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ABSTRACT Under finite precision implementation, one dimensional (1D) chaotic maps suffer from limited
number of control parameters and converged periodicity, making them unsuitable for hardware based
ciphering systems despite their simple implementation and low hardware cost. This paper first discusses the
limited periodicity of 1D maps under fixed point precision representation, then, presents an image encryption
algorithm based on DNA encoding and two specially configured binarized chaotic cores. The function of both
cores is to perform the confusion and diffusion stages of the image by generating pseudo random numbers
with excellent cryptographic properties. DNA encoding adds an extra layer of security to the algorithm by
converting both the image and the chaotic stream to DNA sequences using specific DNA encoding rule.
Initial values of both chaotic cores are image dependent based on a calculated hamming distance. These
initial condition and the utilized DNA rules composes the overall secret key of the system with a total
length of 336 bits. On the condition that all calculations involved in the scheme are based on binary integer
arithmetic, all performed security analysis subjected to the scheme proved that the system could withstand
known attacks with excellent encryption properties.

INDEX TERMS Chaos, DNA computing, DNA encoding, image encryption, cyber security, entropy, NPCR,
UACI.

I. INTRODUCTION

In the current era, reliance on technology has become an
essential component in our daily routines [1]. This reliance

has led to more handling of sensitive information through

communication networks and cloud storage services. Accord- Key Key
ingly, Cryptographers became aware of the importance of
advancing the security measures to protect these informa-
tion from unauthorized access and cyber attacks [2]-[5].

Plain Message Ciphered Message Recovered Message

FIGURE 1. Fundamental elements of a ciphering system.

Commonly, ciphering data requires an encryption scheme,
a communication channel for data transmission, a decryp-
tion scheme, and a key to encrypt/decrypt the ciphered
data [6] (Fig.1)

Properties of the key, like its secrecy, difficulty to guess
and resistance to exhaustive search (brute force attack) are the
major factors in characterizing the strength of an encryption
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system. Shannon [7] defined the features of a key in an
“unbreakable” scheme to: i) have the same length as the
message, ii) to be truly random and iii) to be used only once
(also known as one time pad (OTP)). Nevertheless, some of
these properties later proved to be disadvantageous as if there
exist a secure link to share a key that long, then, it is more
logical to transmit the message itself through it. Also, if the
same key is used twice, an attacker could gain information
about the messages using simple XOR or frequency analysis
resulting in a simple running key cipher [8].
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The impracticality of the OTP opened the door to use
stream generators that produce long random sequences
using relatively short seeds. These random number gener-
ators (RNG) can be classified into true (TRNG) or pseudo
(PRNGQG) [9], the latter in which is deterministic and based on
algorithms that produces a sequence with properties mimick-
ing that of true random numbers [10], [11]. Currently, chaos
based PRNG are widely used because of their sensitivity to
initial conditions, uniformly distributed output and uncorre-
lated long sequences. Furthermore, discrete chaotic functions
are hardware friendly and easy to implement on currently
available modules. References [12]-[14].

Interest in the art of cryptography and cryptanalysis
[15]-[18] has followed an upward trend in the past few
decades, this is mainly due-to the rapid development in
electronic technology and the exponential increase in the
computational power of modern computers. Nevertheless,
when it comes to hardware implementation, factors such as:
space utilization, power consumption, high throughput and
low latency are of prime importance. As such, the way of
representing numbers and performing mathematical opera-
tions -especially fraction numbers- significantly affects these
factors. Two forms of precision are widely implemented,
namely, floating point precision and fixed point precision.
From hardware perspective, floating point implementation
requires more space on the module, which in turn leads to
slow data transfer and high latency. On the other hand, fixed
point precision has the advantage of integer like arithmetic
which is considered to be hardware friendly.

This paper tackles the two main issues of utilizing low
dimensional maps in cryptosystems, namely, i) convergence
to periodic orbit due-to finite precision, and ii) limited num-
ber of control parameters [19]-[25]. Accordingly, a novel
image encryption schemes based on a binarized chaotic cores
is presented. Both issues are tackled by implementing a
chaotic core comprised of two cross-coupled skew-tent maps
as reported in [26]. it was proved that utilizing the cross cou-
pled scheme ensures increasing the aperiodicity of the output
stream while increasing the control factors of the generator to
four parameters.

