors associated with each pixel of the frame
were defined, and the area containing all the pixels with
a speed greater than a defined threshold was computed.
Similarly, to define the motor activity signal, the predic-
tive block matching technique [55], [56] was compared to
methods involving other models of blocks (‘‘robust motion
trackers’’) [57]. In these studies, a block of pixels of pre-
defined dimension (‘‘reference block’’) was defined in the
first frame of the considered sequence around the anatom-
ical sites of interest. The location of the block was then
predicted, looking for the most similar block in subsequent
frames using Kalman filtering. A dataset of 240 videos from
43 newborns was considered. These recordings were made
at the CRCNS. Specifically, 80 out of 240 records were
characterized by the presence of myoclonic seizures, 80 by
focal clonic seizures and the remaining 80 by physiological
movements. A preliminary comparison between different
techniques highlighted that the most reliable approach to
estimate the motion strength signal was the one based on
the optical flow, while the one based on the robust motion
trackers was found the best to estimate the motor activity
signal. The dataset was split into training (50%) and test
(50%) sets. Firstly, features such as the variance of time inter-
vals, energy ratio, maximum spike duration and the number
of spikes were extracted from the motion strength signal.

These features were fed into the FFNN, that gave
SEN> 95%, SPE> 95%on the training set, and SEN> 90%,
SPE > 95% on the test set. Then, features such as energy
ratio, maximum spike duration, the variance of the time
intervals between the extrema and number of extrema were
extracted by the motor activity signal. These features were
fed into the FFNN, that gave: SEN > 90%, SPE > 90% on
the training set, and SEN < 90%, SPE > 90% on the test set.
Finally, the features extracted from both motion strength and
motor activity signals were fed into the FFNN, which gave
SEN > 90%, SPE > 95% on the training set, and SEN <

90%, SPE > 90% on the test set.
Table 6 summarizes methods, datasets, pre-processing and

performances of the mentioned studies based on the video
analysis.

VI. DISCUSSION
This paper presents a survey of the expert systems devel-
oped in the last ten years for Neonatal Seizures Detection
in NICUs.

Over the years, many approaches were proposed to auto-
matically detect seizure activity in adults and children, inves-
tigating EEG and other physiological signals [58]. In fact,
epilepsy, which is a neurological disease, can affect spon-
taneous electrical cerebral activity. Other signals that are
under cerebral control can also provide information about
the state of the brain [58]. For example, HR alterations com-
monly occur in adults with seizures [58], making heart rate
analysis crucial for seizure detection. HR can be achieved
through ECG or photoplethysmography (PPG). Also respira-
tory activity is relevant and can help in seizure detection [59].
In fact, seizure activity can frequently alter the normal and
physiological respiratory rate. Irregular ventilation during
seizures can be investigated by monitoring blood oxygena-
tion: several studies showed increased cerebral oxygen satu-
ration before seizures that can be efficiently measured using
near-infrared spectroscopy (NIRS) techniques. Furthermore,
seizure-related changes in sympathetic activity can be eval-
uated by investigating skin conductance (SC) modulation,
or generally electrodermal activity (EDA). Motor manifes-
tations of seizures can be analysed by examining the elec-
tromyographic (EMG) signal and using accelerometer-based
(ACM) devices. While the applications of these methodolo-
gies to the newborn are very scarce, there are many studies
and results regarding the adult and the child. The reasons
concern not only the peculiar physiological characteristics of
the newborn, as already pointed out above [60], but also the
difficulty of applying and using adequate sensors in NICUs.
Even though a survey concerning adult and child monitoring
would be interesting, it is out of the scope of this work.
We suggest survey papers [58], [59], and [61] to the inter-
ested reader. Thus, most of the expert systems developed
for Neonatal Seizures Detection in NICUs summarized in
this review are based on EEG, ECG and video analysis,
as these signals are usually recorded andmonitored inNICUs.
Several studies investigated how the seizures occurrence
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TABLE 6. Main NSD video-based systems method, size of the datasets, validation methods and the systems’ performances are summarized.

affects the electrophysiological signals. Specifically, EEG
is usually investigated to identify the presence of irregu-
larities or characteristic trends due to seizures [11]–[22];
ECG is analyzed to evaluate the heart rate variability due
to changes in the cardiovascular system during or close to
ictal events [23]–[25], while video recordings are exam-
ined to detect the presence of possible ‘‘unusual’’ move-
ments of the newborn induced by the seizure [29]–[36].
Only one recent study investigating the NIRS technique
applied to newborns exists [62]. This paper summarizes
and improves previous studies, highlighting the clinical rel-
evance of the combined analysis of aEEG and NIRS sig-
nals. Indeed, seizures are characterized by a drop in cerebral

oxygen saturation due to an increase in cerebral metabolic
demand.

