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ABSTRACT Coaches and athletes need to understand the kinematics and dynamics of karate kicks to
improve the training process and results. The research was aimed at studying the automatic recognition
of punches in karate using only linear acceleration sensors. Accelerometers were part of the Inertial
Measurement Units (IMUs), which were attached to the left and right wrist of the athlete. To develop
a model of punches, highly qualified athletes with 3-7 years of karate experience participated in the
research. We analyzed the acceleration fields of various karate punches: Yun Tsuki, Mawashi Tsuki, Age of
Tsuki, Uraken. We have proposed more straightforward approach to extracting features without calculating
their statistical characteristics. To solve the classification problem, we have used various architectures of
convolutional neural networks: multilayer perceptron, 1- and 2-dimension Convolution Networks. Since the
recognition of punches was carried out in the conditions of a shadow fight, in addition to the recognition of
punches, another output parameter was introduced – movement without punches. Studies have shown a high
level of punch recognition based on the developed models. The multi-class accuracy value is 0.96, and the
average F1 value is 0.97 for five different punch classes. Thus, the proposed approach is more suitable for
practical implementation in automatic learning systems.

INDEX TERMS Punch, sensors, classification, recognition, neural networks, kinematic analysis.

I. INTRODUCTION
Karate is a traditional Japanese martial art. However, this
Japanese martial art has gained popularity all over the world.
Sports competitions of national and world level are held
in karate. The popularity of karate as a sport is growing
and, in this regard, the methods of training karate athletes
are increasingly becoming scientific in nature. To develop
effective training techniques, coaches need to understand the
kinematics and dynamics of karate punches [1]–[6]. There-
fore, our research was aimed to analyze the velocity fields of
punches in karate, as well as to develop and analyze various
models of artificial neural networks for recognizing punches.

Sports in the modern world is a socially significant ele-
ment, and, therefore, the technical and technological aspects
of social process research are essential, including the study
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of machine learning technologies. Some features of the use of
neural networks in socially oriented processes and algorithms
for optimizing the search for a sufficient and optimal solution
to the posed problem are given in [7]–[11].

To solve the problems of the study, we have used inertial
measurement units (IMUs), which included an accelerometer
and a gyroscope. IMUs were attached to the wrists of karate
athletes.We have used the IMUs because in sports andmartial
arts, they proved to be an effective tool for analyzing the
kinematics and biomechanics of human movements [12].

A. REVIEW OF CURRENT RESEARCH
In [13], studies of the acceleration and speed of punches
were carried out using IMUS that were installed on the
wrists of boxers. The accelerometers in this study had a large
range – 200g (g is the acceleration of gravity = 9.8 m / s2),
but the acceleration graphs show that the maximum accel-
eration was about 25g. In addition, this acceleration
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corresponded to the final phase of the punch when the ath-
lete’s fist stopped abruptly, and this led to a large negative
acceleration. This allows us to conclude that for studies of
the kinematics of punches in martial arts, it is possible to
limit the measurement range to 16-25g. In [13], it was found
that the speed of punches of male athletes was 8.1±1.4 m/s
for jab-out punches, and 7.7± 1.5 m/s for cross-out punches.
The women had the following results: 6.6 = 1.6 m / s
(job-out), 5.7 = 1.5 m / s (cross-out).
The authors of the work [14] investigated the difference

between the biomechanics of punches of elite and novice
boxers based on IMUs which in the amount of 17 pieces were
installed on the body of boxers. IMUs had an accelerometer
measurement limit of 18g; they included an accelerometer,
gyroscope, magnetometer. Since the IMUs were installed on
each body segment, the contribution of the body segments
to the punching technique of boxers was determined. In both
groups (elite and novice athletes) the elbow contributed the
most to the cross-out technique and the shoulder contributed
the most to the hook and uppercut.

