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ABSTRACT Autonomous vehicle (AV) industry has evolved rapidly during the past decade. Research and
development in each sub-module (perception, state estimation, motion planning etc.) of AVs has seen a boost,
both on the hardware (variety of new sensors) and the software sides (state-of-the-art algorithms).With recent
advancements in achieving real-time performance using onboard computational hardware on an ego vehicle,
one of the major challenges that AV industry faces today is modelling behaviour and predicting future
intentions of road users. To make a self-driving car reason and execute the safest motion plan, it should be
able to understand its interactions with other road users. Modelling such behaviour is not trivial and involves
various factors e.g. demographics, number of traffic participants, environmental conditions, traffic rules,
contextual cues etc. This comprehensive review summarizes the related literature. Specifically, we identify
and classify motion prediction literature for two road user classes i.e. pedestrians and vehicles. The taxonomy
proposed in this review gives a unified generic overview of the pedestrian and vehicle motion prediction
literature and is built on three dimensions i.e. motion modelling approach, model output type, and situational
awareness from the perspective of an AV.

INDEX TERMS Autonomous driving, road vehicles, roads, trajectory prediction, vehicle safety, human
intention and behavior analysis.

I. INTRODUCTION
Safety Safety is a crucial aspect for an autonomous vehicle
(AV). Other road users that an AV needs to interact with,
come in many forms. It can be pedestrians, cyclists, skate-
boarders or other vehicles etc. The challenge of predicting
human motion comes from the complexity of modelling it
using many underlying factors. For vehicles, it can depend
on the behaviour of other vehicles, traffic rules, type of
driving attitude and environmental context etc. In the case of
pedestrians, human motion can be driven by personal goals,
social relations, the behaviour of other agents and context of
the environment etc. This means that for an AV to coexist
with other road users, not only it should follow the traffic
rules and regulations but also be socially aware i.e. it should
understand the interactions of road users to ensure the flow
of traffic [1]. Understanding these interactions helps an AV
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to forecast trajectories of road users giving an AV a complete
overview of how the scene will unfold in next time-steps
and what motion plan it should execute in order to ensure
maximum safety of all the traffic participants.

This survey gives a comprehensive overview of motion
prediction from the perspective of an AV. The scope of this
survey is trajectory prediction of road users. We are inter-
ested in categorizing state-of-the-art literature into a novel
taxonomy that incorporates motion prediction methods of the
two road user classes i.e. pedestrians and vehicles. For these
road user types, this work classifies the literature on the basis
of modelling approach (physics, learning-based), output type
(trajectories, intentions etc.) and situational awareness (inter-
actions with scene objects). For this, we survey a collection
of motion prediction methods, discuss their pros and cons and
assign eachmethod a certain generic category of our proposed
taxonomy.

The paper is structured as follows. Section II dis-
cusses existing reviews on motion prediction. This includes
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FIGURE 1. Will this pedestrian cross? [4].

surveys for both pedestrian and vehicle motion prediction.
In section III, we discuss the novel taxonomy of motion pre-
diction, the type of modelling methods and factors involved,
also we present a table summarising the literature reflecting
the proposed taxonomy. Section IV concludes this survey
by highlighting useful takeaways, potential future work and
challenges.

A. CHALLENGES
Motion prediction for road users comes with many inherent
challenges which differ w.r.t road user classes. While AV's
perception stack is responsible for detecting different types
of road agents as well as predicting their future motion,
motion prediction plays a pivotal role in understanding scene
dynamics and drives efficient decision making of an AV [2].
In this section, we will discuss different challenges associated
with both vehicle and pedestrian motion prediction.

1) PEDESTRIANS
In complex urban environments, AV's interact with different
types of road users, pedestrians being one of them which
belong to the most vulnerable road user class [3]. The inter-
action with pedestrians requires an AV to understand their
intentions. For example, Figure-1 shows a scenario in which
the AV has to reason about whether the pedestrian will cross
or not.

In order to negotiate similar situations, we humans, in addi-
tion to traffic rules, employ informal social rules or often
engage in non-verbal e.g. gesture-based communication to
resolve a certain interaction. An example of such gestures is
shown in Figure-2.

Understanding such informal social norms increases the
safety of pedestrians. An AV's decision making could be
designed in such a way that it acts cautiously to any interac-
tion made with a pedestrian and always allow the pedestrian
to lead the negotiation depending upon the scenario. How-
ever, this is prone to errors too. Several cases of robot bullying
are reported in which pedestrians were seen attacking and
stopping robots [5].

2) VEHICLES
Motion prediction of vehicles is governed by traffic rules
and road geometry. Predicting possible future manoeuvre

FIGURE 2. An example of gestures used by pedestrians to negotiate an
interaction [1].