This paper is organized as follows: In section II related
work and novel curves correlating periodicity to precision
length are introduced. The proposed algorithm including the
underlying chaotic cores, DNA computing and the encryption
scheme is presented in section III. By passing all statisti-
cal and security analysis listed in section IV, the proposed
algorithm proved to be robust and with excellent confusion-
discussion properties.

Il. RELATED WORK

The random like behavior of chaotic systems alongside
their deterministic properties made them one of the major
source of RRN in most of the recently proposed ciphering
schemes [27]-[29]. However, regenerating the same sequence
in both ends of the channel requires identical mathematical
representation or hardware implementation of these chaotic
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FIGURE 2. Fixed point representation of binary numbers.

cores. Recent detailed studies [26], [30], [31] revealed the
effect of finite precision on the periodic properties of cer-
tain 1D chaotic systems. Elmanfaloty and Abou-Bakr [26]
presented -within the hardware perspective- the efficiency of
fixed point representation in terms of hardware resources and
latency.

A. BINARIZATION OF 1D CHAOTIC MAPS

Binarization of 1D chaotic maps is the process of performing
all arithmetic operations under the base-2 representation.
These operations includes binary addition, subtraction, mul-
tiplication, and division. From hardware perspective, sub-
traction, multiplication and division are implemented using
combination of addition, shifting and negation. This section
of the paper briefly revisits the effect of implementing some
of the 1D chaotic maps, namely; the logistic map, the tent
map and the skew-tent map using fixed point representation.
As shown in Fig.2, binary numbers can be represented as
t — bit integer part, and g — bit fraction part. To test the effect
of ¢ bits length on the periodicity of the output sequence,
throughout this work, all mathematical operations of these
maps are performed with + = 4 bits and g with variable
size. For the sake of speeding up the testing while extracting
results mimicking hardware implementation, all previously
mentioned binary operations were implemented on PC and
Matlab. Results of multiplication and division follows the
truncation rule mentioned in [26].

1) LYAPUNOV EXPONENT

A chaotic system is mostly characterized by its sensitivity to
initial condition, topological transitivity and dense periodic
orbits. One common method for determining the sensitivity to
initial condition is to calculate the Lyapunov exponent (LE) of
the system and check for convergence or divergence between
two slightly perturbed trajectories as follows:

A= lim 1%111 191 (1)
) P [80]

where, A denote the LE, §; and &, are the spacing between
the two trajectories. If all other conditions implied, A > 0
normally indicate chaos [32].
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TABLE 1. Parameters used to generate the graphs in Fig.4.

Map Parameters
Logistic map r=4 zo = 0.25
Tent map w=2 zo = 0.25
Skew-tent map p=04 o = 0.25

2) LOGISTIC MAP, TENT MAP AND SKEW-TENT MAP

The logistic map is the typical example of a simple discrete
equation that possesses unique chaotic properties. The map
was first introduced by the biologist Robert May in 1976 [33].
it is a second-degree equation given by:

Xn+1 = rxp(1 — xy) (2)

Figure.3 depict the bifurcation diagram of the logistic map
along with its LE curve. It is obvious that the map exhibits full
chaos and LE > 0 in the overall state space at r = 4. If the
map in (2) is binarized and implemented using fixed point
notation, same visual results could be obtained for both the
bifurcation diagram and LE. However, when implementing
the logistic map using q = {4, 8, 16, 32} bits and the param-
eters listed in Table.1, inaccurate results of LE and limited
periodicity in the bifurcation diagram are illustrated as in
Fig.4. It should be noted that LE alone is not an indication
to chaos, it is merely an indication to the sensitivity of the
system to initial conditions. However, for a topologically
mixed system, LE is the common test for checking the chaotic
behavior of the system. On the other hand, the periodicity of
the system strongly depends on the underlying finite preci-
sion. This is clearly depicted in Fig.5, where the periodicity
of the logistic map (2), tent map (3)and skew-tent map (4)
are plotted against g, the fraction part bit length. It is obvious
from the figure that the periodicity increases with the increase
of g, however, these sequences were proved to be have low
cryptographic properties and unsuitable for usage in secure
ciphering systems [30]. Table.I lists the parameters used to
generate the graphs in Fig.4.

UXp, xeR:xe[0,0.5]

X = 3

T (= xy) xeR:x e (05 1] )
% xeR:x€(0,p]

Xn+1 = ! “4)
1%;;” xeR:xe(@,1)

where p € (0, 1).