In [15], the analysis of the kinematics of boxers ’ punches
using accelerometers was carried out in conjunction with
videography. The authors searched for the correlation of
postures and fields of acceleration of blows with the fatigue
of the athletes. The graphs of punch accelerations given
in [15] show that the maximum values are in the range of
20-40 m / s2, which also allows us to choose an IMU for
experiments with a measurement limit of up to 16g. In [15],
it is stated that a large number of degrees of freedom of
human hands does not allow us to draw unambiguous con-
clusions about the kinematics of blows, so videography was
additionally required. It can be noted that in this work the
magnetometer and gyroscope which are usually included in
the IMU were not used; perhaps their use could lead to the
fact that videography would not be needed.

Also, various techniques of artificial neural net-
works (ANN) are used to analyze the kinematics of punches
in martial arts, which can also help in conditions of lack
of data. The advantages of ANN have led to the fact that
they are actively used in sports and martial arts [2]. For
example, the authors in [13] concluded that according to the
accelerometer data, it was difficult to find the time when the
boxer’s hand begins to return after a punch. It can be assumed
that the use of ANN methods could deal with this problem.

In [16], the ANN in the form of amultilayer perceptronwas
developed for the purpose of automating the data collection of
boxers’ punches. The input data for ANN was the IMU data
that was attached to the boxers’ wrist. The accuracy of punch
recognition ranged from 87.2 ± 5.4 \% to 95.33 ± 2.51\%.

In [17], six different deep machine learning models for
recognizing boxers’ punches were investigated. The IMUs
were installed in two versions: 1 – the IMUs were attached
to both wrists; 2 – the IMUs were attached to both wrists
and the third thoracic vertebra. The accuracy of the impact
prediction was for version 1 – 0.90 ± 0.12, for version
2-0.87 ± 0.09. For version 1, the support vector machine

(SVM) model worked best (accuracy= 0.96), for version 2 –
the multi-layer perceptron neural network (MLP-NN) model
(accuracy = 0.98) did.
Not many works are devoted to the analysis of punches in

karate based on IMUs and ANN. And so far, no research has
been conducted on a specific karate punch which is called
Uraken in Japanese (a punch is made from the inside out).

B. CURRENT CHALLENGES AND SUGGESTED
APPROACHES
Punches in karate are distinguished by a complex kinematic
pattern. It is impossible to search for the most effective
training methods without knowledge of the biomechanical
features of punching movements. Therefore, it is required to
study the kinematic parameters of the punch – speed, and
acceleration.

The next problem in the field of martial arts is the develop-
ment of a punch model. The effectiveness of motor actions
fulfillment is determined by the degree of their kinematic
and dynamic structure closeness to the most effective punch
model.

However, the development of a model of punches in
karate requires the inclusion of many factors into this model
(kinematics and dynamics of punch, body position, time
phases of the punch, features of the athlete’s physique,
etc.), which are still difficult to combine into the unified
model. Therefore, at present, the development of punch mod-
els based on deep learning technologies has been actively
evolving [2], [12], [13], [16]–[20].

The work structure includes abstract, keywords, and five
sections. Section 1 contains an introduction to the research
topic. Section 2 presents the materials and methods used
in the study. Section 3 describes the results of the study.
Section 4 describes the discussion of the results of the work.
In section 5 the conclusions are presented.

II. MATERIALS AND METHODS
A. PARTICIPANTS
The study involved sixteen healthy participants (n=16),
12 men, 4 women, aged 22±3 years, weighing = 70±14 kg,
height = 165±21 cm, with 3-7 years of experience in
karate. Ethical approval was granted by the Human Research
76 Ethics Committee at Financial University under the
Government of the Russian Federation.

B. MATERIALS
The design of the experiment can be seen in Figure 1.

On the wrists of the athletes, devices were fixed which
included a microcontroller, IMUs, and Bluetooth mod-
ules. Athletes punched in shadow fight mode. The IMUs
(accelerometer and gyroscope) data was initially transmitted
via the Bluetooth channel to the android device. On the
android device, the data was saved as files for each type of
punch. This data was then processed on the computer. In order
to label and identify each punch for develop models of the
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FIGURE 1. Design of the experiment.

artificial network, video recordings of the experiments were
made.