FIGURE 3. An illustration of how an occluded surrounding vehicle can
affect the behaviour of a VOI. Here the green vehicle is our ego vehicle,
the red vehicle is VOI whose future behaviour we intend to predict,
the grey vehicle ahead of the red is an occluded surrounding vehicle that
is about to apply emergency brakes due to a road obstruction ahead of it.

and trajectory of a vehicle has its own complexities e.g.
a vehicle's motion is not only dependent on traffic rules but
is also affected by other surrounding vehicles and other road
users, which are sometimes occluded too. So an AV should
take into account all surrounding vehicles to forecast the
possible future trajectory of a vehicle of interest (VOI). For
example, a leading vehicle might apply emergency brakes
due to another vehicle ahead of it which is occluded to AV's
onboard sensors, leading into a trickle-down effect of emer-
gency braking. Figure-3 illustrates such a scenario. Similar to
this, a vehicle's future behaviour is also dependent on road
and traffic signs. Figure-4 shows a scenario in which the
possible future trajectory of a VOI is affected by the road lane
change markings.

II. RELATED WORK
A decent amount of literature is available on motion predic-
tion for road users, but the surveys and reviews are somewhat
limited and are specific to classes of road users. In [6] authors
discuss pedestrian motion prediction methods for vehicle
safety systems. Authors categorize pedestrian motion models
into four types which include dynamic methods (methods
that rely on target agent's motion), physiological methods
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FIGURE 4. An example of where a vehicle's behaviour prediction is
affected by road lane markings. a) shows that the possible future
trajectory of the red vehicle includes left lane change, right lane change
and follow-the-leading-vehicle manoeuvre. b) shows that the possible
future trajectory of red vehicle includes right lane change and
follow-the-leading-vehicle manoeuvre. The left lane change manoeuvre is
excluded due to no lane change marking on the left side.

(methods that use information about relative pedestrian posi-
tioning w.r.t. to car, pedestrians velocity and direction), meth-
ods that use head orientation of the pedestrians, and lastly
methods that use static environment context such as infor-
mation about the position of sidewalks etc. Research in [7]
surveys pedestrian motion and their interaction with AV. The
literature presented here can be categorized as studies related
to kinematic pedestrian models, models that include pedes-
trian’s psychological constraints such as intention to acceler-
ate and decelerate etc, models to estimate pedestrian’s head
orientation and lastly, the models that include environmental
cues such as distance to curbs and obstacles.

In [8] authors use similar pedestrian motion prediction
classification i.e. body pose (methods that rely on pedestrian
body pose to estimate whether the pedestrian will cross the
crossing or not), social-based (methods that consider social
norms between people and use these norms for decision
making), dynamics-based (methods that use tracking filters
to estimate the future position of pedestrians), dynamics and
awareness based (methods that incorporate pedestrian head-
ing with dynamics to get a better estimation of pedestrian
positioning).

The studies in [9] discuss motion prediction methods
for vehicles. These methods are categorized into physics-
based, manoeuvre-based, and interaction-awaremodels. Here
physics-based models include models which use laws of
physics to predict the future motion of vehicles. Manoeuvre
based models predict vehicle’s behaviour based on possible
manoeuvres and lastly, interaction aware models use contex-
tual awareness i.e. interaction with other vehicles. In addition

to this, brief literature on risk evaluation for an AV is also
presented.

[10] reviews deep learning-based vehicle behaviour pre-
diction methods. Authors propose a classification of these
methods based on input representation (track history, bird’s
eye view, raw sensor data), output type (manoeuvre inten-
tion, unimodal trajectory, multi-modal trajectory, occupancy
maps) and prediction method (recurrent neural network, con-
volutional neural networks and others). The paper also dis-
cusses different evaluation metrics used for vehicle behaviour
prediction.

A novel taxonomy that classifies human motion prediction
is proposed in [11]. This taxonomy is not specific to any
road user class and targets different applications of human
motion prediction such as mobile robots, surveillance and
autonomous driving. The taxonomy proposed here classifies
motion prediction literature into two general categories i.e.
on the basis of modelling approach (physics-based, pattern-
based, planning-based) and using contextual cues (agent cues,
dynamic and static environment cues).

