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ABSTRACT Surveillance of crowded places can benefit from improved techniques of anomaly detection in
crowd videos. Several existing methods have detected various types of crowd abnormal behaviors by using
spatial and temporal information got from videos. So far as real-time detection of anomalies is concerned,
special attention must be given to reducing the model complexity that leads to computational and memory
loads. This paper proposes a low computational cost approach to detect crowd anomalies. The proposed
approach avoids the expensive optical flow calculations by adopting a pre-trained 2D convolutional neural
network (CNN) for motion information and implements a lighter form of the 2D CNN to achieve high
recognition accuracy at low computational cost. Experiments on public datasets show that the proposed
model outperforms the existing approaches in terms of detection accuracy alongside providing better

performance in generating input frames.

INDEX TERMS Spatial-temporal CNN, anomaly detection, crowd abnormal behaviors, violence detection,

crowd surveillance.

I. INTRODUCTION

Surveillance applications are becoming more important for
effective monitoring of crowded places. Video surveillance
systems must observe abnormal activities involving unusual
crowd activity such as crowd chaos, e.g., crowd running in
one direction or dispersing from a central point, as well
as violent interactions at crowded places, e.g., assault and
fighting. The continuous tracking of surveillance videos is not
workable for humans. Therefore, recent research has focused
on proposing efficient methods for autonomous monitoring
systems. There are two broader types of difficulties in devel-
oping such systems. First, there are difficulties in identifying
the abnormal behavior itself in scenes containing many peo-
ple in proximity, as the individuals often appear with high
volatility and there is frequent occlusion. The challenges are
further augmented by the irregular motion patterns found in a
crowded scene. Crowd unusual activity is identified based on
different parameters, such as its movement pattern and speed,
as well as emerging point. Similarly, an action apparently
looking as aggressive may actually be normal and vice versa.
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In addition, there are many types of essentially different
abnormal behaviors. The second type of difficulty originates
from the high computational complexity involved in most of
the abnormal behavior recognition algorithms, which makes
it unfeasible to use them in the real-world where detection of
anomalies in the real-time is required.

To address the first difficulty, more inclusive methods
need to be developed based on various abnormal events in a
crowded environment, focusing specifically on distinct pos-
sibilities related to each abnormal behavior. Several works in
the literature have focused on different abnormal events in
crowded scene. In particular, methods have been proposed to
detect the unexpected presence of a non-pedestrian within a
crowd (e.g., [1]-[3]), anomalous motion patterns of pedestri-
ans (e.g., [1], [4]), escape panics (e.g., [5], [6], [7]), violent
behaviors (e.g., [8], [9]), and traffic accidents (e.g., [8]). As it
is not workable to analyze the behavior of individuals in a
crowded scene, many studies such as [4], [10] work towards
obtaining an overall view of the scene for the detection of
abnormal behavior. So far as the modalities are concerned,
one common requirement for all behavior recognition meth-
ods developed for videos is that they must incorporate both
spatial and temporal features, since both types of features
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characterize actions. Many methods, such as [10]-[14] have
been proposed to represent temporal information. The recent
developments in deep learning techniques have motivated
researchers to exploit their strength to augment the tradi-
tional methods in anomaly detection problems. Some exam-
ples include developing the deep Gaussian mixture model to
learn normal events [15], [16], applying adversarial learn-
ing to identify abnormal frames [17], [18], and performing
recurrent neural network-based sparsity learning for anomaly
detection [6].

Real-time detection of anomalies has been the focus of
several classical [1], [19] as well as deep learning-based
methods [2], [20]. The latter type of methods has gener-
ally achieved superior performance with high computational
costs, whereas the methods of the former type execute with
low computational resources but provide lower performance.
For enabling the real-time detection, the complexity of mod-
els must be reduced. Therefore, many efforts have aimed
at low complexity such as cascading the local and global
descriptors [21], combining the low complexity features only
rather than high-level semantic features [22], using a spa-
tiotemporal auto-encoder network to extract abnormal behav-
iors automatically [23], and creating spatiotemporal cuboids
by dynamically extracting temporal features [24]. Among the
deep learning methods, an interesting approach proposed by
Kim et al. [13] attempts to eliminate the need for training
3D CNNs using a video dataset. In particular, it suggests
to exploiting 2D CNNs pre-trained on images for learning
both spatial and temporal information. This approach enables
the use of many readily available image-trained 2D CNNss,
and also significantly reduces the requirements for compu-
tational and memory resources. The current paper attempts
to exploit the strength of the aforementioned approach by
extending it to the specific problem of crowd abnormal-
ities detection, and contributes to the state-of-the-art by
improving the detection accuracy while limiting the resource
loads.

Following are the major contributions of this study.

o The paper reviews the recent developments in crowd
abnormality detection to determine a common set of
abnormalities to cover a wider set of abnormal behaviors
in crowded scenes. It focuses on two common cate-
gories, i.e., escape panics and violent interactions. Some
examples of the former type of crowd unusual activities
include crowd running in one direction, crowd dispers-
ing from a central point, and activities involving crowd
chaos or evacuation. Similarly, common examples of
violent interactions found in crowded scenes include
assault, fighting, trampling.

o The study combines the detection of various commonly
found abnormal behaviors in a crowded scene. In this
way, after identifying the specifics of the selected abnor-
mal events, most relevant datasets are used to guide the
training process of an abnormal event detection model.

o The paper makes a few contributions to improve specif-
ically the efficiency of the proposed detection system.
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The study makes use of advanced deep learning architec-
tures to incorporate both spatial and temporal informa-
tion simultaneously. Thus, a new model is proposed that
achieves the best performance with relatively shallower
network depth.

