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ABSTRACT This paper presents PeriodNet, a non-autoregressive (non-AR) waveform generative model
with a new model structure for modeling periodic and aperiodic components in speech waveforms. Non-AR
raw waveform generative models have enabled the fast generation of high-quality waveforms. However,
the variations of waveforms that these models can reconstruct are limited by training data. In addition,
typical non-AR models reconstruct a speech waveform from a single Gaussian input despite the mixture
of periodic and aperiodic signals in speech. These may significantly affect the waveform generation process
in some applications such as singing voice synthesis systems, which require reproducing accurate pitch and
natural sounds with less periodicity, including husky and breath sounds. PeriodNet uses a parallel or series
model structure to model a speech waveform to tackle these problems. Two sub-generators connected in
parallel or in series take an explicit periodic and aperiodic signal (sine wave and Gaussian noise) as an input.
Since PeriodNet models periodic and aperiodic components by focusing on whether these input signals
are autocorrelated or not, it does not require external periodic/aperiodic decomposition during training.
Experimental results show that our proposed structure improves the naturalness of generated waveforms.
We also show that speech waveforms with a pitch outside of the training data range can be generated with
more naturalness.

INDEX TERMS Generative adversarial network, neural vocoder, signal processing, singing voice synthesis,
waveform generative model.

I. INTRODUCTION
Speech synthesis technology has been rapidly advancing
with the introduction of neural networks (NNs). Text-to-
speech synthesis (TTS) and singing voice synthesis (SVS)
are techniques for generating speech and singing voices on
the basis of given input text and musical scores, respectively
[1]–[7]. In typical TTS and SVS systems, a low-dimensional
representation of speech and singing voices (sometimes
termed an acoustic feature) is predicted by an acoustic
model, and a corresponding waveform is generated by a
vocoder. Conventional vocoders such as STRAIGHT [8]
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and WORLD [9] are carefully engineered and knowledge-
based procedures that are based on signal processing. These
vocoders rely on many oversimplified assumptions, such as a
time-invariant linear filter and a stationary Gaussian process.
Since these assumptions act as constraints on reconstructing
speech waveforms and can cause detailed temporal structure
and phase information to be lost, the generated speech
waveforms can be degraded.

In recent years, NN-based raw waveform generative
models have been highly successful. WaveNet [10] and
SampleRNN [11] demonstrate remarkable performance by
directly modeling the distribution of waveform samples.
Since these models can be used as a vocoder by modeling
waveforms by conditioning acoustic features [12], they have
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succeeded in replacing the conventional vocoders by giving
speech applications the benefit of generating high-quality
speech waveforms [13]–[15]. They have a huge network
architecture with AR mechanisms, which suffer from a
slow inference speed. Although some compact AR models
[16], [17] have been proposed to improve the inference speed,
carefully engineered optimization is required for achieving an
adequate inference speed. Therefore, such ARmodels are not
suited for real-time applications.

Recently, significant efforts have been put into the
development of non-AR waveform generative models. Flow-
based models, including inverse autoregressive flows (IAFs)
[18], [19], generative flows (Glows) [20]–[22], and con-
tinuous normalizing flows (CNFs) [23], [24], generative
adversarial network (GAN)-based models [25]–[30], and
variational auto-encoder (VAE)-based models [31] have been
proposed. Although these models can efficiently generate
waveform samples in parallel, the generated audio qual-
ity is sometimes inferior to that of AR models. Recent
attempts [32], [33] have incorporated diffusion probabilistic
models to reduce the gap between non-AR and AR models
in terms of audio quality. However, as can be seen from the
fact that most previous works used a moderate sampling rate
such as 16 kHz or 24 kHz, it is still not easy to generate high-
fidelity waveforms with high sampling rates (e.g., 48 kHz) in
real time.

While NN-based vocoders (neural vocoders) can generate
high-fidelity speech waveforms without being restricted
by knowledge or by assumptions, the lack of acoustic
controllability and robustness to input acoustic features are
issues. In fact, if the pitch given to these models is outside
the range of the training data, it is difficult to generate a
speech waveform with a corresponding pitch. Even if the
given input pitch is within the range of the training data, these
vocoders sometimes generate a waveform with a different
pitch. To address this problem, an explicit periodic signal
such as a sine wave is used as the input signal for non-AR
models [34], [35]. The authors of [36], [37] introduced a
pitch-dependent convolution mechanism into AR and non-
AR neural vocoders to tackle this problem.

When neural vocoders are used in SVS systems, they
should also have the ability to generate components with
less periodicity, such as husky voice and breath sounds,
in addition to having a high pitch accuracy. Since it is
known that a speech waveform contains a mixture of
periodic and aperiodic components, proper reconstruction
of both components is essential. There are several methods
for decomposing the periodic and aperiodic components
contained in natural waveforms [38]–[40]. However, it is
difficult to decompose these components from natural
speech waveforms accurately, and it is not optimal to use
these waveforms with decomposition errors as the training
data. To generate speech with less periodicity, the speech
waveform should be modeled by taking into account the
mixture of these components without explicitly separating
them for high-quality waveform generation.

