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ABSTRACT The notion of a q-rung orthopair fuzzy soft rough set (qROFSRS) appeared as an extension
of q-rung orthopair fuzzy set (qROFS) and q-rung orthopair fuzzy soft set (qROFSS) with the aid of rough
set (RS) definition. Thus, qROFSRS and m-polar fuzzy set (mPFS) are convenient to deal with uncertain
knowledge which helps us to solve many problems in decision making. In this paper, we define the soft
rough q-rung orthopair m-polar fuzzy sets (qROmPFS) and q-rung orthopair m-polar fuzzy soft rough sets
(qROmPFSRS) through crisp soft and q- rung orthopair (q-RO) m-polar fuzzy soft approximation space. The
related characteristics of these models are also studied. Then, we construct two new algorithms for these
models to solve MADM issues. The successful application and corresponding comparative analyses proves
that our proposed models are rational and effective.

INDEX TERMS q-rung orthopair fuzzy soft rough set, m-polar fuzzy set, soft rough q-rung orthopair m-polar
fuzzy sets, q-rung orthopair m-polar fuzzy soft rough sets, multi-attribute decision making.

I. INTRODUCTION
The rapid of research articles become very huge, especially in
mathematics. Numerous suggestions weremade to solve real-
world problems using mathematical techniques by way of
appropriate equations or formulas in helping decision makers
to make their best decisions. To solve problems involving
uncertainty, fuzzy sets (FS) was introduced by Zadeh [1]
in 1965.

Later in 1982, Pawlak introduced the notion called Rough
Sets (RS) [2], [3]. The beauty of RS is it is able to divide the
area into three parts (Lower, Upper, and Boundary region).
This idea comes from the meaning of the topology concept.
Eight years later, Dubois and Prade [4] combine the notion
of RS and FS, to form rough fuzzy sets and fuzzy rough sets.
Since then, many researchers studied further on RS and FS as
in the following published articles [5]–[15].

The associate editor coordinating the review of this manuscript and
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To reduce the uncertainty and vagueness of knowledge,
Molodtsov [16] developed soft sets (SS). Feng et al. [17]
established the soft rough sets (SRS) by merging SS and RS
in 2011. Also, in 2017, Yager [18] defined a new concept
called q-rung orthopair fuzzy sets (qROFS) as a refinement
to the notion of Pythagorean fuzzy sets (PFS) [19], [20]
and intuitionistic fuzzy sets (IFS) [21]. IFS and PFS are
considered as special cases of qROFS, when q = 1 and q = 2,
respectively. There are numerous research on IFS [22]–[27],
PFS [28]–[36] and qROFS [37]–[45].

In 1994, as an extension of FS whose membership grade
range is [−1, 1], bipolar fuzzy sets (BFS) was proposed by
Zhang [46]. In a BFS, the membership grade 0 of a variable
means that the variable is irrelevant to the corresponding
property, the membership grade (0, 1] of a variable points
out that the variable somewhat fulfills the property, while
the membership grade [−1, 0) of a variable point out that
the variable somewhat satisfies the implicit counter-property.
The idea which lies behind such description is connected with
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the existence of ‘‘bipolar information’’ (e.g., plus information
and minus information) about the given set. Plus informa-
tion represents what is granted to be possible, while minus
information represents what is considered to be impossible.
Then to generalize the BFS to help experts to deal with
uncertainty, the meaning of m-polar fuzzy sets (mPS) was
mooted by Chen et al. [47]. They proved that bipolar fuzzy
sets and 2-polar fuzzy sets are cryptomorphic mathematical
tools. In many real-life complicated problems, data some-
times comes from an employee (n ≥ 2), that is, multipolar
information (not just bipolar information, which corresponds
to two-valued logic) exists. There are many applications
of m-polar fuzzy sets to decision-making problems when
it is compulsory to make assessments with a group of
agreements. Akram et al. [48], [49] proposed the soft rough
m-polar fuzzy and m-polar fuzzy soft rough sets. By merging
the concepts of SRS, PFS, and mPS, Riaz and Hashmi [50]
investigated the Pythagorean m-polar fuzzy sets (PmPFS),
soft rough Pythagorean m-polar fuzzy sets (SRPmPFS) and
Pythagorean m-polar fuzzy soft rough sets (PmPFSRS). The
concept of q-rung orthopair m-polar fuzzy sets (qROmPFS)
was then defined by Riaz et al. [51].
Using the notions of SS, SRS, and qROFS,

Hussain et al. [52] proposed the q-rung orthopair fuzzy soft
sets and their application. Wang et al. [53] explained the
qROF soft rough sets(qROFSRS) with a few applications.
Riaz et al. [54] introduced the notion of soft rough q-rung
orthopair fuzzy sets and some of their properties were dis-
cussed. Thereafter, many researchers studied SRS, SS, and
their applications such as [55]–[60], [64].

From these interesting studies, we intend to develop
a hybrid of SRS and qROmPFS and put forward a new
model called q-rung orthopair m-polar fuzzy soft rough
sets (qROmPFSRS) and soft rough q-rung orthopair fuzzy
sets (SRqROmPFS). These combinations provide us with the
property of qROmPFS and soft rough sets together which
maximize the handling of uncertain data. Thus our proposed
methods are generalized extensions of Akram et al. [48],
Riaz and Hashmi [50] and Riaz et al. [54]. When q = 1, the
presented formula reduces to those methods in [48] and [49]
and if q = 2, it reduces to those methods in [50]. Our
proposed method will cater for m sets which make our stud-
ies are reliable, compared to [54] which catered for only
a single set. Their relevant properties will be investigated,
a few definitions and theorems will be promulgated along
with illustrative examples. We will then proceed to con-
struct two algorithms along with their applications. Finally,
we will run comparative analyses on the outcomes of those
two algorithms.

The structure of this paper is as follows. The preliminary
of basic notions will be introduced in Section 2. Section 3
will discuss the novel concept of SRqROmPFS and the related
characteristics. The hybrid concept of qROmPFSRS will
be proposed and its associated properties are discussed in
Section 4. In Section 5, we give an illustrative example to
show the applicability of the proposed constructed algorithms

along with the comparative analyses, followed by the conclu-
sion in Section 6.

II. PRELIMINARIES
Now, we give some basic notions on IFS, PFS and qROF
before defining soft rough q-rung orthopair m-polar fuzzy
sets SRqROmPFS in the next section.
Definition 1 ([21], [22]): If 4 is the origin set. For every

Ĥ ∈ 4, if we have a membership grade ϑE : 4 → [0, 1]
and a non-membership grade ~E : 4 → [0, 1]. Define the
IFS E as indicated below.

E = {(Ĥ , ϑE (Ĥ ), ~E (Ĥ ))},

where 0 ≤ ϑE (Ĥ )+ ~E (Ĥ ) ≤ 1.
Also, Ĥ = (ϑ

Ĥ
, ~

Ĥ
) is said to be an intuitionistic fuzzy

number (IFN), if

0 ≤ ϑ
Ĥ
, ~

Ĥ
≤ 1, %

Ĥ
= 1− ϑE (Ĥ )− ~E (Ĥ ),

and 0 ≤ ϑ
Ĥ
+ ~

Ĥ
≤ 1.

To treat some problem in IFSwhich appeared in real issues,
Yager in 2014 defined Pythagorean fuzzy sets (PFSs) as
follows.
Definition 2 ([19], [20]): If 4 is the origin set. For every

Ĥ ∈ 4, if we have a membership grade ϑE : 4 → [0, 1]
and a non-membership grade ~E : 4 → [0, 1]. Define the
PFS E as indicated below.

E = {(Ĥ , ϑE (Ĥ ), ~E (Ĥ ))},

where 0 ≤ ϑ2
E (Ĥ )+ ~2E (Ĥ ) ≤ 1.

Also, Ĥ = (ϑ
Ĥ
, ~

Ĥ
) is said to be a Pythagorean fuzzy

number (PFN), if

%
Ĥ
=

√
1− ϑ2

E (Ĥ )− ~2E (Ĥ ), 0 ≤ ϑ2
Ĥ
+ ~2

Ĥ
≤ 1.

Generalizing further, Yager presented the notion of q-rung
orthopair fuzzy sets in 2017 (q-ROFs) as follows.
Definition 3 [18]: If4 is the origin set. For every Ĥ ∈ 4,

if we have a membership grade ϑE : 4→ [0, 1] and a non-
membership grade ~E : 4→ [0, 1]. Define the q-ROFs E as
indicated below.

E = {(Ĥ , ϑE (Ĥ ), ~E (Ĥ ))},

where 0 ≤ ϑ∇E (Ĥ )+ ~∇E (Ĥ ) ≤ 1, where ∇ ≥ 1.
Also, Ĥ = (ϑ

Ĥ
, ~

Ĥ
) is said to be a q-ROF number

(q-ROFN), if

%
Ĥ
=

∇

√
1− ϑ∇E (Ĥ )− ~∇E (Ĥ ), 0 ≤ ϑ∇

Ĥ
+ ~∇

Ĥ
≤ 1.

Definition 4 [18]: If Ê1 = (ϑ
Ê1
, ~

Ê1
) and Ê2 =

(ϑ
Ê2
, ~

Ê2
), for Ê1, Ê2 is q-ROFNs. Then ∀Ĥ ∈ 4, we have

the following relation.
(1) Ê c

1 = {(Ĥ , ~
Ê1
(Ĥ ), ϑ

Ê1
(Ĥ ))}.

(2) Ê1 = Ê2 ⇐⇒ ϑ
Ê1
= ϑ

Ê2
and ~

Ê1
= ~

Ê2
.

(3) Ê1 ≤ Ê2 ⇐⇒ ϑ
Ê1
≤ ϑ

Ê2
and ~

Ê1
≤ ~

Ê2
.

(4) Ê1∩Ê2={(Ĥ , ϑ
Ê1
(Ĥ )∧ϑ

Ê2
(Ĥ ), ~

Ê1
(Ĥ )∨~

Ê2
(Ĥ ))}.

VOLUME 9, 2021 139187



J. Ping et al.: Soft Rough q-Rung Orthopair m-Polar Fuzzy Sets

(5) Ê1∪Ê2={(Ĥ , ϑ
Ê1
(Ĥ )∨ϑ

Ê2
(Ĥ ), ~

Ê1
(Ĥ )∧~

Ê2
(Ĥ ))}.

(6) Ĥ1 − Ĥ2 = Ĥ1 ∩ Ĥ c
2 .