The data acquisition device (Figure 2) was a 50 ×
20×10 mm box containing three modules – the microcon-
troller stm32f103 [21], IMU MPU6050, and Bluetooth mod-
ule HC-05 with a BC417143 [22].

FIGURE 2. Data acquisition device.

Figure 3 shows that the IMU device was attached to the
athlete’s wrist with boxing bandages. Figure 3 also shows the
directions of the acceleration axes and the angular velocity of
the gyroscope.

We did not use gyroscope and magnetometer measure-
ments and did not calculate the angles and position of the sen-
sor. We used only linear acceleration sensors measurements.

To record the session, we used Xiaomi Redmi 7 camera
with 1980× 1080 resolution 30 fps. Video analysis was used
for labeling ground actual punches. To record data, we used
Bluetooth Serial Terminal Android application.

FIGURE 3. Measuring module attached to the arm with a boxing hand
wrap.

The data collection session consisted of the participant
performing 1912 punches in shadow fight mode. Classes of
punches were:

1. Yun Tsuki (YT);
2. Mawashi Tsuki (MT);
3. Age Tsuki (AT);
4. Uraken (U);
5. No Punch (NP).
In Figure 4-7, the red arrow shows the approximate trajec-

tories of the punches.
The design of the data acquisition device was developed

as a result of the review of work in the field of obtaining
and processing data from sensors installed on a person and
showing the movement of body parts in space [23]–[40].

Also, for the development of the device, the works in which
the data was processed using convolutional neural networks
were analyzed [41]–[55].

FIGURE 4. Approximate trajectories of the punches Yun Tsuki.

Measured data was packed to dataset X: every sample
has 3 columns (x, y, z acceleration). Train/validation random
splitting was made with 10:1 proportion for each class. His-
togram of classes samples distribution are in Figure 8.

Data preprocessing was conducted with python 3.7 pack-
ages: numpy, sklearn. Visualization was made with mat-
plotlib; Neural Net models were built with tensorflow.
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FIGURE 5. Approximate trajectories of the punches Mawashi Tsuki.

FIGURE 6. Approximate trajectories of the punches age Tsuki.

FIGURE 7. Approximate trajectories of the punches Uraken.

keras 2.2. Raw data for different punch classes are visualized
in Figure 9.

In experiments 4 models took part:
• Multilayer perceptron;
• 1-dimension convolution network;
• 2-dimension convolution network;
• 2-dimension convolution network with additional
layers.

Multiclass Accuracy used as classification metric for all
classes:

ACC = N_T/N, (1)

FIGURE 8. Train and test samples.

FIGURE 9. Measurement of raw data for different punch classes.

N_T – number of true classified punch, N – total number
of punches.

Precision (P), recall (R), and F1-score were used as classi-
fication metrics for single classes:

P = N_TP/(N_TP+ N_FP), (2)

R = N_TP/(N_TP+ N_FN), (3)

F1 = 2PR/(P+ R), (4)

N_TP – number of true positive classified punch,
N_FP – number of false positive classified punches.

Models were trained using PC with Ubuntu 18.04 LTS,
Intel(E) Core (TM) i7-6950x CPU, 64 GBRAM,GTX 1080ti
8 GB GPU.

The hyperparameters of the developed neural network
models are presented in Table 1. In Table 1: 1 – multilayer
perceptron, 2 – 1d convolution network, 3 – 2d convolution
network, 4 – 2d convolution network with additional layers.

Neural network models were developed using Python soft-
ware, the full program code along with the dataset is freely
available in the GitHub repository [56]. The pseudocode
of the program implements generalized approaches for the
developed models.
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TABLE 1. Hyperparameters for neural networks.

Before executing the program: initialize network weights
with small random values, training_data, batch_size,
learning_rate.

for each epoch do
shuffle training_data

for each batch(batch_size) in training data do
// forward pass

predictions = argmax(network(batch))
compute batch cross_entropy_loss(predictions,

actuals)
// backward pass

compute gradients 1Wi for all layers from output to
input

update network weights Wi =Wi - 1Wi·learning_rate
return the network
The architectures of the developed neural networks are

shown in Tables 2-5 and Figures 10-13.