Our survey extends the categorization used by [9], [10]
and [11] and gives an overview of motion prediction
for both pedestrians and vehicles. We generalize all deep
learning-based [10] and pattern-based [11] methods into
learning-based methods. Additionally, we also incorporate
planning-based methods from [11] into learning-based meth-
ods. This is due to the fact that most of these methods
essentially try to learn the future goal of agents based on
some reward function or learn the reward function itself.
This work reduces the sub-hierarchy of contextual cues [11]
into unaware, interaction-aware, scene aware and map-aware
methods. Here it is argued that some sub-categories proposed
in [11] such as articulated pose and semantic attributes of
agent do not reflect well in terms of vehicle motion predic-
tion. Additionally, we leverage the classification of [10] and
add an additional dimension of output type to our motion pre-
diction taxonomy. The manoeuvre intention sub-category is
redefined as intent prediction which makes it generic enough
to incorporate vehicles as well as pedestrians.

III. MOTION PREDICTION TAXONOMY
This section explains our motion prediction taxonomy. The
proposed taxonomy is built on three dimensions i.e. mod-
elling approach, output type and situational awareness as
shown in Figure-5. Here we discuss how these dimensions
classify the motion prediction literature. The papers we dis-
cuss in each category may also be a part of other categories.
Each category discussed here is independent of others, giv-
ing the researchers ease of exploring a specific category
of papers. For instance, while exploring literature classified
based on output type, a researcher might not want to limit
their search to a specific modelling approach. At the end
of this section, the taxonomy and literature are summarized
into a table giving an overview of the classification of each
paper.
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FIGURE 5. Proposed taxonomy of motion prediction for pedestrians and vehicles.

A. MODELLING APPROACH
Modelling approaches fall under the umbrella of motion pre-
diction. Here modelling approaches are sub-categorized into
physics-based and learning-based approaches. Physics-based
approaches use equations of motion and physics to simulate
the forward motion of agents. Learning-based approaches
learn from data and statistics and recognize motion patterns
from learned models. Here learning based models can further
be categorized based on the type ofmethod used, for example,
clustering, Bayesian networks, convolutional neural networks
etc. We will discuss these modelling approaches in detail in
the following sections.

1) PHYSICS-BASED
Physics-based methods are governed by the laws of physics.
These include dynamic and kinematic models based on New-
ton’s laws. Dynamic models consider all forces that gov-
ern motion. Dynamic models get very complex due to the
factors involved. For example, in case of vehicles, dynamic
models consider forces acting on tires, drivers actions and
their effect on the vehicle’s engine and transmission. For
trajectory prediction, it is rather irrelevant to model such
complex behaviour using dynamic models unless we intend
to do control-oriented applications [9]. Kinematic models on
the other hand describe the motion in terms of mathematical
relationship between movement parameters. Kinematic mod-
els are very common for trajectory prediction due to their
simplicity of use. A simple example of a kinematic model is

the constant velocity (CV) model used by [12]. A CV model
assumes that the recent relative motion of an object drives
its future trajectory. Figure-6 and Figure-7 show an example
of such a model in action. If we denote the position of a
pedestrian or a vehicle by

p = (x t , yt ) (1)

at time-step t , where x and y are top-down coordinates of the
scene then, p denotes the position of the pedestrian or vehicle.

1p = pt − pt−1 (2)

1p is the most recent information to predict the future
trajectory.

Another popular example of kinematic models is the con-
stant acceleration (CA) model which assumes recent relative
change in acceleration to be the factor that drives the future
trajectory of the dynamic object. [13] is an example, where
CA is used for collision warning and auto-braking system for
a vehicle to help avoid collision with pedestrians.

A quite reasonable amount of literature is available on
pedestrian and vehicle tracking by physics-based mod-
els. [14] usesKalman filter (KF) andCA as a processmodel to
filter dynamic obstacles. [15] uses a particle filter for hazard
inference from linear motion predictions of pedestrians. [16]
predict pedestrian motion along a road semantic graph. Using
a unicycle model, the prediction algorithm assumes rational
behaviour pedestrians i.e. pedestrians using crosswalks and
accounts for road semantics in mathematical equations.
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FIGURE 6. An illustration of pedestrian trajectory prediction from
constant velocity (CV) model. Here the green trajectory denotes the
ground truth trajectory of a pedestrian and the red trajectory shows the
predicted trajectory at the current instant of time.

FIGURE 7. An illustration vehicular trajectory prediction from constant
velocity (CV) model. Here the green trajectory denotes the ground truth
trajectory of the vehicle which is about to do a turn left manoeuvre and
the red trajectory shows the predicted trajectory at the current instant of
time.