(7) Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑÊ1 (Ĥ )

)∇
+
(
ϑÊ2 (Ĥ )

)∇
−
(
ϑÊ1 (Ĥ )ϑÊ2 (Ĥ )

)∇
, ~Ê1~Ê2

)
.

(8) Ê1 ⊗ Ê2 =(
Ĥ , ϑÊ1 (Ĥ )ϑÊ2 (Ĥ ), ∇

√(
~Ê1 (Ĥ )

)∇
+
(
~Ê2 (Ĥ )

)∇
−
(
~Ê1~Ê2 )

)∇).
Ali [43] gave another property on q-ROFN below.
Definition 5 [43]: If Ê = (ϑ

Ê
, ~

Ê
) is a q-ROFN, then we

have the following.

�Ê =
(
ϑ

Ê
, (1− (ϑ

Ê
)∇ )

1
∇

)
♦Ê =

(
~

Ê
, (1− (~

Ê
)∇ )

1
∇

)
Next, Chen et. al. [47] defined m-polar fuzzy sets as

follows.
Definition 6 [47]: If 4 is the origin set, where φ : 4 →

[0, 1]m is the set of all m-polar fuzzy sets on 4.
Riaz and Hashmi [50] extended it to a Pythagorean form

below.
Definition 7 [50]: If4 is the origin set. For every Ĥ ∈ 4,

if we have a membership grade ϑ rE : 4→ [0, 1] and a non-
membership grade ~rE : 4→ [0, 1]. Define the Pythagorean
m-polar fuzzy sets (PmPFS) E as indicated below.

E = {(Ĥ , ϑ rE (Ĥ ), ~rE (Ĥ ))},

where 0 ≤ (ϑ rE (Ĥ ))2+(~rE (Ĥ ))2 ≤ 1, where r = 1, 2, ..,m.
Riaz et.al. [51] further extended m-polar fuzzy sets of

Chen et. al. [47] to q-rung orthopair form below.
Definition 8 [51]: If 4 is the origin set. For every Ĥ ∈

4, if we have a membership grade ϑ rE : 4 → [0, 1]
and a non-membership grade ~rE : 4 → [0, 1]. Define
the q-rung orthopair m-polar fuzzy sets (qROmPFS) E as
indicated below.

E = {(Ĥ , ϑ rE (Ĥ ), ~rE (Ĥ ))},

where 0 ≤ (ϑ rE (Ĥ ))∇ + (~rE (Ĥ ))∇ ≤ 1, where r =
1, 2, ..,m and ∇ ≥ 1.
Definition 9 [51]: If Ê1 = (ϑ r

Ê1
, ~r

Ê1
) and Ê2 =

(ϑ r
Ê2
, ~r

Ê2
), for Ê1, Ê2 is qROmPFN . Then ∀Ĥ ∈ 4, we have

the following relation.
(1) Ê c

1 = {(Ĥ , ~r
Ê1
(Ĥ ), ϑ r

Ê1
(Ĥ ))}.

(2) Ê1 = Ê2 ⇐⇒ ϑ r
Ê1
= ϑ r

Ê2
and ~r

Ê1
= ~r

Ê2
.

(3) Ê1 ≤ Ê2 ⇐⇒ ϑ r
Ê1
≤ ϑ r

Ê2
and ~r

Ê1
≤ ~r

Ê2
.

(4) Ê1 ∩ Ê2 = {(Ĥ , ϑ r
Ê1
(Ĥ ) ∧ ϑ r

Ê2
(Ĥ ), ~r

Ê1
(Ĥ ) ∨

~r
Ê2
(Ĥ ))}.

(5) Ê1 ∪ Ê2 = {(Ĥ , ϑ r
Ê1
(Ĥ ) ∨ ϑ r

Ê2
(Ĥ ), ~r

Ê1
(Ĥ ) ∧

~r
Ê2
(Ĥ ))}.

(6) Ĥ1 − Ĥ2 = Ĥ1 ∩ Ĥ c
2 .

(7) Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
~r
Ê2

)
.

(8) Ê1 ⊗ Ê2 =(
Ĥ , ϑ r

Ê1
(Ĥ )ϑ r

Ê2
(Ĥ ), ∇

√(
~r
Ê1
(Ĥ )

)∇
+
(
~r
Ê2
(Ĥ )

)∇
−
(
~r
Ê1
~r
Ê2
)
)∇)

Molodtsov [16] defined the soft set as below.
Definition 10 [16]: If 4 is the origin set, and let E ⊆ 4.

So, Ŝ = (F ,A ) is a soft set over 4, when A ⊆ E and
F : A → P(4).
Lately, the notion of q-rung orthopair fuzzy soft set

(qROFSS) was investigated as follows.
Definition 11 [52]: If 4 is the origin set. For every Ĥ ∈

4, let A ⊆ E and F : A → qROFSS(4). Then define the
qROFSS E as indicated below.

F = {(Ĥ , ϑE (Ĥ ), ~E (Ĥ ))},

where 0 ≤ ϑ∇E (Ĥ )+ ~∇E (Ĥ ) ≤ 1, where ∇ ≥ 1.
Also, Ĥ = (ϑ

Ĥ
, ~

Ĥ
) is said to be a q-ROFS number

(q-ROFSN), if

%
Ĥ
=

∇

√
1− ϑ∇E (Ĥ )− ~∇E (Ĥ ), 0 ≤ ϑ∇

Ĥ
+ ~∇

Ĥ
≤ 1.

Wang et al. [53] defined qROFSS from blow.
Definition 12 [53]: If 4 is the origin set. For every Ĥ ∈

4 and let (F ,A ) be a qROFSS. Then for E ⊆ 4 × A is
qROFSS relation is defined as follows.

E = {(Ĥ , ϑE (Ĥ ), ~E (Ĥ ))},

where 0 ≤ ϑ∇E (Ĥ )+ ~∇E (Ĥ ) ≤ 1, where ∇ ≥ 1.
Also, Ĥ = (ϑ

Ĥ
, ~

Ĥ
) is said to be a q-ROFSR number

(q-ROFSRN), if

%
Ĥ
=

∇

√
1− ϑ∇E (Ĥ )− ~∇E (Ĥ ), 0 ≤ ϑ∇

Ĥ
+ ~∇

Ĥ
≤ 1.

III. SOFT ROUGH q-RUNG ORTHOPAIR m-POLAR FUZZY
SETS
In this section, we will define and illustrate the notion of soft
rough q-rung orthopair m-polar fuzzy sets SRqROmPFS and
also discuss their relevant properties.
Definition 13: If 4 is the origin set,

∮
is the provisory

features, and σ is the crisp soft relation, then (4,
∮
, σ )

is a CSAS. For any Ê ∈ qROmPFS(
∮
), the soft rough

qROmPFS-lower and soft rough qROmPFS-upper approx-
imations (SRqROmPFSLA, SRqROmPFSUA), which are
denoted by K and K ,respectively, are as
follows.

K (Ê) =
{(

Ĥ ,
∧

ϑ∈σ (Ĥ )

(ϑ rÊ (Ĥ )),
∨

ϑ∈σ (Ĥ )

(~rÊ (Ĥ )
)}
,

K (Ê) =
{(

Ĥ ,
∨

ϑ∈σ (Ĥ )

(ϑ rÊ (Ĥ )),
∧

ϑ∈σ (Ĥ )

(~rÊ (Ĥ )
)}
,

where Ĥ ∈ 4 and ∇ = 1, 2, . . . , n. If K (Ê) 6= K (Ê),
then Ê is a soft rough q-rung orthopair m-polar fuzzy sets,
otherwise, it is definable.
Example 1: If 4 = {Ĥ1, Ĥ2, Ĥ3, Ĥ4, Ĥ5} is the origin

set and
∮
= {

∮
1,
∮
2,
∮
3,
∮
4} is the features set. Suppose that
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(S,
∮
) be a soft set on 4 as

S(
∮
1
) = {Ĥ1, Ĥ2, Ĥ3},S(

∮
2
) = {Ĥ2, Ĥ4, Ĥ5},

S(
∮
3
) = {Ĥ1, Ĥ2, Ĥ3, Ĥ4},S(

∮
4
) = {Ĥ1, Ĥ4, Ĥ5}.

Thus the relation is as follows

σ = {(Ĥ1,

∮
1
), (Ĥ1,

∮
3
), (Ĥ1,

∮
4
), (Ĥ2,

∮
1
), (Ĥ2,

∮
2
),

(Ĥ2,

∮
3
), (Ĥ3,

∮
1
), (Ĥ3,

∮
3
), (Ĥ4,

∮
2
), (Ĥ4,

∮
3
),

(Ĥ4,

∮
4
), (Ĥ5,

∮
2
), (Ĥ5,

∮
4
)},

and Ê ∈ qROmPFS(
∮
) such that

Ê =
{( ∮

1
, (0.73, 0.12), (0.81, 0.42)

)
,( ∮

2
, (0.39, 0.11), (0.55, 0.11)

)
,( ∮

3
, (0.91, 0.18), (0.32, 0.12)

)
,( ∮

4
, (0.87, 0.24), (0.78, 0.21)

)}
.

Then we count the values of the SRqROmPFSLA and
SRqROmPFSUA as follows.

K (Ê) =
{(

Ĥ1, (0.73, 0.24), (0.32, 0.42)
)
,(

Ĥ2, (0.39, 0.18), (0.32, 0.42)
)
,
(
Ĥ3, (0.73, 0.18),

(0.32, 0.42)
)
,
(
Ĥ4, (0.39, 0.24), (0.32, 0.21)

)
,(

Ĥ5, (0.39, 0.24), (0.55, 0.21)
)}
,

K (Ê) =
{(

Ĥ1, (0.91, 0.12), (0.81, 0.12)
)
,(

Ĥ2, (0.91, 0.11), (0.81, 0.11)
)
,
(
Ĥ3, (0.91, 0.12),

(0.81, 0.12)
)
,
(
Ĥ4, (0.91, 0.11), (0.78, 0.11)

)
,(

Ĥ5, (0.87, 0.11), (0.78, 0.11)
)}
.

Theorem 1: Let (4,
∮
, σ ) be a CSAS. For every Ĥ , Ĥ1 ∈

4, then the following conditions hold.
(1) K (Ĥ ) =

(
K (Ĥ c)

)c
.

(1) If Ĥ ⊆ Ĥ1, then K (Ĥ ) ⊆ K (Ĥ1).
(3) K (Ĥ ∩ Ĥ1) = K (Ĥ ) ∩K (Ĥ1).
(4) K (Ĥ ∪ Ĥ1) ⊇ K (Ĥ ) ∪K (Ĥ1).
(1′) K (Ĥ ) =

(
K (Ĥ c)

)c
.