« To further enhance the efficiency, the approach employs
an advanced method of motion representation within
the temporal stream, thus avoiding the use of expensive
optical flow, yet utilizing the motion features to recog-
nize the behavior with high accuracy. For this purpose,
an existing method of general behavior recognition is
extended in the specialized context of crowd abnormal-
ities detection.

« Similarly, the use of only the interesting parts of frames
is proposed to avoid processing of irrelevant volumes of
pixels.

In the rest of this paper, related studies are outlined in the
next section. Section III discusses the proposed approach,
whereas Section IV provides details of experiments and eval-
uation of the approach. Finally, Section V concludes the

paper.

Il. RELATED WORK

This section reviews the recent research focused on proposing
efficient methods for autonomous monitoring systems for
crowd abnormal events. A summary of the state-of-the-art
anomaly detection methods is provided in Table 1.

A. TRADITIONAL METHODS
Several supervised methods, which require data labeled as
both normal and abnormal classes, have been proposed to
detect abnormal events and behaviors. Ullah ef al. [1] devel-
oped a Gaussian kernel-based integration model that inte-
grates spatiotemporal features to capture anomalous entities.
A recurrent conditional random field (R-CRF) is then trained
using these features to detect anomalies. In [2], object-centric
convolutional auto-encoders are used to learn motion and
appearance information. Training samples are divided into
clusters, each containing a certain kind of normality. A binary
classifier then trains by separating the positively labeled data
points in a cluster from those negatively labeled in all other
clusters. Biswas and Gupta [3] represent motion using feature
matrices that are decomposed into sparse components corre-
sponding to abnormal activities. Khan et al. [5] proposed a
method based on outlier rejection [5] that excludes the pixels
containing the direction of motion unconforming with the
dominant motion direction. They carried out classification
using uni-variate Gaussian discriminant analysis with the
K-means algorithm. Zhou et al. [6] proposed AnomalyNet
that uses three enhanced neural processing blocks jointly
for feature learning, sparse representation, and dictionary
learning.

Another category known as semi-supervised methods
learns a normalcy model only (one-class classification) from
a provided normal training set. For example, the texture
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TABLE 1. Categorization of anomaly detection methods.

Reference Supervision Feature/ Model Type(s) of | Dataset(s)
category anomaly
Traditional Methods
Ullah et al. [1] Fully supervised Spatiotemporal, R-CRF NP, AP, EP, UCSD, UMN, UCD
DV
Tonescu et al. [2] Fully supervised Motion gradient, object-centric AE NP, EP, DV UCSD, Avenue, UMN, ShanghaiTech
Biswas and Gupta [3] Fully supervised Motion, sparse component tracking NP, EP UCSD, UMN
Khan et al. [5] Fully supervised Histogram of super-pixel, Gaussian NP, EP, TA UCSD, UMN, LV
discriminant analysis
Zhou et al. [6] Fully supervised Fused motion, AnomalyNet NP, EP, DV UCSD, Avenue, UMN
Hao et al. [19] Semi supervised Spatiotemporal, Texture classification EP UMN
Hatirnaz et al. [20] Semi supervised Motion, semantic search EP, DV UMN, PETS2009
Chaker et al. [4] Semi supervised Motion tracklets, Social network model NP, AP UCSD
Zhang et al. [10] Semi supervised Image appearance, fluid forces features NP, EP UCSD, UMN
Singh et al. [14] Semi supervised OF magnitude and directions, KNN, EP UMN, PETS2009, Avenue
Kmeans
Lietal. [21] Unsupervised Spatial-temporal, dictionary learning NP, EP UCSD, UMN
Hu et al. [22] Unsupervised Motion, dictionary learning NP, EP, DV UCSD, UMN, Avenue, PETS2009
Bansod et al. [23] Unsupervised HoMM, K-means clustering NP, EP UCSD, UMN
Yuan et al. [24] Training-less Structural motion, 3D-DCT NP, EP UCSD, UMN
Sikdar and Chowdhury Training-less Motion, 3D-DCT NP, EP, DV UCSD, UMN, CUHK-Avenue,
[25] ShanghaiTech
CNN-Based Method
Sabokrou et al. [18] Fully supervised CNN, Sparse AE NP, DV UCSD, Subway
Singh et al.[7] Fully supervised CNN, Ensemble of CNNs NP, DV UCSD, Avenue
Shao et al. [8] Fully supervised MC-CNN, MIR-OF EP, TA, VL IR-Flying
Lin et al. [9] Fully supervised CNN, C3DGAN VL, DV SHADE
Farooq et al. [26] Fully supervised FTLE field, CNN DV UCF, UMN, PETS2009, NGSIM
Xu et al. [27] Fully supervised Local feature tracklets, GMM, CNN EP UMN, PETS S3
Direkoglu [28] Fully supervised MII, CNN EP UMN, PETS2009
Hasan et al. [29] Semi supervised CNN, motion, Convolutional AE NP, DV UCSD, Avenue
Hu et al. [30] Semi supervised HLSOF, Faster R-CNN, SVM NP, EP, DV UCSD, UMN, Avenue, Subway exit
Ramchandran and Unsupervised Edge images, Canny edge detector NP, EP UCSD, Avenue
Sangaiah [31]
Lietal. [32] Unsupervised 3D gradient, ST-AAE, ST-CAE NP, EP UCSD, UMN, Avenue
Wang et al. [33] Unsupervised FCN, VAE NP, EP UCSD, UMN, Avenue, PETS
Nawaratne et al. [34] Training-less CNN, Active Learning with Fuzzy NP, DV UCSD, Avenue
Aggregation
Fan et al. [35] Supervised Spatiotemporal auto-encoder CNN NP, EP UCSD, UMN
Lietal. [36] Supervised Attention-based spatial stream, optical VL Hockey fights, Movies, Violent flows
flow, CNN
Asad et al. [37] Supervised Multi-level future fusion, wide-dense VL Hockey fights, Movies, Violent flows,
residual block BEHAVE
Ullah et al. [38] Supervised MobileNet CNN, 3D CNN VL Hockey fights, Movies, Violent flows
Song et al. [39] Supervised Key frames sampling, 3D CNN VL Hockey fights, Movies, Violent flows
NP: Non pedestrians EP: Escape panics AP: Anomalous pedestrian motion patterns
VL: Violence DV: Deviation from observed behavior TA: Traffic accidents/ abnormalities