TABLE 2. MLP architecture.

In Tables 2-5, ReLu, Sigmoid are the activation functions
used on these layers. Batch normalization means applying a
transformation that maintains the average output value close
to 0 and the standard deviation of the output close to 1. Glob-
alAveragePooling2D applies an average pooling of spatial
dimensions until each spatial dimension is unified and leaves
the other dimensions unchanged.

III. RESULTS
A. MULTILAYER PERCEPTRON
Multilayer perceptron consists of 5 sequential layers with
4 hidden sizes (450, 450, 1024, 256, 128, 5), batch

FIGURE 10. Multilayer perceptron.

TABLE 3. 1D ConvNet architecture.

normalization, sigmoid, and ReLu activations. After
100 epochs of training, we have 0.99 training and 0.87 vali-
dation accuracy. Classification metrics are in Table 6.

The confusion matrix is in Figure 14.
During the training process, we can see the difference

between train and validation accuracy. We propose that the
linear model is overfitting. To avoid this, we try a more
complicated model – 1D convolution network for time series
classification from [57].

B. 1D CONVOLUTION NETWORK
1-dimension Convolution Network consists of 3 separate
layers for each channel x, y, z with 64 kernels and ReLu
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FIGURE 11. 1D convolution net.

TABLE 4. 2D ConvNet architecture.

activations. Optimizer is Adam, learning rate = 2e−3 and
batch size 64.

After 100 epochs of training, we have 0.81 training and
0.62 validation accuracy. Classificationmetrics are in Table 7.

The confusion matrix is in Figure 15.
During the training process, we observe small train accu-

racy, unstable validation accuracy, and big loss. We suppose
that 1D convolution model is unsuitable for punch classifica-
tion. So, we try to use feature combination and model with
2D convolution layers.

C. 2D CONVOLUTION NETWORK
2-dimension Convolution Network consists of 2 layers, that
inputs are both x,y and y,z axis. Layers have 72 and
88 kernels, size (2, 52), batch normalization, and ReLu

FIGURE 12. 2D convolution net with 2 layers.

TABLE 5. 2D ConvNet architecture with additional layers.

activations. Optimizer is Adam, learning rate = 2e−3 and
batch size 64.

After 100 epochs of training, we have 0.97 training and
0.93 validation accuracy. Classificationmetrics are in Table 8.
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FIGURE 13. 2D convolution net with 4 layers.

TABLE 6. MLP classification metrics.

FIGURE 14. MLP confusion matrix.

The confusion matrix is in Figure 16.
During the training process we can see a much better train

and validation accuracy, so we try a deeper model with 3 2D
convolution layers.

D. 2D CONVOLUTION NETWORK WITH 3 LAYERS
2-dimension Convolution Network consists of 3 layers, that
inputs are both x, y and y, z axis. The first layer has 32 kernels

TABLE 7. 1D CNN classification metrics.

FIGURE 15. 1D CNN confusion matrix.

TABLE 8. 2D CNN classification metrics.

with size (2, 32), other layers have 64, 64, and 96 (2, 2) size
kernels. Batch normalization and ReLu activations are also
used. Optimizer is Adam, learning rate = 2e−3 and batch
size 64.

After 100 epochs of training, we have 0.98 training and
0.96 validation accuracy. Classificationmetrics are in Table 9.

The confusion matrix is in Figure 17.
During the training process, we can see better train and

validation accuracy, and small loss. We try more layers, but
this does not significantly improve classification metrics.

IV. DISCUSSION
Having the field of accelerations for different types of a
blows, it is possible to set the task of the analysis of the
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FIGURE 16. 1D CNN confusion matrix.

TABLE 9. 2D CNN classification metrics with additional layers.