(2′) If Ĥ ⊆ Ĥ1, then K (Ĥ ) ⊆ K (Ĥ1).
(3′) K (Ĥ ∩ Ĥ1) ⊆ K (Ĥ ) ∩K (Ĥ1).
(4′) K (Ĥ ∪ Ĥ1) = K (Ĥ ) ∪K (Ĥ1).
Proof: (1) From Definition 13, we have the following

formulas.(
K (Ĥ c)

)c
=
{(

X̂ ,
∨

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ c)),
∧

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ c)
)}c

=
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ )
)}

= K (Ĥ ).

(2) Since Ĥ ⊆ Ĥ1, so from Definition 13, we have

K (Ĥ ) =
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ )
)}

⊆
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ1

(X̂ )
)}

= K (Ĥ1).

(3) K (Ĥ ∩ Ĥ1) ={(
X̂ ,

∧
ϑ∈σ (X̂ )

(ϑ r
Ĥ ∩Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ ∩Ĥ1

(X̂ )
)}

= K (Ĥ ∩ Ĥ1)
=
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ ) ∧ ϑ r
Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ ) ∨ ~r
Ĥ1

(X̂ ))
)}

=
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ )) ∧
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ )) ∨
∨

ϑ∈σ (X̂ )

(~r
Ĥ1

(X̂ ))
)}

= K (Ĥ ) ∩K (Ĥ1).

(4) K (Ĥ ∪ Ĥ1) ={(
X̂ ,

∧
ϑ∈σ (X̂ )

(ϑ r
Ĥ ∪Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ ∪Ĥ1

(X̂ )
)}

= K (Ĥ ∩ Ĥ1) =
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ ) ∧ ϑ r
Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ ) ∨ ~r
Ĥ1

(X̂ ))
)}

⊇
{(

X̂ ,
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ

(X̂ )) ∨
∧

ϑ∈σ (X̂ )

(ϑ r
Ĥ1

(X̂ )),
∨

ϑ∈σ (X̂ )

(~r
Ĥ

(X̂ )) ∨
∨

ϑ∈σ (X̂ )

(~r
Ĥ1

(X̂ ))
)}

= K (Ĥ ) ∪K (Ĥ1).

The proofs of (1’)- (4’) can be similarly proven as those
proofs of (1) - (4).

IV. q-RUNG ORTHOPAIR m-POLAR FUZZY SOFT ROUGH
SETS
Below, we construct the concept of q-rung orthopair m-polar
fuzzy soft rough sets qROmPFSRS, and will discuss their
properties. Henceforth, the notions of I, J and (I,J )-cut
sets will be proposed and their characteristics will be put
forward.
Definition 14: Suppose 4 is the origin set and

∮
is the

provisory features for some Ê ⊆ 4. If we have a mapping µ :
Ê → qROmPFS(4), then (µ, Ê) is called q-rung orthopair
m-polar fuzzy sets (qROmPFS), where qROmPFS(4) is the
set of all q-rung orthopair m-polar fuzzy subsets of the origin
set 4.
Definition 15: If (µ, Ê) is a qROmPFSS, then a q-rung

orthopair m-polar fuzzy subset ν of 4×
∮
is called a q-rung

orthopair m-polar fuzzy soft relation as below.

ν =
{(
(ρ, τ ), ϑ∇ν (ρ, τ ), ~

∇
ν (ρ, τ )

)
: (ρ, τ ) ∈ 4

×

∮
,∇ = 1, 2, . . . , n

}
,

where ϑ∇ν (ρ, τ ), ~
∇
ν (ρ, τ ) ∈ [0, 1] are the membership and

non-membership scale, respectively, under the term of

0 ≤ ϑ∇ν (ρ, τ )+ ~
∇
ν (ρ, τ ) ≤ 1.

This relation can be viewed as the following, ν, as shown
at the bottom of the next page.
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Definition 16: If 4 is the origin set,
∮

is the provi-
sory features, and ν is the qROmPFSRS relation, then
(4,

∮
, ν) is a qROmPFS-approximation space. For any Ê ∈

qROmPFS(
∮
)), the qROmPF soft rough-lower and qROmPF

soft rough-upper approximations, which are denoted by S
and S , respectively, are as follows.

S (Ê) =
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê (τ )

)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê (τ )

)}
,

S (Ê) =
{(

Ĥ ,
∨

ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ϑ
r
Ê (τ ),∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ~

r
Ê (τ )

))}
,

where Ĥ ∈ 4 and ∇ = 1, 2, . . . , n. If S (Ê) 6= S (Ê),
then Ê is a q-rung orthopair m-polar fuzzy soft rough sets
(qROmPFSRS), otherwise, it is definable.
Example 2: If 4 = {Ĥ1, Ĥ2} is the origin set and∮
= {

∮
1,
∮
2,
∮
3} is the features set. Suppose that the q-rung

orthopair m-polar fuzzy soft relation ν : 4→
∮
as set in the

following matrix, ν, as shown at the bottom of the page.
Suppose we have Ê ∈ qROmPFS(

∮
) such that

Ê=
{( ∮

1, (0.718, 0.318), (0.618, 0.118), (0.513, 0.213)
)
,( ∮

2, (0.813, 0.518), (0.313, 0.513), (0.418, 0.713)
)
,( ∮

3, (0.413, 0.318), (0.618, 0.412), (0.713, 0.312)
)}
.

Hence, we count the lower and upper approximations as
below.

S (Ê)
=
{(

Ĥ1, (0.413, 0.518), (0.381, 0.513), (0.513, 0.451)
)
,(

Ĥ2, (0.482, 0.518), (0.487, 0.513), (0.418, 0.618)
)}

and

S (Ê)
=
{(

Ĥ1, (0.718, 0.382), (0.519, 0.481), (0.513, 0.282)
)
,(

Ĥ2, (0.718, 0.318), (0.618, 0.181), (0.617, 0.282)
)}
.

Theorem 2: Let (4,
∮
, ν) is a qROmPFS-approximation

space. For every Ê, Ê1 ∈ 4, then the next conditions hold.
(1) S (Ê) =

(
S (Êc)

)c
.

(2) If Ê ⊆ Ê1, then S (Ê) ⊆ S (Ê1).
(3) S (Ê ∩ Ê1) = S (Ê) ∩S (Ê1).
(4) S (Ê ∪ Ê1) ⊇ S (Ê) ∪S (Ê1).
(5) S (Ê) ⊆ Ê ⊆ S (Ê).
(1′) S (Ê) =

(
S (Êc)

)c
.

(2′) If Ê ⊆ Ê1, then S (Ê) ⊆ S (Ê1).
(3′) S (Ê ∩ Ê1) ⊆ S (Ê) ∩S (Ê1).
(4′) S (Ê ∪ Ê1) = S (Ê) ∪S (Ê1).
Proof: (1) From Definition 16, we have the following

formulas.(
S (Êc)

)c
={(

Ĥ ,
∨

ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ϑ
r
Êc
(τ ),

∧
ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ~

r
Êc
(τ )
))}c

=
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(1− ϑ rν (ρ, τ )) ∨ ϑ
r
Ê
(τ ),

∨
ϑ∈
∮
(Ĥ )

(
ϑ rν (ρ, τ ) ∧ ~

r
Ê
(τ )
)}

= S (Ê).

(2) Since Ê ⊆ Ê1, so from Definition 16, we have
S (Ê) ={(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê
(τ )
)}

⊆
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê1
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê1
(τ )
)}

= S (Ê1).

(3) S (Ê ∩ Ê1) ={(
Ĥ ,

∧
ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê∩Ê1

(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê∩Ê1

(τ )
)}

=
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ (ϑ r

Ê
(τ ) ∧ ϑ r

Ê1
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ (~r
Ê
(τ ) ∧ ~r

Ê1
(τ ))

)}
=
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ )~
r
Ê
(τ )
)}

∧
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê1
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê1
(τ )
)}

= S (Ê) ∩S (Ê1).

(4) S (Ê ∪ Ê1) ={(
Ĥ ,

∧
ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê∪Ê1

(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê∪Ê1

(τ )
)}

⊇
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ (ϑ r

Ê
(τ ) ∨ ϑ r

Ê1
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ (~r
Ê
(τ ) ∧ ~r

Ê1
(τ ))

)}

ν =


(ϑ1
ν (ρ1, τ1), ~

1
ν (ρ1, τ1)) (ϑ

2
ν (ρ1, τ1), ~

2
ν (ρ1, τ1)) · · · (ϑ

m
ν (ρ1, τ1), ~

m
ν (ρ1, τ1))

(ϑ1
ν (ρ2, τ2), ~

1
ν (ρ2, τ2)) (ϑ

2
ν (ρ2, τ2), ~

2
ν (ρ2, τ2)) · · · (ϑ

m
ν (ρ2, τ2), ~

m
ν (ρ2, τ2))

...
...

. . .
...

(ϑ1
ν (ρt , τt ), ~

1
ν (ρt , τt )) (ϑ2

ν (ρt , τt ), ~
2
ν (ρt , τt )) · · · (ϑ

m
ν (ρt , τt ), ~

m
ν (ρt , τt ))



ν =



∮
1 :
(
(0.618, 0.312), (0.519, 0.418), (0.718, 0.138)

)
Ĥ1|

∮
2 :
(
(0.718, 0.318), (0.619, 0.418), (0.451, 0.512)

)∮
3 :
(
(0.618, 0.213), (0.418, 0.118), (0.513, 0.318)

)∮
1 :
(
(0.718, 0.187), (0.819, 0.113), (0.738, 0.238)

)
Ĥ2|

∮
2 :
(
(0.618, 0.313), (0.513, 0.517), (0.618, 0.418)

)∮
3 :
(
(0.518, 0.418), (0.413, 0.313), (0.617, 0.213)

)


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=
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ )~
r
Ê
(τ )
)}

∨
{(

Ĥ ,
∧

ϑ∈
∮
(Ĥ )

(
(1− ϑ rν (ρ, τ )) ∨ ϑ

r
Ê1
(τ )
)
,

∨
ϑ∈
∮
(Ĥ )

(ϑ rν (ρ, τ ) ∧ ~
r
Ê1
(τ )
)}

= S (Ê) ∪S (Ê1).

(5) It is clear from Definition 16.
The proofs of (1’)- (4’) can be similarly proven as those

proofs of (1) - (4).