In this paper, we propose PeriodNet, a non-AR raw
waveform generative model with a novel structure for appro-
priately modeling the periodic and aperiodic components in
speech waveforms. Two sub-generators are connected in par-
allel or in series, and each generator reconstructs periodic and
aperiodic waveforms from a sine wave and Gaussian noise.
By using these two signals with different characteristics in
terms of autocorrelation as the input signal, PeriodNet can
model periodic and aperiodic components without explicit
decomposition methods. While we previously considered
these model structures using a female singer’s singing
voice corpus [41] (Sections IV-B1 and IV-B2), this paper
additionally evaluates the effectiveness of PeriodNet with
other singers’ corpora and explicit decomposition techniques.
The main contributions of this paper are summarized as
follows.
• We give details on the training framework of PeriodNet
(Section III-B).

• We show that PeriodNet can model a speech waveform
while appropriately separating periodic and aperiodic
components during the training process by comparing it
with systems that use periodic and aperiodic waveforms
pre-decomposed by using explicit decomposition tech-
niques (Section V).

• We assess the naturalness of generated singing voice
waveforms with different female and male singers and
suggest that PeriodNet is suitable for generating singing
voice waveforms (Section VI).

This paper is organized as follows. In Section II, we review
the recent neural waveform generative models. Section III
introduces our proposed model structure and its training
framework. Sections IV, V, and VI present experimental
evaluations. Finally, Section VII concludes this paper.

II. NEURAL WAVEFORM GENERATIVE MODELS
The modeling of speech waveforms is a challenging task
because they have a high temporal resolution. The pioneer
AR model, called WaveNet [10], enables the direct mod-
eling of speech waveform samples through dilated causal
convolution with a large receptive field. SampleRNN [11]
is an alternative architecture that explicitly models speech
waveforms at different temporal resolutions with multi-scale
recurrent neural networks. A key idea of these models is
using an autoregressive probabilistic model that describes
the distribution of current samples conditioned on previous
waveform samples. These models can be used as a vocoder
by conditioning them with auxiliary features such as acoustic
features, as shown in Fig. 1(a). These AR models can
adequately predict speech waveforms because the sampling
process is strictly serial. However, this serial sampling
makes waveform generation slow, and thus, these models are
impractical for real-time applications. While some compact
AR models [16], [17] can reduce the computational cost
at inference, there is a limitation to how much speed can
be improved because these models are inherently serial and
cannot avoid serial sampling.
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FIGURE 1. Structures of conventional neural waveform modeling.
Acoustic feature representations, such as mel-spectrogram,
mel-cepstrum, and fundamental frequency (F0), are generally used as
auxiliary features.

In contrast, various types of non-AR waveform gener-
ative models have been proposed to overcome the slow
inference speed of AR models. These non-AR models
generate waveforms in parallel from pre-generated signals
such as Gaussian noise, as shown in Fig. 1(b). A teacher-
student-based framework (e.g., Parallel WaveNet [18] and
ClariNet [19]) distills a trained AR teacher WaveNet into an
inverse flow-based student model. The authors of [20]–[22]
incorporated a flow-based generative model based on
Glow [42], which can be directly learned by minimizing the
negative log-likelihood of data without a distillation process.
Another group of non-AR models [25]–[29] is based on an
adversarial training framework [43]. Combining adversarial
loss and auxiliary loss, such as multi-resolution short-time
Fourier transform (STFT) loss and feature matching loss,
enables non-AR models to be learned efficiently. These non-
AR methods often yield lower quality samples than AR
models because they need to generate speech waveforms,
which are inherently serial, with fewer sequential operations.
The authors of WaveGrad [32] and DiffWave [33] recently
utilized diffusion probabilistic models with denoising score
matching for waveform generation to overcome this dete-
rioration. Although these models can achieve high-fidelity
waveform generation, the inference speed tends to be slower
than other non-AR models.

In addition to the data-driven approach described above,
neural waveform generation methods incorporating speech-
related knowledge and assumptions have also been proposed
for both AR and non-AR models. For example, approaches
generating glottal excitation signals [44]–[47] or linear
predictive residual signals [48], [49] have been proposed to
facilitate neural waveform modeling by reducing the burden
of speaker identity and spectral information modeling. The
authors of [34] proposed a non-AR vocoder taking mixed
sine-based excitation inputs made from the fundamental
frequency (F0) and Gaussian noise as inputs, which can
provide accurate pitch control via the manipulation of F0
values. Meanwhile, our previous work [35] presented a
deep auto-encoder-based framework with tailored periodic
and aperiodic inputs. The speech waveform is modeled as
a sum of a periodic component and 24 frequency-banded
aperiodic components by using a carefully designed auto-
encoder-based model; however, this structured model limits
the flexibility of the generator. Although introducing knowl-
edge and assumptions from signal processing brings some
benefits such as improving controllability, interpretability,

FIGURE 2. Structures of proposed neural waveform modeling. Periodic
and aperiodic generators take a sine wave and Gaussian noise, which
have different characteristics in terms of autocorrelation, along with a
sample-level voiced/unvoiced (V/UV) signal.

and training efficiency, this may affect the quality of the
generated waveform.

