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ABSTRACT Fiducial markers such as QR codes, ArUco, and AprilTag have become very popular tools for
labeling and camera positioning. They are robust and easy to detect, even in devices with low computing
power. However, their industrial appearance deters their use in scenarios where an attractive and visually
appealing look is required. In these cases, it would be preferable to use customized markers showing, for
instance, a company logo. This work proposes a novel method to design, detect, and track customizable
fiducial markers. Our work allows creating markers templates imposing few restrictions on its design, e.g.,
a company logo or a picture can be used. The designer must indicate positions into the template where bits
will encode a unique identifier for each marker. Then, our method will automatically create a dictionary
of markers, all following the same design, but each with a unique identifier. Finally, we propose a method
for detecting and tracking the markers even under occlusion, which is not allowed in traditional fiducial
markers. The experiments conducted show that the performance of the customizable markers is similar to
the best traditional markers systems without significantly sacrificing speed.

INDEX TERMS Customized markers, fiducial markers, ArUco, AprilTag.

I. INTRODUCTION
Fiducial markers have become a popular and efficient method
to solve labeling and monocular localization problems at
low cost in indoor environments. Their use has spread in
a wide variety of fields, such as surgery [6], [18], robot
navigation [34], [43], autonomous aerial vehicle landing [4],
augmented reality applications [19], distributed autonomous
3D printing [45], human cognitive processes [2], the study of
animal behaviour [1] and patient positioning in radiotherapy
treatments [36] among others.

There are several desirable properties a fiducial marker
system should have. It must be easy and fast automatically
detecting its markers in images. Each marker should have
a unique identifier, and it should be possible to estimate its
position w.r.t the camera. They should be robustly detected
under occlusion, varying lighting conditions, rotation, and
scale.

Many markers of different types and shapes been proposed
in recent years [17], [20], [31], [37] (Figure 1), of which
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FIGURE 1. Some examples of markers proposed in previous works.

the squared ones are most widely used nowadays [12], [33],
[40]. However, despite the significant advantages of fidu-
cial markers, their visually unappealing design constitutes a
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deterrent for its adoption in commercial environments. Its
industrial look makes them unsuitable for many use cases
where a more attractive design is a must. For fiducial markers
to be generally adopted in non-industrial environments, they
should be able to be customizable.

The main contributions of this paper are three. First,
we propose a method to design customized fiducial markers.
Our proposal offers users the freedom to design markers tem-
plates from which a set of unique markers (dictionary) with
a very similar appearance is automatically generated. Tem-
plates can be created using any vector graphics tool as long
as a series of rules are followed. Each marker encodes as two
different colors a unique identifier and a Cyclic Redundancy
Check code (CRC) to avoid false positives. The designer
chooses the position and colors of these bits. As the second
contribution, we propose a method to detect these markers in
images automatically. As in most existing marker systems,
the detection of the marker is based on detecting its border
using an adaptive thresholding algorithm, after which the
position of the bits in the image is obtained using a homogra-
phy. Our final contribution is a method for tracking markers
by using image keypoints. Once themarker has been detected,
we use a tracking process based on keypoints that allow us
to know the position of the marker in the event of partial
occlusion. Also, when using a calibrated camera, the relative
pose w.r.t to the marker can be calculated with our method.
The proposed tracking method is faster than detection and
robust to partial occlusion.

The rest of this paper is structured as follows. Section II
does a blue of related works while Section III introduces
the design approach for customized markers templates.
Section IV details the procedure for detection and tracking of
customizedmarkers, and SectionV describes the experiments
carried out to validate our proposal. Finally, Section VI draws
some conclusions and future works.

II. RELATED WORKS
In the last years, several types of fiducial markers have
been proposed (see Figure 1). ReacTIVision [17] presents
a highly compact amoeba geometry, designed using genetic
algorithms. Some authors have proposed the use of trained
classifiers to improve ReacTIVision detection in cases
of bad illumination and blurring caused by fast camera
movement [7].

InterSense markers [27] are based on circles encoding
information as concentric rings. They provide only one cor-
respondence point (the center), making it necessary the use
at least four points matching several circular markers for a
correct camera pose estimation. WhyCon [28], and Why-
Code [20] propose circular markers based on Binary Neck-
laces [38], a mathematical concept providing a generator
for rotation invariant, uniquely identifiable patterns that can
scale to a theoretically infinite number of unique mark-
ers. Cantag [31] implements two types of markers: circular
(CircleTag) and squared (SquareTag). The Fourier mark-
ers [37] are based on encoding a pattern in the amplitude

spectrum of the Fourier transform of the marker. RuneTag [3]
proposes markers characterized by a circular arrangement of
dots at fixed angles containing one or several concentric rings.
TopoTag [44] uses topological and geometrical information
in marker detection. Topological information is extensively
used for 2D marker detection and further corresponding geo-
metrical information for ID decoding.