A. SOME PROPERTIES
In this segment we will propose a few definitions, proposi-
tions and illustrative examples to describe a few properties of
our proposed notion on qROmPFSRS.
Definition 17: If we have two qROmPFSRS Ê1 and Ê2

through 4 and Ĥ ∈ 4, then the following characteristics
hold.
(1) Ê1 ≤ Ê2 ⇐⇒ ϑ r

Ê1
(Ĥ ) ≤ ϑ r

Ê2
(Ĥ ) & ~r

Ê1
(Ĥ ) ≥

~r
Ê2
(Ĥ ).

(2) Ê1∪ Ê2 =
(
Ĥ , ϑ r

Ê1
(Ĥ )∨ϑ r

Ê2
(Ĥ ), ~r

Ê1
(Ĥ )∧~r

Ê2
(Ĥ )

)
.

(3) Ê1∩ Ê2 =
(
Ĥ , ϑ r

Ê1
(Ĥ )∧ϑ r

Ê2
(Ĥ ), ~r

Ê1
(Ĥ )∨~r

Ê2
(Ĥ )

)
.

(4) Ê1 ◦ Ê2 =
(
Ĥ , ϑ r

Ê1
(Ĥ )∨~r

Ê2
(Ĥ ), ~r

Ê1
(Ĥ )∧ϑ r

Ê2
(Ĥ )

)
.

(5) Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
ϑ r
Ê2

)
(6) Ê1 ⊗ Ê2 =(

Ĥ , ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ ), ∇

√(
~r
Ê1
(Ĥ )

)∇
+
(
~r
Ê2
(Ĥ )

)∇
−
(
~r
Ê1
ϑ r
Ê2
)
)∇)

(7) γ Ê1 =
(
Ĥ , ∇

√
1−

(
1− (ϑ r

Ê1
(Ĥ ))∇

)γ
, (~r

Ê1
)γ
)
, γ ≥ 0.

(8) Êγ1 =
(
Ĥ , (ϑ r

Ê1
)γ , ∇

√
1−

(
1− (~r

Ê1
(Ĥ ))∇

)γ )
, γ ≥ 0.

(9) Êc1 =
(
Ĥ , ~r

Ê1
(Ĥ ), ϑ r

Ê1
(Ĥ )

)
.

(10) ∅̂ =
(
Ĥ , 0, 1

)
.

(11) Â =
(
Ĥ , 1, 0

)
.

Example 3: If we have Ê = {
(
Ĥ1, (0.718, 0.521), (0.512,

0.618)
)
,
(
Ĥ2, (0.819, 0.513), (0.418, 0.213)

)
} and D̂ =

{
(
Ĥ1, (0.716, 0.113), (0.725, 0.418)

)
,
(
Ĥ2, (0.916, 0.411),

(0.311, 0.616)
)
} of qRO2PFSRS through4, then we have the

below results.
(1) Ê � D̂ and D̂ � Ê .
(2) Ê ∨ D̂ =
{
(
Ĥ1, (0.718, 0.113), (0.725, 0.418)

)
,
(
Ĥ2, (0.916, 0.411), (0.418, 0.213)

)
}.

(3) Ê ∧ D̂ =
{
(
Ĥ1, (0.716, 0.521), (0.512, 0.618)

)
,
(
Ĥ2, (0.819, 0.513), (0.311, 0.616)

)
}.

(4) Ê ◦ D̂ =
{
(
Ĥ1, (0.718, 0.521), (0.512, 0.618)

)
,
(
Ĥ2, (0.819, 0.513), (0.616, 0.213)

)
}.

(5) Êc =
{
(
Ĥ1, (0.521, 0.718), (0.618, 0.512)

)
,
(
Ĥ2, (0.513, 0.819), (0.213, 0.418)

)
}

and
D̂c
=

{
(
Ĥ1, (0.113, 0.716), (0.418, 0.725)

)
,
(
Ĥ2, (0.411, 0.916), (0.616, 0.311)

)
}

Example 4: If we have Ê = {
(
Ĥ1, (0.531, 0.222),

(0.412, 0.204), (0.555, 0.301), (0.156, 0.870)
)
,
(
Ĥ2, (0.831,

0.231), (0.732, 0.444), (0.830, 0.010), (0.812, 0.110),
)
,(

Ĥ3, (0.766, 0.244), (0.456, 0.140), (0.571, 0.473), (0.611,
0.142),

)
} and D̂ = {

(
Ĥ1, (0.514, 0.345), (0.819, 0.009),

(0.700, 0.227), (0.153, 0.625)
)
,
(
Ĥ2, (0.712, 0.106), (0.513,

0.300), (0.729, 0.115), (0.822, 0.200),
)
,
(
Ĥ3, (0.632, 0.301),

(1, 0), (0.768, 0.072), (0, 1),
)
} of qRO4PFSRS through 4,

then the following outcomes hold.
(1) Ê ⊕ D̂ =
{
(
Ĥ1, (0.687, 0.076), (0.852, 0.002), (0.804, 0.068), (0.217, 0.544)

)
,(

Ĥ2, (0.921, 0.025), (0.816, 0.133), (0.924, 0.001), (0.943, 0.022)
)
,(

Ĥ3, (0.867, 0.073), (1, 0), (0.850, 0.034), (0.611, 0.142),
)
}

(2) Ê ⊗ D̂ =
{
(
Ĥ1, (0.273, 0.372), (0.337, 0.204), (0.389, 0.338), (0.024, 0.905)

)
,(

Ĥ2, (0.592, 0.238), (0.376, 0.482), (0.605, 0.115), (0.667, 0.210),
)
,(

Ĥ3, (0.484, 0.346), (0.456, 0.140), (0.439, 0.474), (0, 1),
)
}

Proposition 1: If we have Ê, Ê1, Ê2 and Ê3 is qROmPFSRS
through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) ∅̂ ∨ Ê = Ê, ∅̂ ∧ Ê = ∅̂.
(2) Â ∨ Ê = Â, Â ∧ Ê = Ê .
(3) Ê ∨ Ê = Ê, Ê ∧ Ê = Ê .
(4) Ê1 ∨ Ê2 = Ê2 ∨ Ê1, Ê1 ∧ Ê2 = Ê2 ∧ Ê1.
(5) Ê1 ∨ (Ê2 ∨ Ê3) = (Ê1 ∨ Ê2) ∨ Ê3, Ê1 ∧ (Ê2 ∧ Ê3) =

(Ê1 ∧ Ê2) ∧ Ê3.
(6) Ê1∨ (Ê2∧ Ê3) = (Ê1∨ Ê2)∧ (Ê1∨ Ê3), Ê1∧ (Ê2∨ Ê3) =

(Ê1 ∧ Ê2) ∨ (Ê1 ∧ Ê3).
(7) Ê1∧Ê2 � Ê1, Ê1∧Ê2 � Ê1, Ê1 � Ê1∨Ê2, Ê2 � Ê1∨Ê2.
(8) (Ê1 ∧ Ê2)c = Êc1 ∨ Êc2, (Ê1 ∨ Ê2)c = Êc1 ∧ Êc2 .

Proof: The proofs are trivial.
Proposition 2: If we have Ê1, Ê2 and Ê3 is qROmPFSRS

through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) Ê1 ⊕ Ê2 = Ê2 ⊕ Ê1.
(2) Ê1 ⊗ Ê2 = Ê2 ⊗ Ê1.
(3) Ê1 ⊕ (Ê2 ⊕ Ê3) = (Ê1 ⊕ Ê2)⊕ Ê3.
(4) Ê1 ⊗ (Ê2 ⊗ Ê3) = (Ê1 ⊗ Ê2)⊗ Ê3.

Proof:
(1) Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
~r
Ê2

)
=
(
Ĥ , ∇

√(
ϑ r
Ê2
(Ĥ )

)∇
+
(
ϑ r
Ê1
(Ĥ )

)∇
−
(
ϑ r
Ê2
(Ĥ )ϑ r

Ê1
(Ĥ )

)∇
, ~r

Ê2
~r
Ê1

)
= Ê2 ⊕ Ê1.
(2) The proof is similar to the proof of (1).
(3) ~Ê1⊕(Ê2⊕Ê3) = ~r

Ê1
(~r

Ê2
~r
Ê3
) = ~r

Ê1
~r
Ê2
~r
Ê3
=

(~r
Ê1
~r
Ê2
)~r

Ê3
= ~(Ê1⊕Ê2)⊕Ê3 , ϑÊ1⊕(Ê2⊕Ê3), as shown at the

bottom of the next page.
(4) The proof is similar to the proof of (3).
Proposition 3: If we have Ê1, Ê2 and Ê3 is qROmPFSRS

through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) Ê1 ⊕ (Ê2 ∨ Ê3) = (Ê1 ⊕ Ê2) ∨ (Ê1 ⊕ Ê3).
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(2) Ê1 ⊕ (Ê2 ∧ Ê3) = (Ê1 ⊕ Ê2) ∧ (Ê1 ⊕ Ê3).
(3) Ê1 ⊗ (Ê2 ∨ Ê3) = (Ê1 ⊗ Ê2) ∨ (Ê1 ⊗ Ê3).
(4) Ê1 ⊗ (Ê2 ∧ Ê3) = (Ê1 ⊗ Ê2) ∧ (Ê1 ⊗ Ê3).
Proof:

(1) Ê1 ⊕ (Ê2 ∨ Ê3) =(
Ĥ , ∇

√(
ϑ rÊ1

(Ĥ )
)∇
+
(
ϑ rÊ3

(Ĥ ) ∨ ϑ rÊ2
(Ĥ )

)∇
−
(
ϑ rÊ1

(Ĥ )(ϑ rÊ2
(Ĥ ) ∨ ϑ rÊ3

(Ĥ ))
)∇
, ~r

Ê1
(~r

Ê2
∧ ~r

Ê3
)
)

=
(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
∨
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
∨
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ ))

)∇
, ~r

Ê1
~r
Ê2
∧ ~r

Ê1
~r
Ê3
)
)

Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
~r
Ê2

)
Ê1 ⊕ Ê3 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ )

)∇
, ~r

Ê1
~r
Ê3

)
(Ê1 ⊕ Ê2) ∨ (Ê1 ⊕ Ê3)
=
(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
∨
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
∨
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ ))

)∇ ,
~r
Ê1
~r
Ê2
∧ ~r

Ê1
~r
Ê3
)
)
= Ê1 ⊕ (Ê2 ∨ Ê3).