III. PeriodNet
We propose PeriodNet, which has a parallel or series
model structure to model a speech waveform considering
its periodicity and aperiodicity. PeriodNet consists of two
sub-generators called the periodic generator and aperiodic
generator. They are connected in parallel or in series for
separating periodic and aperiodic components in speech
waveforms, as shown in Fig. 2. Typically, target periodic
and aperiodic waveforms are required when explicitly
modeling periodic and aperiodic waveforms. However,
it is not easy to separate them accurately from natural
waveforms. To model periodic and aperiodic components
without a pre-decomposed waveform, we introduce two
simple assumptions:

1) A speech waveform can represent the sum of periodic
and aperiodic waveforms.

2) Periodic and aperiodic waveforms of speech can be
easily generated from an explicit periodic signal with
autocorrelation (such as a sine wave) and an explicit
aperiodic signal without it (such as noise), respectively.

The proposed parallel and serial model structures are based
on these assumptions and do not require any explicit
periodic/aperiodic decomposition technique during training.
PeriodNet is a non-AR waveform generative model incorpo-
rating these structures into a recent GAN-based waveform
generative model [25]. Moreover, since PeriodNet can
synthesize a periodic waveform from a sine-based periodic
signal, it achieves high-fidelity waveform generation while
attaining pitch controllability.

We explain the model structures of the PeriodNet
generators in Section III-A and a training framework in
Section III-B.

A. MODEL STRUCTURES
We introduce two types of model structures based on the
different assumptions regarding the dependencies between
periodic and aperiodic waveforms. The first one is the
parallel model structure, as shown in Fig. 2(a). This structure
is based on the assumption that periodic and aperiodic
waveforms are independent of each other. A periodic signal
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FIGURE 3. Overview of PeriodNet parallel model. Generator has two sub-generators connected in parallel, and generated waveform is given as
sum of both sub-generators. Generator is trained to minimize multi-resolution STFT loss and adversarial loss with multi-scale discriminator.

consisting of a sine wave and a sample-level voiced/unvoiced
(V/UV) signal is fed into the periodic generator to predict
a periodic waveform. An aperiodic signal consisting of
Gaussian noise and a sample-level V/UV signal is fed into
the aperiodic generator to predict an aperiodic waveform.
The second type is the series model structure, as shown
in Fig. 2(b). This is a model structure that can model
the dependency between aperiodic and periodic waveforms,
taking into account the possibility that the aperiodic wave-
form can change synchronously with the periodic waveform.
To model the dependencies between the two components,
we take advantage of the property that the sine-based periodic
signal is deterministic. The former generator takes a periodic
signal, and the latter generator takes an aperiodic signal and
the output of the former generator. A residual connection is
introduced between the two sub-generators so that the latter
can predict only aperiodic waveforms. Hence, the former
generator works as a periodic generator, and the latter works
as an aperiodic generator.

To use PeriodNet as a vocoder, acoustic features are given
to it as auxiliary features. In the parallel and series models,
different acoustic features can be selected for the auxiliary
features of the periodic and aperiodic generators, making it
possible to obtain a more robust neural vocoder with proper
conditioning.

B. DETAILS OF TRAINING FRAMEWORK
We now give details on the training framework for PeriodNet.
An overview of the PeriodNet parallel model is shown
in Fig. 3. The PeriodNet generatorG is composed of two sub-
generator modules: a periodic generatorG(p) and an aperiodic
generator G(a). The generated samples x̂ are obtained by

x̂ = G(e, z) = G(p)(e)+ G(a)(z), (1)

where e is an explicit periodic signal concatenated with a
sine wave and V/UV signal, and z is an explicit aperiodic
signal concatenated with Gaussian noise and a V/UV signal.
Note that various architectures can be used for periodic and
aperiodic generators. In this paper, we adopt a WaveNet [10]-
like architecture with non-causal dilated convolution and skip
connections.

PeriodNet learns a distribution of realistic waveforms
following an adversarial game between a generator and a dis-
criminator. It uses multiple discriminators (D1,D2, . . . ,DK )

with different temporal resolutions to discriminate between
natural and generated waveform samples. This multi-scale
architecture is motivated by the success of MelGAN [26]
and helps to evaluate features for a different frequency range
of waveform samples. The discriminator Dk discriminates
speech samples with a temporal resolution of 1/k times the
original waveform. The loss function of each discriminator
Dk can be written as

LD(Dk ) = Ex
[
(1− Dk (x))2

]
+ Ee,z

[
Dk (x̂)2

]
, (2)

where x denotes natural waveform samples.
The generator is trained to minimize adversarial loss,

which is designed on the basis of least squares GAN [50].
The adversarial loss for the generator G to deceive the
discriminator Dk is given by

Ladv(G,Dk ) = Ee,z
[(
1− Dk (x̂)

)2]
. (3)

To improve the stability and efficiency of the adversarial
training, multi-resolution STFT loss is used along with
adversarial loss. The STFT loss of the m-th temporal
resolution L<m>sp is calculated as:

L<m>sp (G) = Ee,z,x
[
L<m>sc (x, x̂)+ L<m>mag (x, x̂)

]
, (4)

whereL<m>sc andL<m>mag denote spectral convergence loss and
amplitude spectral loss, respectively. They are given by