extraction method proposed by Hao er al. [19] employs
Gabor-filtered textures with the highest information entropy
values to improve extraction of textures with rich details
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of crowd motion. They identified abnormal behaviors
based on gray level co-occurrence matrix model. Recently,
Hatirnaz et al. [20] developed a concept-based search
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interface based on optical flow features that annotating videos
using a semantic metadata model. Chaker et al. [4] use a
social network model to capture the crowd interaction using
an unsupervised framework. They first create spatiotemporal
cuboids by partitioning a video scene and then model the
crowd behavior in each cuboid using local social networks
(LSN), which are then used to build a global social network
for a scene that detects and localizes abnormal behaviors.
Zhang et al. [10] adopted the image appearance and fluid
forces features to represent the crowd motion in a consis-
tency group. They define each consistency group to contain
pedestrians with similar spatial information, which provides a
scene perception. A one-class SVM is used to detect anoma-
lies. Singh et al. [14] detect abnormalities in crowd motion
patterns based on motion magnitude and direction determined
by optical flow.

Unsupervised methods work based on an assumption that
majority of data in unlabeled dataset follow a trend, so the
behaviors found in the least fit data are considered as
anomalous. Several approaches have been proposed in the
literature that distinguish data based on inter-data relation-
ships. Li et al. [21] proposed an approach that represents
activity patterns within a video cube using a codebook and
then uses a reconstruction-cost criterion to detect anoma-
lies. Hu er al. [22] used contextual gradients for small
regions within the events to construct a histogram descriptor
for abnormal event detection. Bansod et al. [23] employed
histogram of magnitude and momentum (HoMM) features
to incorporate appearance and motion characteristics and
learned the behavior of objects using a clustering technique.
Methods that do not require training data are often referred to
as training-less approaches. These methods rely only on the
test video inferences and learn spontaneously by parameter
adjustments and adaptation. Yuan et al. [24] developed a
structural context descriptor (SCD) based on particle inter-
action to represent crowd anomaly. It tracks the targets in
different frames using 3D discrete cosine transform (DCT).
Recently, Sikdar and Chowdhury [25] proposed a frame-
work that detects objects under motion using a multi-object
association-based mechanism. A temporal saliency guided
optical flow map then described local motions in the video
frames. Once the local descriptors are constructed, the mag-
nitude of local disruption is calculated. A frame is anomalous
if the local changes are beyond a threshold value.

B. DEEP LEARNING-BASED METHODS

CNN-based supervised methods have been proposed to detect
various anomalous events and behavior. Sabokrou et al. [18]
take a pixel-wise average of video frames to create a sequence
to be passed on to a pre-trained fully convolutional network,
which generates multiple grids (represented as feature vectors
set) describing a specific region of the input. The feature
vectors farther from the reference model are detected as
describing an anomaly. Singh et al. [7] employed an aggre-
gation of several pre-trained CNN models for anomaly detec-
tion. An ensemble of different fine-tuned CNN architectures
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allows extraction of distinctive crowd features to identify
the characteristics of normal and anomalous events in the
crowded scenes. Shao et al. [8] built an unmanned aerial
vehicles (UAV) system that adopts crowd density and velocity
estimation techniques based on multitask cascading CNN
(MC-CNN) and multi-scale infrared optical flow (MIR-OF),
respectively, and compares the value of fused descriptors with
respective threshold to determine abnormal crowd behavior.
Lin et al. [9] collected a large synthetic dataset to simu-
late commonly found abnormal events and behaviors. They
adopted 3D CNN as backbone and applied a self-attention
mechanism to further improve the abnormality detection per-
formance. To reduce the gap between the synthetic data and
real-world situations, they designed a Cyclic 3D Generative
Adversarial Network (C3DGAN) that transforms the syn-
thetic videos into realistic ones. Farooq et al. [26] proposed
the use of finite-time Lyapunov exponent (FTLE) field to
represent crowd-dominant motion and used a CNN to detect
divergence behavior in crowded scenes. Xu et al. [27] pro-
posed an approach that detects crowd escape panic behavior
by using a dual-channel CNN. It performs spatiotempo-
ral segmentation, and a feature descriptor is defined based
on attributes of feature points. Direkoglu [28] proposed an
approach based on a new Motion Information Image (MII)
model, and used a CNN to detect abnormal events containing
panic and escape behaviors. A spatiotemporal auto-encoder
was proposed [35] that automatically learns and extracts the
examples of abnormal behavior from datasets to be used
by a classification CNN. Li et al. [36] fuse attention based
spatial RGB stream with commonly used temporal and spatial
streams to propose a multi-mode fusion method to detect
violence. Asad et al. [37] detect violence by combining a
CNN and a wide-dense residual block to learn spatial features
and LSTM units to learn temporal features. Ullah et al. [38]
use a lightweight CNN to identify frames containing persons
and pass those frames to a 3D CNN for detection of abnor-
malities. Similarly, a 3D CNN is used in [39] that samples the
key frames based on gray centroid prior to passing them for
classification.