(2) Ê1 ⊕ (Ê2 ∧ Ê3) =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ ) ∧ ϑ r

Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )(ϑ r

Ê2
(Ĥ ) ∧ ϑ r

Ê3
(Ĥ ))

)∇ ,
~r
Ê1
(~r

Ê2
∨ ~r

Ê3
)
)

=
(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
∧
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
∧
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ ))

)∇,
~r
Ê1
~r
Ê2
∨ ~r

Ê1
~r
Ê3
)
)

Ê1 ⊕ Ê2 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
~r
Ê2

)
Ê1 ⊕ Ê3 =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ )

)∇
, ~r

Ê1
~r
Ê3

)
(Ê1 ⊕ Ê2) ∧ (Ê1 ⊕ Ê3)
=
(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê3
(Ĥ )

)∇
∧
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
∧
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê3
(Ĥ ))

)∇ ,
~r
Ê1
~r
Ê2
∨ ~r

Ê1
~r
Ê3
)
)

= Ê1 ⊕ (Ê2 ∧ Ê3).
(3)-(4) The proofs are similar to the proofs of (1) and (2).
Proposition 4: If we have Ê1, Ê2 and Ê3 are qROmPFSRS

through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) (Ê1 ⊕ Ê2)c = Êc1 ⊗ Êc2 .
(2) (Ê1 ⊗ Ê2)c = Êc1 ⊕ Êc2 .

Proof:
(1) (Ê1 ⊕ Ê2)c =(
Ĥ , ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
(Ĥ )ϑ r

Ê2
(Ĥ )

)∇
, ~r

Ê1
~r
Ê2

)c
=
(
Ĥ , ~r

Ê1
(Ĥ )~r

Ê2
(Ĥ ), ∇

√(
ϑ r
Ê1
(Ĥ )

)∇
+
(
ϑ r
Ê2
(Ĥ )

)∇
−
(
ϑ r
Ê1
ϑ r
Ê2
)∇
)

=
(
Ĥ , ~r

Ê1
, ϑ r

Ê1

)
⊗
(
Ĥ , ~r

Ê2
, ϑ r

Ê2

)
= Êc1 ⊗ Êc2 .

(2) The proof is similar to the proof of (1).
Definition 18: If we have Ê = {(ϑ1, ~1), (ϑ2, ~2), . . . ,

(ϑm, ~m)} is qROmPFN , then we define the assort (R) and
accuracy (R) functions of Ê as follows.

R(Ê) =
1
2m

(
m+

m∑
i=1

(ϑ∇ − ~∇ )
)

R(Ê) =
1
m

( m∑
i=1

(ϑ∇ + ~∇ )
)
.

Definition 19: If we have two qROmPFN Ê1 =

{(1ϑ1,1 ~1), (1ϑ2,1 ~2), . . . , (1ϑm,1 ~m)}, Ê2 = {(2ϑ1,2 ~1),
(2ϑ2,2 ~2), . . . , (2ϑm,2 ~m)}, then the following hold.
(1) If R(Ê1) > R(Ê2), then Ê1 > Ê2.
(2) If R(Ê1) = R(Ê2) andR(Ê1) > R(Ê2), then Ê1 > Ê2.
Definition 20: If Ê = (ϑ r

Ê
, ~r

Ê
) is a qROmPFSRS, then we

have the following.

�Ê =
(
ϑ r

Ê
, ∇
√
1− (ϑ r

Ê
)∇
)

♦Ê =
(
~r

Ê
, ∇
√
1− (~r

Ê
)∇
)

Proposition 5: If we have Ê is qROmPFSRS through4 and
Ĥ ∈ 4, then the following characteristics hold.

(1) ��Ê = �Ê .
(2) ♦♦Ê = ♦Ê .
(3) ♦�Ê = �Ê .
(4) �♦Ê = ♦Ê .
(5) (�Êc)c = ♦Ê .
(6) (♦Êc)c = �Ê .

ϑÊ1⊕(Ê2⊕Ê3) =
∇

√√√√√√√√
(
ϑ rÊ1

(Ĥ )
)∇
+
(
∇

√
(ϑ r

Ê2
(Ĥ ))∇ + (ϑ r

Ê3
(Ĥ ))∇ − (ϑ r

Ê2
(Ĥ )ϑ r

Ê3
(Ĥ ))∇

)
−
(
ϑ rÊ1

(Ĥ )
)∇(

∇

√
(ϑ r

Ê2
(Ĥ ))∇ + (ϑ r

Ê3
(Ĥ ))∇ − (ϑ r

Ê2
(Ĥ )ϑ r

Ê3
(Ĥ ))∇

)∇
=

∇

√√√√√(
ϑ rÊ1

(Ĥ )
)∇
+
(
(ϑ rÊ2

(Ĥ ))∇ + (ϑ rÊ3
(Ĥ ))∇ − (ϑ rÊ2

(Ĥ )ϑ rÊ3
(Ĥ ))∇

)
−
(
ϑ rÊ1

(Ĥ )
)∇((ϑ rÊ2 (Ĥ ))∇ + (ϑ rÊ3

(Ĥ ))∇ − (ϑ rÊ2
(Ĥ )ϑ rÊ3

(Ĥ ))∇
)

=
∇

√√√√√ (
ϑ rÊ1

(Ĥ )
)∇
+
(
(ϑ rÊ2

(Ĥ ))∇ + (ϑ rÊ3
(Ĥ ))∇ − (ϑ rÊ2

(Ĥ )ϑ rÊ3
(Ĥ ))∇

)
−
(
ϑ rÊ1

(Ĥ )ϑ rÊ2
(Ĥ )

)∇
−
(
ϑ rÊ1

(Ĥ )ϑ rÊ3
(Ĥ )

)∇
+
(
ϑ rÊ1

(Ĥ )ϑ rÊ2
(Ĥ )ϑ rÊ3

(Ĥ )
)∇

= ϑ(Ê1⊕Ê2)⊕Ê3 .

139192 VOLUME 9, 2021



J. Ping et al.: Soft Rough q-Rung Orthopair m-Polar Fuzzy Sets

Proof:
(1) From Definition 20 we have,
�Ê =

(
Ĥ , ϑ r

Ê
(Ĥ ), ∇

√
1− (ϑ r

Ê
(Ĥ ))∇

)
= ��Ê .

(2) The proof is similar to the proof of (1).
(3) �Ê =

(
Ĥ , ϑ r

Ê
(Ĥ ), ∇

√
1− (ϑ r

Ê
(Ĥ ))∇

)
♦�Ê =

(
Ĥ , ∇

√
1− ( ∇

√
1− (ϑ r

Ê
(Ĥ ))∇ )∇

, ∇
√
1− (ϑ r

Ê
(Ĥ ))∇

)
=
(
Ĥ , ϑ r

Ê
(Ĥ ), ∇

√
1− (ϑ r

Ê
(Ĥ ))∇

)
= �Ê .

(4) The proof is similar to the proof of (3).

(5) �Êc =
(
Ĥ , (ϑ r

Ê
)c(Ĥ ), ∇

√
1− ((ϑ r

Ê
)c(Ĥ ))∇

)
=
(
Ĥ , ~r

Ê
(Ĥ ), ∇

√
1− (~r

Ê
(Ĥ ))∇

)
(�Êc)c =

(
Ĥ , ~r

Ê
(Ĥ ), ∇

√
1− (~r

Ê
(Ĥ ))∇

)c
=
(
Ĥ , ∇

√
1− (~r

Ê
(Ĥ ))∇ , ~r

Ê
(Ĥ )

)
= ♦Ê .

(6) The proof is similar to the proof of (5).
Proposition 6: If we have Ê1 and Ê2 are qROmPFSRS

through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) �(Ê1 ∨ Ê2) = �Ê1 ∨�Ê2.
(2) �(Ê1 ∧ Ê2) = �Ê1 ∧�Ê2.
(3) ♦(Ê1 ∨ Ê2) = ♦Ê1 ∨ ♦Ê2.
(4) ♦(Ê1 ∧ Ê2) = ♦Ê1 ∧ ♦Ê2.
Proof:

(1) �(Ê1 ∨ Ê2) =(
Ĥ , ϑ r

Ê1
(Ĥ ) ∨ ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ) ∨ ϑ r

Ê2
(Ĥ ))∇

)
=
(
Ĥ , ϑ r

Ê1
(Ĥ ) ∨ ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ))∇ ∨ (ϑ r

Ê2
(Ĥ ))∇

)
=
(
Ĥ , ϑ r

Ê1
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ))∇

)
∨
(
Ĥ , ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê2
(Ĥ ))∇

)
= �Ê1 ∨�Ê2.
(2) �(Ê1 ∧ Ê2) =(
Ĥ , ϑ r

Ê1
(Ĥ ) ∧ ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ) ∧ ϑ r

Ê2
(Ĥ ))∇

)
=
(
Ĥ , ϑ r

Ê1
(Ĥ ) ∧ ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ))∇ ∧ (ϑ r

Ê2
(Ĥ ))∇

)
=
(
Ĥ , ϑ r

Ê1
(Ĥ ), ∇

√
1− (ϑ r

Ê1
(Ĥ ))∇

)
∧
(
Ĥ , ϑ r

Ê2
(Ĥ ), ∇

√
1− (ϑ r

Ê2
(Ĥ ))∇

)
= �Ê1 ∧�Ê2.
(3)-(4) The proofs are similar to the proofs of (1) and (2).
Proposition 7: If we have Ê1 and Ê2 are qROmPFSRS

through 4 and Ĥ ∈ 4, then the following characteristics
hold.

(1) ��(Ê1 ∨ Ê2) = �(Ê1 ∨ Ê2).
(2) ��(Ê1 ∧ Ê2) = �(Ê1 ∧ Ê2).
(3) ♦♦(Ê1 ∨ Ê2) = ♦(Ê1 ∨ Ê2).
(4) ♦♦(Ê1 ∧ Ê2) = ♦(Ê1 ∧ Ê2).
(5) ♦�(Ê1 ∨ Ê2) = �(Ê1 ∨ Ê2).
(6) ♦�(Ê1 ∧ Ê2) = �(Ê1 ∧ Ê2).

(7) �♦(Ê1 ∨ Ê2) = ♦(Ê1 ∨ Ê2).
(8) �♦(Ê1 ∧ Ê2) = ♦(Ê1 ∧ Ê2).
Proof: The proofs follow from Propositions 5 and 6.