Square fiducial markers have recently become the most
popular ones. This type of marker consists of an external
black border (easily detectable) and an inner region for
employed for identification purposes. It provides four promi-
nent points (i.e., its corners) that can be easily detected and
employed to estimate the marker pose w.r.t. the camera.
ARToolKit [10] was first released as an open-source project.
Its markers are composed of a wide black border with an inner
image stored in a database of valid patterns. Despite its suc-
cess, the main drawback is the high rate of false-positive [10].
VisualCode [32] is based on the same technology as QR, and
Maxicode [30].

The two most popular squared fiducial marker systems
nowadays are ArUco [33] and AprilTag [29]. Both systems
propose an efficient method for markers detection using
robust adaptive thresholding and perform error detection and
correction of the binary codes. Several works have analyzed
their performance showing that speed, robustness, and accu-
racy are essential factors to consider, where ArUco and April-
Tag markers systems show clear advantages [12], [33], [40].

CNNs have been successfully applied to many com-
puter vision tasks in the last years [21]. However, their
use for marker detection has been somewhat limited so far.
Mondejar et al. [24] propose a method to detect ArUco
markers using CNNs. They create a synthetic training dataset
by applying transformations that emulate real situations and
train a CNN using it. The main drawback of their approach
is that it can only detect a few markers from the ArUco
dictionary. Deep ChArUco [16] presents a real-time pose
estimation system that combines two custom deep networks
ChArUcoNet and RefineNet. Their method can only detect
ArUco markers and is designed for camera calibration. How-
ever, they show that their approach outperforms ArUco detec-
tion method in challenging illumination conditions such as
blurring and low light. Finally, the recent work DeepTag [46]
proposes a general deep learning-based framework for fidu-
cial marker design and detection using end-to-end convolu-
tional neural networks. This method decomposes the problem
into three stages. First, regions containing markers are spot-
ted. Then, another net refines the region to find the marker
corners accurately. Finally, the marker’s inner region is ana-
lyzed to detect if the region is a marker. One of the advantages
of this work over the previous CNN works is that it can
detect a large variety of marker types (e.g., ArUco, April-
Tag, TopoTag). However, a drawback of CNN approaches
is that they need a previous training step with many sam-
ples. Another problem is their high computational demands,
i.e., they require powerful GPUs to operate. While recent
developments in marker detection can reach up to 1000fps
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FIGURE 2. Custom marker template. (a) Elements of a marker template. At the top, the background image on which the template is created, and
below the template created. Gray regions represent ID bits, which are used for marker identification. Green regions are CRC bits, which are used to
include a Cyclic Redundancy Check (CRC) information to avoid false positives. (b) Marker dictionary automatically generated with the template using
the yellow and blue colors for encoding.

in 4K images using just a single CPU thread [33], its deep
learning counterpart [16] requires a powerful GPU to obtain
66.5fps in images of only 320× 240 pixels.

While the systems cited above use only black and white
colors, ChromaTag [9] introduces a new type of colored
fiducial marker Figure 1e). The inner red square and green
ring are used to reject false positives, and the outer black
is employed to ensure precise marker localization. The main
drawback of this approach is that sudden lighting variations
decrease the performance of the algorithm detection [44].

As already indicated, very few works have addressed the
problem of customizable markers. ARTTag [14] proposes a
method to create them incorporating a set of circle pairs in
their design. Unique markers can be generated by analyzing
the size ratio between the circle pairs, which should be unique
among the set of markers generated. However, as indicated
by the authors, one of the limitations of their approach is that
only a minimal number of identifiers are possible.

To our knowledge, the only similar method is VuMark,1 a
commercial application developed by the company Vuforia.
The main drawback of VuMark is that its methodology for
customized marker design, detection, and tracking is not
public. It is a private company project for which no techni-
cal information is available. Nevertheless, since the binary
program is available for use, it has been employed in our
experiments.

III. DESIGN OF CUSTOMIZED MARKER TEMPLATES
This section presents our proposal for creating customized
marker templates. Figure 2 (a) shows the main parts of the
proposed customized markers and Figure 2 (b) shows eight

1https://library.vuforia.com/articles/Training/VuMark.html

different markers, eachwith a unique identifier, automatically
generated using this template. The process starts by selecting
an image that acts as background (Figure 2a), which must
fulfill two requirements. First, it must be enclosed by a polyg-
onal border with at least four vertices. The reason is that to
obtain a good camera pose estimation, at least four points
are required [8], [39]. Second, although there is no limitation
in the maximum number of vertices of the polygon, it is
essential to have a minimum separation between corners so
that all polygon sides are correctly detected. We recommend
that the minor side’s length be greater than a percentage of
the most significant side. In our experience, 10% is a good
value.