In addition to CV and CA models, some authors have
presented Kalman filters using Constant Turn Rate and
Velocity (CTRV) [17] and Constant Turn Rate and Accel-
eration (CTRA) [18] to capture the non-linearity of the tra-
jectory. A recent extension of the physics-based approach
uses IMMTP (Interactive multiple trajectory prediction) with
Unscented Kalman filter (UKF) and Dynamic Bayesian Net-
work (DBN) [19]. The integration of both the predictors
using IMM gives non-linear trajectory prediction along with
possible manoeuvre estimates (which in the above work is
the lane changing manoeuvre). Such methods can be used for
vehicular trajectory prediction if the uncertainties are handled
well. Kalman filters represent these uncertainties in the form
of Gaussian noise, where in the prediction step the filter
outputs the position estimates based on kinematic or dynamic
models and later the prediction estimates are updated based
on sensor measurements. The problem of using filters like
this is the unimodal representation of uncertainties which
cannot capture the complex vehicle trajectory behaviours.
A better representation of uncertainties is a mixture of
Gaussians.

FIGURE 8. Categories of learning-based models. The dotted lines
represent that the methods in these categories are not limited to the
three methods mentioned in each category.

2) LEARNING-BASED
Learning-based methods have an element of learning in them
i.e. they learn from data and history. The history and data
can include past track history of vehicles, the birds-eye view
of the environment, raw sensor data etc [10]. In compari-
son to physics-based models which are limited to low-level
properties of motion and cannot estimate well the long term
dependencies in motion, the learning-based models on the
other hand tend to capture and incorporate long term depen-
dencies and changes caused by external factors. Learning-
based approaches have seen quite a lot of research in the past
decade. The learning part here can be a function approxi-
mator, clustering algorithm or a hidden Markov model etc.
Recent boom in deep learning has pushed these methods
to an even higher level. We further sub-classify learning-
based methods into two categories i.e. sequential and non-
sequential, as shown in Figure-8.

a: SEQUENTIAL
Sequential models infer motion estimates of agents using the
history of their states. Sequential models are quite similar
to physics-based models in terms of Markovian assumption
i.e. future motion of the agent is dependent on the current
state of the agent. Sequential methods are often one step
predictors similar to physics-based methods; the difference
lies in learning functions from statistical observations instead
of using motion models. One of the common types of sequen-
tial models is Dynamic Bayesian Network (DBN). A DBN
essentially is a Bayesian network with temporal updates.
These probabilistic models tend to be very useful for domains
where observations are unrolled in time. A good example
of DBN is the work done in [20] where authors employ a
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FIGURE 9. A DBN of vehicle motion prediction. Adapted from [21], where
dashed lines represent temporal updates and solid lines represent
updates within the current time frame.

DBN using agent dynamics and scene semantics to forecast
pedestrian local patterns as local transition maps. Similar to
pedestrians, the authors in [21] present a DBN to represent
driver behaviour and vehicle trajectories.

The DBNs have Markov property where in order to sat-
isfy Markov assumption we can enrich states with more
information. In [21], this is done by adding all the relevant
information of the process in the form of vectors to the DBN.
This is illustrated in Figure-9.

Let, R be a set of state space random variables.

R = { X ,C, S,B,T ,Z }

Assuming there are n number of vehicles in the scene at
timestep T .

r = (r1 . . . , rn)T ∀ ri ∈ R (3)

Here, (3) is adapted from [21]. The state space random
variables mentioned above are vectors, where X represents
a vector containing vehicle states, the vector C represents
local situational context (distance from other nearby relevant
vehicles), S is vector recognized situations e.g. in context
of distance to a vehicle, the recognized situation classes can
be far-from-vehicle or close-to-vehicle etc, B is a vector of
behaviours, the vector T represents vehicle trajectories and
lastly, the vector Z represents sensor measurements about
vehicle pose etc.

Recent works in capturing complex long-term dependen-
cies of agents have a more generalizable approach in terms
of location. These methods use sequence models, usually
neural networks, to predict time series which is adapted from
sequence modelling applications such as natural language
processing. In particular, Recurrent Neural Networks (RNN)
and Long Short-term Memory (LSTM) networks (a flavour
of RNNs) have become popular to predict motion trajectories.
In this regard, [22] was the first one to use joint-trajectories of
pedestrians to predict multi-model paths, taking into account
the social behaviour and common-sense rules that humans
utilize while navigating. Here individual LSTMs were used
to capture motion history of individual agents and later on
a social pooling layer was applied to capture interactions

among multiple agents. Here, social pooling is a network
pooling layer that shares the information of interaction of
individual spatially proximal LSTMs with each other. This
work was later extended by [23] that, in addition to social
pooling, applied a contextual pooling layer to encode envi-
ronmental context into motion prediction in crowded spaces.

