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ABSTRACT Vibratory screens are used in mining to classify mineral and send it to different pathways,
normally using conveyor belts. Vibration analysis techniques are commonly used for condition monitoring
and early detection of unforeseen failures to generate predictive maintenance. This paper proposes a novel
solution to implement wireless sensors forming an instrumentation dedicated network combined with data-
driven machine learning for monitoring vibrating screens. The system is optimized explicitly for vibratory
equipment, which sets it apart from general-purpose condition monitoring systems. Embedded sensors
are battery-powered and robust to withstand constant vibratory movement. The data used for training the
machine learning models are gathered from a lab setup and discrete element simulations. The test bench
consisted of a lab-scale vibratory screener, in which 3-axis accelerations, cumulative damage and wear are
measured using sensors embedded in the rubber screens. Proposed data-driven machine learning models
classify each screen condition in states according to the ISO 2372 standards for vibration severity. The system
can identify random failures (based on test bench measured data) as progressive degradation failures over
time (based on discrete element methods simulation results). The accuracy of the classification algorithms
consistently ranges from 95% to 98%. Moreover, the system allows the early detection of unacceptable
states up to 168 hours before the screen’s end-of-life predation by an expert. The system is characterized
for (i) avoiding unplanned downtime and consequently (ii) increase operational availability. The system is
intended to notify users when an abnormal operation is detected and impending failure events in the early
stage.

INDEX TERMS Industrial Internet of Things, mining, vibrating screen, data-driven, condition monitoring,
embedded sensors.

I. INTRODUCTION
The classification of solid material according to its size is
a stage of many industrial processes. Granulometric classi-
fication is important in mining processes since it is directly
related to its efficiency. If the material does not comply with
the specific granulometry, it must be crushed again [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ming Luo .

Vibratory screeners are industrial machines used to sort
aggregates through their high-intensity accelerations. Used
intensively in mining operations, they can screen thousands
of tons of material per hour. These machines comprise several
decks of screens (or screen panels) with multiple holes of
a specific size that classify the material according to the
process’s requirements. The material is typically classified to
have a diameter less than 100 [mm] since at a larger size the
downstream process becomes inefficient [2], [3].
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As the mining industry is automatized, it becomes
necessary to monitor and forecast critical machine
operational conditions. Condition-based maintenance, or pre-
dictive maintenance, is a decision-making strategy that
uses condition monitoring information to optimize critical
machine availability [4].

Condition Monitoring (CM) enables early detection of
failures to reduce downtime and operating costs, facilitates
proactive responses, and improves productivity, reliability,
availability, and maintenance of critical equipment [5], [6].
Unexpected breakdowns cause unplanned downtime and
production losses [7].

A critical machine is defined as a crucial machine for the
operational continuity of a process. Criticality is a relative
measurement of the consequences of a failure mode and its
frequency of occurrence [8]. Failure criticality corresponds
to the product of its frequency and its impact. The failure
frequency corresponds to the number of failure events that
occur in a given period, and the failure consequence refers
to the result of stopping the equipment under evaluation;
consequently, we can classify the vibratory screen as critical
machinery [9], [10], [2]. The vibratory screen components
that present a high failure rate are exposed to cyclical loads
leading to fatigue failure. The most common maintenance
problems are related to the spring system, wear of screens,
bearings, shock absorbers, belt loosening, and electrical fail-
ures.Miningmaintenance practice shows that themain down-
times of vibrating screeners account for 10% to scheduled
maintenance and the remaining 90% to unscheduled stops
due to unforeseen failures. Table 1 shows the most common
faults [11].

TABLE 1. Frequency distribution of unplanned downtimes in vibratory
screeners.

Two main research topics can be identified in the state
of the art of condition monitoring solutions for vibrating
screen: (i) Development of simulation models based on dis-
crete element methods (DEM) for characterization of oper-
ation and maintenance; and (ii) Time-frequency analysis of
measurement data collected in a specific time window with
commercial instruments. The literature review indicates the
research area (i) is used to improve equipment designs. Most
references in the research area (ii) focus on developing new
algorithms for the diagnosis of the equipment state [12]–[15].

This paper explores data-driven methods to estimate the
vibrating screen’s fault condition and health status using a

novel design for wireless accelerometer and wear sensor
modules embedded in deck screens for online condition mon-
itoring. In addition to developing small, low-energy elec-
tronic components support industrial operating conditions for
monitoring applications and mining equipment. This docu-
ment aims to develop algorithms for early fault detection
using machine learning techniques. The enhanced capabili-
ties of proposed real-time condition monitoring system sur-
pass the standard technology practice for early fault detection
in vibratory screeners in mining.

Specifically, the proposed system consists of a plurality of
wireless sensors forming an instrumentation dedicated net-
work combined with data-driven machine learning to mon-
itor vibrating screens. Each mining vibratory screener is
typically composed of one to three decks, each composed
of 96 or more rubber screens. Vibratory screens are dispos-
able components by design. Lifespan of screens typically
ranges from 30-60 days. In proposed monitoring systems,
each screen contains an embedded electronics module with
dedicated sensors (accelerometer and wear measurement sen-
sors) and a wireless communication module. The embedded
sensors comprise physical sensors, signal conditioning elec-
tronics, a low-energy consumption microcontroller, power
management unit and WiFi IEEE Std.802.11n communica-
tion module. The embedded sensor modules communicate
with a local server using a dedicated WiFi star-topology
network accessed via a web platform for operation and main-
tenance (O&M) analysis purposes on-site. Different data-
driven machine learning algorithms run at local server level
to predict machine health status based on machine work-
ing time, screen wear, and vibration severity collected from
real-time sensor information.

This work provides a rugged hardware (with customized
firmware) that is completely embedded in the Deck’s rubber
screens, forming the first Smart-Deck solution for vibra-
tory screens. The Smart-Deck design reliably acquires data
in real-time from the vibrating screens. Machine learn-
ing models subsequently diagnose the machine’s condition
(with greater than 90% accuracy). The design of hardware,
firmware, software and data-driven models was carried out
to cover the vibratory screener technical requirements for
O&M. Correspondingly, features like high energy autonomy
(exceeding screen lifespan), reliable sensor measurements
and robust wireless communication are key for the proposed
solution. A low-energy consumption hardware design is pro-
posed for wireless sensors. Also, IP67 protection is consid-
ered for embedded sensormodules to endure the harshmining
operating conditions. The embedded electronics module is
light and small size to ensure ease of integration into rubber
screens and avoid operational or maintenance issues.

This paper addresses the following challenges for condi-
tion monitoring: (i) how to acquire reliable data from the
lab setup (by simulating the operation of a real vibrating
screen) in real-time adequately, and (ii) how to use gathered
data to train suitable machine learning algorithms to detect
random failures and to predict individual vibratory screen
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wear related failures. The condition monitoring system pro-
posed enables early detection of cumulative damage, random
failures and condition-based maintenance of the machine.

II. VIBRATORY SCREENS
A. CLASSIFICATION CHARACTERISTICS
Since the classification process is probabilistic, it is not
100% efficient. In ideal processing conditions, the vibratory
screener must provide passing and increase the probability
for the particles to penetrate the screen holes to maximize
the processed the tonnes per hour and consequently the
classification efficiency. To ensure a good classification of
the material, the operational parameters must be controlled
considering the following factors [16], [17]:
• Hole Size: there is a high probability that the material

particles penetrate into the screen holes if they do not exceed
50% of the hole size; If the particle is almost the same size as
the holes, likely, it will not pass through the holes.
• Geometry of material: the vibratory screener classifies

material in two dimensions, but the particles have three
dimensions. This introduces challenges for the sorting pro-
cess, causing some particles with only one dimensionmeeting
the hole’s size to be rejected by the deck screen. Conse-
quently, for a particle to pass through screen holes, at least
two of its dimensions must be less than the holes’ size.
• Distribution: vibratory screens do not classify the parti-

cles individually but rather a group of particles that compete
with each other to pass through the holes in the screen deck.
• Velocity: as particles travel over the Deck, they speed

up, making it difficult to pass through the screen holes. The
longer the residence time of particles over the screen holes,
the more likely they are to pass through them.

After the comminution in primary crushers, the material
is classified according to its size. The classified material by
vibratory screeners must comply with maximum size require-
ments for the downstream processes (mill and concentration).
Any failure in screeners in primary, secondary or tertiary
crushing stages can overload downstream crushing stages,
produce bottlenecks, process queuing, and delay upstream
and downstream. See Fig. 1.

FIGURE 1. Primary, secondary and tertiary crushing stages & primary and
secondary vibratory screening stages.

FIGURE 2. 1) Polyurethane screen, 2) Steel screen, 3) Rubber screen.

B. OPERATING CHARACTERISTICS AND TYPES OF
PROBLEMS IN VIBRATORY SCREENS
there are seven main factors in the classification process
that affect the particulate material screening capacity and
efficiency, these are: (i) Higher percentage of mean feed size,
(ii) Lower percentage of feed, (iii) Wet material, (iv) Slotted
holes, (v) Excessive moisture in material, (vi) Elongated
particle shape, (vii) Material size close to screen hole size.

The material classification process is carried out through
the deck screens, which have multiple holes that define the
maximum particles size that get a free pass through them.
The screens are subjected to progressive wear due to friction
(generated by the material when moving and rolling over the
Deck), so it is necessary to perform maintenance periodi-
cally [18].

The screens can vary in size and manufacturing materi-
als. They can have different uses and mechanical behaviors
depending on their specific designs [19], [20]. Figure 2 shows
the different types of screen
• Wire grids: they are manufactured using steel and are
characterized by having a high resistance. However,
these types of screens corrode easily when exposed to
humidity, which is a significant limitation. A common
practice is run screeners with wet material to improve
the flow and tonnes per hour in classification.

• Plastic (monofilament and polyurethane): wet particles
can be separated from the material without corrosion.
One of the significant problems of this type of screens is
that they break easily when subjected to highmechanical
stress.