The lack of complete public datasets of neonatal seizures
makes the implementation of an automated seizure detector
in newborns more difficult. The availability of public elec-
trophysiological and video signals datasets is indeed crucial
for the development and evaluation of computer-based sys-
tems for the targeted task. To the best of our knowledge,
the Helsinki dataset [43] is the only public one containing
neonatal EEG recordings with multi-expert annotations of
seizures. The majority of the NSD systems proposed in the
literature are evaluated on private datasets only, making the
comparison between the existing approaches unachievable.

138186 VOLUME 9, 2021



B. Olmi et al.: Automatic Detection of Epileptic Seizures in NICUs Through EEG, ECG and Video Recordings

Furthermore, this comparison is still challenging because the
metrics used to report the results of the NSD systems vary in
the literature [39]. Therefore, a standard set of metrics would
be advisable to evaluate the usefulness and the efficiency of
the developed techniques for the neonatal seizure detection
task.

Another crucial issue concerns the validation methods
applied to evaluate the generalization ability or precision of
the proposed methods in the seizure detection task. As men-
tioned in this paper, the existing NSD systems can be
divided into patient-independent, and patient-specific ones.
The patient-independent approach, which aims at develop-
ing systems able to detect seizures across different subjects,
is usually validated through the LOSO operation.

Instead, in the patient-specific approach, aiming at devel-
oping systems in which the classifiers’ architecture is
designed for each patient, the k-fold cross-validation and the
hold out validation [41] are usually implemented. Although
the patient-specific method is appealing, it requires spe-
cific electrophysiological data that cannot be obtained before
birth [42]. Thus, the patient-independent approach is more
advisable in the NSD task. In particular, the LOSO is prefer-
able as it allows a good evaluation of the systems’ ability to
generalize the classification in small datasets [16]. Instead,
if datasets are not quite large [63] other validation approaches,
such as k-fold o hold out, tend to overestimate the perfor-
mances of the systems [41].

The NSD EEG-based systems aim at detecting the neona-
tal seizure events analysing and characterizing the EEG
recordings. These systems show better performance than
those based on other electrophysiological signals: indeed,
the EEG is the most appropriate diagnostic technique to
detect neonatal epileptic seizures as it allows investigat-
ing the electrical activation of neuronal patterns. As shown
in Table 3 the deep-learning—based approaches lead to a
remarkable improvement in NSD performances, however
these systems require larger datasets than heuristic and
machine-learning—based methods. The interest in study-
ing and analysing ECG recordings for the NSD task is
growing more and more because the ECG signal is rou-
tinely performed, and its recording is easier and less inva-
sive than the EEG one [25]. However, the performances of
ECG-based patient-independent systems are not so appeal-
ing and at present they cannot replace the EEG-based
systems.

Despite that, ECG analysis, and in particular the related
HRV analysis, seems to be a promising marker of brain
damage. Bersani et al. [49] presented a systematic review that
highlights a possible relationship between HIE and abnormal
HRV values, suggesting that HRV analysis may represent a
valid alternative to EEG to detect the most common etiology
of neonatal seizures. Statello et al. [64] also analyzed the
behaviour of the sympathetic and the parasympathetic sys-
tems during neonatal seizures by investigating HRV indices.
They found that the vagal-mediated HRV signal in newborns
with seizures is lower than in healthy newborns and that

a short-term increase in vagal-mediated HRV characterizes
seizures.

To increase the performances of the developed NSD sys-
tems, some studies in the literature investigated the combi-
nation of EEG and ECG signals [26]–[28]. As a result, this
combination has led to a more robust system for neonatal
seizure detection than a system based on the ECG signal
only. To the best of our knowledge, for ECG/HRV analy-
sis, no deep-learning method was proposed in the literature
for neonatal seizure detection. Considering the improvement
obtained by DL techniques on EEG, these methods should
also be evaluated on NSD experiments with ECG signals.
Finally, to improve performances of ECG-based NSD, more
efforts should be made in the study of brain-heart inter-
actions [65], [66] during ictal events in newborns. Indeed,
the link between the cardio-regulatory system and neonatal
seizures is not yet fully understood. Some findings [27], [64]
suggested that seizures can directly or indirectly alter the
cardio-regulatory system. However, evidence about mech-
anisms occurring during these events and the correspond-
ing etiology are still missing or incomplete. Identifying and
measuring them might allow the use of more specific and
useful features for the neonatal seizure detection task through
ECG signals.