Some recent works in human trajectory predictions also
include Spatio-temporal feature encoding and decoding
architectures where temporal features are extracted from
LSTMs and spatial features of the environment from convo-
lutional neural networks (CNN). An example of such works
is [24] that uses three LSTM encoders for three scales:
(i) a person’s scale observing an individual’s trajectory,
(ii) a social scale incorporating occupancy map and (iii) a
scene scale that uses CNN to extract scene features. Later
an LSTM decoder predicts human trajectory. Similar to
pedestrians, a modified version of LSTM i.e ST-LSTM
(Spatio-temporal LSTM) is used in [25] where the interac-
tion of multiple vehicles and its effect on trajectory of VOI
is estimated. The spatial information about other vehicles
(calculated using safe distance function) is used to update
the weights of the LSTM layers where more weight to an
individual LSTM layer means that the particular trajectory
will influence the trajectory of VOI more. Another exam-
ple where both CNN and LSTM models are used is [26]
where trajectories of VOI and other vehicles along with
grid-based spatial positions are encoded into a social tensor
using multiple LSTMs. Later a manoeuvre based decoder
decodes manoeuvre based trajectories of VOI. This work is
later extended into a multi-agent multimodal tensor fusion
in [27] where, in addition to social convolution, the scene
context is also encoded into the network.

Sequential methods have also leveraged Generative Adver-
sarial Networks (GANs) along with recurrent neural net-
works. [28] extended the idea of social LSTM by using a
social GAN to predict multi-modal human trajectories. Here a
generator network G takes the input trajectory X and outputs
predicted trajectories Ŷ , afterwards a discriminator network
D takes the whole sequence comprising both input trajectory
X and generator output Ŷ and classifies them as real/fake. [29]
extended the idea of social GAN and applied it to predict
trajectories of vehicles.

b: NON-SEQUENTIAL
Non-sequential models learn over data and its distribution
without constraints like Markovian assumption. These mod-
els tend to predict complete trajectories without relying on
the feedback of past frames. One of the most common exam-
ples of such models is the clustering trajectories model. The
notion behind the clustering approach is to understand the
global motion pattern in the form of a cluster and impose it
over local movement patterns of individual agents. A good
example of such an approach is [30] where authors have
used Ensemble Kalman Filter (EnKF) to track pedestrian
state; later the individual tracks are clustered to get the local
pattern and global flow of the crowd. To account for location
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invariance, some methods use prototype trajectories which
means learning the complete trajectories based on partially
observed trajectories. [31] as an example used probabilistic
trajectory matching to classify if a pedestrian is going to stop
or cross the road.

For vehicles, a road network can be represented as a finite
set of clusters of trajectories, where each cluster shows a
motion pattern. Similar to transition maps, these patterns are
learned from data. During inference, a partially observed
trajectory can be assigned to a cluster, thus the most likely
motion pattern can be obtained. Another way to represent
prototype trajectories is to utilize digital road maps. A digital
map can help us identify all possible manoeuvres at a certain
location. In this case, the clustering process can be exempted
which means a trajectory can directly be assigned to a cluster
in the training set. Clustering-based methods for vehicles
are mostly applied to data obtained from automated traffic
vision systems. Examples of clustering vehicle trajectories
include [32]–[34].

Another popular approach for non-sequential methods is
CNNs. A CNN is a deep learning-based method that has con-
volution layers and learnable weights. CNNs are commonly
used for extracting features from images; later these features
can be passed to a fully connected network to obtain some
useful output which, in the case of behaviour prediction, can
be a trajectory, or an occupancy or transition map. An exam-
ple of such a network employed for the case of pedestrians
is [35] where the authors claim that CNNs can do better
in capturing long-term temporal dependencies compared to
LSTMs. Authors in [36] used human and machine annotated
images to forecast pedestrian movement using a model built
on resNet [37]. Similar to pedestrians, CNNs have also been
used to estimate behaviour of road vehicles. In [38] inter-
mediate representation of scene information is passed to a
CNN and afterwards, a semantic occupancy map with vehicle
trajectory is obtained. [39] uses CNN to predict the intention
of surrounding vehicles. Vehicle intention and trajectory is
predicted using backbone CNNs over lidar data and rasterized
maps in [40]. To capture temporal features from the data, 3D
convolutions along with 2D were applied in [41]. Here object
detection, tracking and motion forecasting are performed in
an end-to-end fashion.