• Rubber: screens that exhibit a high elasticity and can
withstand highmechanical stress under typical operating
conditions

The main operational problems that arise in deck screens
are the blockage by particles [17]:
• Blockages by particles with a size equal to screen hole
size that get stuck and block the passage of other parti-
cles or finer particles.

• Blockages caused by several small particles that arrive
at screen hole simultaneously, resulting in a bottleneck
that blocks particle passes, despite being smaller than the
holes.

• Blockages caused by fine particles with a high moisture
content that produce adhesion and clogging.

C. DYNAMIC CHARACTERISTICS
The mechanical systems of the screens can be described
in terms of its their degrees of freedom. Each degree of
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FIGURE 3. Degrees of freedom Deck [21].

freedom has associated a natural frequency and therefore,
a way of vibrating. Fig. 3 shows a vibrating screen as
observed with its degrees of freedom. The x, y, z axes cor-
respond to longitudinal axes and the α, β, γ to the torsional
axes, which correspond to the vibratory system’s angular
deformations [17], [21].

Table 2 shows a summary of the root causes of typi-
cal vibratory motion problems due to changes in dynamic
response parameters of the screener. The manufacturing
materials, dimensions, and quantity of individual screens per
vibratory Deck directly impact the stiffness and the total mass
subjected to vibratory motion. These factors affect the bal-
ance, vibrating modes and the natural resonance frequency.
Damage of springs in the supports of vibratory screeners also
results in an unbalanced operation.

TABLE 2. Root-causes of vibratory motion problems.

III. CONDITION MONITORING OF VIBRATORY SCREENS
Today, there are several monitoring systems for vibrating
screeners available in themarket. The conditionmonitoring is
carried out using acceleration, temperature, and strain gauge
sensors fixed to the vibrating screener structure with these
systems. Once the data is collected, expert knowledge and
physics based models are used to evaluate the condition of
vibratory screener.

The experience-based models approach is typically gener-
ated by gathering the accumulated knowledge among experts
in fuzzy logic. With these models, measurements com-
bined with experience leads to a possible corrective action.
Experience-based approaches can be an efficient way to
transfer knowledge to a large group of end-users of equip-
ments but rely on experts’ existence within the area. The
main benefits and drawbacks are as follows: (i) the rules are
typically easy to understand, (ii) the process is logical from

a human point of view, (iii) there is a risk of combinatorial
explosion for complex systems with numerous failure modes,
making the approach complicated even though the individual
rules are easy to understand, and (iv) it requires experts with
deep system knowledge.

The physics-based models employ first order principles
and use the underlying physics to explain both the oper-
ation and the various degradation processes of a system.
The main benefits and drawbacks are as follows: (i) the
models incorporate physical understanding and empirical
curves, (ii) the models can be transferred between similar
assets, possibly requiring new parameter tuning, (iii) The
approach requires accurate physical models of fast dynamics,
(iv) detailed knowledge and models of slow degradation are
needed, (v) model development is often hard and time con-
suming, and (vi) the physics based approaches easily become
complicated.

It should be pointed out that none of described model
approaches are able to capture unknown failure modes. Also,
with experience based models, sometimes arise the need for
complimentary physical models of degradation and dynam-
ics to improve the condition monitoring accuracy and/or
precision [22]–[24].

Examples of OEM/OTM vendors that provide condition
monitoring applications through data acquisitionwith sensors
can be found in [25], [26]. Functionality of these technology-
based-applications are quite similar. The solutions consist
of sensors bolted or attached temporarily to the vibrating
screener structure to measure vibrations excursions and com-
municate either by wire or wirelessly with a local application
server. Measured data is stored and processed to provide
equipment status regularly through different human-machine
interfaces. See typical solution architecture in Fig. 4 [27].
The main difference between solutions are the characteristics
of sensors deployed. Technical specifications vary in type,
size, measurement accuracy, and price according to process
operating conditions.

FIGURE 4. Diagram of the monitoring system for screens [27].

Table 3 shows a feature comparison between a number
of existing commercial OEM/OTM solutions for vibrating
screener monitoring. These systems use a plurality of sensors,
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TABLE 3. Commercial solutions for vibratori screen.

typically temperature and accelerometers to perform condi-
tion monitoring. All solutions covered in Table 4 use empir-
ical control curves based on empirical physics models and
experience-based models. These control curves are used to
trigger failure alarms using fixed thresholds according to the
machinery’s condition variables for maintenance diagnosis.

The analysis shown that an opportunity for R&D in condi-
tion monitoring systems for vibrating screeners still exists.
A number of technology gaps were identified as manda-
tory to reach the TRL level and the condition monitoring
performance demanded by the application. State-of-the-art
condition monitoring capabilities need to be improved to
detect additional process random and progressive degradation
failures, not covered by existing systems. These additional
early-failure detection capabitities include: (i) detection of
screen panel loose, (ii) detection of blocking and/or clogging
of screen panels, (iii) detection of screen panel breakdown,
and (iv) detection of excessive Deck unbalance.

With aim to close identified technology gaps, this work
proposes a number of technology developments: (i) new
design of screen panels with smart sensor modules embed-
ded, combined with (ii) customized data-driven models for
condition monitoring, diagnosis and prognosis.

Challenges to develop new smart screen panels consider:
(i) light and small size sensors, (ii) manufacturing methods to
embed sensors into the screens, (iii) high energy autonomy of
embedded electronics, (iv) smart wireless communications,
and (v) suitable IP protection to withstand harsh environmen-
tal conditions, shock and constant vibration.

Data-driven models relieve the need for physical under-
standing by using measurement data to find the relationships
between sensor signals and damage. A review of data-driven
statistical approaches is given. Typical benefits are: (i) there
is no need for physical models of degradation and dynamics,
(ii) the approach can capture unknown failure modes, and
(iii) the available techniques are not specific to a certain
domain, i.e., the methods can be transferred to different
applications. Data-driven approaches addressed in this paper
contain both statistical and machine learning techniques.

It should be noted that techniques have different require-
ments to achieve adequate operation of prediction models.
Some techniques demand heavy computational time while
others require considerable amounts of historical data to per-
form prognosis. These requirements limit the applicability of
these techniques to real-world implementations for real-time
prediction.

Heavy historical data requirement is not desirable for the
application since historical data is not always available or
well labelled. The use of unreliable and/or low-quality data
results in unreliable, inaccurate forecasts. It causes false
alarms and unnecessary machine downtime. On the other
hand, heavy computation time can be avoided using modern
powerful multi-core computers/servers and cloud computing.
Despite the processing hardware available on premise or in
the cloud, themost suitable algorithms for the applicationwill
be the ones with moderate data required to ensure real-time
operation when scale-up the number of machines being
monitored.

Considering the design boundary conditions of data
requirement and computation time, the best machine learning
algorithms for the application should not require a significant
computational capacity, must be able to provide good equip-
ment condition predictions using small datasets with limited
historical information content for training, and be easy to
implement as industrial monitoring systems.

IV. SOLUTION DESCRIPTION
The proposed system is a comprehensive solution that com-
prises hardware and firmware for data collection and software
for O&M data analysis of vibrating screens.

Each vibrating screen represents an elasto-plastic device,
consequently, it has its own vibratory patterns, which can
help detect the machinery’s health status in real-time [28].
The proposed solution uses a wireless data acquisition system
composed by accelerometers and height wear sensors embed-
ded in each vibrating screen panel. The solution requires
sensing the vibrating screen in a non-invasive way to obtain
accelerations and wear signals during normal operation in
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real-time. The sensor modules embedded in rubber screen
panels (forming the SmartScreen devices) uses a dedi-
cated WiFi wireless network for data transmission. The
SmartScreen sensor network receive and send information
from the vibrating screens to the local application server,
and vice versa. The proposed solution uses WiFi due to
the high data traffic between the SmartScreen (more than
100 units) and the server during a very short time. In addition,
through implementing a TCP / IP socket, the delivery of data
packets is guaranteed. Other more energy-efficient solutions
such as Bluetooth and Zigbee cannot establish stable com-
munication with a high number of sensors, considering that
the sensor is embedded in the rubber. Over the Deck, there
is constant material inflow, and their bandwidths are quite
limited [29]–[31]. The application server is responsible for
three main tasks: (1) store measured values generated by
the sensors embedded in each screen panel into a database;
(2) host the control, configuration, and monitoring software
of smart screen panels; and (3) manage measured data, run
predictive maintenance models, and backup real-time infor-
mation into a cloud server for IT/OT and user visualization
platforms integration purposes [32].

Figure 5 shows the components of the proposed condition
monitoring cyber-physical system.

FIGURE 5. Diagram of the proposed screen monitoring system.

The proposed cyber-physical system has a functioning that
is composed of 6 main stages. Figure 6 shows the functions
of the system in a flowchart format. The multiphysics sys-
tem will provide the operators and maintainers with indica-
tors associated with the vibratory screen operation, such as:
(i) Diagnostic status, (ii) Early detection of failures, (iii) Fore-
cast horizon for change in operating status. With these indi-
cators, workers can take preventive measures to extend the
remaining useful life (RUL).

FIGURE 6. Functions of cyber-physical system.

A. SmartScreen SENSOR DESIGN
The SmartScreen Sensor design considers the following
embedded capabilities: data storage and processing func-
tionalities, wireless communication, 3-axis inertial measure-
ment using accelerometer, screen panel height wear sensor,
power supply, and power management unit. Fig. 7 shows the
SmartScreen Sensor device functional diagram.

FIGURE 7. Diagram of the monitoring system for screens.

1) PROCESSING SYSTEM
Its function is processing and managing the vibration and
wear signals coming from the IMU sensor (Bosch BMI160)
and customized wear sensor developed. Thus, the system
achieves a total frequency range of 1-500 Hz for inertial
signals measurement up to 16g and information from a wear
sensor that comprises an electric circuit supported on a sub-
strate. This circuit comprises a plurality of discrete elements
wich are coupled in parallel with each other across conductive
rails. This wear detection circuit is electrically connected
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with a ADC measuring device. The measuring device mea-
sures the variability of the resistance. The wear sensor is
disposed of adjacent to the central inner wall of the internal
frame of each screen panel, which is subject to wear and
wears with the object. As the sensor wears, the elements are
sequentially decoupled from the circuit, thereby changing the
characteristic measured by the device. This change indicates
the amount of wear of the vibratory screen panel in the height
side.