Computer-based systems based on video recordings
analysis can be useful to characterize the newborns’
movements and thus their physio-pathological state. The
systems described in this work apply different and interest-
ing approaches to the analysis of video recordings. Most
of these papers aim to detect and distinguish clonic and
myoclonic seizures characterized by intense clinical man-
ifestations. However, up to 70% of all neonatal seizures
are characterized by poor clinical manifestations [3], [6].
These seizures are called subtle and are characterized by
eye deviations, repetitive opening and closing of the eye-
lids, sucking, oral-buccal-lingual movements, ‘‘swimming’’
or ‘‘pedalling’’ movements [6], [67]. As very few clinical cor-
relates exist, the subtle seizures can be confused with normal
neonatal behaviour [3], [6]. Malone et al. [53] highlighted
the health care professionals’ difficulty in identifying sub-
tle seizures: while clonic seizures were correctly identified
by about two out of three professionals on average (with
identification of single cases ranging from 36% to 95%),
subtle seizures were recognized only by an average of one
out of three professionals (with individual detection between
20% and 50% at best). Therefore, developing additional sys-
tems based on video analysis, capable of identifying even
inconspicuous movements and automating the semiology of
facial expressions, would be useful. However, it is difficult
to automatically recognize and track the newborns’ faces in
the NICUs, as electrodes or cannulas often cover part of the
face, cameras may be inappropriately placed, and lighting
may be poor. Furthermore, the majority of the systems men-
tioned in this study are based on video recordings with a
single video-camera. Using more cameras could improve the
systems’ performances allowing a view of the newborn from
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different perspectives and ensuring an adequate cover-
age of the observed scene, as already evaluated by.
Karayiannis et al. [33]. They found that the use of mul-
tiple cameras improved performances in detecting clonic
seizures [33].

The papers summarized here do not provide information
about etiologies of the detected seizures. However, some of
them [68], [69] pointed out that the cause of seizure events
could be identified by analyzing seizure events themselves.
Therefore, NSD systems able to automatically characterize
the etiologies investigating the available electrophysiological
and clinical signals could be an additional support tool to
clinicians. Indeed, identifying etiologies is crucial to deter-
mine specific pharmacological treatments and subsequent
prognoses.

Another crucial aspect concerns the methods of display-
ing the information obtained with the NSD systems. Few
papers focus on developing an appropriate user interface
and evaluate how it could affect seizure detection in a clin-
ical environment [17], [70]. Temko et al. [70] investigated
different ways to provide the output of a NSD system to
clinicians, showing that a viable system interface is funda-
mental to assess the real usefulness of the NSD systems
as support tools for the medical staff in the diagnosis of
neonatal seizures in NICUs. Moreover, evaluating the seizure
detection delay in NSD systems is crucial for understand-
ing their clinical usefulness. The seizure detection delay is
defined as ‘‘the time delay between the seizure detected by the
algorithm and the seizure onset marked by an expert’’ [71].
This delay is heavily influenced by the time duration of the
epochs in which the signal is segmented and the processing
time required to run the algorithms [20], [50]. Specifically,
the processing time is given by the algorithms’ complex-
ity and the computational performances. According to the
seizure detection delay, two different types of expert systems
applications are defined: online and offline. The first one
ensures a timely, effective and efficient clinical intervention
during the acquisition of electrophysiological and clinical
signals. [10]. In fact, neonatal seizures may lead to acute neu-
rological impairment and neonatal death. Thus they should
be treated as soon as possible [72]. The offline analysis is
useful as it marks out the seizure epochs. Thus the neu-
rologists can examine the detected epochs necessary for a
correct diagnosis [10]. Only few papers summarized in this
survey explicitly define their algorithms as suitable for online
analysis ([12]–[15], [17], [19], [20], [29], [31], [35]). Other
papers do not give any information about the time delay in
seizure detection or the kind of application.

To conclude, the purpose of this survey was to high-
light the results of the analysis of EEG, ECG and video
recordings for the identification of epileptic seizures in
the newborn. This paper also aims at highlighting that
the combined use of the three signals can lead to signif-
icant improvements providing complementary information.
Cabon et al. [73] proposed a semi-automatic system for
the estimation of the sleep stages of premature newborns in

NICUs through video and audio recordings analysis; Chen
et al. [74] presented a wearable sensor system for simul-
taneous recording of ECG and respiration in newborns to
monitor the neonatal health status. However, to the best
of our knowledge, none of the existing systems combine
the three signals for the neonatal seizure detection task in
NICUs. Implementing a multimodal approach that exploits
the results of several domains could be useful for devel-
oping an efficient and reliable automatic system to support
clinicians.

VII. CONCLUSION
This paper summarises the main attempts to develop NSD
systems proposed in the last ten years. Several studies focused
on the EEG analysis to define a system that automatically
recognizes critical events. Indeed, investigating the EEG sig-
nal allows obtaining higher performances than other elec-
trophysiological and clinical signals. ECG- and video-based
systems have also been investigated: the former is based
on evaluating the seizures influence on the heart rate, the
latter on the recognition and characterization of ‘‘unusual’’
movements. It has been shown that the technological progress
and the development of signal processing techniques allowed
defining possible support tools for the medical staff, which
could improve neonatal seizure detection in clinical scenar-
ios. Moreover, it has been shown that the EEG, ECG and
video signals provide complementary information. There-
fore, a multimodal approach that exploits and combines the
results of the three approaches could be investigated in future.
NSD systems able to automatically characterize the etiologies
investigating the available electrophysiological and clinical
signals could be a valuable support for clinicians.
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