L<m>sc (x, x̂) =

∥∥|STFT(x)| − |STFT(x̂)|∥∥F∥∥|STFT(x)|∥∥F , (5)

L<m>mag (x, x̂) =
1
N

∥∥ log |STFT(x)| − log |STFT(x̂)|
∥∥
1, (6)

where ‖ · ‖F and ‖ · ‖1 denote Frobenius and L1 norms,
respectively, and STFT(·) and N denote the amplitude
spectrum and the number of frequency bins, respectively.
Finally, the generator G is optimized to minimize a loss
function LG(G,D) given by

LG(G,D)

=
1
M

M∑
m=1

L<m>sp (G) +
λadv

K

K∑
k=1

Ladv(G,Dk ), (7)

where λadv denotes a hyperparameter of the adversarial loss.
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In the PeriodNet series model, the generated samples are
obtained by

x̂ = G′(e, z) = G′(p)(e)+ G′(a)(G′(p)(e), z), (8)

where G′(p) and G′(a) denote the periodic and aperiodic
generator in the series model, respectively. The series model
is also trained using the adversarial training framework in the
same fashion as the parallel model described above.

IV. EXPERIMENT 1
Following the explanation on our PeriodNet, we discuss
the experiments. In this section, we will investigate the
effectiveness of PeriodNet using a single female singer
dataset.

A. EXPERIMENTAL CONDITIONS
Seventy Japanese children’s songs performed by one female
singer (F01) were used. Singing voice signals were sampled
at 48 kHz, and each sample was quantized by 16 bits. Sixty
songs (approx. 65 min.) were used for training, and the rest
(approx. 5 min.) were used for testing. The auxiliary fea-
tures consisted of 50-dimensional mel-cepstral coefficients,
25-dimensional mel-cepstral analysis aperiodicity measures,
1-dimensional continuous log F0 values, and 1-dimensional
V/UV binary code. To reduce F0 extraction errors such as
V/UV detection errors and octave confusions, voting results
from three F0 estimators were used as the log F0. [51]. Mel-
cepstral coefficients were extracted from smoothed spectra
analyzed byWORLD [9]. Feature vectors were extractedwith
a 5-ms shift, and the features were normalized to have zero
mean and unit variance before training.

The following seven systems were compared.
• AR: An AR model based on WaveNet [10].
• BM1: The non-AR baseline model shown in Fig. 1(b).
The generator took Gaussian noise and a V/UV signal as
input and was conditioned on all auxiliary features.

• BM2: The modified version of the non-AR baseline
model, in which the generator took a sine wave and
a V/UV signal as input and was conditioned on all
auxiliary features.

• BM3: The modified version of the non-AR baseline
model, in which the generator took a sine wave,
Gaussian noise, and a V/UV signal as the input and was
conditioned on all auxiliary features.

• PM1: The non-AR parallel model shown in Fig. 2(a).
The periodic generator took a sine wave and a V/UV
signal as input, and the aperiodic generator took
Gaussian noise and a V/UV signal as input. Both
generators were conditioned on all auxiliary features.

• PM2: The non-AR parallel model shown in Fig. 2(a).
Unlike PM1, the aperiodic generator was conditioned
by auxiliary features other than F0.

• SM: The non-AR series model shown in Fig. 2(b). The
periodic generator took a sinewave and aV/UV signal as
input, and the aperiodic generator took Gaussian noise,
a V/UV signal, and the output signal of the periodic

TABLE 1. Parameter settings of multi-resolution STFT loss. Hanning
window was applied before the FFT process.

generator as input. Both generators were conditioned on
all auxiliary features.

AR consisted of 30 layers of dilated residual convolution
blocks with causal convolution. The dilations of AR were set
to 1, 2, 4, . . . , 512, and 10 dilation layers were stacked three
times. The channel size for the dilations, residual blocks, and
skip-connections inARwas set to 256, and the filter size was
set to 2. For AR, the waveform samples were quantized from
16 bits to 8 bits by using the µ-law algorithm [52].1

The generators of BM1, BM2, and BM3 and the periodic
generators of PM1, PM2, and SM consisted of 30 layers
of dilated residual convolution blocks with 3 dilation cycles,
similar to AR. The aperiodic generators of PM1, PM2, and
SM consisted of 10 layers of dilated residual convolution
blocks without dilation cycles. The channel size for the
dilations, residual blocks, and skip-connections was set
to 64, and the filter size was set to 3. Note that the
sizes of the two sub-generators are different because we
assumed that the generation of the aperiodic waveform
does not require a larger receptive field and is relatively
straightforward than that of the periodic waveform. The
discriminators of BM1, BM2, BM3, PM1, PM2, and SM
had a multi-scale architecture with three discriminators.
The discriminators took 48-kHz full-resolution waveforms
and 24-kHz and 16-kHz downsampled waveforms. The
downsampling was performed using average pooling. Each
discriminator consisted of 10 non-causal dilated convolutions
with a leaky ReLU activation function. We applied weight
normalization [53] to all convolutional layers.