Proposition 8: If we have Ê1 and Ê2 are qROmPFSRS
through 4 and Ĥ ∈ 4, then the following characteristics
hold.
(1) (�(Ê1 ∨ Ê2)c)c = ♦(Ê1 ∨ Ê2).
(2) (�(Ê1 ∧ Ê2)c)c = ♦(Ê1 ∧ Ê2).
(3) (♦(Ê1 ∨ Ê2)c)c = �(Ê1 ∨ Ê2).
(4) (♦(Ê1 ∧ Ê2)c)c = �(Ê1 ∧ Ê2).
Proof: The proofs follow from Proposition 5.

Proposition 9: If we have Ê1 and Ê2 are qROmPFSRS
through 4 and Ĥ ∈ 4, then the following characteristics
hold.
(1) (�(Ê1 ∨ Ê2)c)c = ♦♦(Ê1 ∨ Ê2) = �♦(Ê1 ∨ Ê2).
(2) (�(Ê1 ∧ Ê2)c)c = ♦♦(Ê1 ∧ Ê2) = �♦(Ê1 ∧ Ê2).
(3) (♦(Ê1 ∨ Ê2)c)c = ��(Ê1 ∨ Ê2) = ♦�(Ê1 ∨ Ê2).
(4) (♦(Ê1 ∧ Ê2)c)c = ��(Ê1 ∧ Ê2) = ♦�(Ê1 ∧ Ê2).

Proof: The proofs follow from Propositions 5, 7 and 8.

B. (I, J )-CUT SETS
Definition 21: If Ê ∈ qROmPFSRS and I ∈ [0, 1], then

the I-cut for Ê is defined as,

ÊI = {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) ≥ I},

and is called a strong (robust) I-cut if

ÊI = {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) > I}.

Example 5: From Example 4, if I = 0.456, we get the
next values. Ê0.456 = {Ĥ2, Ĥ3} and Ê0.456

= {Ĥ2}

Proposition 10: If we have Ê, D̂ is qROmPFSRS through
4 and I ∈ [0, 1], then the following characteristics hold.
(1) ÊcI = (ÊI )c.
(2) ÊI � ÊI .
(3) (Ê ∧ D̂)I = ÊI ∧ D̂I .
(4) (Ê ∨ D̂)I = ÊI ∨ D̂I .
(5) (Ê ∧ D̂)I = ÊI ∧ D̂I .
(6) (Ê ∨ D̂)I = ÊI ∨ D̂I .

Proof:
(1) Let Ê = {Ĥ ∈ 4,ϑ r

Ê
(Ĥ ), ~r

Ê
(Ĥ )}. Then Êc =

{Ĥ , ~r
Ê
(Ĥ ), ϑ r

Ê
(Ĥ )}. Hence, ÊcI = {Ĥ : ~r

Ê
(Ĥ ) ≥ I}

and (Êc)I = {Ĥ : ~r
Ê
(Ĥ ) > I}. Thus (ÊI )c = {Ĥ :

~r
Ê
(Ĥ ) ≥ I} = ÊcI .
(2) Follows from Definition 21.
(3) Since Ê ∧ D̂ = {

(
Ĥ , ϑ r

Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∨

~r
D̂
(Ĥ )

)
}.

So, (Ê ∧ D̂)I = {Ĥ , ϑ r
Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ) ≥ I}

= {Ĥ , ϑ r
Ê
(Ĥ ) ≥ I} ∧ {Ĥ , ϑ r

D̂
(Ĥ ) ≥

I}
= ÊI ∧ D̂I .

(4) Since Ê ∨ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∧

~r
D̂
(Ĥ )

)
}.
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So, (Ê ∨ D̂)I = {Ĥ , ϑ r
Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ) ≥ I}

= {Ĥ , ϑ r
Ê
(Ĥ ) ≥ I} ∨ {Ĥ , ϑ r

D̂
(Ĥ ) ≥

I}
= ÊI ∨ D̂I .

(5) Since Ê ∧ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∨

~r
D̂
(Ĥ )

)
}.

So, (Ê ∧ D̂)I = {Ĥ , ϑ r
Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ) > I}

= {Ĥ , ϑ r
Ê
(Ĥ ) > I} ∧ {Ĥ , ϑ r

D̂
(Ĥ ) >

I}
= ÊI ∧ D̂I .

(6) Since Ê ∨ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∧

~r
D̂
(Ĥ )

)
}.

So, (Ê ∨ D̂)I = {Ĥ , ϑ r
Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ) > I}

= {Ĥ , ϑ r
Ê
(Ĥ ) > I} ∨ {Ĥ , ϑ r

D̂
(Ĥ ) >

I}
= ÊI ∨ D̂I .

Definition 22: If Ê ∈ qROmPFSRS and J ∈ [0, 1], then
the J -cut for Ê is defined as,

ÊJ = {Ĥ ∈ ξ : ~rÊ (Ĥ ) ≤ J },

and is called a strong (robust) J -cut if

ÊJ = {Ĥ ∈ ξ : ~rÊ (Ĥ ) < J }.

Example 6: From Example 4, if J = 0.140, we get the
next values. Ê0.456 = {Ĥ1, Ĥ3} and Ê0.456

= {Ĥ1}

Proposition 11: If we have Ê, D̂ is qROmPFSRS through
4 and J ∈ [0, 1], then the following characteristics hold.
(1) ÊcJ = (ÊJ )c.
(2) ÊJ � ÊJ .
(3) (Ê ∧ D̂)J = ÊJ ∧ D̂J .
(4) (Ê ∨ D̂)J = ÊJ ∨ D̂J .
(5) (Ê ∧ D̂)J = ÊJ ∧ D̂J .
(6) (Ê ∨ D̂)J = ÊJ ∨ D̂J .
Proof: (1) Let Ê = {Ĥ ∈ 4,ϑ r

Ê
(Ĥ ), ~r

Ê
(Ĥ )}. Then

Êc = {Ĥ , ~r
Ê
(Ĥ ), ϑ r

Ê
(Ĥ )}. Hence, ÊcJ = {Ĥ : ϑ r

Ê
(Ĥ ) ≤

J } and (Êc)J = {Ĥ : ϑ r
Ê
(Ĥ ) < J }. Thus (ÊJ )c = {Ĥ :

~r
Ê
(Ĥ ) ≤ J } = ÊcJ .
(2) Follows from Definition 22.
(3) As Ê ∧ D̂ = {

(
Ĥ , ϑ r

Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∨

~r
D̂
(Ĥ )

)
}.

So, (Ê ∧ D̂)J = {Ĥ , ~r
Ê
(Ĥ ) ∨ ~r

D̂
(Ĥ ) ≤ J }

= {Ĥ , ϑ r
Ê
(Ĥ ) ≤ J }∧{Ĥ , ϑ r

D̂
(Ĥ ) ≤

J }
= ÊJ ∧ D̂J .

(4) As Ê ∨ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∧

~r
D̂
(Ĥ )

)
}.

So, (Ê ∨ D̂)J = {Ĥ , ~r
Ê
(Ĥ ) ∧ ~r

D̂
(Ĥ ) ≤ J }

= {Ĥ , ϑ r
Ê
(Ĥ ) ≤ J }∨{Ĥ , ϑ r

D̂
(Ĥ ) ≤

J }
= ÊJ ∨ D̂J .

(5) As Ê ∧ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∨

~r
D̂
(Ĥ )

)
}.

So, (Ê ∧ D̂)J = {Ĥ , ~r
Ê
(Ĥ ) ∨ ~r

D̂
(Ĥ ) < J }

= {Ĥ , ϑ r
Ê
(Ĥ ) < J }∧{Ĥ , ϑ r

D̂
(Ĥ ) <

J }
= ÊJ ∧ D̂J .

(6) As Ê ∨ D̂ = {
(
Ĥ , ϑ r

Ê
(Ĥ ) ∨ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∧

~r
D̂
(Ĥ )

)
}.

So, (Ê ∨ D̂)J = {Ĥ , ~r
Ê
(Ĥ ) ∧ ~r

D̂
(Ĥ ) < J }

= {Ĥ , ϑ r
Ê
(Ĥ ) < J }∨{Ĥ , ϑ r

D̂
(Ĥ ) <

J }
= ÊJ ∨ D̂J .

Definition 23: If Ê ∈ qROmPFSRS and (I,J ) ∈ [0, 1]
and I+J ∈ [0, 1], then four types of cuts, that is, (I,J )-cut,
(IS ,J )-cut, (I,JS )-cut and (I,J )S -cut for Ê are defined,
respectively, are as follows.

Ê(I,J ) = {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) ≥ I, ~rÊ (Ĥ ) ≤ J }.

ÊIJ = {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) > I, ~rÊ (Ĥ ) ≤ J }.

ÊJI = {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) ≥ I, ~rÊ (Ĥ ) < J }.

Ê (I,J )
= {Ĥ ∈ ξ : ϑ rÊ (Ĥ ) > I, ~rÊ (Ĥ ) < J }.

Proposition 12: If we have Ê, D̂ is qROmPFSRS through
4 and I,J ∈ [0, 1], then the following characteristics hold.
(1) Ê(I,J ) = ÊI ∧ ÊJ
(2) Ê � D̂ ⇐⇒ Ê(I,J ) � D̂(I,J )

(3) (Ê ∧ D̂)(I,J ) = Ê(I,J ) ∧ D̂(I,J ).

(4) (Ê ∨ D̂)(I,J ) � Ê(I,J ) ∨ D̂(I,J ).

(5) If I1 ≥ I2 and J1 ≤ J2, then ÊI1 � ÊI2 , ÊJ1 � ÊJ2

and Ê(I1,J1) � Ê(I2,J2)

Proof: (1)-(2) Straightforward using Definition 23.
(3) Since Ê ∧ D̂ = {

(
Ĥ , ϑ r

Ê
(Ĥ ) ∧ ϑ r

D̂
(Ĥ ), ~r

Ê
(Ĥ ) ∨

~r
D̂
(Ĥ )

)
}.

So, (Ê∧D̂)(I,J ) = {Ĥ , ϑ r
Ê
(Ĥ )∧ϑ r

D̂
(Ĥ ) ≥ I, ~r

Ê
(Ĥ )∨

~r
D̂
(Ĥ ) ≤ J }

=
(
{Ĥ , ϑ r

Ê
(Ĥ ) ≥ I}∧{Ĥ , ϑ r

D̂
(Ĥ ) ≥

I}
)
∧
(
{Ĥ , ~r

Ê
(Ĥ ) ≤ J } ∧ {Ĥ , ~r

D̂
(Ĥ ) ≤ J }

)
=
(
ÊI ∧ D̂I

)
∧
(
ÊJ ∧ D̂J

)
=
(
ÊI ∧ ÊJ

)
∧
(
D̂I ∧ D̂J

)
= Ê(I,J ) ∧ D̂(I,J ).