The amplitude resolution of the accelerometer is 0.01 [G].
This functionality is integrated in the proposed desing as a
tool to activate the SmartScreen sensors and put the smart
panels in service in the field.

For the implementation of the battery measurement, a volt-
age divider is used. The voltage dividerh is connected
between the battery and an MCU analog-digital converter.
The voltage divider uses two 10M� resistors in format
surface-mount device (SMD) with package 0402.

2) RF COMMUNICATION SYSTEM
This functional block is responsible for the data transmission
of estimated parameters of wear and inertial signals mea-
sured by the SmartScreen sensor to the server using WiFi.
This wireless link also is intended to send configuration
parameters to each SmartScreen sensor. The SmartScreen
sensor uses a Transmission Control Protocol (TCP) client
that communicates with a TCP server hosted on the local
server. TCP is used to ensure the reception of measurement
data packets. Also, a SQL database is hosted on the local
server. The database stores the configuration information of
the SmartScreen sensor and the data of the measurements
received in the TCP server. The system has standard libraries
associated with the development environment, such as cus-
tom libraries of appropriate design for the application. The
sensor is programmed in C in a Free-Real-time operating sys-
tem (FreeRTOS) environment. Figure 8 shows the standard

FIGURE 8. Draw software packages.

functions that the operating system contains. In addition,
specific functions were added, such as:
• WiFi: Manage the connection to theWiFi network. Save
the assigned Internet Protocol (IP) and handle protocols
for connection errors.

• wear: Discretizes the voltage delivered by the wear sen-
sor and quantifies it in 5 levels.

• deep_sleep_clk: Manages deep sleep mode, with a
wake-up controlled by the internal clock.

• deep_sleep_imu: Manages deep sleep mode, with a
wake-up controlled by the anymotion function of the
BMI160.

• bmi160: Contains the operating functions of the
BMI160 sensor. Among these functions, the initial-
ization of i2c communication, sensor configuration,
reading of measurement register.

• tcp: Contains the functionality of the TCP client service.
The IP and the TCP server port are set.

• nvs: manages writing and reading of non-volatile
memory.

• battery_level: Discretizes the voltage delivered by the
battery sensor and quantifies it in percentage of charge.

Also, figure 8 shows the standard functions that the Server
TCP hosted in local server contains. In addition, specific
functions were added, such as:
• bin_to_int: Function that transforms data of type integer
(int), into data of type Bytes.

• Connexion: This function will administer a subset of
functions associated with connecting the client and
the TCP server. The functions that are highlighted are
(i) verification of the handshake, (ii) verification of the
operation mode of the sensor device, (iii) Configuration
of the sensor device, (iv) reading of the measurement
data that the sensor device sends to the server TCP.

• write_db: Function that writes the information received
from the sensors in the database.

3) POWER MANAGEMENT SYSTEM
An embedded 3.7V 1200mAh LiPo battery is used to
power the electronics embedded into each SmartScreen sen-
sor. Also, the proposed design considers a battery wireless
recharging feature. The wireless power transfer (WPT) uses
an inductive link in the series-parallel topology. The inductive
link’s operational frequency is 1MHz. The receiver coil is
fabricated in a rigid PCB and has a diameter of 15.5 mm,
an inductance of 0.85 µH, and resistivity of 486 m�. For
the rectification proposes its use full-wave rectifier with a
DC capacitive filter. Finally, the system use a MCP7383 LiPo
battery charger regulator

B. SENSOR SYSTEM IMPLEMENTATION
1) ELECTRONICS SYSTEM
A prototype of the SmartScreen sensor embedded into the
vibratory screen panels was implemented for functional
performance testing and evaluation. During lab testing,
power consumption measurements were accomplished using
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Fluke 287 multimeter and the TDS1002C-EDU Tektronix
Oscilloscope.

The test protocol for inertial measurements was as follows:
(i) activation, (ii) the sensor starts to measure inertial signals,
(iii) then establishes a WiFi link with the application server,
(iv) sent of configuration parameters, (v) run a measurement
cycle, and (vi) after the sensor completes a measurement
cycle, it goes into deep sleep mode (until a new measurement
cycle need to be performed according to the sampling fre-
quency configured, i.e., every 10-15 minutes). Fig. 9. shows
the SmartScreen power consumption measured. The stages
of the test protocol are represented by ‘‘1’’, ‘‘2’’ and ‘‘3’’,
for deep sleep mode, measurement mode and communication
mode, respectively. The wear rate of vibratory screens is
different from a mine site to another. It depends directly on
the material’s geological and mechanic characteristics that
are processed, utilization, loading quality, and operating con-
ditions. Typically, the deck screen panels used are replaced
every 25-30 days in copper mining, and every 90 days in gold
mining. The proposed system considers seamless integration
of SmartScreen in the mining operation to avoid operational
and maintenance problems and interruptions. The solution is
designed to last in service as much time as possible with-
out battery recharging, exceeding the vibratory screen lifes-
pan. The wireless battery recharging capability is included
to repleting energy after extended storage periods before
installation. It does not represent the primary energy source.
The average energy consumption during the measurement
and communication stage v) of the system integrated in the
vibrating screens is 265 [mW].

FIGURE 9. Power consumption of SmartScreen sensor during the tests.

Each activation cycle for the vibratory screen mea-
suring last for 5-6 seconds. In each monitoring cycle,
the SmartScreen sensor measures the accelerations signals
(at 400 Hz sampling frequency), the wear level, the battery
charge level, establishes a connection with the application
server using a dedicated WiFi network, next connect to a
TCP socket, and send all gathered information to the server
for further processing and store in database and running the
predictive condition monitoring models.

Considering that the sensor: (i) is active (in states 2 and 3
of figure 9) an average of 6 seconds every 15 minutes, (ii) the

average consumption of states 2 and 3 (see figure 9) is
60 mA, (iii) the average consumption of state 1 (see figure 9)
is 0.02 mA, and the device is always in this state, except
when it measures and sends the information. The number of
measurements that can be performed with a 1200 mA battery
is estimated as follows:

Sdt =
Bpc

(Asr ∗ Acs)+ (Sr ∗ Cs1)

where:
• Bpc: battery power capacity, in milli ampere hour
• Acs: Average consumption signal 2 and 3 Fig. 8, in milli
ampere

• Cs1: Consumption signal 1 Fig 8, in milli ampere
• Asr: Average sensor runtime in signal 2 and 3 Fig 8,
in hours.

• Sr: Sensor runtime in signal 1 Fig 8, in hours.
Replacing the values, we obtain:

1200mAh(
6

3600h ∗ 60mA
)
+ ( 3594.53600 h ∗ 0.02mA)

= 11764h

Considering that the sensor will measure and send informa-
tion 96 times one day, approximately 122 days of operation
are obtained.

2) MECHANICAL SYSTEM
To ensure an IP67 protection against harsh environment con-
ditions in mining, and withstands shock and constant vibra-
tion, the electronics of the SmartScreen sensor is embedded
into a block of epoxy resin of 30 × 50 × 15 [mm] size.
Fig. 10 shows the position of the SmartScreen sensor embed-
ded in the vibratory screen panel. Fig. 11 shows a prototype
of the sensor module.

FIGURE 10. Figure 3D showing the position of the SmartScreen sensor
embedded in screen rubber. 1- Rubber screen, 2-Sensor position.

C. DATA PROCESSING
The vibratory signals and the wear level measured by the
SmartScreen sensor in each monitoring cycle are stored tem-
porarely in the device using a customized data packet. The
data packet is sent to the TCP Socket hosted in the application
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FIGURE 11. Electronic system embedded in resin that forms the
SmartScreen Sensor prototype. 1-Electronic measurement and
communication system, 2- lipo battery, 3- Wireless charging system,
4- Resin protection.

server at the end of each monitoring cycle. Server daemons
save the received data on a TCP socket in a SQL database. The
RMS value and the FFT transform are calculated using the
measurement time window with acquired vibration signals.
Because the present investigation is an exploratory study, it is
decided that SmarDeck sends raw data, all triaxial acceler-
ations, to the server. Subsequently, the server estimates the
indicators as RMS or variables in the frequency spectrum.
This methodology compares the proposed algorithms using
the time series of the raw data with the time series of the
indicators.

D. HEALTH STATUS DETECTION ALGORITHM
This research proposes a cost-effective solution to implement
a monitoring system for vibratory screens with wireless com-
munication and data-driven machine learning capabilities.
The 3-axis accelerations and wear discrete level are measured
using sensors embedded in the rubber screens during the
vibratory screen operation. The deck screen panels accel-
erations (amplitudes and frequencies) are measured in two
different frequency spectra to improve each sensing location’s
temporal resolution. Proposed data-driven machine learning
models classify the wear status and the vibratory motions of
the screen panels according to ISO 2372 standards for vibra-
tion severity into Good, Acceptable, Unsatisfactory, or Unac-
ceptable categories.

The Good state indicates that the vibratory screen is
working in conditions that do not impair asset lifespan.
The Acceptable state indicates work conditions in which
the screen panel’s useful life is not significantly reduced.
The Unsatisfactory state indicates that the screen can operate
for a limited period in the current operating condition until
corrective action arises. The Unacceptable state indicates that
the device will suffer a critical failure in short; maintenance
is mandatory immediately.

The machine learning algorithms chosen for machine
health status classification during vibrating screen operations
are Naïve Baye and Support Vector Machine (SVM). These
two algorithms were tested considering a prior optimiza-
tion process of methods parameters, kernel, support, and

type with different combinations to achieve a better possible
classification.

The protocol to train the machine learning algorithms was
the following:

1) Test an algorithm with default parameters.
2) Change the kernel and choose the best.
3) Change support.
These algorithms are explained in the ‘‘Diagnostic Algo-

rithms’’ section.