At the training stage, the multi-resolution STFT loss was
calculated as the sum of three different STFT losses, as shown
in Table 1. The hyperparameter λadv in Eq. (7) was set to
4.0. All models were trained using the RAdam optimizer [54]
with 1000K iterations. Specifically, for BM1, BM2, BM3,
PM1, PM2, and SM, the discriminators were not used for
the first 100K iterations, and then both the generator and
discriminator were jointly trained afterward.

The sine waves for the input of BM2, BM3, PM1, PM2,
and SM were generated on the basis of glottal closure points
extracted from natural speech using REAPER [55] in the
training stage. The purpose of this was to input a sine wave
that is close in phase to the target’s natural waveform during

1Recent TTS systems such as [14] use AR WaveNet without µ-law
quantization by modeling waveform samples as a mixture of logistic
distributions. However, since it is not easy to train a WaveNet that can
generate 48-kHz waveform samples from only about 1 hour of recorded
speech, we applied µ-law quantization to train AR WaveNet.
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FIGURE 4. Subjective evaluation results obtained using a single
female-singer data with 95% confidence intervals.

training. Meanwhile, sine waves were generated on the basis
of the F0 values in the synthesis stage. Note that the sample-
level V/UV signal included in the input signal of the non-
AR models was smoothed by applying a moving average in
advance.

B. SUBJECTIVE EVALUATIONS
1) COMPARISON OF AR/NON-AR MODELS AND THE INPUT
SIGNALS OF NON-AR MODELS
To evaluate the naturalness of the generated singing voice,
we conducted mean opinion score (MOS) tests. We first used
AR, BM1, BM2, BM3, and NAT to compare the waveform
generative models with and without the AR structure and the
input signals for the non-ARmodels. Note thatNAT indicates
a recorded natural waveform. The participants were 16 native
Japanese speakers, and each participant evaluated 10 phrases
randomly selected from the test data. After listening to each
test sample in the MOS test, the participants were asked to
score the naturalness of the samples out of five (1 = Bad;
2= Poor; 3= Fair; 4=Good; and 5= Excellent). The demo
phrases can be found on the demo page [56].

The results of the subjective evaluation are shown in Fig. 4.
BM1 yielded a lower MOS value than AR, indicating
that it is difficult to generate a high-quality singing voice
from Gaussian noise. BM2 showed a score comparable to
AR. This indicates that inputting periodic signals into non-
AR models is an alternative approach to the AR structure
for reconstructing waveforms with periodicity. BM3, which
inputs both explicit periodic and aperiodic signals, got a better
score than AR and reached a MOS value close to NAT. This
shows the effectiveness of using both explicit periodic and
aperiodic signals as inputs for non-AR waveform generative
models.

2) COMPARISON OF MODEL STRUCTURES OF NON-AR
WAVEFORM GENERATIVE MODELS
To compare the model structures of non-AR waveform
generative models, we conducted two subjective evaluation
experiments using BM3, PM1, PM2, and SM. Neural
vocoders need to appropriately generate waveforms with a
pitch outside the range of training data. In these experiments,
samples were generated by each model conditioned on two
different scales of F0: original F0 and F0 upward-shifted
by 1200 cents. Note that upward shifting by 1200 cents is
equivalent to a double scale operation. The upward-shifted

FIGURE 5. F0 range of training data and test data at original scale, and
upward-shifted test data in F01.

FIGURE 6. Subjective evaluation results obtained using single
female-singer data with 95% confidence intervals. Top figure shows
results obtained using original scale F0. Bottom figure shows results
obtained using F0 upward-shifted by 1200 cents.

F0 contained F0 that were outside the range of the training
data, as shown in Fig. 5. The F0 range of a singing voice is
typically wide because the pitch of the singing voice greatly
changes in accordance with the note pitch in a musical score.
Thus, the range of the upward-shifted F0 partly overlaps with
that of the original F0. In the experiment with the original
F0 scale, the natural waveform NAT was also used for
comparison.

The results obtained using the original and upward-shifted
F0 are presented in Figs. 6(a) and 6(b), respectively. These
figures show that PM1, PM2, and SM attained higher
naturalness than BM3. This indicates that it is effective for
the non-AR models to introduce a parallel or series structure.
Here, examples of spectrograms for PM1, PM2, and SM
are shown in Fig. 7. The highlighted boxes near 1.0 and
2.3 seconds in each figure represent parts of the unvoiced
fricative ‘‘/s/’’ and the breath. It can be seen that the spectra
of these unvoiced sounds only appeared in the output of the
aperiodic generator. In addition, aperiodic components mixed
in voiced sounds also appeared in other areas. These results
indicate that the two sub-generators in the parallel model and
the series model work on modeling the transformation from
a sine wave and a noise sequence to periodic and aperiodic
waveforms. Comparing the highlighted boxes in the lower
right of Figs. 7(a), 7(b), and 7(d), the output waveform of
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FIGURE 7. Spectrograms of waveforms generated by PeriodNet. Three spectrograms of each system show periodic generator’s output, aperiodic
generator’s output, and final output after sum of two signals.

the aperiodic generator in SM contained more harmonic
components than in PM1. This suggests that the periodic
waveforms used as the input of the aperiodic generator in SM
may have leaked into the output of the aperiodic generator
because the output waveform of the periodic generator was
fed into the aperiodic generator. It should be noted that
some harmonic components were also included slightly in
the aperiodic waveform generated by PM1 and PM2 because
the periodic and aperiodic waveforms were not explicitly
decomposed in the training stage.