FIGURE 17. 2D 3 layer CNN confusion matrix.

technology of performance of each of punches. For more
independent analysis of the value of accelerations, we will
divide into free-fall acceleration of g = 9.8 m/c2, the data

thereby obtained will become dimensionless. To improve the
quality of the analysis, we will integrate the calculated values
of accelerations. We approximate acceleration on the inter-
val [(n-2)T, n T] using the parabola on three values a(n-2),
a(n-1), a(n). The difference equation has the appearance:
V (n) = V (n-1) + T [5/12a (n) +8/12a (n-1)-1/12a (n-2)].
Thus, we will receive dependence of the speed of blow on
dimensionless time. In works [13]–[15] several sensors for
the analysis of movements were used. In our research to
analyze the technology of punches’ performance, we have
used a three-axis accelerometer to draw qualitative conclu-
sions on each type of punches equipment. Having constructed
schedules of dependence of speeds, it was noted that for the
same punches they significantly differ depending on the hand
on which measurements were made. At the same time for the
same hand of speeds dependence for identical types of blows
are similar, but don’t coincide. As dependences of speeds for
a particular hand and particular punch don’t coincide, but
are close, average dependences of speeds on the number of
measurements for each type of punch, for the left hand and
right hand were found. Measurements were performed using
the accelerometer fixed on a hand. In Figure 3 the illustration
for the left hand with the indication of the directions of a
coordinate is presented. When fixing an accelerometer on
the first hand, the abscissa axis was directed along a forearm
towards the athlete.

Let’s consider concrete types of blows.

A. KINEMATIC ANALYSIS OF YUN TSUKI
In Figures 18, 19 dependences of a projection of speed of
a hand to an abscissa axis (on the left) and an axis of ordi-
nates (on the right) from measurement time are presented.
Let’s consider the schedule on the left. For the right hand,
the schedule has a minimum between two maxima, for the
left hand, a maximum is located between two minima.

From presented on the left part schedules it is visible
that the punch consists of several phases, namely, a swing
phase (inverse to the main driving) before the first crossing
of an abscissa axis on graphics, phases of increase in speed
of a hand for punch with the subsequent delay (the second
extremum on graphics), transition to a phase of back motion
(the second crossing of an abscissa axis) with the subsequent
delay (the third extremum), and transition to ‘‘residual’’ driv-
ing in the direction of the main punch (the third crossing of
an abscissa axis). From schedules of the speed of a hand for
this athlete, it is visible that the maximum speed of swing by
the right hand on axis X is less than the same size for the left
hand and swing by the right hand shorter, than swing by the
left hand. However, the maximum speed in the fissile phase
of a blow for the left hand is more, than for the right one, but
it is reached a little later, than the moment of achievement of
the maximum speed in the corresponding phase by the right
hand. Thus, more intensive swing by the left hand gives high
maximum speed in a projection to axis X in the main phase
of the blow.
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FIGURE 18. Change of projections of speed at the punch of Yun Tsuki.

FIGURE 19. Change of projections of speed at the punch of Yun Tsuki.

It is possible to note that the time of the beginning of back
motion for the right and left hand almost coincide, as well as
the time of the beginning of residual driving in the direction
of the blow, but the delay of back motion by the left hand
is sharper and occurs slightly earlier (the third extremum on
schedules). Analyzing the change of a projection of speed to
axis Y, it is possible to note that there is no swing on an axis of
ordinates, but the speed maximum modulo for the right hand
is less, than for the left hand and is reached by the right hand
earlier, than left hand. Further, the phase of movement delay
of a hand down with the subsequent insignificant increase in
speed follows on axis Y.

B. KINEMATIC ANALYSIS OF MAWASHI TSUKI
In Figures 20, 21, dependences of projections of speed to axes
X (on the left) and Y (on the right) from measurement time
are presented.

From the analysis of the left graph, it is visible that the pith
punch of swing to axis X isn’t present. On axis X speed at first
grows and then decreases almost to zero. Change of a projec-
tion of speed to axis Y in Figure 21 shows that along this
axis the swing for both hands, approximately identical, takes
place. The maximum projection of speed to axis Y for the
right hand is more than for the left hand. After achievement
of the maximum projection of speed to an axis of ordinates
delay of driving in this direction (in fact down) with reaching
some constant value begins. It is possible to note that the final
projection of speed to axis Y in the right hand is more than a
similar size for the left hand.

FIGURE 20. Change of projections of speed at the punch of Mawashi
Tsuki.

