
Received September 1, 2021, accepted September 28, 2021, date of publication October 5, 2021, date of current version October 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118112

Robust QUIC: Integrating Practical Coding in a
Low Latency Transport Protocol
MIHAIL ZVEREV 1, PABLO GARRIDO 2, FÁTIMA FERNÁNDEZ 1,
JOSU BILBAO 1, (Senior Member, IEEE), ÖZGÜ ALAY 3,4, (Member, IEEE),
SIMONE FERLIN 5, ANNA BRUNSTROM 6, (Member, IEEE),
AND RAMÓN AGÜERO 7, (Senior Member, IEEE)
1Information and Communication Technologies Area, Ikerlan Technology Research Centre, Basque Research Technology Alliance (BRTA),
20500 Arrasate/Mondragón, Spain
2Nemergent Solutions, 48950 Erandio, Spain
3Department of Informatics, University of Oslo, 0373 Oslo, Norway
4Department of Mobile Systems and Analytics, Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway
5Ericsson AB, 164 40 Kista, Sweden
6Department of Mathematics and Computer Science, Karlstad University, 651 88 Karlstad, Sweden
7Department of Communication Engineering, University of Cantabria, 39005 Santander, Spain

Corresponding author: Mihail Zverev (mzverev@ikerlan.es)

This work was supported in part by the Basque Government through the Elkartek Program under the Hodei-x Project under Agreement
KK-2021/00049; in part by the Spanish Government through the Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo
Regional (FEDER) through the Future Internet Enabled Resilient smart CitiEs (FIERCE) under Grant RTI2018-093475-AI00; and in part
by the Industrial Doctorates Program of the University of Cantabria under Grant Call 2019.

ABSTRACT We introduce rQUIC, an integration of the QUIC protocol and a coding module. rQUIC
has been designed to feature different coding/decoding schemes and is implemented in go language.
We conducted an extensive measurement campaign to provide a thorough characterization of the proposed
solution. We compared the performance of rQUIC with that of the original QUIC protocol for different
underlying network conditions as well as different traffic patterns. Our results show that rQUIC not only
yields a relevant performance gain (shorter delays), especially when network conditions worsen, but also
ensures a more predictable behavior. For bulk transfer (long flows), the delay reduction almost reached 70%
when the frame error rate was 5%, while under similar conditions, the gain for short flows (web navigation)
was ≈ 55%. In the case of video streaming, the QoE gain (p1203 metric) was, approximately, 50%.

INDEX TERMS QUIC, transport layer, FEC, network coding, performance assessment.

I. INTRODUCTION (MOTIVATION)
QUIC has recently emerged as an alternative to widespread
Transmission Control Protocol (TCP). Originally fostered
by Google [1], it has several advantages that make it an
appealing choice, especially for specific scenarios. The main
advantages of QUIC over TCP are: (1) reduction of the
connection-establishment latency, (2) avoidance of head-of-
line blocking, and (3) ease of updating processes. Its use as
a transport protocol alternative has been steadily increasing
in the latest years. At the time of writing (August 2021),
approximately 5.7% of all websites are using it [2]. This
increasing interest has been further strengthened by stan-
dardization efforts [3]. Key players such as Google, Apple,
Microsoft, and Facebook have developed their own QUIC

The associate editor coordinating the review of this manuscript and

approving it for publication was Arun Prakash .

implementations [4], which should further instigate its
widespread adoption.

QUIC enables the integration of additional features and
modules that may improve its performance under certain
scenarios. In particular, the integration of coding techniques,
such as Forward Erasure/Error Correction (FEC), might bring
important benefits, for example, for short flows, where it
would enable the recovery of tail losses. In addition, it could
also be beneficial for services with (almost) real-time require-
ments, since it would allow the recovery of packet losses
regardless of the underlying Round Trip Time (RTT).

Some studies have integrated coding techniques within
QUIC, with the main goal of enhancing its behavior over
packet-erasure channels [5]–[9]. Although some of the pre-
liminary results are promising, there is not yet a clear char-
acterization of the benefits that the use of coding techniques
might bring, when using QUIC over different wireless links.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 138225

https://orcid.org/0000-0002-0477-501X
https://orcid.org/0000-0001-7943-0422
https://orcid.org/0000-0002-9720-1612
https://orcid.org/0000-0002-5701-8784
https://orcid.org/0000-0001-5800-2779
https://orcid.org/0000-0002-0722-2656
https://orcid.org/0000-0001-7311-9334
https://orcid.org/0000-0002-9620-3990
https://orcid.org/0000-0002-5575-6943


M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

In this paper we discuss the integration of a coding mod-
ule within a real QUIC implementation (in go language).
We carry out an in-depth characterization of the performance
of this module over various wireless technologies (with
different delays, bandwidths, and packet error rate charac-
teristics). We discuss the implementation choices for the
codingmodule and describe how it is integratedwithin QUIC.
Finally, we use the ns-3 simulator to assess the performance
of the proposed scheme. We compare the behavior of our
solution with the original QUIC protocol considering long
flows (bulk transfer), short flows (web page download), and
real-time services (video streaming). The results show that
the integration of the coding module yields a significant
performance enhancement for all considered traffic patterns
and technologies. To the best of our knowledge, this is
the most complete and thorough assessment of the combi-
nation of QUIC with a coding functionality, and the first
one to consider realistic real-time traffic patterns, such as
video streaming and the DASH protocol. Further, we provide
our implementation as an open-source code in a GitHub
repository.1