For the upward-shifted F0 scenario, proposed systems
PM1, PM2, and SM outperformed BM3. This result
indicated that the proposed model structures were effective
in generating waveforms with pitches outside the range
of training data. Comparing PM1 with SM, PM1 had a
slightly better score than SM. For SM, since the aperiodic
generator should generate an aperiodic waveform in syn-
chronization with a periodic waveform generated by the
periodic generator, it was more affected by the input pitch
than PM1. Comparing the two types of parallel models, PM2
outperformed PM1 significantly. The waveform samples
generated by PM1 tended to contain more noisy aperiodic
waveforms than those generated by PM2. In the case of
using the upward-shifted F0, the aperiodic generator in
PM2 can avoid generating excessive aperiodic components,
unlike PM1, as shown in Figs. 7(b) and 7(d). For PM1,

although the periodic and aperiodic components in the
singing voice waveforms were modeled separately, both
aperiodic generators were conditioned on auxiliary features,
including F0. It was assumed that PM1 could not generate
proper aperiodic waveforms when these vocoders took out-
of-range F0. In contrast, since the aperiodic generator in PM2
does not depend on either periodic signals orF0,PM2 showed
the most robustness for unseen F0 outside the range of the
training data.

Proposed models (PM1, PM2, and SM) achieved a real-
time factor (RTF) of 0.081 on an NVIDIA GTX 1080 Ti.
Therefore, PeriodNet can generate high-quality 48 kHz
singing voice waveforms more than 10 times faster than in
real time.

V. EXPERIMENT 2
This section compares PeriodNet with systems that train
using pre-decomposed periodic and aperiodic waveforms.
This comparison aims to evaluate the performance of Peri-
odNet in modeling speech waveforms while appropriately
separating periodic and aperiodic components during the
training process. We used the harmonic plus residual model
(HPR) [40] for periodic/aperiodic decomposition. The HPR
defines a noise component in the harmonic plus noise
model [57] as the difference between an original waveform
and harmonic components.
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FIGURE 8. Overview of non-AR waveform generative model framework incorporating explicit
periodic/aperiodic decomposition, denoted as HPR/HPR in Section V-B. Periodic and aperiodic generators
are separately trained using pre-decomposed periodic and aperiodic waveforms by HPR [40] as target
waveforms.

A. OVERVIEW OF METHODS FOR COMPARISON WITH
EXPLICIT PERIODIC/APERIODIC DECOMPOSITION
We built a system incorporating explicit periodic/aperiodic
decomposition techniques in the PeriodNet parallel model.
Figure 8 shows a system incorporating an explicit
periodic/aperiodic decomposition technique. Unlike the
PeriodNet parallel model shown in Fig. 3, a periodic
generator G(p) and an aperiodic generator G(a) were trained
separately using pre-decomposed periodic and aperiodic
waveforms x(p), x(a) as the target waveforms instead
of the natural waveform x. Moreover, we used spectral
parameters extracted from decomposed waveforms as a
part of the auxiliary features. While the standard aperiodic
measure represents aperiodic components as the ratio of
power to a speech signal, these parameters, extracted
from the decomposed periodic and aperiodic waveforms,
can represent the pure change in periodic and aperiodic
components directly. Specifically, 50-dimensional mel-
cepstrum coefficients extracted from decomposed periodic
and aperiodic waveforms were used for the periodic and ape-
riodic generators, respectively, instead of the standard mel-
cepstrum coefficients and aperiodicity measures described in
Section IV-A.
As shown in Fig 8, by introducing two discriminators D(p)

and D(a), both generators can be trained in the same fashion
as PeriodNet described in Section III-B. The loss functions
for the periodic and aperiodic generators LG(G(p),D(p)) and
LG(G(a),D(a)) are given by

LG(G(p),D(p))

=
1
M

M∑
m=1

L<m>sp (G(p))+
λ
(p)
adv

K

K∑
k=1

Ladv(G(p),D(p)
k ), (9)

LG(G(a),D(a))

=
1
M

M∑
m=1

L<m>sp (G(a))+
λ
(a)
adv

K

K∑
k=1

Ladv(G(a),D(a)
k ), (10)

where λ(p)adv and λ
(a)
adv denote hyperparameters of the adversar-

ial loss terms. λ(p)adv and λ
(a)
adv were set to 4.0.

B. SUBJECTIVE EVALUATION
This experiment used natural waveforms and waveforms
decomposed by HPR belonging to a female singer F01.
We compared the PeriodNet parallel model and several
variants of systems incorporating HPR as follows.

• ORG/ORG: The parallel model without any decompo-
sition techniques. This is the same system as PM1 in
Section IV.

• HPR/ORG: A system that independently models peri-
odic and aperiodic waveforms decomposed by two
separate generators. Both generators were conditioned
by the same auxiliary features extracted from the natural
waveforms.

• ORG/HPR: A system that models natural waveforms
with the PeriodNet parallel model. Unlike ORG/ORG,
the periodic and aperiodic generators were conditioned
by different auxiliary features that contained spectral
parameters extracted from decomposed periodic and
aperiodic waveforms, respectively.