V. TRAINING DATASETS
The method proposed for detection of failures in vibratory
screens is based on data-driven models where datasets are
required for training purposes.

This section presents the methodology associated to data-
generating process (DGP) using two complimentary model-
ing methods to improve early failure detection for predictive
maintenance in vibratory screeners. The first method uses
a test bench, which replicates the operation of a vibratory
screener at lab-scale. The tests carried out on the test bench
allow the characterization of the frequency spectrum of the
accelerations of the vibratory screens without load under
different vibrational excitations. The second method consists
on the simulation of a vibratory screener under different load
conditions using discrete element method software.

A. TEST BENCH DATA-GRENERATING PROCESS
The proposed test bench is made up of three main compo-
nents. The first component is the stainless steel structure that
mimics the inclined plane of a vibrating screen. The second
component is the Deck of vibrating screens, which performs
the material classification through the rubber screen panels
with specific size holes. The third component is the elec-
tromechanical excitation system, which allows the test bench
vibrates under controlled frequency and amplitude.

The main structure consists of a rectangular base of
125×80 [cm] that supports an inclined plane projected with a
height of 57 [cm]. The test bench uses a mechanical isolation
system, which is made up of four springs. A three-phase
motor is used to perform the controlled vibratory excitation
test bench. This motor has a power of 0.52KW and reaches
1000 revolutions per minute. A variable frequency drive is
used in the test bench.

Implemented test setup consists of six rubber vibratory
screens (that compound the SmartScreen prototype) con-
nected using WiFi via an ASUS RT-AC1200 router to the
application server. The application server is implemented in a
minicomputer, with Fig. 12 shows the implementation of the
test bench in the laboratory environment.

Three different sets of tests were carried out on the test
bench as a part of the data-generating process for char-
acterization of real vibratory screen panels: (i) excitation
of the vibratory screener structure with impulse signals;
(ii) excitation of the structure with frequencies ranging from 0
to the natural resonance frequency; and (iii) excitation of
the structure with typical operating frequency vibrations for
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FIGURE 12. Vibratory screener with SmartScreen sensor at lab. Details:
(1) Real-size vibratory screens with embedded electronics, (2) Vibration
motion control system, and (3) Data networking equipments.

mining applications, i.e. 20 Hz [30]. The natural resonant
frequency was obtained by applying FFT transform to the
test bench’s impulse response over the measurement time
record. Catastrophic failures can be induced on the test bench
exciting the vibrating screener at resonance frequency and its
harmonics [31].

The data-generating process based on experimental testing
at lab-scale have some limitations: (i) tests are done without
load, so equipment condition diagnosis is made over baseline
vibratory patterns with higher amplitude excursions; (ii) the
stiffness and inertia of the test bench deck is lower than
real vibratory screener, so scaling factors must be introduced
to ensure replication of real operating conditions; (iii) the
labeling of measured signals is performed matching observed
dynamic behavior of the test bench and vibratory stimuli,
therefore, to cover typical deviations in the process such as
installation defects, loose components, damaged components
or missing components, these conditions must be set manu-
ally in the test bench. SmartScreen sensors acquire signals at
400 Hz, this means, at 20Hz the typical operating frequency
of vibratory screeners.

B. DEM DATA-GENERATING PROCESS
In applications where increasing productivity is desired, max-
imizing throughput and uptime are the typical focus. In this
sense, the equipment must yield a high throughput (i.e. a sub-
stantial amount graded granular material) and a high capacity
to separate particles into different sizes (that is a high effi-
ciency). To achieve these challenges, a high capacity to early
detect unwanted operating conditions in real-time to take
predictive and preventive actions is mandatory. Therefore,
the analysis of vibrating screen design efficiency under dif-
ferent operating conditions is very important for this purpose.
Nevertheless, researching these types of equipment for ways
to increase efficiency can be challenging as the mechanisms
of particle motion are not fully understood [32].

The parameters can easily be changed in simulations, elim-
inating the need of preparation, excessive time and resources

for the experiments. Also, several tests can be done at the
same time. Another great advantage of a computational anal-
ysis is the possibility of simulating equipment and systems
that does not yet exist, allowing engineers and researchers to
decide which solution is better before it is manufactured [32].

When choosing the proper design criteria for monitoring
systems for a vibrating screen, an important tool is a para-
metric analysis. When a vibrating screen operates at high
frequencies, it can cause particles to bypass the screen and
otherwise not reach the holes in the screen. On the other hand,
low frequenciesmay result in accumulation of the particles on
the screen surface, excessive wear, and reduced throughput
along the process [32].

If the inclination angle of the screen is too high, the par-
ticles could move too fast over the screen and miss opportu-
nities to pass through the screen aperture. If the angle is too
low, the particles could accumulate in the screen, which can
cause excessive wear and reduced throughput. Low particle
mass flow rate in the feeder will result in reduced throughput,
which is usually the opposite goal of the process. But if
the mass flow is too high, it may cause deformation of the
equipment due to higher stress, particle accumulation on the
screen and premature wear of the screen [32].

Discrete elements methods (DEM) can be used as mod-
eling tools and data-generating processes to better opti-
mize the process, assisting in the proper selection of these
and other design considerations for the development of a
new embedded condition monitoring system for vibratory
screens. Obtaining correlations between vibrating screen
parameters and efficiency may result in valuable insight for
industrial equipment O&M improvements and new solution
designs [32]–[34].

DEM analysis allows to identify the physical principles
that govern a system and develop a numericalmodel to predict
the motion and interactions of particles and domains under
different operating conditions [35]–[40].

The software employed in the data-generating proces to
provide simulated datasets about material flow, unbalance
conditions, and progressive degradation processes for train-
ing the machine learning algorithms was Rocky DEM.

Rocky is a powerful 3D Discrete Element Modeling DEM
software that quickly and accurately simulates particles’
granular flow behavior of different formats and within mate-
rial processing equipment such as vibratory screens. Rocky
allows simulating the transport and handling ofmaterials with
particles of various forms with a real size distribution, consid-
ering phenomena such as friction, contact, material clogging,
rupture, adherence, erosion, and fluid-particle interaction.

The 3D model of the vibratory screener considered for
simulations comprises one classification deck with dimen-
sions of 6 [m] × 3.6 [m], which represents a large-size deck
at industrial scale (240 screen panels of 30 × 30 [cm]).
Specifically, the DEM simulation model working as a
data-generating process provided the vibratory response,
forces, stress levels and wear over the vibratory deck screen
under different operating conditions.
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TABLE 4. Rocky DEM simulation parameters.

The DEM model was tuned using a complete set of
operation, geological and mechanical parameters considering
information reported in literature and operating practice data
for vibratory screeners. Key parameters include the system
materials, the screen pass percentage, the material rolling
resistance factor, size and distribution of particles, tonnes per
hour flow, and vibratory frequency and amplitude.

A summary of DEM simulation parameters are listed
in Table 4 with their respective values [41]–[43].

The data-generating process based on DEM simulations
considers the following limitations: (i) the system response
is determined at a fixed operating frequency; (ii) the input
bulk material flow has a normal distribution; and (iii) each
simulation accounts for near system step-response.

The vibratory screener was simulated at different operating
points up to nominal load (4,000 tonnes per hour). Additional
overloading operating conditions were simulated to repro-
duce transient peak stress over the equipment. Fig. 13 shows
the bulk material entry in time for near step-response eval-
uation in the screener at nominal load for a given volume
of material. Fig.14 shows a time-step of the 3D simulation
of particle material flow over the vibrating screener during
near step-response evaluation. The y-axis was implemented
as a fixed constraint to ensure convergence in the simulation
model. Results in Fig.15 shown that z-axis vibration signals
exhibited greater amplitude excursion than x-axis vibrations
as a function of the material flow.

FIGURE 13. Bulk material entry in time for near step-response evaluation
in the screener at nominal load for a given volume of material.

Continuous operation of equipment that handles solids
causes wear and tear on its components. DEM has proven to
be very helful in predictingwear. Before predicting how a sur-
face wears, the forces and stresses that it is subjected to must
be accurately computed. In Rocky, the transient variation of

FIGURE 14. View of 3D particle material flow simulation in Rocky DEM.

FIGURE 15. View of particle forces acting upon the geometry components
of vibratory screener (per axis) as the bulk material flows.

normal and the shear stresses on the surface, and its related
work, are computed accurately. Thus, accurate power draw
can be used to predict 3D wear evolution. This work uses a
validated Archard’s wear model in Rocky DEM calibrated
against experimental data. This is a shear based model that
correlates volume losses in 3D geometry components with
the specific work due to friction forces. With calibrated wear
rate parameters, this model accurately captures both wear and
wear patterns on geometries [44].

Fig.15 shows an example of particle forces acting upon the
geometry components of vibratory screener (per axis) as the
bulk material flows. The vibratory screens exhibiting more
shock impacts are the ones subjected to a more significant
wear due to constant vibration and interaction with particles
flowing on the Deck. Fig.16 shows a flowchart of the screen
wear estimation model implemented for this work based on
the vibratory screener’s geometry definitions, granulated bulk
material parameters and equipment operating conditions.

VI. DIAGNOSTIC ALGORITHMS
A diagnostic algorithm to be developed must decide whether
a fault has occurred (fault detection) and which fault
has occurred (fault identification) [45]. When conducting
exploratory studies with no prior information about data,
a supervised learning algorithm can help to predict outcomes
for unforeseen data. Supervised machine learning algortihms
are designed to learn by example. Supervised learning is
the machine learning tasks of learning a function that maps
an input to an output based on example input-output pairs.
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TABLE 5. Characteristic machine learning algorithms.

FIGURE 16. Wear estimation methodology.

It infers a function from labeled training data consisting of a
set of training examples.

A supervised learning consisting of an input object (typi-
cally a vector) and a desired output value (also called a super-
visory signal). A supervised algorithm analyzes the training
data and produces an inferred function, which can be used for
mapping new examples. During training, the algorithm will
search for patterns in the data that correlate with the desired
outputs. After training, the supervised learning algorithmwill
take in new unseen inputs and will determine which label the
new inputs will be classified as based on prior training data.
With this approach, the training is done through an exper’s
supervision of essential characteristics and attributes of data.
Under this scheme, the algorithm’s main task is to optimize
the parameters of its model.