Another aspect to consider is that when a marker is placed
in the real environment, there should be enough contrast
between its border and the background. It is a natural limita-
tion of fiducial markers, such as ArUco and AprilTags, since
it is impossible to distinguish the marker border if it has the
same color as the background (e.g., imagine anArUcomarker
placed on a black surface). Therefore, if the marker will be
placed on a surface with a color similar to the marker border,
a solution is printing the marker leaving a white space of
at least 10% the size of the background image. In this way,
we enforce good border detection.

The designer must then decide which areas of the back-
ground image are employed for bit codification. In the exam-
ple of Figure 2 (a), these areas have been represented by the
grey and green striped patterns. In total, 21 bits have been
placed by the designer in this example. The number of bits
determines howmanymarkers can be createdwith a template.
To avoid false positives, we reserve some bits for Cyclic
Redundancy Checking (CRC) [5] (green striped pattern), and
the rest for identification (grey striped pattern).
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FIGURE 3. Six marker templates designed with our method. The top row shows the background images employed and below the templates
created. The bottom row shows some of the markers of each dictionary.

As will be explained in the next section, many marker
candidates will be extracted from background objects and
clutter in the images, and the system must analyze most
of them to find valid markers. To prevent false detections,
we recommended employing as many CRC bits as possible.
In our example, we have employed sixteen bits for CRC,
so the remaining ε = 5 bits are employed for identification,
giving us a total of 25 = 32 different markers.
To choose the colors employed to represent the bits on the

marker is the last designer decision. Each bit can have two
states, zero and one, represented by two different colors with,
preferably, a high difference between them. Although the
colors employed do not have any restrictions, we recommend
that they be as different as possible, either in the illumination
space (dark-light) or in the chromatic space. Our detection
process (as explained later) is color agnostic, i.e., it does not
needs to know the exact colors employed for codification.
Instead, it extracts the colors in each image and does a
clustering assuming a bi-modal distribution. In other words,
our detection algorithm does not match template colors with
image colors but threshold the observed binary distribution.
This approach allows the method to adapt to illumination
changes.

Figure 2 (b) shows eight different markers generated using
the template. As can be seen, our method only modifies and
analyzes the regions where the bits are placed, allowing the
rest of the template area to have any desired design and color.

Once the customized marker is designed, it will be
exported as a Scalable Vector Graphics (SVG) file, which
must include the color of the bits states. Then, using the SVG
file as input, we can automatically generate the dictionary
of makers, i.e., all the markers with different identifiers that
can be generated given the number of bits ε available for
encoding.

IV. CUSTOMIZED MARKER DETECTION AND TRACKING
This section provides a detailed explanation of our pro-
posal to detect and track customized markers. Detection
(subsection IV-A) consists in finding the contours of the
image and test if any of them correspond to a valid marker.
Once a marker is detected, tracking (subsection IV-B) con-
sists in creating a map of keypoints that is dynamically
updated along the video sequence to estimate the marker
position (subsection IV-C).

Let us assume we have a customized marker with mV ≥ 4
polygon vertices and mB identification bits. The proposed
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FIGURE 4. Detection pipeline of the proposed method. a) Marker template. b) Image of a marker. c) Results of adaptive thresholding. d) Extracted
contours are shown in blue. e) Polygons of six sides found shown in green. f) Homography from the template to the input image. g) Centers of the
bits regions computed with the homography. h) For detected markers, key points are extracted from an image pyramid for tracking purposes.

method uses a model M = {V ,B} to detect and track a
marker, where

V = {{vi}, i ∈ {1, . . . ,mV }, vi = (xi, yi) ∈ R2
},

represents the set of marker vertices and

B = {{bj}, j ∈ {1, . . . ,mB},bj = (xj, yj) ∈ R2
},

is the marker bits set. In sets V and B, (x, y) represents the
coordinates specified in the SVG file.

A. MARKER DETECTION
The main steps for detection and identification of customized
markers presented in this proposal are depicted in Figure 4.
Given a customized maker (Figure 4 a) and an input image I
(Figure 4 b), the following steps are employed.

1) Image segmentation: Since the customized markers
have an external contour surrounded by white space,
we use a local adaptive thresholding method to find
borders (Figure 4 c).
For every pixel, we analyze its average brightness (in a
small neighborhood of size wt ×wt ) and we determine
is above a threshold τt . This method is robust and
obtains good results for a wide range of values τt and
wt . Previous experience [13] show that the value τt = 7
and wt = 6 are good values in most cases.