We structure this paper as follows: Section II positions our
paper with regards to related work and provides some back-
ground of theQUIC transport protocol and coding approaches
applied to transport layer. Section III discusses our imple-
mentation architecture, its integration with the QUIC pro-
tocol, and its main components and algorithms. Section IV
describes our FEC implementation, including its operation
on the encoder and decoder sides. Section V provides further
implementation details, such as packet structures and some of
the assumptions that weremade. Finally, SectionVI discusses
our experimental setup and evaluation results. In Section VII,
we discuss how we plan to broaden rQUIC implementation.
Finally, we conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK
We start by depicting the main characteristics of the QUIC
transport protocol, and then discuss how it might benefit
from the integration of a coding module. Finally, we discuss
some of the most relevant related works that proposed a
combination of a transport protocol and a coding module.

A. QUIC
QUIC is a connection-oriented transport protocol that follows
the traditional client/server architecture. QUIC was initially
proposed by Google [1] and was recently standardized by the
Internet Engineering Task Force (IETF) [3]. While retaining
some of the key TCP features, such as reliable delivery and
congestion control, QUIC is built on top of User Datagram
Protocol (UDP), with the aim of solving the challenges
associated with protocols running on top of TCP, such as
connection-setup time, head-of-line blocking, and middlebox
interference.

1https://github.com/pgOrtiz90/quic-go-fec

QUIC establishes a secure connection and reduces
connection-setup latency by including TLS 1.3, allowing
application data to be sent during the very first round-trip time
of a connection (zero-RTT approach). To avoid delays pro-
duced by head-of-line blocking, the information of a QUIC
connection is arranged in streams. The streams that have data
in a lost packet are the only ones that are blocked waiting for
the required retransmission, while the rest are still being sent.

Furthermore, QUIC brings additional latency reduction,
thanks to its loss detection mechanisms, including ‘‘Early
Retransmits’’ and tail loss probes. QUIC introduces signifi-
cant improvements compared to traditional reliable transport
layer solutions. Some benefits of QUIC loss recovery mecha-
nisms are a consequence of the numbering scheme, where the
identifiers are not repeated if a loss is detected. If a packet
is lost, QUIC retransmits the same information in another
packet with a different packet number, removing uncertainty
about the actual packet that is confirmed when an acknowl-
edgment is received. As a result, QUIC achieves more accu-
rate RTT measurements and can to identify spurious retrans-
missions [10].

QUIC loss detection algorithms are acknowledgement-
based, with a probe timeout to ensure that the acknowledge-
ments are received. These algorithms are activated according
to the following specific cases:
• A packet was sent before an acknowledged packet and it
has not been acknowledged, and either of the following
events occurred: (i) the packet was sent with a packet
number three times smaller than the latest acknowl-
edged; or (ii) it was sent after 9/8 RTT expiry time.

• The probe timeout expires, that is, the packet was sent,
and the subsequent one was not acknowledged.

Middleboxes are networking elements that manage TCP
traffic, analyze TCP segments and modify them with the
aim of leveraging an optimal performance [11]. This might
hinder TCP enhancements, as existing middleboxes would
require to be updated if there is any TCPmodification. On the
other hand, if TCP were upgraded, this could affect several
nodes and devices, because its implementation is usually at
the kernel of operating systems [1]. As for middleboxes med-
dling the connection, QUIC encrypts its packets, leaving only
unprotected header fields that are required to identify a ses-
sion at an endpoint [12]. In addition to security reasons, this
encryption is used to avoid any interaction with middleboxes,
and thus, protocol ossification [1]. Since QUIC packets are
processed as opaque UDP payloads, middleboxes are not
aware of them, ensuring a smooth interaction and facilitating
migration and update strategies. QUIC was designed to be
deployed in the user-space, to enable the management of
computational resources with other applications within the
same node, or the establishment of logging levels as needed.
In any case, QUIC can also be implemented in the kernel [13],
with the main goal of enhancing its performance.

Although QUIC facilitates the integration of new exten-
sions, not all endpoints might be able to upgrade at the
same time, resulting in the coexistence of several QUIC

138226 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

versions. The version negotiation mechanism promoted by
QUIC ensures an appropriate operation, by allowing devices
to negotiate the version they will use in the connection during
the establishment phase [14]. In addition to the simplification
of the protocol updates, this mechanism also enables the pos-
sibility of extending QUIC with new functionalities, which
devices may even share as plugins [7].

Next, we introduce FEC and Network Coding (NC) basic
functionality, focusing on the features that will be considered
in our design.