B. DNA COMPUTING
Confusion and dissuasion of the image pixels are the com-
mon features that must exist in any robust image encryption
algorithm. To satisfy these features, the proposed algorithm
relies on DNA encoding along with two chaotic systems cores
to generate a ciphered image capable of withstanding known
attacks.

Leonard Adleman initiated this field in 1994 by solv-
ing a seven-point Hamiltonian path problem using DNA

VOLUME 9, 2021

1.0 1
0.8 I Pt
-- ~ . <
, =
N )
067 \\ ’I §.
X ! ®
\i 5}
0.4 y 3
4 =}
3
4 (=9
s
0.2 ] s
0.0 |

FIGURE 3. Bifurcation diagram (blue) and LE (dashed red) for different
values of r in the logistic map.

TABLE 2. DNA encoding rules.

Binary sequence
Rule‘OO\Ol\lO\ll

1 A G C T
2 A C G T
3 G A T C
4 G T A C
5 C A T G
6 C T A G
7 T G C T
8 T C G T

sequences as a form of computation machine [34]. Since then,
DNA computing has proved advantageous to the traditional
methods given its large storage capacity, parallel processing
capabilities and low power consumption. Biologically speak-
ing, Deoxyribonucleic acid (DNA) consists of two helical
strands called polynucleotides, in which each is composed
of a simpler monomeric units called nucleotides [35]. The
constructions of any one of these nucleotides are one of four
nitrogen containing nucleobases, namely; “C”’ cytosine, “G”
guanine, “A” adenine and “T”’ thymine. These nucleotides
are characterized by their complementary pairing, i.e. “A”
is the complement of “T”, “C” is the complement of “G”
and vice versa. DNA computing relies on representing each
nucleotides by two bits while adhering to the complementary
rule. For example, if “A = 00 then “T = 117, if “C =
10” then “G = 01”. According to this, there are only 8 out
of 24 DNA rules that satisfy this complementary pairing as
represented in Table.2.

Using DNA computing requires subjecting the sequence
to some logical and algebraic equations, Table.3 list some
of these operation for DNA sequences under the first rule.
As such, the rest of the 8 rules have also their own unique
tables for logical and algebraic operations. Since each pixel
in an image is represented by 8 bits, then, each pixel can
be transformed to a 4-character DNA sequence according to
any one of the DNA encoding rules. For example, under the
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FIGURE 4. Effect of fixed point precision (binary fraction) on the bifurcation diagram and LE of the logistic
map, (a) 4-bit fraction, (b) 8-bit fraction, (c) 16-bit fraction and (d) 32-bit fraction.
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FIGURE 5. Effect of precision on the periodicity of some 1D maps, (a) Logistic map, (b) tent map and (c) skew-tent map.

first rule, a pixel with a value of 224 (‘11110100b’) would be
encoded to “TTCA” in DNA form.

C. HAMMING DISTANCE

In general, hamming distance finds the number of positions
of different symbols in two equally length strings. This paper
utilizes this property to calculate bit wise position differences
in equally sized blocks of the image by using the following
equation:

H(x,y) =) hx;, yi)
1

5
0 &)

Xi = Vi
My =1 Vi

Xi # Vi

Throughout the encryption process, the hamming distance
is used in both the confusion and diffusion stages by altering
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the initial values and parameters of the two chaotic systems
making them dependent on the plain image.

IIl. PROPOSED ALGORITHM

The proposed algorithm depicted in Fig.6 consists of two
chaotic cores, one for pixels confusion and the other for
the permutation process. Each core is implemented using
chaotic systems previously proposed in [26] as shown in
Fig.7. The PRNG consists of two crossed coupled skew
tent maps that are fully binarized and relies on fixed point
representation in all of its logical and algebraic processes.
The output is a stream of n-bit that was subjected to various
statistical tests and proved its randomness and cryptographic
properties. In this paper, the output of the system is inten-
tionally designed to produce a stream of 8-bits, this makes
it suitable for direct implementation in image encryption
schemes.
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FIGURE 6. Block diagram of the proposed algorithm.

TABLE 3. DNA operations.