2) Contour detection and filtering:Contours are extracted
using the Suzuki and Abe algorithm [41] (Figure 4 d).
Then, a polygonal approximation is obtained using the
method proposed in [22] (Figure 4 e), discarding the
polygons with a number of sides different from mV .
Let

P = {{Vp}, p ≥ 1},

be the set of accepted polygons in image I where Vp
represents its vertices in the image, i.e.,

Vp = {{vip ∈ R2
}, i ∈ {1, . . . ,mV }}.

3) Initial detection of a valid marker: The objective is
to determine if there is a polygon in P that is a valid
marker.
For each polygon Vp ∈ P , the mV possibles circular
shifts of its vertices are considered. A shift is equivalent
to a polygon rotation, thus obtaining

{{V r
p }, r ∈ {1, . . . ,mV }}.

For each rotated polygon V r
p the homography matrix

H r
p transforming the vertices from the image to the

model, V = H r
pV

r
p , is calculated (Figure 4 f). The

homography is employed to determine the expected
image position of the bits into the polygon.

Brp = (H r
p )
−1B,

Brp = {{b
r
pj ∈ R2

}, j ∈ {1, . . . ,mB}}. (1)

The color of the pixels Brp need to be evaluated in order
to extract the bits values of the polygon:

D(Brp) = (d1, . . . , dj, . . . , dmB ),

where

dj ∈ {0, 1}∀j ∈ {1, . . . ,mB}.

If the bit sequence correspond to a valid one, then a
marker has been found.
To obtain the values dj, we know that the colors
employed for the bits form two different clusters. How-
ever, the colors specified in the marker design (indi-
cated in the SVG file) are not reliable. The printing
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process as well as the unknown camera color transfer
function makes unreliable making assumptions about
the colors originally specified in the design. Thus,
bit color information for each brpj ∈ Brp is done by
analyzing the observed colors in the I input image.
We assume that the number of bits in zero and one states
(dj values) is similar for a given marker. Under the
previous assumption, the goal is to find the threshold
tc that determines the color (dj value zero or one).
In some cases, the mean brightness can be employed as
the threshold, but it is necessary to employ chromatic
information in other cases. In particular, we employ the
circular mean of the Hue component from the HSV
space. For every marker, we employ both approaches
to decode the bits.
The assumption of having a similar number of bits in
zero and one state has proven to work. The CRC bits
represent the majority of the bits, and their value can be
considered random. The only exception happens for the
value zero (all bits to zero), which produces also pro-
duces the CRC value zero. For that reason, the marker
with that value is not employed in our codification.
Once the bit sequenceD(Brp) is obtained, we analyze if
it is valid by checking the CRC. If the ε data bits used
for marker identification

D(Brp) = (d1, . . . , dε),

and its CRC bits matches, i.e.,

CRC(D(Brp)) = (dε+1, . . . , dmB ), (2)

the marker with identification D(Brp), which we will
denote by D in the rest of the paper, has been detected.
The corresponding homography H r

p , which we will
denote by H , will also be employed in next step (see
Figure 4 g).

4) Tracking model initialization: Our tracking proposal
is based on keypoint detection and matching. For that
purpose, a model of key points is created representing
the marker texture. The model will be dynamically
updated along the video sequence to account for light,
scale, and viewpoint changes.
Once a marker has been detected, a collection of ORB
keypoints [35] are obtained from the image I employ-
ing the same rationale as in the recent UcoSLAM [25]
and ORB-SLAM [26] methods.
First, a image pyramid of the original image I is created
and keypoints k ′l are detected at different scales levels
(pl). Let

K ′ = {k′l, l ∈ {1, . . . ,Nkp},k
′
l = (x ′l , y

′
l, pl)}, (3)

be the keypoints set. key points in the first levels (higher
resolutions), represents smaller areas than these in the
lowest levels (see Figure 4 h). Second, to avoid the con-
centration of key points in small regions of the image,
each image is subdivided into a grid, and a proportional

number of key points is obtained from each one of
them.
Then we use the homography matrix H to obtain K ,
which transforms the keypoint locations to the marker
reference system, i.e.:

K = (H−1K ′) ∩1(V ),

K = {{kl}, l ∈ {1, . . . ,Nkp},kl = (xl, yl, pl)}, (4)

where 1(V ) are the keypoints within the polygon V .
Let us denote

MD
= {V ,K ,H},

the initial tracking model of the marker D. As it will
be explained later, the model is dynamically updated to
deal with image changes along the video sequence.

B. MARKER TRACKING
This section explains the tracking process in detail. Let F =
{{f }, f > 1} represent the frames of a video sequence, and
f = 1 be the first frame of the sequence where the marker
was detected as previously explained.
The aim of the tracking algorithm is to find the marker in

frame f assuming it was detected at frame f − 1, for which
the model

MD
f−1 = {V ,Kf−1,Hf−1},

is known. These are the steps followed by our algorithm:
1) Image KeyPoint Extraction: Keypoints of frame f are

obtained as explained before obtaining

K ′ = {(k′l), l ∈ {1, . . . ,Nkp},k
′
l = (x ′l , y

′
l, p
′
l)}.