B. OUTPUT TYPE
1) INTENTION
Predicting the intention of a pedestrian or a vehicle can give
valuable insight into how the scene dynamics will change
in future time steps. For vehicles, intentions are categorized
based on manoeuvre which the vehicle is going to do. For
example, follow a leading vehicle, steer left, steer right,
turn left, turn right, stop etc. The possible manoeuvres can
vary depending upon the scene situation. For example in a
four-way intersection, a vehicle can either do the following,
go forward, turn left, turn right and stop. In case of a high-
way, these possible manoeuvres would change to follow the
leading vehicle, keep the lane, change to the left lane and

change to the right lane. An example of such work is [42]
where the model predicts lane change intention on a highway.
The model here outputs probability distribution for the three
classes, no lane change, left lane change, right lane change
whereas in [43] the authors just predicted lane change and
lane-keep intention of the VOI. The manoeuvre intention is
good for a high-level understanding of vehicle behaviour but
predicting vehicle motion is usually more complex and is not
limited to high-level understanding. For example, at some
point, these intentions can be further divided into more con-
crete intentions e.g. sharp left lane change or sharp right lane
change.

For pedestrians, the intent prediction doesn’t involve
manoeuvres but the activity or state in which a pedestrian is
going to be in future. An example of such a work is [44] in
which a Gaussian process is used to predict a pedestrian’s
future state along with pose and path in 1 s time horizon.
Here the predicted intentions were walking, starting, stand-
ing and stopping. Similar to this, in [45] walking, standing,
walking-crossing and running-crossing were used as classi-
fication states of pedestrian’s future motion. Some authors
used binary classification to predict whether the pedestrian
will cross or not [46], [47].

2) UNIMODAL TRAJECTORY
Addressing the problem with the previous output type, a bet-
ter representation of pedestrian and vehicular behaviour is
having a trajectory output from the model which is more
precise than just intention. A unimodal trajectory thus outputs
one trajectory with discrete trajectory points (which can later
be made continuous using splines or Bézier curves).

In case of vehicles, the behaviour on road can be defined
as a set of complex manoeuvres, a unimodal trajectory out-
put can thus further be defined as trajectory independent /
dependent on the intended manoeuvre. A trajectory inde-
pendent of the intended manoeuvre is a unimodal trajectory
without consideration of possible manoeuvres on it. Here the
position of VOI is estimated over time. An example is [48]
where the output trajectory of heterogeneous traffic partici-
pants is predicted as a unimodal trajectory. Here they predict
mean, standard deviation and correlation coefficient of bivari-
ate Gaussian w.r.t the x and y positions of each trajectory
point. Despite being a better representation of vehicle motion
compared to intention, manoeuvre independent trajectories
tend to average out between two manoeuvres when there
is an equal chance of making two manoeuvres at the same
time. This can lead to dangerous encounters as illustrated
in Figure-10.

In comparison to this, a trajectory dependent on intended
manoeuvre gives safer and meaningful future estimates of
the vehicle. This will make sure that whenever we get
a trajectory output, it is valid in terms of manoeuvre.
Figure-11 shows an illustration of manoeuvre constrained
trajectory. An example of this is [49] where the authors
demonstrated a policy anticipation network model that out-
puts trajectories constrained on manoeuvres using CARLA
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FIGURE 10. An Illustration of invalid manoeuvre adapted from [10]. The
red vehicle is trailing and the grey vehicle is leading on a highway. There
are two possible manoeuvres for the following vehicle i.e. take over from
right or reduce speed and follow the lead vehicle shown with yellow
dotted trajectories. A unimodal trajectory not constrained over
manoeuvres might average out both options giving us the trajectory in
red which results in a collision.

simulator [50]. The problem with uni-modal trajectory con-
strained on manoeuvres is that the possibility of exploring
new trajectories gets limited to one trajectory only. This does
not apply to pedestrians as pedestrians, in terms of unimodal
trajectory, do not have manoeuvre categorizations i.e human
walking behaviour is mostly influenced by social constraints.
Some examples of work done on unimodal pedestrian trajec-
tory include [12]–[16] and [24].

3) MULTIMODAL TRAJECTORY
An extension to unimodal trajectory is multimodal trajectory
output. For vehicles, the limitation of having one mode as
output gets addressed by having more than one trajectory
output. At any particular instance of time, the VOI can choose
from many correct manoeuvres or distribution of manoeu-
vres. Having the knowledge of this distribution makes the
prediction algorithm more robust and less prone to unidenti-
fied trajectory outputs. In multimodal trajectory, we get a uni-
modal trajectory for each manoeuvre or mode. Like unimodal
outputs, here the models can be dependent/independent of
manoeuvres where the former means a probability distri-
bution over finite sets of manoeuvres while later can have
a fixed number of unimodal trajectory outputs indepen-
dent of manoeuvres. An example of manoeuvre dependent
multimodal output is convolution social pooling for vehicle
trajectories [26] whereas a fixed-sized multimodal trajec-
tory output independent of manoeuvres is given by [51].
Figure–12 shows the difference between unconstrained and
constrained multimodal trajectory outputs.