XOR |A|[G|[C|T

A |[A|lG|C|T
G |G|a|T]|C
c |[clalT]|a
T |T|c|G]|aA
+ |A|]G|C|T
A |AlG|C|T
G |Gg|c|T]|A
c |[c|T|Aala
T |[T|lAlG]|cC
- lAajgfce]rT
A |A|T|C|G
G |G|Aalalc
c |clo|T|T
T |[T|Cc|G|a

A. KEY STRUCTURE

Each core requires four initial parameter to operate, namely,
{p, x,} for the first skew-tent map and {a, y,} for the second.
For each map, these parameters are represented by binary
sequence of 168 bits and forms the main secret keys {K7, K»}.
Moreover, to make these keys dependent on the plain image
in the encryption side, the hamming distance is calculated
for the plain image and converted to 168 bit stream. Another
layer of security is also added to {Kj, K>} stream by XORing
the 168 bit calculated hamming distance with another secret
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keys {ki, k»}. the overall length of the transmitted secret key
comprising from {K7, K>} will be 336 bits.

B. ENCRYPTION PROCEDURE
The following procedures are followed through the encryp-
tion process:

First: the Confusion stage

1) Read plain image.

2) Calculate the hamming distance.

3) Convert the calculated hamming distance to 168-bit.

4) XOR the 168-bit hamming code with a secret Sub-key
k1 and generate K for the first chaotic core.

5) Run the first Chaotic core to generate an m X n matrix
of 8-bits.

6) Encode the plain image with a DNA encoding rule.

7) Encode the matrix of first chaotic System with the same
DNA encoding rule.

8) Perform a DNA algebraic operation (Addition).

Second: the permutation stage

9) Use the Hamming code with a secret sub-key k; to
generate K of 168 bits.
10) Use K] to extract an m X n long sequence from one of
the generator state variable x or y.
11) Permute the output result of stage (7) using the
extracted sequence.
12) Perform a DNA decoding using the selected DNA-rule.
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FIGURE 7. PRNG proposed in [26].

The choice for using two cores is made to eliminate any
correlation between the sequences for both the confusion and
diffusion stages. the decryption process is the inverse of the
encryption process.

IV. SECURITY ANALYSIS

A. HISTOGRAM ANALYSIS

Uniformly distributed histogram for ciphered image - even
for images containing weak color intensity distribution- is an
indication of the capability of the encryption scheme to resist
statistical attacks. The histogram of three images (boat, white,
black) and their ciphered images are shown in Fig.8. For
the original images, unique histograms are displayed, while
those of the ciphered results exhibit a uniform distribution.
This again proves the proposed system capability to withstand
statistical attacks.

B. CORRELATION ANALYSIS

A ciphered image is most vulnerable to statistical attacks
when there are high correlation in the vertical(V), horizon-
tal(H) and diagonal(D) direction of its adjacent pixels. If the
encryption scheme can severely diminish this correlation,
then this system is most likely to resist statistical attacks.
Calculation can be performed by computing a coefficient ryy
using random pairs of adjacent pixels and substituting the
values in the following equations:

1 S

D) = ¢ ) (i — E()? (6)
=1
1 S

DE) = < > i —EW) )
=1
1 S

Ex) = 3 gxi (®)
1 S

EQ) = ¢ ;yi ©)

1 S
covx,y) = < ) (6 = E@)0i —EQ)  (10)

i=1
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The result of subjecting a plain grayscale image (512) and
its ciphered one to the correlation analysis is depicted in Fig.9
(4000 pixels). For the original image, strong and compact
correlation between pixels in all direction is visibly clear.
However, for the ciphered output, scattered and no visible
compact correlation is shown. Table.4 lists the results of per-
forming the correlation analysis test on several images with
different sizes. All the results for the encrypted images show
weak correlation and robustness against statistical attacks.

C. ENTROPY ANALYSIS
Shannon, in 1949, [7] started the field of information the-
ory by measuring the “‘uncertainty” reduced by the mes-
sage. Subsequently, in any robust encryption algorithm, using
“entropy” to quantify the amount of information contained
in a variable means that; the less information successfully
retrieved from the ciphered text, the more secure the algo-
rithm is to entropy attacks. For Image Encryption, Shannon
equation for information entropy is as follows:

on

H(m) = =" P(mlog, (P(m;) (12)

i=1

In the above equation, m; represents one of the
256 grayscale levels from 0 to 255 (or even one of the color
intensities levels in colored images), n is the number of
bits representing each pixel color intensity, and P(m;) is the
probability of a color intensity m; in the image. The equation
will result in a maximum of 8 for an evenly distributed color
intensity in the image. However, this number can only be
attained for an ideal system, and results close to 8 could be
accepted as an indication of difficulty to extract information.
In addition, and relating to subsection.IV-A, it is clear that
both histograms (visual) and entropy (mathematical) can
be used to quantify the amount of information that can be
extracted from the ciphered image. In Table.5, 27" ciphered
images with different gray level distribution were subjected
to the entropy test. All results listed “globally” confirms the
uniform distribution of gray levels and the algorithm ability
to withstand entropy attacks.