2) Image-Model KeyPoint Matching: The keypoints loca-
tions are translated to the marker reference system
using the homography computed in the previous frame:

K 0
f = H0

f K
′ (5)

where H0
f = Hf−1. These are initial estimations of

their position around which the matching process will
be done. For each keypoint in K 0

f , the corresponding
model keypoints kl ∈ Kf−1 within a circle of radius
r are selected. Amongst them, the one minimizing the
Hamming distance (with a maximum α threshold) is
considered as the best match (Figure 4 h). However,
to consider a match, the model and image key points
must be in similar pyramid levels, allowing only a
difference of one level. The set of matches obtained
is employed to compute an updated homography H1

f ,
along with updated locations of the image keypoints

K 1
f = H1

f K
′.

This provides an initial estimation refined further by
repeating the matching process, but this time reducing
the radius search to r/2. The matches obtained then are
employed to compute the final homography Hf = H2

f
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and the corresponding setK 2
f . If the number of matches

is more significant than a threshold β, the marker is
considered as found.

3) Keypoints model update: To adapt the model to view-
point and illumination changes, it must be dynamically
updated every frame. Please notice that many of the
model key points are only matched once and never
matched again. Thus, we perform a pruning process,
inspired by UcoSLAM [25], to avoid keeping in the
model useless key points. The idea is that a key point is
removed from the model if it is not matched in at least
10 frames, after the next 20 frames since its insertion in
the model. If, as a consequence of the pruning process,
the total number of key points in the model falls below
a certain threshold γ , new key points are added to the
model, selecting amongst these inside the polygon that
has not been matched. As a result, the updated keypoint
model Kf is obtained.

As consequence from previous steps the updated model is
obtained from frame f :

MD
f = {V ,Kf ,Hf }.

C. POSE ESTIMATION
The pose θ = (r, t)|r, t ∈ R3 of a marker w.r.t the camera
reference system is defined by its three rotational and trans-
lational components r = (rx , ry, rz) and t = (tx , ty, tz). Using
the Rodrigues’ rotation formula, the rotation matrix R can be
obtained from r.

The estimation of the marker pose is known as the PnP
problem, which can be solved by minimizing the reprojection
error of the marker vertices, as explained below. Let us denote

U = {ui ∈ R2
}

the image position of the marker vertices V in the current
frame f . It can be obtained using the calculated homography
Hf as:

ui = Hf vi, vi ∈ V . (6)

The position ui is an initial estimation that can be further
refined with subpixel accuracy using the method proposed
in [11]. The algorithm analyzes a window of length wvr
around the vertices to find the maximum gradient within
the region. To refine the vertices, there must be a minimum
separation between them. This the reason why a minimum
separation pvs between consecutive vertices was required in
the marker design (see section III). As a result, we obtain the
refined vertices positions

U ′ = {u′i}.

On the other hand, using the standard pin-hole camera
model, the marker vertices vi can be projected on the camera
plane into the pixel pi ∈ R2 as

pi = 9(δ, θ, v′i) (7)

where v′i = (vi, 0) is the three-dimensional representation of
the vertex, δ = (fx , fy, cx , cy, l1, . . . , ln) refers to the camera
intrinsic parameters, being (fx , fy) focal distances, (cx , cy)
optical center and (l1, . . . , ln) the distortion parameters.
Then, estimating the pose of the marker θ̂ is the problem

of minimizing the reprojection error of the observed marker
vertices, i.e.:

θ̂ = argmin
∑
i

[9(δ, θ, v′i)− u′i]
2. (8)

Equation 8 is a non-linear function that can be efficiently
minimized using the Levenberg–Marquardt’s (LM) algo-
rithm [23].

V. EXPERIMENTS AND RESULTS
This section presents the experiments conducted to validate
the performance of the proposed method, which along this
section will be named JuMarker. We analyze its accuracy,
speed and robustness, comparing the results with the state-
of-the-art alternatives, namely ArUco [33], AprilTag [29],
TopoTag [44], DeepTag [46] and VuMark.2 We must remark
that VuMark is a commercial project for which the code is
not available. For our method, the values indicated in Table 1
have been employed, while in the rest of the methods, default
settings have been employed.

TABLE 1. Parameters values used in quantitative evaluation of our
proposal.

To properly test the detection and tracking capabilities of
the JuMarker method, we have designed six different cus-
tomized markers templates that are shown in Figure 3(a-f).
They all have 16 CRC bits, and the number of ID bits
is 5, 6, 6, 5, 3 and 5 respectively. These markers are also
detectable by the VuMark system.