• HPR/HPR: A system that combines HPR/ORG and
ORG/HPR, as shown in Fig. 8. Two separate generators,
conditioned by auxiliary features with spectral param-
eters extracted from decomposed waveforms, inde-
pendently model decomposed periodic and aperiodic
waveforms.

For ORG/HPR and HPR/HPR, the smoothed spectra
were calculated by analyzing decomposed periodic and
aperiodic waveforms using WORLD, followed by mel-
cepstral coefficients being extracted from both spectra. A
continuous log F0 extracted from the natural waveforms
and V/UV binary code were used for all systems. The peri-
odic and aperiodic generators in HPR/ORG, ORG/HPR,
and HPR/HPR used the same architectures as those
in ORG/ORG.

We evaluated the naturalness of the synthesized waveforms
by conducting a five-point MOS test. The natural waveform
NAT was also used for comparison. Fifteen subjects evalu-
ated 15 phrases randomly selected from 10 test songs for each
method.
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FIGURE 9. Subjective evaluation results with 95% confidence intervals.

Figure 9 shows the results of the subjective evaluation.
From this figure, ORG/ORG had a higher MOS value
compared with HPR/ORG. HPR/ORG may have been
affected by decomposition errors because the target wave-
forms of HPR/ORG were waveforms decomposed using
HPR. In addition, ORG/HPR and HPR/HPR showed lower
MOS values thanORG/ORG andHPR/ORG. This indicates
the difficulty of extracting appropriate acoustic features from
decomposed waveforms that contain decomposition errors
and using them to train the generator. Moreover, this factor
affects not only the training process but also the inference
process. Here, the log-amplitude spectrograms of the natural
waveform, periodic and aperiodic waveforms obtained by
HPR from the natural waveform, and the outputs of G(p)(e),
G(a)(z), and G(p)(e) + G(a)(z) for each method are shown
in Fig. 10. It can be seen from Figs. 10(d) and 10(e) that
ORG/HPR and HPR/HPR had unnatural spectra, such as
around the 1.5-second point of the periodic waveform, which
degraded the naturalness. Figure 10(a) showed that HPR
aperiodic waveform still had some harmonic structures due to
the decomposed error. Consequently, the output of G(a)(z) in
HPR/ORG,ORG/HPR andHPR/HPR has more harmonics
structures than that in ORG/ORG. In contrast, ORG/ORG
was able to model the aperiodic components without
using the periodic/periodic decomposition method, as shown
in Fig. 10(b). In addition to this result, the MOS value of
ORG/ORGwas closest to that ofNAT. These results indicate
that PeriodNet with the proposed structures can model
periodic and aperiodic components appropriately without any
explicit decomposition process for these components.

VI. EXPERIMENT 3
In this section, we examined the effectiveness of the proposed
method when using different singers’ datasets. We used one
other female singer (F02) and two male singers (M01 and
M02). The dataset of each singer consisted of 70 Japanese
children’s songs, which were the same songs as F01, while
the key and tempo of some of the songs differed for each
singer.

To investigate robustness with the singers, we conducted
MOS tests. BM1, BM3, PM1, PM2, and SM, described
in Section IV-A, were used for comparison. These models
were individually trained for each singer. With SM for the
male singers, we found that the aperiodic generator tended
to predict some of the periodic components instead of the

FIGURE 10. Spectrograms of waveforms generated by non-AR parallel
model.

periodic generator. Therefore, we trained only the periodic
generator for the first 10K iterations, followed by both sub-
generators in SM for the male singers. BM3, PM1, PM2,
and SM were evaluated by using both the original scale and
upward-shifted F0. The F0 range of the three singers is shown
in Fig. 11. The range that could be covered by the training
data of M01 and M02 was wider than that of F01 and F02.
Therefore, for M01 and M02, the amount of F0 shifting was
set to 1600 cents instead of 1200 cents. In the experiment
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FIGURE 11. F0 range of singing voice data using subjective evaluation described in Section VI.

FIGURE 12. Subjective evaluation results obtained using different singers’ data with 95% confidence intervals. Upper row shows case using original F0
extracted from test data, and lower row shows case using F0 upward-shifted by 1200 cents for female singers or 1600 cents for male singers.

with the original F0 scale, the natural waveform NAT was
also used for comparison. The participants were 11 native
Japanese speakers for each MOS test, and each participant
evaluated 12 phrases randomly selected from the test data.

Figure 12 shows the results of the MOS test. In the
experiments using the original F0, the systems that take
periodic signals as input outperformed BM1 significantly for
the case of all singers. Proposed systems PM1, PM2, and SM
showed slightly better results than BM3. These results were
similar to those for F01.