C. KINEMATIC ANALYSIS OF AGE TSUKI
In Figures 22, 23, dependences of projections of speed to axes
X (on the left) and Y (on the right) from measurement time
for this type of blow are presented. From the left graph, it is
visible that in an initial phase there is a swing on axes X (back
motion), both the left hand and right hand, but swing by the
left hand is more intensive and more long-lived.

In the following phase a set of the maximum speed on
an abscissa axis of the right hand occurs quicker, than left
hand, the maximum value of a projection of speed to axis X is
approximately identical to both hands. Further, the breaking
phase before crossing the zero line which comes to an end
earlier at a blow with the right hand follows. The short
phase of back motion comes to an end with a transition
approximately at the same time for both hands (most left hand
crossing the zero line) in the last phase of the punch. The
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FIGURE 21. Change of projections of speed at the punch of Mawashi
Tsuki.

FIGURE 22. Change of projections of speed at the punch of age Tsuki.

final projection of speed to axis X for the left hand is more
than the same size for the right hand. Analyzing schedules
for a speed projection to an axis of ordinates we will note
swing existence (upstroke) both the right and the left hand.
Swing on this axis of the right hand is more intensive and lasts
longer than swing by the left hand. In the following phase
of a set of the maximum speed down the maximum speed,
the left hand is more, than the maximum speed of the right
hand (minima about the 50thmeasurement), but it is reached a
little later. Further, the phase of decrease of vertical speed, and

FIGURE 23. Change of projections of speed at the punch of age Tsuki.

right hand follows, having slowed down driving down, even
begins to move up (the second crossing of the zero line of the
graph), but then moves down, finishing with a small vertical
speed. The repeated swing was made by the right hand. The
left hand, having slowed down vertical driving, subsequently
accelerated, having finished with a good vertical speed. Sum-
marizing this type of punch by the athlete, we will note that
this punch by the left hand turns out more intensive, than the
right hand one.

D. KINEMATIC ANALYSIS OF URAKEN
In Figures 24, 25, dependences of projections of speed to axes
X (on the left) and Z (on the right) frommeasurement time for
this type of punch are presented. Let’s consider dependences
of a projection of speed to axis X. It is possible to note that on
this axis there is no swing, advance is made in the beginning
and after the achievement of the maximum speed there is a
delay, and further short the driving site back after crossing
the zero line. The maximum speed along this axis is more at
a blow by the right hand. Analyzing the change of a projection
of speed to axis Z, it is easy to notice that in an initial phase
the swing which is more intensive for the left hand becomes.
Then the driving counteracting the attack of the opponent the
same hand becomes, and the maximum speed for the left
hand is more than for right one, after delaying along this
axis the whipping driving in inverse, from within outside,
the direction is made. And the whipping driving of right is
insignificant. Further, the hand begins driving inside and to
itself.

Summing up the result of the analysis of the considered
punches made by the athlete, we will note that in the presence
of swing in an initial phase the maximum speed of blow of
subjects is more the swing is more.
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In work [13] the dependence of the speed of blow on the
experience of the athlete is established, but the speed differ-
ence for different hands isn’t established. In our work, thanks
to the separate analysis of the kinematics of each hand the
difference in speeds for different hands is established. This
difference is caused by the difference in technology of real-
ization of blow-by each hand. In work [14] differences were
found in the technology of realization of blows by athletes
with different experiences. In our research, the dependence
between different phases of realization of blow is established.
It can be useful for trainers to improve the technology of
realization of punches.

FIGURE 24. Change of projections of speed at the punch of Uraken.

FIGURE 25. Change of projections of speed at the punch of Uraken.

E. PUNCH RECOGNITION
The results of the experiments are in good agreement with the
works of other authors who have performed similar studies.

Other authors who conducted research on the recognition
and classification of punches did not use such a class as
‘‘movement without punches’’.

The multilayer perceptron, despite its simplicity, showed
good results. The best F1 score is 0.95 for U-punch, worst
is 0.86 for N-punch. In [16], studies were conducted on
the recognition of punches of boxers using the MLP. The
authors [16] obtained a recognition level of 92.93 ± 4.33%
for highly qualified boxers.