Semi-supervised approaches have used CNNs to learn nor-
mal events and behavior and detected abnormalities based
on deviation from the normalcy. Hasan et al. [29] utilized an
auto-encoder to adopt handcrafted features containing motion
information and to learn temporal uniformity in videos. The
fundamental idea is that the auto-encoder will reconstruct the
motion sequences found in normal videos with low error as
compared with those found in anomalous videos. So, if a
frame results in high reconstruction error, it is considered
as containing anomaly. Hu et al. [30] used Faster Regional
CNN (Faster R-CNN) to detect objects and Histogram of
Large-Scale Optical Flow (HLSOF) to define their action.
A multiple instance SVM is trained and used to detect abnor-
mal behavior.

Unsupervised and training-less methods have mainly
focused on detection of non-pedestrians and escape panic
behaviors. Ramchandran and Sangaiah [31] developed an
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FIGURE 1. The overall structure of the crowd abnormal behavior recognition approach.

unsupervised learning framework that generates recon-
structed frames after making a combined input of raw image
sequences and edge image sequences to the convolutional
auto encoder LSTM model. The model detects anomaly by
calculating reconstruction error. Li et al. [32] used a spatial-
temporal adversarial auto-encoder (ST-AAE) and a spatial-
temporal convolutional auto-encoder (ST-CAE) that apply
3D convolution and devolution, respectively, to detect pat-
terns from temporal dimensions. Anomalies are detected in
two steps. First, they apply ST-AAE to filter out clearly nor-
mal cuboids and classify apparently suspicious cuboids from
raw 3D video cuboids. Next, ST-CAE is employed to iden-
tify the specific anomalous patches from suspicious cuboids
by determining the reconstruction error. Wang et al. [33]
designed new generative models to detect abnormal objects.
They extract the foreground using a pre-trained FCN and
calculate the optical flow for motion features, which are
then used as input to two neural network models that fil-
ter normal samples. Finally, the reconstruction error of the
input with a preset threshold determined during training
is used to detect the abnormalities. Nawaratne et al. [34]
have proposed a training-less incremental spatiotemporal
learner that makes use of active learning with fuzzy aggre-
gation of CNN features to keep track of new anoma-
lies by continuously developing the definitions of normal
behavior.
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llIl. THE PROPOSED APPROACH

This work proposes an approach to detect abnormal behav-
iors in videos containing crowded scenes. To achieve high
performance in detection, this approach makes use of both
the spatial appearance information and the complex motion
features to detect and localize anomalies in crowded scenes.
For this purpose, a two-stream CNN structure [40] consist-
ing of a spatial and a temporal stream is used. The for-
mer stream of the CNN learns the spatial characteristics of
objects in the scene, whereas the latter trains on indispens-
able temporal features. In pursuit of reduced computational
complexity, the method makes some improvements in how
the temporal information is extracted. First, unlike previous
works (e.g., [21], [41]) that process densely samples from
each frame, leading to high computational costs, this method
discards the patches that contain little motion information.
So, it uses data from only selected volumes of interest (VOIs)
carrying rich information pertaining to motion. Therefore, for
example, regions where no pedestrians appear are discarded.
Second, to extract and represent the temporal information,
a low computational cost method is applied instead of optical
flow used by several similar approaches in the past. Specifi-
cally, we adopt the stacked grayscale 3-channel image (SG3I)
of Kim and Won [13] for this purpose. Hence, to extract the
VOlIs, our approach applies SG3Is and keeps them in training
the temporal stream of the CNN. A 2D CNN pre-trained
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FIGURE 2. Conversion of sequential video frames into SG31 format.

on still images is adopted by feeding it the SG3Is extracted
from video shots. Figure 1 shows the overall structure of
the proposed approach. The details of generating the input
images and their classification using the pre-trained network
are discussed in the following subsections.

A. INPUT IMAGE FORMATION

The approach uses a two-stream architecture where the spatial
stream learns the spatial appearance of objects in the scene,
whereas the temporal stream learns the motion features found
in consecutive frames of video. Since a pre-trained 2D CNN
is adopted for both spatial and temporal streams, input images
must be created to train each stream. Specifically, representa-
tive RGB images are formed to be input to the spatial stream,
whereas SG3I images are provided as input to the temporal
stream. The following subsections provide more details on the
generation and processing of 2D images from video frames
for both streams.

1) SG3I IMAGES FOR TEMPORAL STREAM

As mentioned previously, our approach aims to eliminate the
regions with little motion information. To this end, we use the
stacked grayscale 3-channel image (SG3I) format [13], as it
has been shown to detect motion effectively while reducing
the computational expense involved in other approaches, such
as optical flow. The VOIs containing informative details of
the event are obtained in two steps: (i) converting to the
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SG3I format, and (ii) determining if the VOIs contain useful
information or noise.