In the experiments using upward-shifted F0, the proposed
systems showed a better result than BM3; however, the trend
between PM1, PM2, and SM was different for each singer.
While PM2 achieved the best MOS score for F02, there
was no significant difference between PM1, PM2, and SM
for M01 and M02. Here, examples of spectrograms of the
aperiodic waveforms generated by the aperiodic generator
in each proposed system are shown in Fig. 13. For F02,
the outputs of the aperiodic generator in PM1, PM2, and
SM contained more aperiodic components than that in
the case of male singers. By focusing on spectrograms
below 1 kHz, the generated aperiodic waveform of SM
had clearer periodic components than PM1 and PM2 due
to the periodic waveforms leaking into the output of the
periodic generator. In addition, the aperiodic components
were excessively emphasized for PM1 and SM under the
influence of the upward shift of F0. Since these phenomena
are similar to F01, the results were also similar to F01.

For the male singers, although the aperiodic generators
in PM1, PM2, and SM were able to model conspicuous
aperiodic components such as unvoiced consonants and
breath, they did not capture many aperiodic components
mixed in voiced sounds, unlike the case of the female singers.
This difference in trend was caused by the fact that the pitch
of the male singing voice is lower than that of the female
singing voice. Aperiodic components in voiced sounds appear
in the spectral valleys between the harmonic components. For
the waveforms with a low pitch, it is expected to be difficult
to model these components because the intervals between
harmonic components tend to be narrower. In addition, for
M02, the aperiodic components within the voiced sound were
not seen much in the output of the aperiodic generator in
SM, as shown in Figs. 13(e) and 13(f). This means that
these aperiodic components were modeled by the periodic
generator, which depends on the given periodic signal and
F0, in place of the aperiodic generator. In fact, comparing the
spectrograms of M01 and M02 when using upward-shifted
F0 in Fig. 14, the output of the periodic generator of SM
in M02 contained a few aperiodic components, especially
in the area between the harmonics below 4 kHz. Thus,
the decomposition performance of PeriodNet is influenced by
the characteristics of the singers.

Another reason for the different trends between the
subjective impressions of the male and female singers is
that the generated waveforms of the male singers sometimes
contained perceptual artifacts, which may have been caused
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FIGURE 13. Spectrograms of aperiodic waveform generated by aperiodic generator in each PeriodNet system. All figures indicate spectrogram of
generated waveform of same test phrase.

FIGURE 14. Spectrograms of periodic waveforms generated by periodic generator in each PeriodNet system. Both figures correspond to spectrograms of
generated aperiodic waveforms, as shown in Figs. 13(d) and 13(f), respectively.

by a sine-based input signal. This is because the male voice
has more low-pitch voices where the shape of the input
signal has a more significant perceptual effect [58], [59]. The
generated waveforms of PM1 and SM had more aperiodic
components than that ofPM2 in the case of using the upward-
shifted F0, as shown in Figs. 13(d), 13(f), and 14(b). Since
this rather led to a relative reduction in the perception of such
artifacts, PM1, PM2, and SM obtained similar naturalness
for the male singers.

It has been reported that perceptual artifacts tend to occur
when generating the waveform of a male speaker with
other non-AR waveform generative models that use sine-
based input signals [34]. The authors of [60] introduced a

quasi-periodic cyclic noise signal based on the convolution
of a pulse train and exponentially decaying Gaussian noise
sequence to tackle this problem. However, it may not be
appropriate to use a quasi-periodic signal instead of a sine-
based periodic signal for PeriodNet because PeriodNet is
a method that focuses on the presence or absence of the
autocorrelation of input signals. To generate high-quality
waveforms for male singers, further study using other kinds
of input signals is a topic of future work.

VII. CONCLUSION
We proposed a novel non-AR neural waveform generative
model with a structure separating periodic and aperiodic
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components in speech waveforms called ‘‘PeriodNet.’’ Peri-
odNet consists of two sub-generators connected in parallel
or in series that take a sine-based input signal and a
Gaussian noise signal, respectively, and it represents a speech
waveform as the sum of the outputs of both sub-generators.
Since these input signals have different characteristics in
terms of autocorrelation, the two sub-generators can model
periodic and aperiodic components in speech waveforms
without any explicit decomposition techniques. In particular,
the proposed model structures bring the advantage of
robustness to input pitch to PeriodNet. Thus, PeriodNet is
highly suited for the vocoder in SVS systems.

The experimental results showed that PeriodNet was
able to generate high-fidelity singing voice waveforms and
improve the ability to generate waveforms with a pitch
outside the range of the training data. Compared with
systems trained using pre-decomposed periodic and aperiodic
waveforms, PeriodNet makes it possible to model periodic
and aperiodic components appropriately without explicit
decomposition. The results obtained using several singer’s
data indicated that it was more challenging to model the
periodic and aperiodic components of the male singers’
waveforms than those of the female singers. Further inves-
tigating other periodic signals and improving the training
criteria are topics for future work. Moreover, we intend
to investigate whether proposed model structures can help
improve performance in other types of neural waveform
generative models.

In this paper, we focused on modeling singing voice
waveforms. In SVS systems, vocoder parameter representa-
tions such as mel-cepstrum and F0 are mainly used because
accurate pitch control is required [4]–[7], whereas some
systems use a combination of mel-spectrogram and F0 [61].
Evaluating the proposed models with different acoustic
feature representations is also included in future work.
Furthermore, comparison with other types of recent neural
waveform generative models and different kinds of waveform
signals such as speech and musical instrument sound is also
an important task for future work to further understand the
performance of PeriodNet.
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