Supervised machine learning can be split into two subcat-
egories: classification and regression models. First type of
techniques are addressed in this work.

Choosing the optimal algorithm for a problem is dependent
on features such as speed, forecast accuracy, training time,
amount of data required to train the algorithm, how easy
is implementation, how difficult is to discuss and explain

patterns and algorithms, and most importantly, being confi-
dent that the algorithm solves the problem [46].

Table 6 shows the specific requirements for two supervised
machine learning techniques selected for this work. These
models achieve high accuracywith amoderate amount of data
and low computational cost [47].

TABLE 6. Vibration severity label according to ISO 2372 for screen panels
for different excitation signals at lab test bench.

One key issue for most classification algorithms is that they
need large amounts of labeled samples to train the classifier.
Since manual labeling is time-consuming, researchers have
proposed active learning and semi-supervised learning tech-
nologies to reduce manual labeling workload. Of numerous
SVM active learning algorithms, the most popular is the one
that queries the closest to the current classification hyper-
plane in each iteration. Realizing that SVM active learning
is only interested in samples that are more likely to be on
the class boundary, while ignoring the usage of the rest large
amounts of unlabeled samples, this paper uses an iterative
design of semi-supervised learning algorithm to make full
use of the rest non-queried samples, and further forms a new
active semi-supervised SVM algorithm. The proposed active
semi-supervised algorithms use active learning to select class
boundary samples and semi-supervised learning to select
class central samples. Class central samples are believed to
better describe the class distribution and help SVM active
learning algorithms finding the boundary samples more pre-
cisely. In order to avoid introducing too many labeling errors
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when exploring class central samples, the label changing
rate is used to ensure the reliability of the predicted labels.
Testing with experimental and simulated results showed that
the proposed active semi-supervised learning SVM algo-
rithms outperform the pure SVM active learning algorithms,
thus reducing manual labeling workload. Figure 17 shows
the framework of the active semi-supervised SVM machine
learning algorithms used in this work to detect anomalies and
predict progressive damage. The framework also was applied
to implementing alternative predictivemodels based onNaïve
Bayes algorithms with same purposes [48].

FIGURE 17. Framework of the active semi-supervised machine learning
algorithms used in this work [49].

This work explores active learning and semi-supervised
learning instead of traditional supervised learning. Semi-
supervised learning aims to label unlabeled data points using
knowledge learned from a small number of labeled data
points. Supervised learning aims to learn a function that,
given a sample of data and desired outputs, approximates
a function that maps inputs to outputs. In active learning,
the algorithm proactively selects the subset of examples to
be labeled next from the pool of unlabeled data.

A. ANOMALY DETECTION ALGORITHMS
Anomaly detection, also known as outlier detection, identi-
fies extreme points or observations that significantly devi-
ate from the remaining data. Usually, by analyzing these
extreme points, the user can understand the extreme working
conditions of the system. In vibratory screeners, some anoma-
lies could be a sudden increase in the vibration severity
or unbalance due to surprising increase in material volume

flow or unexpected failure of critical components. Proper
anomaly detection should be able to distinguish signal from
noise to avoid too many false positivies in discovering-
malies [50], [51].

Today, a critical issue for developing a vibratory screener
data-driven monitoring strategy based on pattern recognition
models is the lack of diagnostic labels to explain themeasured
data. In an engineering context, these descriptive labels are
costly to obtain, and consequently, the use of conventional
supervised learning is not feasible. Active learning tools look
to solve this issue by selecting a limited number of the most
informative observations to query for labels. Active learning
is motivated by scenarios where it is relatively easy to amass
large quantities of data but costly/impractical to obtain their
labels. Here, the key philosophy is that a pattern recogni-
tion algorithm can achieve greater performance, using fewer
training labels if allowed to select the data from which it
learns. Like supervised learning, the goal is to ultimately
learn a mapping function from the observations to labels.
However, here the data are initially unlabeled, more precisely,
the algorithm systematically builds an informative training
set limited to a budget of given observations [51]–[53].

Correspondingly, the data labeling of the initial data train-
ing set is relevant for good active semi-supervised learning.
These data labels were generated bymeasuring vibrations and
assessing the test bench screener behavior under a permanent
vibrating regime and dynamic response of the test rig to
different excitation signals. The frequency sweep test data
were measured on the test bench for failure prediction due
to abnormal operating conditions like vibrations at resonance
frequency (or some of its harmonics). The measuments con-
sisted of 65,500 sample datasets. Each input data sample
was composed of 6 variables: vibration RMS value, vibra-
tion cumulative RMS value, amplitude of acceleration in the
x-y-z axles, and the screen vibratory frequency. Each output
corresponded to the vibration severity label according to ISO
2372 standards. See Table 6.

With proposed SmartScreen sensors, conditions like screen
panel loose or breakdown can be easily identified thanks
to embedded accelerometers. The accelerometer devices are
used to measure abnormal acceleration forces. Such forces
may be static, like the continuous force of gravity or, as is
the case with vibratory screens, dynamic to sense abrupt
movements due to failure condition or vibrations in perma-
nent regime. In specific, the motion sensors in accelerom-
eters allow the measurement of the change in velocity and
acceleration forces. Surge changes in individual velocity or
acceleration force are monitored to trigger failure alarms
using fixed thresholds according to the machinery’ condition
variables for diagnosis.

Other anomaly early-failure detection capabilities like
detection of blocking and/or clogging of screen panels and
excessive Deck unbalance are implemented using machine
learning models. The outlier detection classifiers used in
this work correspond to the Naïve Bayes model with
kernel density estimation and the quadratic SVM model.
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FIGURE 18. Test bench signal, (i) Vibratory excitation triaxial signal at 20 Hz, (ii) Fast fourier transform into (i), (iii) Signal response to
impulse excitation.

The 65,500 datasets of vibrating severity labels according to
ISO 2372 and vibration measurements collected in test bench
under different operating conditions presented the following
distribution per class label: 30%Good state, 25%Satisfactory
state, 25% Unsatisfactory state, and 20% Unacceptable state.
For training, validation and testing, the usage of datasets was
60%, 30% and 10%, respectively. Random selection was used
over each vibratory severity dataset.

B. PROGRESSIVE DAMAGE PREDICTION ALGORITHMS
An important problem during vibratory screener operations
is the detection and classification of parts wear, specifically,
screen panels. Previous research has demonstrated effective-
ness of various feature sets and binary classifiers to detect
other operating conditions and maintenance problems. Here,
the goal is to develop a classifier which makes use of dynamic
characteristics of screen panel’s wear in a vibratory screener
application with two outputs: (i) a prediction of the individual
screen panel wear level (quantized) and (ii) a gradient mea-
sure of wear probability given the observed feature sequence.
The classifiers proposed in this work track the dynamics of
SmartScreen sensor data within each condition monitoring
time step andhe evolution of wear from installation to the end
of lifespan [54].

Screen panels suffer from progressive wear, which,
if not controlled or detected, impairs material classification.
If vibratory screens continues operating with worn panels,
it will break causing further damage to the vibratory Deck
or other downstream equipment. By inspecting the vibratory
screener regularly, operators can predict the amount of wear
on the screen panels. However, it is not possible to ded-
icate an expert maintainer to constantly monitoring vibra-
tory screens’ wear. What is needed is an automatic system
that alerts the operators when close supervision of vibratory

screens is required and when screen panels replacement is
warranted [54].

A common industrial practice is to replace rubber screen
panels according to a fixed schedule based on average lifes-
pan. This approach is innefective because of the wide vari-
ation in usage. Past work on automation of vibratory screen
panels has treated classification as a binary decision, of not
worn versus worn. In this work, we replace this binary deci-
sion by a multilevel quantized wear estimate. Furthermore,
this work generates a confidence estimate that screen panels
have exceeded an acceptable level of wear. The intention is
to provide information that allows more timely and accu-
rate decisions about screen panel replacement. In vibratory
screens, the wear is a dynamic process, with rubber screen
panels moving from being new to progressively greater levels
of wear and possibly to breakage. We model the multiple
levels of wear assuming a monotonically increasing wear and
representing the dynamics of the material screening process.
To deal with the problem of sparsely-labeled training data,
we propose and evaluate several alternatives for using unla-
beled data in estimating model parameters using active semi-
supervised learning combined with Naïve Bayes with kernel
density estimation and quadratic SVM classifiers [54]–[57].

The simulation results from DEM data-generating pro-
cess were used for progressive wear prediction model train-
ing. Specifically, the 11 discrete wear levels provided by
embedded sensors into screen panels were correlated to wear
rate and simulations results to generate classification levels.
As the rubber screen panel wear increases and gets closer to
the inner steel frame, the wear level estimated was labeled
as Good up to 6 mm of wear, Acceptable from 6 to 7 mm
of wear, Unsatisfactory from 8 to 9 mm of wear, and finally,
Unacceptable over 9 mm of wear. Fig.19 shows the reference
for measuring the level of wear on each rubber screen panel.
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FIGURE 19. Wear estimation rubber screen. (1) Sensor position in rubber
screen, (2) Wear sensor section in rubber screen, (3) wear sensor position
in electronics embedded system.

The 3,134 datasets of simulated operating conditions and the
respective wear level labels used to predict the progressive
wear of vibratory screens presented the following distribution
per class label: 30% Good state, 25% Satisfactory state, 25%
Unsatisfactory state, and 20% Unacceptable state. For train-
ing, validation and testing, the usage of datasets was 60%,
30% and 10%, respectively. Random selection also was used
over each progressive wear dataset.

VII. RESULTS
This section analyzes the data generated and collected for the
bench test and the DEM simulation. The analysis consists
of the extraction of characteristics by processing qualitative
information (expert observation and trend models) and quan-
titative information (statistical methods). After the Feature
extraction from the data, different classification algorithms
are designed and trained to diagnose the status of the screen
according to ISO 2372.