(4) As Ê � Ê ∨ D̂ and D̂ � Ê ∨ D̂, then from (2), we have
Ê(I,J ) � (Ê∨D̂)(I,J ) and D̂(I,J ) � (Ê∨D̂)(I,J ). Therefore
Ê(I,J ) ∨ D̂(I,J ) � (Ê ∨ D̂)(I,J ).

(5) Follows from Definitions 21, 22 and 23, and the prop-
erty (1) of Proposition 4.28.

V. APPLICATIONS
Here, we construct two algorithms to solveMCDM issues via
soft rough q-rung orthopair m-polar fuzzy sets (SRqROmPFS)
and q-RO m-polar fuzzy soft rough sets (qROmPFSRS).
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These algorithms will aid managers to make decisions using
our proposedmodels via the lower and upper approximations.

A. DESCRIPTION
Let 4 = {Ĥ1, Ĥ2, . . . , Ĥt } be t number of computer pro-
grammers and

∮
= {

∮
1,
∮
2, . . . ,

∮
r } be r features required

of these programmers by the institution which placed the
advertisement. The institution establishes several criteria to
best choose desirable candidates with the following fea-
tures: Communication Skill

∮
1, Personality

∮
2, Experience∮

3, Self-Dependability
∮
4. We will build a crisp soft rela-

tion for the first method σ over 4 ×
∮

and q-RO m-polar
fuzzy soft relation for the second method ν : 4 →

∮
.

Therefore, through the proposed methods SRqROmPFS and
qROmPFSRS, we introduce the following two subsections to
aid with the managerial decision..

B. SRqROmPFS APPROACH
The following steps in Algorithm 1 establishes our new
approach using the q-ROF m-polar fuzzy sets and crisp soft
approximation space.

Algorithm 1 Algorithm for SRqROmPFS

Input: 4 is the origin set and
∮
is the provisory features.

Output: Decision Making.
1: Investigate the crisp soft relation σ based on the data
provided.
2: Establish Ê ∈ qROmPFS(

∮
).

3: Compute K (Ê) (SRqROmPFSLA) and K (Ê)
(SRqROmPFSUA).
4: Compute K (Ê)⊕K (Ê) from Definition 17.
5: Compute the consequence of all features in K (Ê) ⊕
K (Ê) from Definition 18.
6: Assort the features by Definition 19.
7: Obtain the decision.

Now, we give the following illustrated example of the
proposed approach.

Suppose 4 = {Ĥ1, Ĥ2, Ĥ3, Ĥ4, Ĥ5} is the origin set of
candidates and

∮
= {

∮
1,
∮
2,
∮
3,
∮
4} is the features set. Thus

the relation is as follows
σ = {(Ĥ1,

∮
2), (Ĥ1,

∮
3), (Ĥ2,

∮
1), (Ĥ2,

∮
2), (Ĥ2,

∮
4),

(Ĥ3,
∮
1), (Ĥ3,

∮
4), (Ĥ4,

∮
4), (Ĥ5,

∮
2), (Ĥ5,

∮
4)}.

Hence, we have the following results.
S(Ĥ1) = {

∮
2,
∮
3},S(Ĥ2) = {

∮
1,
∮
2,
∮
4},

S(Ĥ3) = {
∮
1,
∮
4},S(Ĥ4) = {

∮
4},S(Ĥ5) = {

∮
2,
∮
4}.

Then we set the q-RO 3-polar fuzzy subsets of 4 as follows.
Ê =

{( ∮
1, (0.67, 0.21), (0.71, 0.28), (0.78, 0.31)

)
,( ∮

2, (0.81, 0.21), (0.73, 0.31), (0.69, 0.18)
)
,( ∮

3, (0.89, 0.12), (0.78, 0.31), (0.74, 0.44)
)
,( ∮

4, (0.81, 0.38), (0.67, 0.17), (0.65, 0.16)
)}
.

Through these data, we can now compute the lower and
upper approximations of Ê as follows.

K (Ê) =
{(

Ĥ1, (0.81, 0.21), (0.73, 0.31), (0.69, 0.44)
)
,(

Ĥ2, (0.67, 0.38), (0.67, 0.31), (0.65, 0.31)
)
,(

Ĥ3, (0.67, 0.38), (0.67, 0.28), (0.65, 0.31)
)
,

(
Ĥ4, (0.81, 0.38), (0.67, 0.17), (0.65, 0.16)

)
,(

Ĥ5, (0.81, 0.38), (0.67, 0.31), (0.65, 0.18)
)}
,

K (Ê) =
{(

Ĥ1, (0.89, 0.12), (0.78, 0.31), (0.74, 0.18)
)
,(

Ĥ2, (0.81, 0.21), (0.73, 0.17), (0.78, 0.16),
)
,(

Ĥ3, (0.81, 0.21), (0.71, 0.17), (0.78, 0.16)
)
,(

Ĥ4, (0.81, 0.38), (0.67, 0.17), (0.65, 0.16)
)
,(

Ĥ5, (0.81, 0.21), (0.73, 0.17), (0.69, 0.16)
)}
.

Henceforth, we count the ring sum for these information as
below.

If ∇ = 1.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.979, 0.025), (0.941, 0.096), (0.919, 0.079)
)
,(

Ĥ2, (0.937, 0.080), (0.911, 0.053), (0.923, 0.050),
)
,(

Ĥ3, (0.937, 0.080), (0.904, 0.048), (0.923, 0.050)
)
,(

Ĥ4, (0.964, 0.144), (0.891, 0.030), (0.878, 0.027)
)
,(

Ĥ5, (0.964, 0.080), (0.911, 0.053), (0.892, 0.029)
)}

If ∇ = 2.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.964, 0.025), (0.904, 0.096), (0.873, 0.079)
)
,(

Ĥ2, (0.900, 0.080), (0.862, 0.053), (0.879, 0.050),
)
,(

Ĥ3, (0.900, 0.080), (0.852, 0.048), (0.879, 0.050)
)
,(

Ĥ4, (0.939, 0.144), (0.834, 0.030), (0.816, 0.027)
)
,(

Ĥ5, (0.939, 0.080), (0.862, 0.053), (0.835, 0.029)
)}

If ∇ = 3.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.952, 0.025), (0.880, 0.096), (0.844, 0.079)
)
,(

Ĥ2, (0.876, 0.080), (0.830, 0.053), (0.852, 0.050),
)
,(

Ĥ3, (0.876, 0.080), (0.820, 0.048), (0.852, 0.050)
)
,(

Ĥ4, (0.921, 0.144), (0.800, 0.030), (0.780, 0.027)
)
,(

Ĥ5, (0.921, 0.080), (0.830, 0.053), (0.800, 0.029)
)}

If ∇ = 5.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.934, 0.025), (0.847, 0.096), (0.808, 0.079)
)
,(

Ĥ2, (0.847, 0.080), (0.793, 0.053), (0.820, 0.050),
)
,(

Ĥ3, (0.847, 0.080), (0.781, 0.048), (0.820, 0.050)
)
,(

Ĥ4, (0.895, 0.144), (0.759, 0.030), (0.738, 0.027)
)
,(

Ĥ5, (0.895, 0.080), (0.793, 0.053), (0.760, 0.029)
)}

Next, we compute the assort of each variable.
If ∇ = 1.

R(Ĥ1) = 0.9398, R(Ĥ2) = 0.9313, R(Ĥ3) = 0.931,

R(Ĥ4) = 0.922, R(Ĥ5) = 0.9342.

If ∇ = 2.

R(Ĥ1) = 0.9235, R(Ĥ2) = 0.9097, R(Ĥ3) = 0.9088,

R(Ĥ4) = 0.898, R(Ĥ5) = 0.9123.

If ∇ = 3.

R(Ĥ1) = 0.9127, R(Ĥ2) = 0.8958, R(Ĥ3) = 0.895,

R(Ĥ4) = 0.8833, R(Ĥ5) = 0.8982.

If ∇ = 5.

R(Ĥ1) = 0.8982, R(Ĥ2) = 0.8795, R(Ĥ3) = 0.8783,

R(Ĥ4) = 0.8652, R(Ĥ5) = 0.881.
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Finally, we rank the alternatives as follows.
If ∇ = 1.

Ĥ1 > Ĥ5 > Ĥ2 > Ĥ3 > Ĥ4.

If ∇ = 2.

Ĥ1 > Ĥ5 > Ĥ2 > Ĥ3 > Ĥ4.

If ∇ = 3.

Ĥ1 > Ĥ5 > Ĥ2 > Ĥ3 > Ĥ4.

If ∇ = 5.

Ĥ1 > Ĥ5 > Ĥ2 > Ĥ3 > Ĥ4.

C. qROmPFSRS APPROACH
The following steps in Algorithm 2 establishes our new
approach using the q-ROF m-polar fuzzy soft rough sets and
crisp soft approximation space.

Now, we give the following illustrated example using the
proposed approach.

Presume that 4 = {Ĥ1, Ĥ2, Ĥ3, Ĥ4, Ĥ5} is the origin
set and

∮
= {

∮
1,
∮
2,
∮
3,
∮
4} is the features set.

Hence, we have the q-RO 3-polar fuzzy soft relation as in
the following matrix.