Shannon entropy, also called global Shannon
entropy -since it acts on the whole image- proved to have
many weaknesses [40]; namely, its inaccuracy in detecting
the true randomness of an image, its inconsistency since the
probability of the grayscale level depends on the size of the
image, and its variable performance efficiency depending
on the images size. The local Shannon (LSE) entropy [40]
overcame these downsides by measuring the mean entropy of
same sized non-overlapping blocks from the whole image by:

k
H(Ip.
H () = Y0 O (13)

i=1
where, H(I;) is the local Shannon entropy, k is the number
of same sized blocks and Tp is the number of pixels in
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FIGURE 8. Histogram analysis of different images with different intensity levels, (a), (b) and
(c) are the original image, (d), (e) and (f) are their histogram, (g), (h) and (i) are the encryption
of encryption of (a), (b) and (c) respectively, (j), (k) and (I) are their histogram.

TABLE 4. Vertical (V), horizontal (H) and diagonal (D) correlation of grayscale images and their ciphered ones (original images source, [36]).

Original image Ciphered image

File name Size ‘ V-correlation ~ H-correlation — D-correlation ‘ V-correlation ~ H-correlation — D-correlation
5.1.09 256x256 0.9373 0.9064 0.9012 -0.0225 0.0382 -0.0050
5.1.11 256x256 0.9447 0.9557 0.9045 -0.0118 -0.0673 0.0049
5.1.12 256x256 0.9763 0.9575 0.9345 -0.0072 -0.0018 -0.0065
5.1.13 256x256 0.8677 0.8585 0.7554 -0.0111 -0.0318 0.0185
1.1.01 512x512 0.8062 0.7344 0.5799 0.0095 -0.0405 -0.0183
5.2.09 512x512 0.8559 0.8858 0.8092 -0.0084 -0.0037 0.0208
boat.512 512x512 0.9681 0.9388 0.9234 -0.0270 -0.0031 0.0085
cameraman 512x512 0.9903 0.9783 0.9723 -0.0350 -0.0126 -0.0055
gray21.512 512x512 0.9996 0.9921 0.9983 0.0097 -0.0495 -0.0045
ruler.512 512x512 0.4465 0.3874 -0.0484 0.0000 0.0047 0.0005
white 512x512 NaN NaN NaN -0.0050 -0.0556 -0.0125
black 512x512 NaN NaN NaN -0.0149 -0.0660 0.0021
1.4.07 1024x1024 0.9484 0.9655 0.9468 0.0200 0.0698 -0.0009
5.3.01 1024x1024 0.9828 0.9765 0.9689 0.0304 0.0005 0.0109
5.3.02 1024x1024 0.8970 0.8929 0.8483 -0.0126 0.0191 -0.0170

each block. Derived hypothesis <zeﬁ and (Zigh are used to image. Since the measurement is dependent on the number
convert the quantitative results of the LSE into qualitative of blocks and their sizes rather than the whole image size,
ones, namely, reject or fail to reject the randomness of an constant values of (} oft and <;k?igh can be derived accordingly.

VOLUME 9, 2021 136911
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FIGURE 9. Correlation analysis of 4000 adjacent pixels, a) original Image, b) V correlation, c) H correlation, d) D correlation, e) ciphered image,
f) V correlation, g) H correlation, h) D correlation.

TABLE 5. Entropy analysis of sample grayscale images.

Global entropy LSE

File name Original ciphered  Proposed Scheme  Ref.[37] Ref.[38] Ref.[39]
Dimention 256 X256