The problem with unconstrained multimodal trajectory
outputs is that they usually converge to one mode. This is
called the mode collapse problem. This problem is usually
addressed by carefully devising the loss function so that the
model explores more varieties of outputs. The authors in [51]
used a novel Multiple Trajectory Prediction (MTP) loss that
gives some weightage of loss to other modes in addition to
the one which is closest to the ground truth trajectory of the
vehicle.

For pedestrians, having multimodal trajectories gives a
better understanding of one’s possible future motion. This is

FIGURE 11. An Illustration of unimodal vehicle trajectory constrained on
manoeuvre. Here the prediction shows that the trailing red vehicle will
follow the leading grey vehicle.

FIGURE 12. An illustration of constrained vs unconstrained multimodal
trajectory output. Here a) is showing 3 manoeuvres (steer left, steer right
and follow leading vehicle) while b) shows an unconstrained multimodal
trajectory with fixed mode size = 9.

due to the fact that there are a variety of ways in which a
pedestrian can interact with other pedestrians or avoid obsta-
cles. In comparison to just predicting the intent or a single
trajectory of a pedestrian, themultimodal output gives amuch
safer option for future motion planning of an AV. Figure-13
shows an illustration of unimodal vs multimodal pedestrian
trajectory outputs in action. Some examples of work done on
multimodal pedestrian trajectory prediction are [52]–[54].

4) OCCUPANCY MAPS
In occupancy maps and image rasters, a bird-eye view (BEV)
of the scene occupancy is predicted in future timesteps,
as illustrated in Figure-14. Occupancy maps are usually
known to show occupancy of static obstacles in a scene,
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FIGURE 13. An illustration of unimodal vs multimodal pedestrian
trajectory output. Here a) shows a distribution of possible trajectories
where a possibility of pedestrian using the crosswalk is predicted while
b) shows that the pedestrian will continue walking in the straight
direction along the sidewalk.

FIGURE 14. An example of a top-down dynamic occupancy grid. Here the
grid cells in which vehicles currently exist are marked by dark grey colour
showing the current occupancy while the colour coded grid cells
represent possible future grid occupancies of the respective vehicles.

however dynamic occupancy grid maps [55] have also been
used. In addition to occupancy grids, having coloured rasters
in top-down grids give a more elaborative picture of the
scene. An example of such a model is [38], where the motion
prediction model outputs a grid map that illustrates vehicle
trajectory as well as semantic segmentation of grid pixels
giving rich information of what obstacles the model is trying
to avoid. Similar to [38], the model proposed in [56] outputs
multimodal grid occupancies for multiple vehicles. Here, for
N number of vehicles in the scene, K best hypotheses are
predicted on the occupancy grid map, where the grid size
is (36 × 21) and each grid cell is 5.0 by 0.875 meters in

longitudinal and lateral directions. Some more examples of
occupancy predictions for road users are [57]–[59].

C. SITUATIONAL AWARENESS
Situational awareness corresponds to the information about
the environment and other dynamic obstacles which can
affect the possible future trajectory of the road agent. This
information can be fed to the behaviour model in the form
of numerical data e.g. coordinates of other road agents, top-
down rasters showing the locations of static and dynamic
obstacles, and road semantics etc. We divide the literature
based on situational awareness into four broader categories.

1) UNAWARE
Following motion prediction methods predict the behaviour
of traffic participants using the information obtained from the
respective participant only i.e. they are unaware of the static
and dynamic environment around them and cannot incorpo-
rate the behavioural changes which can be influenced by the
surrounding elements.Most naive physics-basedmethods fall
into the category of unaware models. CV and CA models
discussed previously are good examples of such models.
Some other examples include methods using Kalman filters
with CTRA and CTRV process models [16], [17], [19].

2) INTERACTION AWARE
In comparison to unaware models, the interaction aware
motion prediction models use information of surrounding
agents as a guideline before estimating future motion of
the road agents. This information can include coordinates
of other road agents in the scene. The intuition here is that
feeding this information to the model will make the model
reason and consider possible future interactions with nearby
agents before predicting the motion estimate of an agent.
For pedestrians, an example of such a model is [22] where
a social pooling layer captures interactions of a pedestrian
of interest with others. In comparison to this, the authors
in [28] used relative positioning of other pedestrians instead
of social pooling grid. For vehicles, similar techniques are
used to enrich the motion model with features of surrounding
vehicles. For example, [21] adds a situational context by
feeding longitudinal distance, lateral distance and relative
velocities of surrounding vehicles. Similarly, the work done
in [25] embeds spatial interactions of surrounding vehicles
into LSTM layers.