The conversion to SG3I involves creating a single
3-channel RGB color image from three sequential frames
extracted from the video. For this purpose, first, a grayscale
image is generated from each of the three selected frames,
and then a new image (SG3I) is created that incorporates
each of the grayscale images in its RGB channels. Thus,
the resultant SG3I image is a single-color image in which
the colored regions (i.e., hue) pertain to brightness variations
of the corresponding pixels along the time-axis through the
chosen frames. Figure 2 shows the steps involved in forming
the SG3I images from selected sequential frames. Notice that
the SG3I image shows grayscale output with no hue for a
pixel with an identical value for all three RGB channels.
On the other hand, it shows a color to indicate a displacement
in brightness in case the RGB values differ at a pixel in the
selected frames. In this way, the colored regions resulted by
the pixels with different RGB values effectively represent
the motion patterns. An important configuration to be made
here involves the selection of the three image frames to
create an SG3I. Specifically, on the one hand, the frames
need to be selected uniformly ensuring that the time interval
between them is short enough to avoid noisy motions. On the
other hand, the interval must not be made too short to make
it hard to absorb meaningful information about the action.
To ensure a balance, a technique similar to [13] was applied.
The entire video clip is divided into several sub-clips and
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one SG3I is generated for each sub-clip to ensure selecting
the representative frames. Figure 3 shows a sample of frame
sequences taken from various datasets adopted in this study
and a visualization of their corresponding SG3I images.

Further, to locate the VOIs with useful information, a set of
non-overlapping patches of fixed size are defined to cover the
entire SG3I image. The size of patches is kept as adjustable
to be set once for each dataset in a way that it is small
enough to capture the details of behavior but large enough
to cover the related details of appearance. The VOIs and the
respective pixels are considered informative if at least 70% of
pixels contain motion (i.e., color or hue as determined by the
difference of values among RGB channels in the same pixel
of SG3I) and thus they are preserved by taking an aggregate
of all such VOIs as shown in Figure 1. Other VOIs and their
pixels are considered noise and are discarded. It is important
to note that the spatial size of VOIs extracted from different
datasets may vary since we adjust the size for each dataset.
Therefore, the VOIs are resized continually to make them
consistent with the input requirements of the CNN model.
After processing, the sets of SG3Is obtained from sub-shots
of the video are used to fine-tune the temporal stream of the
CNN.

2) RGB IMAGES FOR SPATIAL STREAM

To enable the model to recognize the spatial appearance of
objects accurately, it is important to select a representative
frame from the video. To ease the difficulty in selecting
the best frame with the object, a technique similar to the
frames of the temporal stream is applied. Therefore, a video
clip is divided into several sub-clips, thus selecting one rep-
resentative frame for each sub-clip. However, there is one
important detail here. Recall that the image inputs (SG3Is)
for the temporal stream were resized to pass only the VOIs
containing motion to the CNN. Therefore, the VOIs from
both types of images, i.e., SG3Is and RGBs, must be cor-
related to ensure a collective meaning for the CNN. Thus,
the method keeps a track of the frames and the pixels con-
taining motion information selected while creating input for
the temporal stream. Specifically, while forming RGB image
input, it selects one of the three frames selected previously to
create SG3I. Then, within the selected frame, it locates and
extracts the VOIs from the same location where the moving
object was previously detected. In this way, after obtaining
multiple RGB images from the video shot, they are used to
finetuning the spatial stream of the CNN.

B. CNN ARCHITECTURE

Xception [42] is adopted after some changes in its architec-
ture to be used as the pre-trained 2D CNN in each of the
two streams. Based on Inception [43], the Xception network
uses a modified depth-wise separable convolution instead of
inception modules to reduce the number of parameters. Also,
to enhance the efficiency and performance, it uses residual
connections originally proposed by ResNet [44] for all flows.
The overall architecture of Xception network contains three
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main flows, i.e., entry, middle, and exit flows. For space
reasons, this section will only focus on the middle flow as
this work makes some modifications to this part. The middle
flow is sometimes referred to as the core structure part, and it
comprises a 9-layer structure that repeats 8 times. Within the
9-layer structure, there are 3 layers each of Relu, separable
Conv2D, and batch normalization. It is important to note here
that the core structure contains a huge number of convolu-
tion layers. Deepening the network is often appropriate in
complex scene classification, however, reducing the number
of convolution layers also greatly affects the network per-
formance, as previously reported in the literature [45], [46].
Therefore, inspired by the work of Shi et al. [47], it was
deemed worthwhile to explore the relationship between the
depth of the network and its performance specific to the
current dataset. For this purpose, we preserved the non-core
(non-repeating) structure of the network and tried with differ-
ent network structures within the core part. Specifically, recall
that each repetition in the core contains 3 layers each of Relu,
separable Conv2D, and batch normalization. Let us call this
combination of layers as RCB. Thus, there are 8 repetitions of
RCBs within the core structure. So, by varying the number of
RCBs, 7 different lightweight network structures (let us call
LWXception) were created such that LWXceptionl contains
1 RCB, LWXception2 contains 2 RCBs, and so on, LW Xcep-
tion7 contains 7 RCBs. The performance of each core struc-
ture was monitored and finally the core structure containing
3 RCB layers shown in Figure 4 was adopted and used within
both spatial and temporal streams, because of its high score in
terms of accuracy and number of parameters. More details of
the results of experiments with each configuration are given
in Section 4. Note that both types of images used by this
work (RGB and SG3I) are compatible with the input format of
Xception, and thus are directly fed to fine-tune the individual
streams after resizing and augmentation as previously shown
in Figure 1.