5.1.09.tiff 6.709312  7.997255 7.902246 7903154  7.90271 7.902475
5.1.10.tiff 7.311807  7.997796 7.90202 7.90168 7.902473 7.9016
S.LL11.tff 6.452275  7.997657 7.902121 7.902725  7.902217  7.903487
5.1.12.tff 6.705667  7.997406 7.902232 7.901605 7.903208  7.902023
5.1.13.tiff 1.548314  7.997307 7.902156 7.901269  7.902951  7.901894
5.1.14.tiff 7.342433  7.996835 7.90292 7.902341  7.901577  7.901528
Dimention 512x512
5.2.08.tiff 7.201008  7.999246 7.902442 7.902038  7.902681  7.902988
5.2.09.tiff 6.993994  7.999298 7.902606 7.902722  7.902571  7.902867
5.2.10.tiff 5.70556 7.999378 7.903019 7.902478  7.902411  7.903095
7.1.01.tiff 6.027415  7.999313 7.902794 7.902012 7.9019 7.903033
7.1.02.tiff 4.004499  7.999267 7.903024 7.902484  7.903003  7.903289
7.1.03.tiff 5.49574 7.999362 7.902937 7.902833  7.902116  7.902783
7.1.04.tiff 6.107418  7.999314 7.902188 7.902047  7.902998  7.902107
7.1.05.tiff 6.563196 7.99926 7.903004 7.902568  7.903154  7.902479
7.1.06.tiff 6.695283  7.999146 7.902468 7.902022  7.902009  7.902303
7.1.07.tiff 5.991599 7.99927 7.90258 7.902398  7.903176  7.902556
7.1.08.tiff 5.053448  7.999353 7.902675 7.902137  7.902837  7.902488
7.1.09.tiff 6.189814  7.999163 7.902089 7.902142  7.902068 7.90175
7.1.10.tiff 5.90879 7.999338 7.902602 7.902171  7.903141  7.902402
Black.tiff 0 7.999351 7.902918 - - -
White.tiff 0 7.999301 7.902285 - - -
boat.512.tiff 7.19137 7.999298 7.902659 7.902046  7.90192  7.903294
gray21.512.t4ff  4.392295  7.999223 7.902273 7.902718  7.903359 7.90204
ruler.512.tiff 0.500033  7.999207 7.90211 7.902004 7.901889  7.902625
Dimention 1024 x 1024
5.3.01.tiff 7.523737  7.999816 7.902475 7.902057  7.903408  7.903095
5.3.02.tiff 6.83033 7.999831 7.90204 7.902396  7.903093  7.902575
7.2.01.tiff 5.641454  7.999827 7.902127 7.90233 7.902316  7.902714

In this paper, the number of blocks k£ was selected to be 30, in each block Tp = 1936. According to these parameters,
the significance level « = 0.05 and the number of pixels The appropriate values for both hypothesis listed in [40] are
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TABLE 6. MSE and PNSR values of the ciphered images with slightly change in the key.

MSE PSNR

File name | Changein K1 Change in Ko | Changein K1 Change in K2
Boat.512.6iff | 10.927x103 10.914x103 7.746 7.751
Black.tiff 10.961x103 10.850x 103 7.732 7.776
White. tiff 10.934x103 10.909% 103 7.743 7.753

(b)

(e) ®

@ ()
FIGURE 10. Key sensitivity analysis of the proposed Algorithm., (a), (e), (i) are the original images, (b), (f), (j) are the
encrypted images, (c), (g), (k) are the encrypted images by flipping the LSb of K;, (d) is the absolute difference between
(c) and (b), (h) is the absolute difference between (g) and (f), (l) is the absolute difference between (k) and (j).

zeﬁ = 7.901901305 and h;ﬁ?igh = 7.903037329. Complete
list of calculated LSE for 27 grayscale images are listed in
Table. 5 along with a comparison to results of other algo-
rithms. All displayed results fall within the critical values, for
different image sizes. This further confirms the ability of the
system to withstand entropy attacks.

D. KEY ANALYSIS

1) KEY-SPACE ANALYSIS

A large keyspace is crucial for a robust ciphering scheme to
resist brute force attacks. In the proposed scheme, K| and K>
for the confusion and diffusion stages requires the input
of four parameters each, namely: x,, p, y,, a. Although the
system design is capable of varying the fixed-point precision
(binary point) size, a 42 bit binary point size was selected for
the sake of simulation based on the data previously deducted
in [26].
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(c) (d)

(2) (h)

(9] o)

2) KEY SENSITIVITY ANALYSIS

Sensitivity of the system to key change is achieved by produc-
ing two different encrypted - or decrypted- images with two
slightly different keys. For the proposed algorithm, a main
key consisting of {K|, K>} was used to encrypt an image /,
and produce an output ciphered image C. Then, the same
image was encrypted again twice to produce C; and C; with
slightly different keys. For maximum sensitivity test, C1 was
produced by flipping the least significant bit (LSb) of Kj.
While for C,, the LSb of K> was flipped. The results are
illustrated in In Fig.10, where three images underwent this
test; a grayscale image in Figure.10a, a white and a black
images in Figures (10e and 10i). The encrypted images are
shown in Figures (10b, 10f, 10j, 10c, 10g and 10k). A pixel by
pixel subtraction between C; and C was performed and the
results are shown in Figures (10d, 10h and 101). The noisy
like output displayed is a proof of the mismatch between
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TABLE 7. NPCR and UACI score results for 26 images with different sizes.