3) SCENE AWARE
Scene awareness corresponds to the context of the environ-
ment. For example, a car driving on a highway road has a
different scene context compared to a car at a four-way inter-
section or in a roundabout. Similarly, a pedestrian crossing the
road using a crosswalk has a different scene context compared
to a pedestrian using a sidewalk. The features of the corre-
sponding scene are usually fed to themotion predictionmodel
in the form of raw sensor data such as images. For pedestrians,
an example of such a model is [23] where contextual aware
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TABLE 1. Summary table of learning-based models showing existing works w.r.t proposed taxonomy categorization.

pooling is used to capture scene context. Another example
is [24] where a top-down image is given to the model that
captures scene level features of the scene. A heterogeneous
multi-agent motion model in [27] encodes scene context on
top of individual LSTM layers that capture the context of the
scene for both pedestrians and vehicles.

4) MAP AWARE
Map aware models are an extension of the scene aware mod-
els. They take semantic information of themap as a contextual
cue. The semantic information includes HD maps which
consist of lanes, road structures, traffic lights and road signs
etc. This rich information guides the model’s predictions to
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TABLE 2. Summary table of physics-based models showing existing works w.r.t proposed taxonomy categorization. Note: All physics-based methods
discussed in this survey have Unimodal output type.

give logical trajectory outputs following semantic rules of
road and traffic. A good example of a map-aware behaviour
prediction model for pedestrians is [20] where pedestrian
navigation map is fed to the model. Here, a navigation map of
the scene essentially encodes the navigation patterns of sim-
ilar class agents over a collection of feature patches. Similar
to pedestrians, [38], [60] use road semantics as contextual
information to refine AV’s future motion estimates. The work
presented in [62] and [63] passes image rasters of road seman-
tics to the model and outputs future trajectories of different
traffic actors. In comparison to scene-awareness, the map-
aware models lack information about the environment or
weather conditions that could be vital in extreme weather.

D. SUMMARY
Research in motion prediction for pedestrians and vehicles
has moved from naive physics-based methods to machine
learning-based models over the last decade. Physics-based
models are simpler to implement and have been in use for
a long time but they usually lack in terms of enriching the
model with contextual information, thusmost of thesemodels
predict motion estimates of an agent independent of other
agents and environmental constraints. Modern approaches in
motion prediction heavily rely on data. They handle complex
long term dependencies quite well compared to physics-
based models. These models extract contextual and situa-
tional information from the data and refine motion estimates
accordingly.

In order to build a fail-safe and reliable navigation sys-
tem for an AV, the motion model should have an in-depth
understanding of the surrounding environment. A robust and
reliable model should give a complete picture of possible
future trajectories of the agent. Consequently, the output type
and situational awareness of the model are very crucial for
good behavioural estimates of the road agents. A reliable
motion model for both pedestrians and vehicles should be
situationally aware of road agent interactions, environmen-
tal context and road semantics. Similarly, having unimodal
output does not give a complete picture of all possible future
motion estimates; a good motion model should make use
of multiple predictions using a combination of outputs e.g.
multimodal trajectories with intentions etc.

The studies discussed in this paper are classified into the
proposed taxonomy, shown in Figure-5. There is a possibility
that a discussed study may belong to more than one category
of the proposed taxonomy classification. The classification
we make here may not fall under one category of taxonomy
especially those studies which make use of more than one
technique. For example, [23], [24] show models which are
scene and interaction-aware. Similarly, [19] uses an IMM
that predicts vehicular trajectory using Kalman filter and
estimates vehicle’s manoeuvre using DBNwhich are two dif-
ferent modelling approaches according to our proposed tax-
onomy. Another example is work done in [27] that presents
a learning-based model which uses LSTM (sequential) +
CNN (non-sequential) neural network to extract temporal
and spatial features from the environment. We classify each
study according to the modelling approach, output type and
situational awareness that fits best to respective paper. Table 1
and Table 2 classify the above studies on the basis of different
dimensions of our taxonomy.

IV. CONCLUSION
This work presents a novel taxonomy that classifies
motion prediction literature of pedestrians and vehicles for
autonomous driving. The studies discussed in this work are
distinguished on the basis of three dimensions i.e. modelling
approach, output type and situational awareness. For this,
we reviewed the related literature and summarized the clas-
sification in the end. This work brings motion modelling
methods for pedestrians and vehicles under one umbrella
and shows how similar motion modelling methods are used
for motion estimates of two different road agent classes.
The work presented here gives an insight into developing
and employing the existing motion models for pedestrians
and vehicles in autonomous driving applications with the
possibility of expanding this study to all road agent classes
in future.
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