C. FINE-TUNING AND TESTING

For the fine-tuning on the selected datasets, RGB and SG3I
images were obtained using the techniques explained in
Section 3.1. To generate the images during the training and
testing phases, the respective split of each dataset was used
as detailed later in Section 4. Here, the batch size was set as
32, and some data augmentation techniques were applied for
both types of images. Specifically, the system first performed
a random cropping to the center for both RGBs and SG3Is,
followed by a horizontal flip, and finally resized them to
229 % 229. Further, the model performance was analyzed with
various network configurations by applying different opti-
mizers and various values of the learning rate and momentum.
In general, whenever the loss reduction was not observed
for over 10 epochs after setting a specific learning rate, we
reduced the learning rate by 1/10. The specifications of each
of the three optimizers used by the system are as given in
the following. Stochastic gradient descent (SGD) was used
with a learning rate of 0.001, momentum 0.9, weight decay
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FIGURE 3. Sample of SG31 images generated for hockey fights, UMN, and violent flows.
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FIGURE 4. Proposed structure of Xception network used within each stream of CNN.

of 0.0005, and a nesterov value of False. RMSProp was used
with a learning rate of 0.001, rho value of 0.9, and epsilon
value of 1 x 1077, Adam was used with a learning rate
of 0.001, betal value of 0.9, beta2 value of 0.999, epsilon
value of 1 x 1078, and amsgrad value of false. Since the last
network configuration yielded the best results, the same was
adopted for testing and the rest of experiments discussed in
the next section.

IV. EXPERIMENTS

We evaluated the proposed approach using several exper-
iments designed to assess its capability in detecting and
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localizing abnormalities in crowded scenes, as well as to
compare it with the state-of-the-art methods proposed in
the literature. The system was implemented in Python using
Keras with TensorFlow 2.0 on Ubuntu 20.04 OS. As detailed
later in this section, during training and experiments, both
CPU-only (Intel i7-8650 @2.11 GHz 32GB RAM) and GPU
(NVIDIA GTX 1080Ti 11 GB) configurations were used.
In general, three main types of experiments were performed.
First, the best network configuration was determined in terms
of various parameters and the architecture of the Xception
network and layers in the core structural part. Here, we also
determine the effectiveness of the use of the volumes of
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interest instead of the entire frame. Second, the abnormality
detection capability of the proposed model was evaluated
by using various metrics. Third, the performance of the
approach is compared with the state-of-the-art crowd abnor-
mality detection methods.

A. DATASETS

The performance of the proposed approach was evaluated
by adopting three public datasets. Specifically, UMN [48],
Hockey Fights [49], and Violent Flows [50] datasets were
used. Note that we selected these datasets because of their
close relevance to the two general categories of crowd abnor-
malities addressed in this study, i.e., escape panic and violent
interactions.

UMN dataset pertaining to unusual crowd activity com-
prises 11 videos with a resolution of 240 x 320 each contain-
ing both normal and abnormal crowd behaviors. The videos
are shot in three different scene settings—a lawn, interior,
and plaza. The number of videos in the first scene, second
scene, and third scene are 2, 6, and 3, respectively. To enable
the network to learn the specifics of abnormal behavior,
a uniform strategy for obtaining and using the train/test splits
was adopted. Specifically, while testing a particular video in
a scene, the video being tested was left out and the remaining
videos in that scene were used to train the model.

The Hockey Fights dataset comprises 1000 video clips
with a resolution of 360 x 280 divided into two groups, i.e.,
fights and non-fights. The videos are shot from various angles
and both normal and violent activities occur in a comparably
dynamic setting. To meet the requirements of a crowded scene
violence, 240 video clips involving several players (crowded
scene) were selected manually for training. Further, these
videos were divided into 3 separate groups, each containing
80 videos (40 each from the fights and non-fights groups).
Here, we created a separate split of 20 videos to be used for
testing.

The Violent Flows dataset includes 246 training and
21 testing videos of resolution 320 x 240 obtained from
YouTube that contain real-world crowds engaging in violent
activities. All the videos are produced in an uncontrolled
environment, thus providing a wide range of scene and action
types. The videos in the training set are divided into 5 distinct
sets. Each of the first 3 sets contains 25 videos, each of
violence and non-violence type. The remaining 2 sets con-
tain 24 each of violence and non-violence. Here, we used the
testing split of 21 videos separately provided by the authors
of the dataset.

B. PERFORMANCE EVALUATION OF THE APPROACH

In this section, before presenting the results of overall system
performance in various settings, we first compare the results
achieved by unique structures of Xception network. Recall
that the current study intended to explore the relationship
between the depth of the network and its performance after
fine-tuning on the SG3I images. Therefore, as mentioned in
Section 3.2, seven different lightweight network structures
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TABLE 2. Comparison (classification accuracy and number of parameters)
of unique structures of Xception using SG31.