A. SmartScreen SENSOR TESTING
The test bench comprises two three rubber screen columns
(that composed de SmartScreen). Fig. 20 shows the test
bench’s reference system.

A vibratory excitation is carried out controlled by the
frequency variation of the test bench. The test consists of
sweeping frequencies from 5 Hz to 30 Hz in multiples of five.
On the z-axis, the signal’s maximum amplitude is reached,
which is around 3.5 G.

Table 7 shows that the highest peak-peak values are found
in the Z-axis, followed by Y and, finally, the X-axis. The ‘‘3’’
and ‘‘4’’ screen has the highest peak-peak values in all axes,

FIGURE 20. Test bench reference system. i) Screen identifier label
(from 1 to 6), ii) Inertial sensor reference axis.

TABLE 7. Peak-peak acceleration per screen and axis.

followed through the ‘‘1’’ and ‘‘2’’ and ending with the ‘‘5’’
and ‘‘6’’.

The test bench is analyzed in the vibrating screen work fre-
quency (20 Hz). The test result is a sinusoidal signal for each
axis. The Z-axis signal has the most significant amplitude,
followed by the Y-axis and ending with the X-axis. When
applying the FFT in the three axes, a peak at 20 Hz is the
forced excitation prints a movement at this frequency in the
three reference directions. This can be seen in Fig. 18(i) and
Fig. 18(ii).

Applying the FFT to the impulse signal’s response,
we obtain the resonance frequency 16 Hz. Knowing the test
bench’s resonant frequency makes it possible to condition
unforeseen faults, bringing the operating frequency closer to
the resonant frequency’s vicinity.

The test of subjecting the test bench to an impulse signal
is carried out by hitting the screen’s center with a rubber
hammer. Fig. 18 (iii) shows the vibrations generated by the
impact. The vibratory signal has damping with exponential
decay of the amplitude.

B. EM SIMULATION RESULTS
Four simulations are carried with different numbers of tons
hours that flow over the Deck, doing simulations of 2,000,
4,000 (nominal load of the simulated screen), 6,000, and
8,000 (overload of the simulated screen) tons per hour.
Table 8 shows the maximum and minimum values of the
simulation output variables.

The RMS value is calculated as the square root of the sum
of the squares of the acceleration signals (one signal for each
axis). The maximum RMS values are inversely proportional
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FIGURE 21. (i) Sign labeled by wear level, (ii) SVM tagged signal, (iii) Naïve Bayes tagged signal.

TABLE 8. Maximum and minimum of RMS values and net force.

to the tons of flow that pass over the Deck. This behavior
is because a greater amount of material flows through the
screen, the oscillation amplitude of the Deck decreases.

The maximum and minimum net force values directly
proportional to the amount of material flow over the screen.
It should be noted that the variability of the maximum and
minimum RMS values is around 10% and that the variability
of the net forces is about 60%.

Fig. 22 shows the relationship of the different flow levels
concerning the cumulative RMS (the sum of the RMS values
in a time window). As the mineral flow over the screen
increases, the relationship line decreases its slope.

C. ANOMALY DETECTION ALGORITHM(S) TESTING
Table 9 shows the classification results of the tested algo-
rithms (with a k-fold of 15). The test was performed with
acceleration RMS value, cumulative RMS, acceleration in
the axis X, axis Y, and axis Z. The algorithm has average
correct classification of 97.5% and 97.8% for the Naive
Bayes algorithms with Kernel estimation and quadratic SVM
respectively. For all the algorithms tested, the accuracy in

FIGURE 22. Flow levels concerning the cumulative RMS.

TABLE 9. Classification results with all variables.

diagnosing the ‘‘unacceptable’’ state is above the average of
the diagnosis of the other states.

Table 10 shows the classification results with a k-fold of 15.
This test was performed with the acceleration variables of
each axis. The algorithm has a correct classification accuracy
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TABLE 10. Classification results with acceleration variables in the 3 axes.

of 65%, and 55.9% for the Naive Bayes algorithms with
Kernel estimation and quadratic SVM.

Table 11 shows the classification results with a k-fold of 15.
This test was performedwith the variables of RMS and cumu-
lated RMS. The algorithm has a correct classification average
of 94.25% and 95.15% for the Naive Bayes algorithms with
Kernel estimation and quadratic SVM, respectively. For all
the algorithms tested, the accuracy of the ‘‘unacceptable’’
state is above average.

TABLE 11. Classification results with RMS variables.

D. PROGRESSIVE WEAR PREDICTION ALGORITHM(S)
TESTING
Table 12 shows that the average classification accuracy is
99.6%. The difference between the two algorithms is the
accuracy of classifying the different states. For all algorithms
tested, the ‘‘unacceptable’’ status accuracy is 99.8%.

TABLE 12. Classifiers with all variables delivered from multiphysics
simulation.

Table 13 shows the classification results with a k-fold of 15.
This test was performed with the acceleration variables of
each axis. The algorithm has a correct classification average
of 28.9%, and 25% for the Naive Bayes algorithms with
Kernel estimation and quadratic SVM.

TABLE 13. Classification with acceleration variables delivered by
multiphysics simulation.

Table 14 shows the classification results with a k-fold
of 15. This test was performed with the variables of RMS
and cumulated RMS. The algorithm has a correct accuracy
classification of 97.5% and 99.8% for the Naive Bayes with
Kernel estimation and SMV quadratic. For all the algorithms
tested, the classification of the ‘‘unacceptable’’ state is above
the average.

TABLE 14. Classification with cumulated RMS and RMS variables
delivered by multiphysics simulation.

The vibratory screen simulated in the present investigation
is designed to work with a nominal load of 4,000 tons/hours.
In an industrial process, the nominal load is made up of a
distribution of different flows. Fig. 20 shows the deck wear
rate over time at different flow levels.

A wear rate composed of a normal distribution of flows is
estimated. Wear with flow composed of a normal flow distri-
bution takes 30 days to reach the 9[mm] wear level (or unac-
ceptable state). Also, be ruled out that this is limited between
the level of wear generated by the flow of 8000 tons hours
and the nominal flow. Fig. 23 shows that the Deck’s wear
at 2000 tons hours is gradual and a resolution of 0.5[mm].
As the flow increases, the homogeneity is lost from 0.5[mm]
to 1[mm], accelerating the wear rate.

For maintenance tasks, it is essential to have high accuracy
in diagnosing the vibratory screen’s operating status and with
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FIGURE 23. Wear rate over time, for different amount of material flow.

TABLE 15. Predictions with semi-supervised models and manual
diagnosis.

the greatest amount of time in advance. This paper presents a
method for recognizing the operating status.

The method consists of generating a polynomial (fa (t))
composed of the low flow, overflow, and nominal flow sig-
nals. Each of these signals is composed of a constant Cn,
which

∑
Cn = 1.

fa (t) = C1 ∗ flow (t)+ C2 ∗ f nom (t)+ C3 ∗ f over (t) (1)

Fig 21. shows the RMS values of the simulation’s vibra-
tions (with a normal distribution of flows, that is to say,
C1 = 0.2,C2 = 0.6 and C3 = 0.2). According to the level
of wear, these signs were labeled, homologated to ISO 2372.
The simulation shows a work cycle of 30 days (when the
vibratory screen reaches the unacceptable state of wear), with
a sample every 15 minutes. Table 15 shows the predictions of
the state of health of the semi-supervised machine learning
models against the results of the manual diagnosis (diagnosis
which was labeled under ISO 2372 according to the level
of wear resulting from the multiphysics simulation). The
semi-supervised learning process consists of the following
steps: (i) the amount of data that exists for each of the four
possible states of the model that learned in a supervised way
is quantified (79%Good, 7% Acceptable, 7% Unsatisfactory,
and 7% Unacceptable), (ii) Then the model under supervised
learning is obtained, to which an unlabeled data set is deliv-
ered, and it is observed how it classifies them, (iii) with the
new labeled data set a new model with a different number
of possible states is trained (55% Good, 15% Acceptable,
15%Unsatisfactory and 15%Unacceptable), (iv) if the model
trained with the new data set provides a classification accu-
racy of less than 90%, is discarded. If the model delivers an
accuracy greater than 90%, it is analyzed how far in advance
concerning manual labeling; it manages to label the signal,
(v) if the label’s anticipation is less than a range of 96 hours,
the model is retrained.

The proposed machine learning models improved over
168 hours forecasting horizon compared to manual
wear-based diagnostics delivered by simulation.

VIII. CONCLUSION
A rugged, easy-to-deploy, and smart vibration monitoring
system based on IoT devices to assess the real-time conditions
of the vibratory screen in the mining industry was success-
fully developed by providing the cost-effective solutions
for hardware, firmware, and machine learning algorithms
for the software. The new system is intended to monitor a
vibrating screen’s operation and notify the users to detect the
abnormal operations or faults. This would warn the users of
malfunctions and impending failure events before machines
become inoperable. Instead of relying on reactionary trou-
bleshooting for maintenance, the vibrating screens would be
actively monitored.

The condition monitoring system is specifically optimized
for vibratory equipment and, it was tested with two methods.
The first method is of tests on a test bench which is subjected
to a series of controlled vibratory excitations to characterize
its response (without load) both in time and frequency. The
data obtained from the test bench suggests a 97.9% precision
in the vibratory screen’s failure status (according to ISO
2372) using the classified algorithm.

A frequency sweep was carried out to label the vibratory
screen’s behavior when approaching the natural frequency
and its respective harmonics.

The second method corresponds to multiphysics simula-
tions performed in the RockyDem to simulate the vibrational
behavior of a screen under different load conditions. The
system was able to categorize with a 99.8% precision of the
wear of the meshes according to ISO 2372.

This algorithm only uses the DECK’s cumulated
RMS value obtained as a response from the multiphysics
simulation.