NPCR test result UACI test result

File name Score%  Status  Ref.[37] Ref.[39] Score %  Status  Ref.[39] Ref.[? ]

Dimention 256 x256 NZE > 99.5693% u;;*,u;* = (33.2824%, 33.6447%)
5.1.09 99.588 pass 99.6093  99.5956  33.5688 pass 334723  33.45034
5.1.10 99.6689 pass 99.6095 99.6018  33.5222 pass 33.4663  33.43234
5.1.11 99.5743 pass 99.6133  99.6079  33.4894 pass 33.4554 3341204
5.1.12 99.6277 pass 99.6123  99.6063  33.4975 pass 334604  33.46242
5.1.13 99.5712 pass 99.605 99.6155  33.5465 pass 33.4601  33.49739
5.1.14 99.5697 pass 99.611 99.6124  33.5711 pass 33.4606  33.46588

Dimention 512x512 NZE > 99.5893% U;_,U§+ = (33.3730%, 33.5541%)
5.2.08 99.5998 pass 99.607 99.6021  33.5446 pass 334734  33.46463
5.2.09 99.6086 pass 99.6106 99.6082  33.4976 pass 334572 3348115
5.2.10 99.6048 pass 99.6096  99.6269  33.3785 pass 33.4575 33.4547
7.1.01 99.5934 pass 99.6095  99.6017  33.4887 pass 334726  33.47657
7.1.02 99.6094 pass 99.6117  99.6128  33.5073 pass 33.4563  33.45195
7.1.03 99.6025 pass 99.6123  99.5968  33.4612 pass 33.4535  33.41221
7.1.04 99.6189 pass 99.6114  99.6098  33.5243 pass 33.4475  33.49961
7.1.05 99.6094 pass 99.6099  99.6021 33.4804 pass 33.4559  33.40539
7.1.06 99.6105 pass 99.6064  99.6014  33.4292 pass 33.4515  33.51457
7.1.07 99.6078 pass 99.6068 99.6136  33.4592 pass 33.4638  33.52977
7.1.08 99.6052 pass 99.6097  99.6089  33.4667 pass 334536  33.51067
7.1.09 99.604 pass 99.6112  99.6079  33.4781 pass 334729 3343775
7.1.10 99.5983 pass 99.6096  99.6037  33.4367 pass 33.4605  33.49378

Black 99.6189 pass - - 33.5084 pass - -
White 99.6101 pass - - 33.4178 pass - -

boat.512 99.6365 pass 99.6084  99.5991  33.4683 pass 33.4434 33.4869
gray21.512 99.6178 pass 99.6074  99.6124 33.545 pass 33.4588 33.51263
ruler.512 99.6231 pass 99.6092  99.6185  33.4407 pass 33.4637  33.45417

Dimention 1024 x 104 NZE > 99.5994% Z/l;_,Z/IZ;"' = (33.4183%, 33.5088%)
5.3.01 99.6063 pass 99.6095 99.6094  33.4725 pass 334511 3342413
5.3.02 99.602 pass 99.6095  99.6064  33.4983 pass 33.4536 33.4987
7.2.01 99.6073 pass 99.6096 99.608 33.4723 pass 33.4606  33.43706

the two ciphered images which relates to the robustness of
the proposed system for the diffusion and confusion process.
Same results were obtained when conducting the same test on
the decryption process.

To further empathize on the results obtained, the mean
square error (MSE) and peak signal to noise (PSNR) between
C and both C; and C, were conducted according to:

MSE = f i [E1G,.J) — Ex(i, )1

14
¢ ¢ M x N (14
i=1 j=1
PSNR = 20l 255 (15)
= 0,
N

The listed results in Table.6 confirms the sensitivity of the
proposed scheme to any small change in the key.