The difference between train and validation accuracy is
the result of model overfitting. Increasing the number of
training samples will solve this problem. 1D convolution
model from [57] works very badly and is not suitable for
punch recognition. Train accuracy is about 0.8, but validation
accuracy is only 0.65 and very unstable. Worst F1 score
is 0.11 for MT-punch, best F1 is 0.81 for No-punch class.
Loss after 100 epochs training is only about 0.3. As we
proposed, 2D convolution model with 2 conv layers works
better. Metrics are like on MLP: best F1 is 0.93 for YT-punch
and worst is 0.90 for U-punch class. A little gap between
training and validation accuracy curves is told about some
overfitting, so we tested deeper conv model with 4 layers.

In [18], the movements of fencers were studied. In this
work, models were developed that combine the input data
received from the IMU and Kinect. Then, the input data
was preprocessed based on Dynamic Time Warping (DTW)
and Support Vector Machine (SVM). After preprocessing,
the data was processed in MLP. The accuracy of the obtained
recognition models varied for different types of movements
from 87% to 99%.

2D convolution model with 3 conv layer shows best result:
0.97 validation accuracy. Best F1-score 0.99 for YT-punch
class, worst 0.90 for AT-punch class. Comparing with MLP,
we achieved better classification metrics and shift invariant
model, based on 2D convolution.

One of the best results in the classification of punches
in boxing were shown by the machine learning algorithms
Linear Regression and Support Vector Machines [12]. With
it was possible to achieve a multiclass accuracy of 0.96 and an
average F1 of about 0.95. In our study, we used convolutional
neural networks to classify karate strikes. The best result was
shown by a 2D convolutional architecture with three layers,
which allowed achieving similar results: 0.96 accuracy and
0.97 average F1. In the work [17], the data obtained using
IMU were used. In these studies, IMUs were attached to
the wrists of boxers. Various deep learning methods, includ-
ing MLP, were used to recognize impacts. For the experi-
ment configuration, when IMUs were attached to the boxer’s
wrists, the accuracy was 0.98.

Unlike [12], we used a larger dataset – 1700 samples
for training and 212 for testing. We used only the results
of measuring linear acceleration along the x, y, z axes, did
not use measurements of angular acceleration and magnetic
field and did not calculate the angles of the sensor position.
We used raw data without statistical processing – we did not
calculate the mean, standard deviation, min max, etc.
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V. CONCLUSION
The research purpose included the study of kinematics and
the development of various neural network models of such
karate punches as Yun Tsuki, Mawashi Tsuki, Age Tsuki,
Uraken. The kinematics of the Uraken has still been little
studied since this punch is not used in all martial arts. Also,
a type of classification was introduced – ‘‘movement with-
out punches,’’ which is also not found in studies, although
this approach will help distinguish punches from feints and
movements in the future.

We believe that our proposed approach is more suitable
for practical implementation and implementation in the final
product. The results of studies of punches’ kinematics will
help deepen the understanding of the biomechanics of karate
punches, which will allow scientists to develop the theory of
punch, and coaches and athletes to learn the correct technique
more effectively. The work of trainers relates to the constant
measurement of the parameters of punches; the recognition
of punches allows these routine operations to be automated.

Karate punches have complex kinematics and dynamics,
so the developed model was limited to the study of single
punches. That is, the model did not include combinations of
punches, feints, and movements of athletes. Also, the model
did not include gyroscope and magnetometer data, which
probably limits its applicability and accuracy due to complex
impact trajectories. All these limitations are areas of future
research. The subject of these studies should answer a lot of
topical questions:

- development of an optimal, unified punch model (the
study should also answer the question: is it possible
to create such a model, or can we only create limited
models for certain conditions);

- development of models for recognizing punches in
combinations;

- recognition of punch in real sparring, when two athletes
interact;

- inclusion of input parameters such as gyroscope and
magnetometer data into the model;

- creating punch models in the joint study of punch
video capture and kinematic data received from the
IMUs.
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