To validate ArUco, AprilTag, and DeepTag methods,
an AprilTag marker (Figure 1(g)) has been employed, since
both ArUco and DeepTag system is trained to detect an
AprilTag marker. To test the TopoTag method, it has been
necessary to use one of its markers as shown in Figure 1(l).

In order to achieve a fair comparison between the different
methods, we have printed an AprilTag and a TopoTag marker
on the same piece of paper for each customized marker (see
Figure 5). In this way, the video sequences recorded for eval-
uation show the three markers, and the methods can be com-
pared under similar distances and illumination conditions.

Since we have used six different customized markers
for the JuMarker and VuMark methods, analyzing the

2https://library.vuforia.com/articles/Training/VuMark.html
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performance individually for each customized marker allows
us to identify the main differences between JuMarker and
VuMark. In addition, the average of the six is used to com-
pare against the ArUco, AprilTag, TopoTag, and DeepTag
methods.

The experiments have been conducted using a camera with
resolution 1280 × 720, and the methods have been run in
a single CPU of an Intel CoreTM i7-10510U 2.30GHz with
8GB RAM running Ubuntu 20.04.1 operating system.

The rest of this Section is structured as follows.
Section V-A compares the accuracy of eachmethod in camera
pose estimation while V-B analyses how the distance affects
the precision. Section V-C studies the vertex jitters and V-C
the robustness to occlusion. Finally, Section V-E shows the
computing times of the tested methods.

A. METHOD ACCURACY
The goal of this experiment is to analyze the precision of
our method in estimating the pose of a camera. For each
customized marker designed (see Figure 3(a-f)), we have
recorded four video sequences spotting at the markers from
different distances and angles as it is shown in Figure 5.
A total of 12 video sequences with 1265 images each one as
average have been recorded.

FIGURE 5. Experiments Setup. A camera attached with reflective markers
has been employed for recording a piece of paper with three markers
printed on it. The OptiTack motion capture system has been used to
obtain the ground truth camera poses in the environment while recording.

To obtain the ground truth, the commercial motion capture
system OptiTack 3 has been employed. It has a set of infrared
cameras and requires us to attach several spherical infrared
reflective markers to our camera to estimate its pose in the
environment with sub-millimeter accuracy. The system pro-
vided us with the ground truth camera pose in every recorded
frame.

The Absolute Trajectory Error (ATE) (the difference
between the estimated camera position and the ground truth
along the complete recorded video sequence) is used as an
error measure. To compute the ATE, it is necessary to align
and scale the trajectories computed by each method w.r.t. the
ground truth, which is done using the Horn’s algorithm [15].

Figure 6 shows (1) the errors for each customized marker
employing VuMark and JuMarker and (2) the average of
ATE achieved by each method. The VuMark method has the
option to process the videos at 30 and 60 fps, and both have

3https://www.optitrack.com/software/

FIGURE 6. The Absolute Trajectory Errors (ATE) obtained in camera pose
estimation, using JuMarker and VuMark methods for each marker
designed in Figure 3 (a-f) and the average error, with respect to ground
truth.

been employed to observe the differences. As can be seen,
depending on the customized marker evaluated, the results
obtained are different. However, it is clear that the proposed
method (JuMarker) outperforms VuMark in all the tests and
that VuMark processing at 60 fps is worst than at 30 fps.
It must be remembered that both methods are employed
exactly with identical input video sequences. At the bottom of
Figure 6, the average errors for all methods is shown. As we
can see, the ArUco and AprilTag methods outperform cus-
tomized markers in the tests performed. However, we would
like to draw attention to the Rubik marker, which offers the
minor error of all. Its error (0.0093 meters) is smaller than
the average obtained employing ArUco or AprilTag methods.
Regarding the accuracy of TopoTag and DeepTag, we should
mention that both perform worse than ArUco, AprilTag, and
JuMarker but better than VuMark.

Despite the better performance of the AprilTag and ArUco
methods, the average difference with our proposal is only
2.5 mm. To assess if the differences observed are relevant,
we have employed the non-parametric Wilcoxon test [42].
At a 0.99 as confidence level, the test indicates that JuMarker
method does not have statistically significant differences w.r.t
AprilTag and ArUco methods. However, if we compare the
results of JuMarker w.r.t VuMark, the differences are statisti-
cally significant in favor of our method. The statistical tests
show that our method outperforms TopoTag and DeepTag
too. Additionally, there are statistically significant differ-
ences between the two VuMark versions. As a consequence,
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FIGURE 7. True Positive Ratio (TPR) as function of the marker area observed in the total images. The images (a) and (b) display the TPR for each
customized using JuMarker and VuMark methods respectively and image (c) show the average performance for each method.

only the 30 fps version will be employed in the following
experiments.