Method Accuracy Parameters
UMN Hockey Violent
Fights Flows

Xception 0.9905 0.9952 0.9859 20,873,774
LWXception7 0.9905 0.9952 0.9859 19,255,430
LWXception6 0.9905 0.9952 0.9859 17,637,086
LWXception5 0.9912 0.9971 0.9881 16,018,742
LWXception4 0.9912 0.9971 0.9881 14,400,398
LWXception3 0.9912 0.9971 0.9881 12,782,054
LWXception2 0.9901 0.9958 0.9866 11,163,710
LWXceptionl 0.9901 0.9958 0.9866 9,545,366

(LWXceptionl to LWXception7) were created with a differ-
ent number of repetitions of the core structure. All the seven
network structures and the original Xception were trained
under the same conditions and the accuracy in each dataset
and the number of parameters were recorded. The results are
shown in Table 2. The structures LW Xception3, LW Xcep-
tion4, and LW Xception5 comprising 3, 4, and 5 combinations
of RCB (relu, separable Conv2D, batch normalization) layers
perform equal and provide the best accuracy as compared
with the other structures. However, considering the number of
parameters, the use of LWXception3 seems more appropriate
as it provides the highest accuracy with a relatively shallower
network structure. Hence, this structure was adopted to be
used within both spatial and temporal streams. The same
structure was used in all other experiments. In the rest of
this section, Xception refers to the LW Xception3 lightweight
structure of the network.

In the next step, we tested the model using the test split
of each dataset discussed previously. The performance of
the model was measured in terms of the number of correct
predictions made against both abnormal and normal classes.
The confusion matrix in Figure 5 shows the results. Among
all the abnormal test cases, 99.26%, 99.82%, and 99.01%
are correctly detected for UMN, hockey fights, and violent
flows datasets, respectively. Among all the normal test cases,
98.98%, 99.59%, and 98.61 are correctly classified for UMN,
hockey fights, and violent flows datasets, respectively. One
can see from the results that the model is slightly more
likely to mis-classify normal behavior as abnormal. However,
as given by the nature of the problem, the correct detection
of abnormalities has priority over the other case. There-
fore, it was deemed acceptable to have some false positives
rather than mis-classifying the abnormal behavior has nor-
mal. So far as the comparative results on different datasets
are concerned, the misclassifications have the highest number
in case of violent flows dataset. One probable reason for this
could be that, among the three datasets, violent flows dataset
contains the most complex scenes and also involves a vast
variety in terms of perspectives and backgrounds. To further
evaluate the true positive and false positive rates of the model
for each dataset, the ROC curves are obtained. Figure 6 shows
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TABLE 3. Classification results of the proposed approach on UMN
dataset.

Spatial Temporal Fused Fused
Two Two
Stream Stream
(Full (VOIs)
Frame)

Recall 0.9799 0.9487 0.9899 0.9926
FP Rate 0.0276 0.0555 0.0198 0.0102
Precision 0.9726 0.9447 0.9804 0.9898
Accuracy 0.9762 0.9466 0.9851 0.9912

the ROC curves and AUC values for each dataset. The model
achieves the AUC values of 99.68, 99.76, and 98.91 on UMN,
hockey fights, and violent flows datasets, respectively.

As the approach presented here uses two separate networks
in the two-stream architecture, experiments are performed
to study the role of each stream. The abnormality detection
accuracies between the two streams are determined. Here,
5 RGB frames per video were used to fine-tune the spatial
stream and 30 RGB frames to test it. On the other hand,
10 SG3I images per video were used for fine-tuning the
temporal stream and 10 SG3Is to test it. The results are shown
in Table 3, Table 4, and Table 5 for UMN, hockey fights,
and violent flows datasets, respectively. One can see that the
spatial stream CNN consistently yields better results com-
parative to the temporal stream on all three datasets. How-
ever, both streams augment each other when fused, as clear
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TABLE 4. Classification results of the proposed approach on Hockey
fights dataset.

Spatial Temporal Fused Fused

Two Two
Stream Stream
(Full (VOIs)

Frame)

Recall 0.9751 0.9482 0.9900 0.9982
FP Rate 0.0299 0.0567 0.0144 0.0041
Precision 0.9702 0.9436 0.9857 0.9959
Accuracy 0.9726 0.9458 0.9878 0.9971

from the results. Further, the results show that the proposed
method of using the volumes of interest (VOIs) instead of
the entire frame enables the model to learn the features of
abnormal behavior better. In this way, an improvement of
0.61%, 0.93%, and 1.72% can be seen in average accuracies
on UMN, hockey fights, and violent flows datasets, respec-
tively, on top of the fused two-stream accuracies yielded by
a full-frame equivalent of the model. A comparison of the
performance results achieved with the two-stream architec-
ture using VOIs on different splits of the three datasets is
shown in Figure 7. The comparison shows that the overall
performance of the model remains almost equal in various
splits of the datasets.

Furthermore, recall that one of the major goals for com-
mencing this study was to recognize abnormal behavior
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TABLE 5. Classification results of the proposed approach on Violent
flows dataset.

TABLE 6. Execution times (frames per second) taken for input frames
generation for the temporal stream.

in crowded scenes with high accuracy while reducing the
computational complexity involved in the optical flow com-
putations required for the temporal stream. The approach
presented here achieves this goal by replacing the optical flow
frames in 3D CNNs with the SG3Is in the pre-trained 2D
CNN. However, it is important to confirm the computational
effectiveness of the use of SG3Is.