When comparing the classification algorithm’s result
between using all the variables and only using RMS and
cumulated RMS value, only a decrease in approximately 2%
in the classification accuracy (for both the wear and failure
analysis algorithms) was observed. This finding is extremely
relevant since due to the limitations of energy storage (due
to the maximum size available for the battery), the sending of
information can be optimized. Instead of each device sending
each of the axes’ accelerations’ raw data, it is possible to send
indicators by time-step. Sending the RMS value and the high-
est amplitude with its frequency of the signal’s FFT, which
reduces connection time and device data transfer, processes
associated with the highest power consumption.

Concerning the data obtained in the measurement (of the
test bench), it is shown that the amplitudes in the collected
data have considerable variability against the frequencies.
This is consistent with traditional maintenance standards,
which estimate equipment’s general health with vibration
amplitude analysis.

The results suggest that the ratings are sufficient to detect
machine condition in real-time, due to good accuracy for both
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wear and failure detection (97.5%, 97.9%, respectively) and
a high true positive rate (100% for both cases) for the most
critical state (‘‘Unacceptable’’). Moreover, the system allows
early detection of ‘‘Unacceptable’’ states between 168 hours
before maximum deck wear. These results demonstrate that
the proposed systemwill collect relevant data to generate pre-
dictive maintenance plans and avoid unplanned downtimes.
The algorithms that were implemented to analyze the tests
are presented as an alternative to complement the forecast-
ing models based on experience (currently used in vibratory
screen) with models based on Physics and Data. With aiming
the improving the estimation of the end of the useful life and
allow the appropriate actions to avoid reaching a real failure.

The present research manages to diagnose a vibrating
screen’s operating status from 168 hours in advance concern-
ing the manual tag based on expert knowledge. Hardware,
firmware, and software have a robust all-piece design to
withstand the constant vibratory motion.

FUTURE SCOPE
As the future scope, a vibratory screen should be monitored
in an industrial environment. For this, a user guide must be
developed for operators and maintainers associated with the
classification tasks. This guide must contain the SmartScreen
installation processes, the system start-up description, and the
system’s operability and maintainability. The data collected
in an industrial environment is expected to fit the models
developed in the present investigation. Also, optimization
must be performed for the selected classifier to obtain better
classification results and select characteristics to simplify the
devices’ data.

REFERENCES
[1] P. King, ‘‘Size classification,’’ in Modeling and Simulation of Min-

eral Processing Systems. Oxford, U.K.: Butterworth-Heinemann, 2001,
pp. 81–125.

[2] A. Noble and G. H. Luttrell, ‘‘A review of state-of-the-art processing
operations in coal preparation,’’ Int. J. Mining Sci. Technol., vol. 25, no. 4,
pp. 511–521, Jul. 2015.

[3] M. E. Möbius, ‘‘Size separation,’’ in Principles of Mineral Processing.
Englewood, NJ, USA: Society for Mining, Metallurgy, and Exploration,
2003, p. 54.

[4] R. Ahmad and S. Kamaruddin, ‘‘An overview of time-based and condition-
based maintenance in industrial application,’’ Comput. Ind. Eng., vol. 63,
no. 1, pp. 135–149, 2012.

[5] S. Chakraborty, Handbook of Offshore Engineering. Amsterdam,
The Netherlands: Elsevier, 2005.

[6] C. Okoh, R. Roy, J. Mehnen, and L. Redding, ‘‘Overview of remaining
useful life prediction techniques in through-life engineering services,’’
Proc. CIRP, vol. 16, pp. 158–163, Jan. 2014.

[7] O. A. Makinde, K. Mpofu, and B. Ramatsetse, ‘‘Establishment of the best
maintenance practices for optimal reconfigurable vibrating screenmanage-
ment using decision techniques,’’ Int. J. Qual. Rel. Manage., vol. 33, no. 8,
pp. 1239–1267, Sep. 2016.

[8] A. M. D. C. Serpa, M. B. Ballina, and E. F. Guerra, ‘‘Análisis de criticidad
personalizados,’’ Revista de Inganieira Mecanica, vol. 12, no. 3, pp. 1–12,
2009.

[9] H. F. M. Robayo and J. C. R. Ortiz, ‘‘Elaboración de un análisis
de criticidad y disponibilidad para la atracción x-treme del parque
mundo aventura, tomando como referencia las normas, SAE JA1011 Y
SAE JA1012,’’ Repositorio Institucional Universidad Distrital, Bogotá,
Colombia, Tech. Rep., 2017. [Online]. Available: http://hdl.handle.net/
11349/7854

[10] M. Minerals, ‘‘Crushing and screening handbook,’’ Tampere, Finland,
Tech. Rep., 2016. [Online]. Available: https://www.ausimm.com/
globalassets/insights-and-resources/minerals-processing-toolbox/metso_
handbook_fifth_ed.pdf

[11] D. A. E. Moscoso, ‘‘Modelaciín numérica del comportamiento estructural
de harnero vibratorio R-MD, mediante acoplamiento entre el método de
elementos finitos y elementos discretos,’’ Universidad Tecnica Federico
Santamaria, Valparaíso, Chile, Tech. Rep., 2016. [Online]. Available:
https://repositorio.usm.cl/handle/11673/23338

[12] S. Bondar, J. C. Hsu, A. Pfouga, and J. Stjepandić, ‘‘Agile digital transfor-
mation of system-of-systems architecture models using Zachman frame-
work,’’ J. Ind. Inf. Integr., vol. 7, pp. 33–43, Sep. 2017.

[13] D. Gürdür, J. El-Khoury, T. Seceleanu, and L. Lednicki, ‘‘Making interop-
erability visible: Data visualization of cyber-physical systems development
tool chains,’’ J. Ind. Inf. Integr., vol. 4, pp. 26–34, Dec. 2016.

[14] S. Vaidya, S. Bhosle, and P. Ambad, ‘‘Industry 4.0—A Glimpse,’’ Proc.
Manuf., vol. 20, pp. 233–238, Jan. 2018.

[15] P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok,
S. Yu, and X. Xu, ‘‘Smart manufacturing systems for industry 4.0: Con-
ceptual framework, scenarios, and future perspectives,’’ Frontiers Mech.
Eng., vol. 13, no. 2, pp. 137–150, Jun. 2018.

[16] E. Ponce, R. Cortes, and C. Valdez, ‘‘Desarrollo de harnero vibratorio,’’
Revista Facultad de Ingenieria UT, Antofagasta, Chile, Tech. Rep., 2003.

[17] Catalogo Mallas, Cribas, Telas Metálicas, Rivet, Santiago, Chile, 2018.
[18] W. Barry and J. Finch, An Introduction to the Practical Aspects of Ore

Treatment and Mineral Recovery. Amsterdam, The Netherlands: Elsevier,
2006.

[19] O. A. Makinde, B. I. Ramatsetse, and K. Mpofu, ‘‘Review of vibrat-
ing screen development trends: Linking the past and the future in min-
ing machinery industries,’’ Int. J. Mineral Process., vol. 145, pp. 17–22,
Dec. 2015.

[20] G. Schlemmer, ‘‘Principles of screening and sizing,’’ Phoenix,
AZ, USA, Tech. Rep., 2016. [Online]. Available: https://www.911
metallurgist.com/blog/wp-content/uploads/2016/01/Principles-of-
Screening-and-Sizing.pdf

[21] L. Peng, H. Jiang, C. Chen, and D. Liu, ‘‘A review on the advanced design
techniques and methods of vibrating,’’ Changzhou, China, Tech. Rep.,
2018.

[22] K. Mykoniatis, ‘‘A real-time condition monitoring and maintenance man-
agement system for low voltage industrial motors using Internet-of-
Things,’’ Proc. Manuf., vol. 42, pp. 450–456, Jan. 2020.

[23] D. Anderson, J. Jarzynski, and R. F. Salant, ‘‘Condition monitoring of
mechanical seals: Detection of film collapse using reflected ultrasonic
waves,’’ J. Mech. Eng. Sci., vol. 214, no. 9, pp. 1187–1194, Sep. 2000.

[24] A. A. Alkahtani, S. M. Norzeli, and F. H. Nordin, ‘‘Condition monitoring
through temperature, vibration and radio frequency emission,’’ Test Eng.
Manage., vol. 800, pp. 5621–5636, Dec. 2019.

[25] IMI SENSORS, ‘‘Vibratory screens & feeders,’’ Marseille, France, Tech.
Rep., 2016. [Online]. Available: https://pdf.directindustry.com/pdf/pcb-
piezotronics/imi-sensors-vibration-screens-feeders/111589-378823.html

[26] Screenwatch, Metso Minerals Industries, Harrisburg, Finland, 2016.
[27] D. Volante, ‘‘Condition monitoring for rotarional machinery,’’ Hamilton,

ON, Canadá, Tech. Rep., 2011. [Online]. Available: https://macsphere.
mcmaster.ca/bitstream/11375/11111/1/fulltext.pdf

[28] E. Willenbrinck, ‘‘Sistema y metodo para la monitorizacion y detecion de
anomalias en piezas de materiales polimericos,’’ Chile Patent 2021 00 871,
Apr. 17, 2021.

[29] R. J. Rafaels, ‘‘Cloud computing: From beginning to end,’’ CreateSpace
Independent Publishing Platform, Washington, DC, USA, Tech. Rep.,
2015.

[30] L. Zhao, Y. Zhao, C. Bao, Q. Hou, and A. Yu, ‘‘Optimisation of a circu-
larly vibrating screen based on DEM simulation and Taguchi orthogonal
experimental design,’’ Powder Technol., vol. 310, pp. 307–317, Apr. 2017.

[31] I. C.Mituletu, G.-R. Gillich, andN.M.M.Maia, ‘‘Amethod for an accurate
estimation of natural frequencies using swept-sine acoustic excitation,’’
Mech. Syst. Signal Process., vol. 116, pp. 693–709, Feb. 2019.

[32] ESSS. https://rocky.esss.com. Accessed: Dec. 20, 2020. [Online]. Avail-
able: https://rocky.esss.co/blog/evaluating-vibrating-screen-efficiency-by-
using-the-discrete-element-method/

[33] M. Daigle and K. Goebel, ‘‘Improving computational efficiency of predic-
tion in model-based prognostics using the unscented transform,’’ in Proc.
Annu. Conf. Prognostics Health Manage. Soc., 2010, pp. 1–12.