In conclusion, we can indicate that ArUco andAprilTag are
the most accurate methods in camera pose estimation. More-
over, the performance of our method outperforms VuMark,
TopoTag and DeepTag in terms of accuracy.

B. ANALYSIS OF DETECTION RANGES
This experiment compares the detection and tracking ranges
of the different methods, i.e., the range of distances at
which the marker is detected and tracked. For that pur-
pose, we evaluate the True Positive Rate (TPR) in 6 video
sequences (accounting for a total of 6452 images) that have
been recorded, spotting the marker at distances ranging from
2.5 to 0.10 meters.

It must be considered that the method’s success depends on
the observed size of the marker in the image. The larger the
marker is seen on the image, the higher the success. However,
the observed size of the marker depends on three factors: the
actual marker size, the camera focal length, and the distance
from the marker to the camera.

Therefore, to make the analysis independent from these
parameters, we have reported the success of each method.
We have taken into account the observed area of the marker
in the image divided by the total image area, which is a
normalized value in the range [0, 1].
Figure 7(a, b) shows the True Positive Rate (TPR) obtained

using JuMarker and VuMark methods for each customized
marker in Figure 3 (a-f). Please notice that the results of each
marker are represented with colored lines, while the black
line represents the average of all of them. Figure 7(c) shows
the TPR for all methods used (ArUco, AprilTag, JuMarker,
TopoTag, and DeepTag). Several conclusions can be drawn
from the results obtained. First, AprilTag is the method that
achieves the best results, reaching a 100% of TPR when the
marker occupies as little as 0.050% of the image, followed by
ArUco with 0.054%. Second, JuMarker obtains a 100% TPR
when the marker occupies at least 0.26% of the image, while
VuMark requires 0.38% of the image area for the same result.
Finally, TopoTag and DeepTag methods require the marker
to occupy 0.40% and 0.50% respectively to achieve a 100%

FIGURE 8. Test sequences. Distances between the marker and camera
employed in video sequences for the Vertex Jitter evaluation.

FIGURE 9. Average, minimum and maximum errors in corner estimation
of JuMarker, ArUco, AprilTag, VuMark, TopoTag and DeepTag methods.

TPR. In other words, they cannot deal properly with small
markers.

C. VERTEX JITTER ANALYSIS
Vertex jitter refers to the inaccuracy in the estimation of
the marker corners, which is an important aspect affecting
negatively the quality of the camera pose estimated. This is
why the methods tested implement an algorithm to estimate
the corner’s locations with sub-pixel accuracy.

We have recorded five video sequences for each cus-
tomized marker at three different distances {0.50, 1.00, 1.50}
meters. In total, we account for 18 videos comprising 8572
images. Figure 8 shows the setup employed. For each
sequence, both the camera and the marker are static. Then,
the ground truth location of a corner can be precisely esti-
mated as the average observed position along the whole
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FIGURE 10. Normalized translational error of each method as a function of the occlusion level. (a) Errors of the JuMarker method for each
customized marker, and the average results in black. (b) Errors of the VuMark method. (c) Average results of all methods. (d) Some of the images
employed in the experiment.

video sequence, and the error measured as the standard
deviation [13].

Figure 9 shows the average,minimum andmaximum errors
for all methods. As can be observed, AprilTag and ArUco
achieve the best results: 0.045 and 0.059 pixels, respectively.
JuMarker obtains an error of 0.1 pixels while the VuMark
method 0.09. Finally, TopoTag and DeepTag obtain errors of
0.18 and 0.08 pixels, respectively

The non-parametric Wilcoxon test [42], using a 0.99 con-
fidence level, shows that there are statistically significant
differences between JuMarker, ArUco, and AprilTag meth-
ods. However, JuMarker and VuMark do not show significant
differences between them. Using the same confidence level in
the Wilcoxon test, JuMarker has been compared to TopoTag
and DeepTag. As a result, it has been obtained that JuMarker
does show statistical differences to TopoTag, but not with
DeepTag. Therefore, we conclude that ArUco and AprilTag
are the best methods. Then, JuMarker, VuMark, and DeepTag
exhibit similar performance, while TopoTag is the worst one.

D. OCCLUSION ANALYSIS
The main goal of this experiment is to analyze the robust-
ness and precision of the methods under different degrees of
occlusion. To produce systematic occlusion, we have printed
the markers and taken snapshots at different locations. Then
circles of random radius have been overlaid at random loca-
tions into the marker area (see Figure 10 (d)). The color of
the circles is randomly selected as white or black. Since it
is a synthetic occlusion, the percentage of occlusion of the
marker is known.