ν =



∮
1 :
(
(0.68, 0.43), (0.73, 0.35), (0.81, 0.31)

)
Ĥ1|

∮
2 :
(
(0.86, 0.18), (0.75, 0.41), (0.73, 0.21)

)∮
3 :
(
(0.91, 0.15), (0.83, 0.41), (0.81, 0.51)

)∮
4 :
(
(0.85, 0.41), (0.73, 0.35), (0.69, 0.23)

)∮
1 :
(
(0.73, 0.41), (0.71, 0.37), (0.83, 0.41)

)
Ĥ2|

∮
2 :
(
(0.82, 0.43), (0.78, 0.31), (0.68, 0.23)

)∮
3 :
(
(0.81, 0.31), (0.78, 0.41), (0.72, 0.18)

)∮
4 :
(
(0.79, 0.53), (0.68, 0.46), (0.67, 0.51)

)∮
1 :
(
(0.71, 0.51), (0.69, 0.41), (0.76, 0.51)

)
Ĥ3|

∮
2 :
(
(0.82, 0.52), (0.76, 0.36), (0.63, 0.28)

)∮
3 :
(
(0.85, 0.41), (0.71, 0.51), (0.73, 0.11)

)∮
4 :
(
(0.75, 0.18), (0.67, 0.41), (0.63, 0.43)

)∮
1 :
(
(0.73, 0.31), (0.75, 0.13), (0.78, 0.32)

)
Ĥ4|

∮
2 :
(
(0.85, 0.13), (0.71, 0.11), (0.68, 0.28)

)∮
3 :
(
(0.86, 0.23), (0.68, 0.51), (0.69, 0.19)

)∮
4 :
(
(0.78, 0.17), (0.63, 0.31), (0.61, 0.38)

)∮
1 :
(
(0.73, 0.13), (0.81, 0.21), (0.85, 0.16)

)
Ĥ5|

∮
2 :
(
(0.89, 0.11), (0.81, 0.31), (0.78, 0.21)

)∮
3 :
(
(0.96, 0.12), (0.86, 0.21), (0.83, 0.31)

)∮
4 :
(
(0.87, 0.36), (0.76, 0.26), (0.74, 0.14)

)


Then we set the q-RO 3-polar fuzzy subsets of 4 as fol-

lows.
Ê =

{( ∮
1, (0.67, 0.21), (0.71, 0.28), (0.78, 0.31)

)
,( ∮

2, (0.81, 0.21), (0.73, 0.31), (0.69, 0.18)
)
,( ∮

3, (0.89, 0.12), (0.78, 0.31), (0.74, 0.44)
)
,( ∮

4, (0.81, 0.38), (0.67, 0.17), (0.65, 0.16)
)}
.

Using these information, we can now compute the lower
and upper approximations of Ê as follows.

S (Ê) ={(
Ĥ1, (0.81, 0.38), (0.73, 0.31), (0.69, 0.44)

)
,

Algorithm 2 Algorithm for qROmPFSRS

Input: 4 is the origin set and
∮
is the provisory features.

Output: Decision Making.
1: Investigate the crisp soft relation σ based on the data
provided.
2: Establish Ê ∈ qROmPFS(

∮
).

3: Compute S (Ê) and S (Ê) from Definition 16.
4: Compute S (Ê)⊕S (Ê) from Definition 17.
5: Compute the consequence of all features in S (Ê) ⊕
S (Ê) from Definition 18.
6: Assort the features by Definition 19.
7: Obtain the decision.

(
Ĥ2, (0.67, 0.38), (0.67, 0.31), (0.65, 0.44)

)
,(

Ĥ3, (0.67, 0.38), (0.67, 0.31), (0.65, 0.44)
)
,(

Ĥ4, (0.81, 0.38), (0.67, 0.31), (0.65, 0.44)
)
,(

Ĥ5, (0.81, 0.38), (0.67, 0.31), (0.65, 0.44)
)}
,

S (Ê) ={(
Ĥ1, (0.89, 0.12), (0.78, 0.27), (0.74, 0.27)

)
,(

Ĥ2, (0.81, 0.19), (0.73, 0.29), (0.78, 0.31),
)
,(

Ĥ3, (0.81, 0.15), (0.71, 0.31), (0.78, 0.31)
)
,(

Ĥ4, (0.81, 0.14), (0.67, 0.28), (0.65, 0.31)
)
,(

Ĥ5, (0.81, 0.12), (0.73, 0.24), (0.69, 0.22)
)}
.

Henceforth, we count the ring sum for these information as
below.

If ∇ = 1.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.979, 0.046), (0.941, 0.084), (0.919, 0.119)
)
,(

Ĥ2, (0.937, 0.072), (0.911, 0.0899), (0.923, 0.136),
)
,(

Ĥ3, (0.937, 0.057), (0.904, 0.096), (0.923, 0.136)
)
,(

Ĥ4, (0.964, 0.053), (0.891, 0.087), (0.878, 0.136)
)
,(

Ĥ5, (0.964, 0.046), (0.911, 0.074), (0.892, 0.097)
)}

If ∇ = 2.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.964, 0.046), (0.904, 0.084), (0.874, 0.119)
)
,(

Ĥ2, (0.900, 0.072), (0.862, 0.0899), (0.888, 0.136),
)
,(

Ĥ3, (0.900, 0.057), (0.853, 0.096), (0.888, 0.136)
)
,(

Ĥ4, (0.939, 0.053), (0.834, 0.087), (0.816, 0.136)
)
,(

Ĥ5, (0.939, 0.046), (0.862, 0.074), (0.835, 0.097)
)}

If ∇ = 3.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.952, 0.046), (0.879, 0.084), (0.844, 0.119)
)
,(

Ĥ2, (0.876, 0.072), (0.831, 0.0899), (0.852, 0.136),
)
,(

Ĥ3, (0.876, 0.057), (0.828, 0.096), (0.852, 0.136)
)
,(

Ĥ4, (0.921, 0.053), (0.800, 0.087), (0.800, 0.136)
)
,(

Ĥ5, (0.921, 0.046), (0.831, 0.074), (0.801, 0.097)
)}

If ∇ = 5.
K (Ê)⊕K (Ê) ={(

Ĥ1, (0.934, 0.046), (0.847, 0.084), (0.808, 0.119)
)
,(

Ĥ2, (0.847, 0.072), (0.793, 0.0899), (0.820, 0.136),
)
,(

Ĥ3, (0.847, 0.057), (0.781, 0.096), (0.820, 0.136)
)
,

139196 VOLUME 9, 2021



J. Ping et al.: Soft Rough q-Rung Orthopair m-Polar Fuzzy Sets

TABLE 1. Table for scores using different ∇ for SRqROmPFS.

(
Ĥ4, (0.896, 0.053), (0.759, 0.087), (0.738, 0.136)

)
,(

Ĥ5, (0.896, 0.046), (0.793, 0.074), (0.760, 0.097)
)}

Then, we compute the assort of each variable as next.
If ∇ = 1.

R(Ĥ1) = 0.9317, R(Ĥ2) = 0.9122, R(Ĥ3) = 0.9125,

R(Ĥ4) = 0.9095, R(Ĥ5) = 0.925.

If ∇ = 2.

R(Ĥ1) = 0.9155, R(Ĥ2) = 0.891, R(Ĥ3) = 0.892,

R(Ĥ4) = 0.8855, R(Ĥ5) = 0.9032.

If ∇ = 3.

R(Ĥ1) = 0.9043, R(Ĥ2) = 0.8769, R(Ĥ3) = 0.8778,

R(Ĥ4) = 0.8742, R(Ĥ5) = 0.8893.

If ∇ = 5.

R(Ĥ1) = 0.89, R(Ĥ2) = 0.8604, R(Ĥ3) = 0.8599,

R(Ĥ4) = 0.8528, R(Ĥ5) = 0.872.

Finally, we rank the alternatives as follows.
If ∇ = 1.

Ĥ1 > Ĥ5 > Ĥ3 > Ĥ2 > Ĥ4.

If ∇ = 2.

Ĥ1 > Ĥ5 > Ĥ3 > Ĥ2 > Ĥ4.

If ∇ = 3.

Ĥ1 > Ĥ5 > Ĥ3 > Ĥ2 > Ĥ4.

If ∇ = 5.

Ĥ1 > Ĥ5 > Ĥ2 > Ĥ3 > Ĥ4.

D. COMPARATIVE ANALYSES
In this section, we will explain the merits of the proposed
methods by comparisons between ours, that is, SRqROmPFS
and qROmPFSRS, and the previous methods, that is, soft
rough m-polar fuzzy sets and m-polar fuzzy soft rough sets
by Akram et al. [48], soft rough Pythagorean fuzzy set and
Pythagorean fuzzy soft rough set by Riaz and Hashmi [50]
and soft rough q-rung orthopair fuzzy sets and q-rung
orthopair fuzzy soft rough sets by Riaz et al. [54]. The novel
approaches to solve MADM issues can be seen as illustrated
in Tables 1 and 2.
Table 1 shows the ordering outcomes for different ∇

(i.e., Akram et al. [48], Riaz and Hashmi [50] and our

TABLE 2. Table for scores using different ∇ for qROmPFSRS.

FIGURE 1. The representation of the SRqROmPFS for different ∇.

FIGURE 2. The representation of the qROmPFSRS for different ∇.

proposed methods) for SRqROmPFS. The best selec-
tion of the proposed different approaches is by hiring
programmer Ĥ1. This means that our model is reliable and
rational.

Table 2 shows the ordering outcomes for different ∇
(i.e., Akram et al. [48], Riaz and Hashmi [50] and our pro-
posed methods) for qROmPFSRS. The best selection of the
proposed different approaches is by hiring programmer Ĥ1.
This means that our model is reasonable and effective.

We can also show the differences between different ∇
(i.e., Akram et al. [48], Riaz and Hashmi [50] and our pro-
posed methods) using the following two figures, Figure 1 and
Figure 2.

Figure 1 illustrates the comparisons on the outcomes for
∇ = 1, 2, 3, 5 for SRqROmPFS, which means that the Ĥ1
alternative is the best choice for this institution under the
given requirements.

Figure 2 illustrates the comparisons on the outcomes for
∇ = 1, 2, 3, 5 for qROmPFSRS, which means that the Ĥ1
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alternative is the best choice for this institution under the
given requirements.

Figure 2 illustrates the comparisons on the outcomes for
∇ = 1, 2, 3, 5 (i.e., Akram et al. [48], Riaz and Hashmi [50]
and our proposed methods) for qROmPFSRS, which means
that the Ĥ1 alternative is the best choice for this institution
under the given requirements. Note that the data used here
cannot be processed by the methods of Riaz et al. [54] which
can only handle a single set. Hence, our proposed methods
have overcome the hurdle of set limitations of the previous
existing methods of Akram et al. [48], Riaz and Hashmi [50]
and Riaz et al. [54].

VI. CONCLUSION
We have constructed new algorithms using soft rough q-RO
m-polar fuzzy sets (SRqROmPFS) and q-RO m-polar fuzzy
soft rough sets (qROmPFSRS) to provide us with novel
approaches to help make a decision on managerial problems.
These new models proved their effectiveness and reliabil-
ity, as can be seen in Tables 1 and 2, and displayed on
Figures 1 and 2. The characteristics related to these mod-
els have also been discussed. We have established two
different groups of steps for these new models according
to the crisp soft and q-RO m-polar fuzzy soft approxi-
mation space to solve MADM problems. The compara-
tive analyses indicated that the proposed approaches yield
consistent results. In future, we shall extend the proposed
methods to a variety of other environments such as the
T-spherical power Muirhead operators [62], multi-objective
programming [64], neurogenetics [65] and polynomial
zeros [66]–[68].
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