[34] M. Daigle and K. Goebel, ‘‘Multiple damage progression paths in model-
based prognostics,’’ in Proc. Aerosp. Conf., Mar. 2011, pp. 1–10.

[35] M. M. Quispe, ‘‘Formulación de elementos finitos y elementos
discretos,’’ Centro de Investigación y Matemáticas, Mexico City,
Mexico, Tech. Rep., 2013. [Online]. Available: https://cimat.repositorio
institucional.mx/jspui/bitstream/1008/468/1/TE_1523.pdf

[36] Z. Yue-Mina, L. Chu-Sheng, and H. Xiao-Mei, ‘‘Dynamic design theory
and application of large vibrating screen,’’ Proc. Earth Planetary Sci.,
vol. 1, no. 1, pp. 776–784, 2009.

145884 VOLUME 9, 2021



P. Aqueveque et al.: Development of Cyber-Physical System to Monitor Early Failures Detection

[37] M. M. Merino, ‘‘Modelación dinámica no lineal de harnero
vibratorio considerando inercia del mineral y fuerza del mineral
sobre el harnero calculada con elementos discretos,’’ Universidad de
Concepcion, Concepción, Chile, Tech. Rep., 2017. [Online]. Available:
https://docplayer.es/79864337-Tesis-para-optar-al-grado-de-magister-en-
ciencias-de-la-ingenieria-con-mencion-en-ingenieria-mecanica.html

[38] Z. Wang, L. Peng, C. Zhang, L. Qi, C. Liu, and Y. Zhao, ‘‘Research on
impact characteristics of screening coals on vibrating screen based on
discrete-finite element method,’’ Energy Sour. A, Recovery, Utilization,
Environ. Effects, vol. 42, no. 16, pp. 1963–1976, Aug. 2020.

[39] L. Peng, H. Jiang, X. Chen, D. Liu, H. Feng, L. Zhang, Y. Zhao, and C. Liu,
‘‘A review on the advanced design techniques and methods of vibrating
screen for coal preparation,’’ Powder Technol., vol. 347, pp. 136–147,
Apr. 2019.

[40] B. Ramatsetse, K. Mpofu, and O. Makinde, ‘‘Failure and sensitivity anal-
ysis of a reconfigurable vibrating screen using finite element analysis,’’
Case Stud. Eng. Failure Anal., vol. 9, pp. 40–51, Oct. 2017.

[41] G. Wang and X. Tong, ‘‘Screening efficiency and screen length of a linear
vibrating screen using DEM 3D simulation,’’ Mining Sci. Technol. China,
vol. 21, no. 3, pp. 451–455, May 2011.

[42] L. Zhao, Y. Zhao, C. Liu, J. Li, and H. Dong, ‘‘Simulation of the screening
process on a circularly vibrating screen using 3D-DEM,’’ Mining Sci.
Technol. China, vol. 21, no. 5, pp. 677–680, Sep. 2011.

[43] Z. Li, X. Tong, B. Zhou, and X. Wang, ‘‘Modeling and parameter opti-
mization for the design of vibrating screens,’’ Minerals Eng., vol. 83,
pp. 149–155, Nov. 2015.

[44] ESSS. https://rocky.esss.com. ESSS. Accessed: Oct. 2020. [Online]. Avail-
able: https://rocky.esss.co/blog/predicting-surface-wear-in-industrial-
equipment-using-rocky-dem/

[45] J. Lunze, ‘‘Discrete-event modelling and fault diagnosis of discretely
controlled continuous systems,’’ IFAC Proc. Volumes, vol. 39, no. 5,
pp. 229–234, 2006.

[46] A. Kanawaday and A. Sane, ‘‘Machine learning for predictive maintenance
of industrial machines using IoT sensor data,’’ in Proc. IEEE Int. Conf.
Softw. Eng. Service Sci., Nov. 2017, pp. 87–90.

[47] E. Zio, F. D. Maio, and M. Stasi, ‘‘A data-driven approach for predicting
failure scenarios in nuclear systems,’’ Ann. Nucl. Energy, vol. 37, no. 4,
pp. 482–491, Apr. 2010.

[48] P. Aqueveque, L. Radrigan, F. Pastene, A. Morales, and E. Guerra, ‘‘Data-
driven condition monitoring of mining mobile machinery in non-stationary
operations using wireless accelerometer sensor modules,’’ IEEE Access,
vol. 9, pp. 17365–17381, 2021.

[49] Y. Leng, X. Xu, and G. Qi, ‘‘Combining active learning and semi-
supervised learning to construct SVM classifier,’’ Knowl.-Based Syst.,
vol. 44, pp. 121–131, May 2013.

[50] A. Lavin and S. Ahmad, ‘‘Evaluating real-time anomaly detection
algorithms—The numenta anomaly benchmark,’’ in Proc. IEEE 14th
Int. Conf. Mach. Learn. Appl. (ICMLA), Miami, FL, USA, Dec. 2015,
pp. 38–44.

[51] L. Bull, K. Worden, G. Manson, and N. Dervilis, ‘‘Active learning for
semi-supervised structural health monitoring,’’ J. Sound Vib., vol. 437,
pp. 373–388, Dec. 2018.

[52] P. Dangeti, Statistics for Machine Learning: Techniques for Exploring
Supervised, Unsupervised, and Reinforcement Learning Models With
Python and R. Birmingham, U.K.: Packt, 2017.

[53] N. N. Pise and P. Kulkarni, ‘‘A survey of semi-supervised learning meth-
ods,’’ in Proc. Int. Conf. Comput. Intell. Secur., Dec. 2008, pp. 30–34.

[54] R. K. Fish, M. Ostendorf, G. D. Bernard, and D. A. Castanon, ‘‘Multilevel
classification of milling tool wear with confidence estimation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 75–85, Jan. 2003.

[55] J. A. K. Suykens, ‘‘Nonlinear modelling and support vector machines,’’ in
Proc. 18th IEEE Instrum. Meas. Technol. Conf. Rediscovering Meas. Age
Informat. (IMTC), May 2001, pp. 287–294.

[56] C. Campbell and Y. Ying, Learning With Support Vector Machines, vol. 5,
no. 1. San Rafael, CA, USA: Morgan & Claypool, 2011, pp. 1–95.

[57] A. Rottmann and W. Burgard, ‘‘Learning non-stationary system dynamics
online using Gaussian processes,’’ in Proc. Joint Pattern Recognit. Symp.,
2010, pp. 192–201.

[58] D. An, N. H. Kim, and J.-H. Choi, ‘‘Practical options for selecting data-
driven or physics-based prognostics algorithms with reviews,’’ Rel. Eng.
Syst. Saf., vol. 133, pp. 223–236, Jan. 2015.

[59] M. Daigle, B. Saha, and K. Goebel, ‘‘A comparison of filter-based
approaches for model-based prognostics,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2012, pp. 1–10.

[60] M. F. Huber, ‘‘Recursive Gaussian process regression,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., Vancouver, BC, Canada, May 2013,
pp. 3362–3366.

[61] SKF. (May 2018). SKFVibration Sensors Catalog. Accessed:Mar. 1, 2021.
[Online]. Available: https://www.skf.com/binaries/pub12/Images/0901d
196804926fe-11604_16-EN-Vibration-Sensor-Catalogue—OK_tcm_12-
267858.pdf

[62] CONiQ. (2021). CONiQ Cloud. Accessed: Mar. 1, 2021. [Online].
Available: https://www.schenckprocess.com/data/en/files/1107/coniq-
cloud-brochure-final-2021.pdf

[63] MEtso. (2021). Directindustry.com. Accessed: Mar. 1, 2021.
[Online]. Available: https://pdf.directindustry.com/pdf/metso-automation/
screenwatch-screen-monitoring/7017-597920-_3.html

PABLO AQUEVEQUE (Member, IEEE) was born
in Santiago, Chile, in 1976. He received the
B.S. degree in electronics engineering and the
Ph.D. degree from the University of Concepción,
Concepción, Chile, in 2000 and 2008, respectively.
He is currently a Professor with the Department
of Electrical Engineering, University of Concep-
ción. He is also the Director with the Center for
Industry 4.0 (C4I), Engineering Faculty, Universi-
dad de Concepción. His research interests include

bioelectronics, embedded electronic, electrochemical process, power elec-
tronics, and wireless power transfer.

LUCIANO RADRIGAN (Student Member, IEEE)
was born in Chillan, Biobio, Chile, in 1991.
He received the B.S. degree in electronic engineer-
ing and the M.S. degree in electrical engineering
from the University of Concepción, in 2019 and
2020, respectively, where he is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering, Faculty of Engineering.

He currently works at the Center for Indus-
try 4.0, University of Concepción, where applied

research is carried out for industrial processes. His research interests include
sensors for condition monitoring, the IoT, industrial sensorization, machine
learning, energy harvesting systems, embedded systems, and wireless energy
transfer.

ANIBAL S. MORALES (Member, IEEE) was
born in Concepción, Chile, in 1983. He received
the B.S. degree (Hons.) in electronics engineer-
ing and the Ph.D. degree in electrical engineering
from the University of Concepción, Concepción,
in 2004 and 2012, respectively. He is currently
an Assistant Professor with the Department of
Electrical Engineering, Universidad Católica de la
Santísima Concepción, Concepción. His current
research interests include power converters, high-

current rectifiers, multiphysics FEM modeling, energy efficiency, electri-
cal safety, energy harvesting and technology for mining industry, copper
electrowinning, and electrorefining.

EDUARDO WILLENBRINCK is currently the
General Manager at Willenbrinck y Cía. Ltda,
a company with more than 60 years of experi-
ence in the rubber market, he is at the forefront
of technology, innovation, and engineering in the
elaboration of industrial components tailored to
the client for mining, aeronautics, and fuels. The
company has important recognitions, such as the
National Competitive Management SME Award.

VOLUME 9, 2021 145885