We have captured ten images at different viewpoints for
each marker within a distance ranging from 0.2 to 0.8 meters.
Because there are six markers, a total of 60 images have been
captured under controlled indoor illumination conditions.
Afterward, we randomly generated 60 synthetic images for
each original image by superimposing a random number of

circles of random color and random radius obtaining occlu-
sion levels in the interval [0%, 80%]. As a consequence,
we have used a total of 3600 images for this experiment.

For every image, the methods have been applied to com-
pute the camera pose in original and synthetically generated
images, considering the pose of the original image as the
ground truth. Then, the translational error between the two
poses has been employed as the error measure. However,
to normalize the error so that it is not affected by the distance,
it has been divided by the visible marker area.

Figure 10(a, b) shows the errors of the JuMarker and
VuMark methods as a function of the occlusion levels. Each
colored line corresponds to a custom marker, while the black
one represents the average error. As can be seen, the UCO
Marker is the worst for bothmethods, and the Rubik one is the
best for VuMark. For JuMarker, there are very similar results,
and it is impossible to claim which one is the best.

Figure 10(c) compares the methods using the average
values of each one. It can be concluded that JuMarker and
VuMark perform better than the rest under occlusion. Both
methods detect the marker when the occlusion level is less
than 80%. In addition, it can be seen that JuMarker performs
better than VuMark. The marker is not detected by DeepTag
when the occlusion is higher than 30%, and the same is true
for TopoTag, ArUco, and AprilTag when occlusion is higher
than 10%.

E. COMPUTING TIME
Estimating the pose of markers in real-time is an essential
objective of any method. Then, this section aims to analyze
the processing times of our proposal and compare it with the
rest of the methods. To that end, we have recorded fifty-five
video sequences comprising a total of 6.580 images with a
resolution of 1280× 720.
As explained, our method automatically chooses between

detection and tracking depending on the situation. Table 2
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FIGURE 11. Computing times of Jumarker, ArUco, AprilTag, Vumark,
TopoTag and DeepTag.

TABLE 2. Computing times of the detection steps of JuMarker.

TABLE 3. Computing times (in milliseconds) of the different steps
involved in Tracking.

shows the average computing times employed in each one
of the detection steps (see subsection IV-A). As can be
observed, the image segmentation and the contour extrac-
tion and filtering account for almost 50% (10 ms) of the
processing time. Both steps are crucial to ignore irrele-
vant information in the image and to detect the customized
marker.

Table 3 shows the processing times for each step involved
in the tracking approach employed (see subsection IV-B).
As we can see, the Match between model and image
step requires around 28% of processing time. It must be
remarked that this value depends on the number of key
points detected in the image, which is a parameter. In our
case, we have set this value to 6000 as already indicated
(see Table 1).

Finally, Figure 11 shows the computing times of each
method in video sequences with a resolution of 1280 ×
720. Please, notice that for JuMarker and VuMark methods,
the type of customized marker used does not affect the com-
puting times. As can be seen, the fastest method isArUcowith
106 fps, and the slowest is DeepTag with 1.3 fps. Regarding
TopoTag, this method presents a computation time of 23.256
fps. Also, notice that the JuMarker method is the second-
fastest one.

VI. CONCLUSION AND FUTURE WORK
This paper has proposed a novel method to design, detect and
track customized markers as an alternative to the traditional
squared makers that have a more industrial appearance. The
proposed methodology allows creating markers, including
any image in it, adapting better to the particularities of the use
case it is applied to, allowing its adoption inmany commercial
areas.

To our knowledge, there is only a private project named
VuMark, with a similar capability, but it is not possible to
know the way it operates. As shown experimentally, the pro-
posed method outperform VuMark, TopoTag, and DeepTag
methods in terms of accuracy, detection range, occlusion,
and computing time. Nonetheless, the performance of our
proposal is worse than ArUco and AprilTag in terms of
accuracy, detection range, and vertex jitter, but it is better
considering occlusion. As far as computing time is concerned,
our proposal ranks second.

However, the proposed method has some disadvantages.
First, compared to traditional marker systems, such as ArUco
and AprilTags, its performance is worse as the distance to the
marker increases since the total area of the marker used for
bit encoding is smaller. Second, the detection of our markers
is slower than that of ArUco markers. Finally, our current
implementation is limited to polygons and does not allow
curves.

In conclusion, we must say that the price one has to pay to
use customized markers is a slight reduction in the accuracy
and speed. However, this paper proves that the reduction is
insignificant and that the proposed method is a valid option
for commercial and research applications.

In future work, we consider using the proposed markers for
Simultaneous Localization and Mapping tasks. Our idea is to
take advantage of customized markers to locate the camera
position in a controlled indoor environment.
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