So, the next set of experiments was concerned with deter-
mining the execution times (in terms of frames per second)
of the SG3Is method used in this study with the optical
flow [11] and the dynamic image [12]. The results are shown
in Table 6. It is important to mention here that we conducted
this comparison to reinforce the results obtained by the SG31
authors [13] on the datasets encompassing a different con-
text used in the current study. Note that we used our GPU
configuration mentioned previously to get the optical flow,
whereas the CPU-only configuration was used to measure
the fps for the other two methods. As shown in the table,
SG3I method results in significantly higher performance in
generating input frames as compared with the other two
methods, even though GPU was used to execute the optical
flows.

C. COMPARISON WITH THE STATE-OF-THE-ART AND
OTHER NETWORKS

To further evaluate the proposed approach for detection of
abnormal behaviors in crowded environments, a comparison
was conducted with the state-of-the-art works for the same
purpose presented in the literature. For this comparison, some
representative methods that yielded the highest accuracy in
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Spatial Temporal Fused Fused Dataset Optical Flow Dynamic SG3I
Two Two Image
Stream Stream UMN 16.21 171.49 712.89
(Full (VOIs) -
Frame) Hockey Fights 16.77 177.85 745.70
Recall 0.9567 0.9211 0.9703 0.9901 Violent Flows 15.90 180.12 793.36
FP Rate 0.0488 0.0757 0.0285 0.0139
Precision 0.9515 0.9241 0.9715 0.9862
Accuracy 0.9540 0.9227 0.9709 0.9881

both categories addressed in this study (i.e., escape panic
and violent interactions) were selected. Furthermore, since
our dataset of SG3I images can be used with any pre-trained
CNN, we also intended to determine the classification results
by replacing the proposed modified Xception model with two
other publicly available pre-trained models, i.e., Inception-
vl and DenseNet. It is important to note here that, since
researchers have used various metrics to present their results,
the comparative results will be presented using the metrics
employed in the original paper. So, the methods in the escape
panic category have used a mix of AUC values and accu-
racy, whereas the methods in violent flows category rely on
accuracy as the main metric to report performance However,
to conduct a more inclusive comparison of the performance
of the current approach with others, the results are presented
using both criteria.

The results of comparison with approaches in the escape
panic category are tabulated in Table 7. The proposed method
using the modified Xception model in two-stream archi-
tecture outperforms the existing methods in UMN dataset
while providing AUC and accuracy values of 99.68% and
99.12%, respectively. In this way, the AUC value of the pro-
posed method is better than the recently published approaches
in this category including Fan et al. (99.6%), Hu et al.
(98.9%), and Li et al. (99.60%). Similarly, the method pro-
vides higher accuracy as compared to the existing methods,
such as Farooq et al. (98.75%) and Direkoglu (99.08%).
Table 8 presents the results of comparison with approaches in
the violent flows category. The current work provides better
results in both Hockey Fights and Violent Flows datasets.
Specifically, it provides an accuracy of 99.71% on hockey
fights dataset as compared with the existing approaches in
the category such as Li et al. (99.50%), Asad et al. (98.80%),
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TABLE 7. Comparison of classification accuracy with the state-of-the-art
methods in escape panic category.

Method AUC% (UMN) Accuracy% (UMN)

Fan et al. [35] 99.6 -
Farooq et al. - 98.75

[26]

Direkoglu [28] - 99.08
Hu et al. [30] 98.90 -
Lietal. [32] 99.60 -

Ours 98.99 98.33

(Inception-v1)

Ours 98.03 97.85
(DenseNet)

Ours 99.68 99.12
(Xception)

TABLE 8. Comparison of classification accuracy with the state-of-the-art
methods in violent interactions category.

Method AUC% AUC% Accuracy% | Accuracy%
(Hockey | (Violent (Hockey (Violent
Fights) Flows) Fights) Flows)
Li et al. [36] - - 99.50 -
Asad et al. - - 98.80 97.10
[37]
Ullah et al. - - 96.00 98.00
[38]
Song et al. - - 99.62 94.30
[39]
Ours 99.05 97.63 98.54 97.12
(Inception-
vl)
Ours 97.93 97.18 97.10 96.44
(DenseNet)
Ours 99.76 98.91 99.71 98.81
(Xception)

Ullah et al. (96%), and Song et al. (99.62%). Also, this
approach shows an improvement in accuracy over the men-
tioned methods in violent flows dataset by providing an accu-
racy of 98.81% as compared with 97.10%, 98%, and 94.30%
of Asad et al., Ullah et al., and Song et al., respectively. The
results in both categories of abnormal behaviors show that the
approach works best with the Xception model as compared
with Inception-v1 and DenseNet.

V. CONCLUSION

In this paper, an approach based on two-stream CNNs for
the detection of abnormal behavior in crowded scenes was
presented. The approach adopts a modified form of pre-
trained 2D CNN for both the spatial and temporal streams.
For this purpose, RGB image frames and the SG3Is (stacked
grayscale 3-channel images) are used to fine-tune the spatial
and temporal streams, respectively. Using SG3Is to represent
motion features allows to avoid the use of computationally
expensive alternatives for the temporal stream, such as opti-
cal flow or dynamic images. Consequently, the proposed
approach achieves relatively better recognition accuracy as
compared to the existing methods, while providing perfor-
mance improvements comparative to the use of alternatives
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for the temporal stream. The experiments on UMN, hockey
fights, and violent flows datasets show that the approach can
efficiently detect different abnormalities included in these
datasets with an accuracy of 99.12%, 99.71%, and 98.81%,
respectively.
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