E. RESISTANCE TO DIFFERENTIAL ATTACK
To resist differential attacks, the system should be sensitive
to any errors in the plain image, that is; while using the same
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key, any small change in the plain image, should produce
a completely different ciphered image with good discussion
properties. The most standard methods for measuring the
system sensitivity to this type of errors are the number of
pixels’ change rate (NPCR) and unified average changing
intensity (UACI).

NPCR is the rate of change of pixel locations from the
plain image to the ciphered image, the closer the result of
NPCR result to “unity”, the higher the system ability to resist
differential attacks. Using the same key, the NPCR of a plain
image I and slightly altered image I’ with their ciphered
image C and C’ can be calculated using:

NPCR(C, C') = Y. 24D

i
0 when C(i,j) = C'G,J)
1 when C(,j) # C'(i,))

(16)
DG, j) = {

where T is the number of pixels. Since a “unity” NPCR =1
is difficult to attain, values very close to could be accepted
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(® (& (h)
FIGURE 11. Results of analyzing occlusion attack. (a) 1/8 occlusion, (e) decryption result, (b) 1/4 occlusion, (f) decryption result, (c) 1/2
occlusion, (g) decryption result, (d) 3/4 occlusion, (h) decryption result.

under the criterion of one-sided hypotheses N and its signif-
icance level o, namely, when the value of NPCR > N, and
N is given by [41]:

L+ Y a)VL/T
N L+1

NG 17
In the above equation, ®()~! is the inverse Cumula-
tive distribution function (CDF) of the standard Normal
distribution N(0, 1).
On the other hand, UACI finds the difference in average
intensity between two ciphered images C and C’ using:
IC (i, j) — C@, j)
UACI(C,C) = _ 18
(€, " Z, ) (18)
where L is the maximum level of color intensity. The result
of UACI is considered a ““Pass”’, if its value falls in between
the interval [, UXT]:

U= = p, — @ Ne/2)oy

Ut = p,, + 0 Na/2)oy (19)
(20)
L+2
Hu =313 @h
2
o0 — (L +2)(L*+2L +3) 22)

18(L + 1)2LT

Table.7 list the results of subjecting 27 grayscale images
with different sizes and intensities to the NPCR and UACI
tests with (@ = 0.05). All obtained scores passed the tests
taking into consideration the criterion for success. These
results are valid indication that the proposed system has
good confusion and diffusion properties, and can withstand
differential attacks.
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F. OCCLUSION ATTACK

It is possible that some of the data could be altered while
being transmitted. This altering could be due-to an intentional
or unintentional intervene. A good ciphering system should
be able to recover recognizable image from this type of attack.
This test relies on completely occluding a portion of the
encrypted image then decrypting it. The system should be
able to scatter and scramble this occlusion though the whole
image. For visual verification, Fig.11 depict the effect of
multiple percentage of data loss in the encrypted image on the
decrypted one. All results show fairly recognized decrypted
image, specially when 3/4 of the image was blocked. This
proves that the proposed scheme posses excellent confusion
and diffusion properties and can withstand brute occlusion
attacks.

G. EXECUTION SPEED

The work in this paper was conducted and simulated
using MATLAB R2020a installed on an Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz 2.30 GHz computer with 16GB
of RAM and windows 10 as operating system. To mimic
actual hardware implementation, the binary logic and alge-
braic operations are coded using arrays, that significantly
decreased the execution time, especially when generating
sequences form the chaotic cores. Hence, a test for the execu-
tion speed would be inaccurate for real time implementation.
For example, the time required from a core to generate a
sequence of 65536 x 8 sequence (which is the size of a
256 x 256 image) is about 120 seconds. This slow execution
is mainly because of the continuous conversion of the binary
sequences format from character array to double and vice
versa. The authors expect that future hardware implemen-
tation of this scheme would lead to a fast execution. This
assumption is based on the results in [26] showing that this
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core configuration requires one clock cycle for each output.
In addition, both cores can operate simultaneously in parallel
processing environment.

V. CONCLUSION

By thoroughly studying the effect of finite precision on the
periodicity of 1D chaotic maps, a robust hardware friendly
image encryption schemes can be designed. This paper
presents a novel image encryption scheme based on DNA
and binarized chaotic cores, that is, implementing these cores
under fixed point precision. The scheme was subjected to
multiple statistical and security analysis, all of which proved
its robustness and ability to withstand known attacks. How-
ever, since the system was implemented via MATLAB pro-
gramming, an accurate -real time- execution speed analysis
could not be applied to the work in this paper.
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