B. FEC AND NETWORK CODING
Traditionally, there are two main causes of information loss
events during communication: congestion events and trans-
mission errors. Reliable protocols, such as TCP [15] and
QUIC [10], recover lost information using Automatic Repeat
reQuest (ARQ) mechanisms. These consist of signaling lost
information and taking care of its retransmission. On the other
hand, FEC [16] techniques promote a different approach,
allowing the recovery of lost chunks of information by send-
ing additional packets, built as combinations of the original
data. FEC can improve latency, as losses might be recovered
without additional signaling, and thus there is no need to wait
for a retransmission, at the expense of increasing the overhead
sent to the network.

Ahlswede et al. introduced the concept of Network Cod-
ing (NC), where intermediate nodes can perform coding
operations on ongoing communication flows [17]. Later,
Katabi et al. proposed in [18] intra-flow NC, a particular fla-
vor of NC, to enhance end-to-end communications. In sum-
mary, it can be described as an FEC operating over each hop
on the communication path (between the two endpoints), with
NC-enabled intermediate nodes.

In addition, Ho et al. proposed in [19], [20] RandomLinear
Network Coding (RLNC), a coding technique where all the
transmissions correspond to a random combination of the
original data chunks, known as source symbols. These are
grouped into generations (size N ) and combined to create
coded symbols. Whenever the destination (or an intermedi-
ate node) receives N linearly independent coded symbols,
the original information can be recovered. Because the com-
binations are randomly built, some useless transmissions may
occur (not linearly independent symbols). Hence, additional
transmissions may be needed. The linear combination of
coded symbols can also be seen as a linear combination
of source symbols; thus, intermediate nodes can perform
recoding operations without needing to decode the entire
generation. This has proven to yield some benefits under
certain circumstances, but if these are not met, and inter-
mediate nodes simply forward the received packets towards
the destination, RLNC boils down to Random Linear Cod-
ing (RLC), where only the source node performs coding
operations.

The computational complexity of RLNCmay be unfeasible
for constrained devices. Wang and Li have shown that the
use of sparse coding matrices, where some of the coding

coefficients are zero, can alleviate this problem [21]. Hence,
when building a coded symbol not all the source symbols
are considered. A particular case of sparse NC is a system-
atic coding scheme in which source symbols are sent to the
network without coding, together with additional coded sym-
bols, to compensate for eventual network losses [22]. In this
context, the coded symbols can be referred to as redundant
symbols. Systematic coding simplifies not only encoding,
but also decoding operations, because source symbols can
be used as soon as they are received, and this can reduce the
overall latency.

As mentioned earlier, RLNC groups source symbols into
blocks or generations. One modification is to overlap the
generations, a coding approach known as convolutional cod-
ing [23]. A systematic RLNC with overlapped generations
was discussed in [24] and further extended with ARQ in [25].
Both works considered a constant sliding window to select
source symbols to build a generation. The frequency at which
coded symbols were inserted between the source symbols,
the code rate, was also constant, as well as the redundant
symbols per generation. Given that the coding window in
both works was a multiple of the code rate, all source
symbols belong to the same number of generations, and
they are protected by the same number of coded symbols.
This offers a different view on convolutional codes, where
when one of the concurrent generations is finished, it is
replaced with a new one. This view was exploited in [26],
focusing on concurrent generations rather than on a coding
window.

A convolutional coding scheme that overlaps generations
yields an overall latency reduction [24]. Because each source
symbol is protected by multiple coded symbols, this type
of coding offers more robustness to bursty losses. However,
if bursts are long, a different coding approach might be neces-
sary, such as interleaving [27], where generations are grouped
in interleaving blocks. Rather than sending symbols from the
same generation, all the ith symbols from each generation
are transmitted. Hence, consecutive transmitted symbols do
not actually correspond to consecutive source symbols, thus
distributing the impact of burst losses among all generations
in the interleaving block.

Building interleaving blocks requires buffering all genera-
tions, which may cause additional latency. Stolpmann et al.
suggested a different, systematic approach to interleaving
network coded symbols, Interleaving with On-the-fly Cod-
ing [28]. Instead of waiting for completing an interleaving
block, each new source symbol is covered by a different
generation from the interleaving block under construction.
In this way, all source symbols can be transmitted in order,
as soon as they are generated, and interleaving properties
are not lost, because burst losses are still distributed across
multiple generations.

C. CODING VARIANTS AND CHARACTERISTICS
This section covers coding features that have been par-
ticularly considered for this work, introducing naming

VOLUME 9, 2021 138227



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

conventions we will use throughout the paper, since the ter-
minology used in rQUIC development slightly differs from
the one recommended in [29].

One such difference is the use of the generation concept.
Coding operations were originally intended for RLNC oper-
ation. Hence, we widely use the term generation, a group
of source symbols used to build coded symbols. However,
as will be explained later, the rQUIC design that we dis-
cuss here aims at systematic convolutional coding schemes.
A more appropriate term in this context is the encoding
window [29].

Furthermore, the code rate is defined, from an imple-
mentation point of view, as in [6]: the rate between source
and coded symbols, which is different from the definition
in [29]. Thus, the code rate used in this study represents
the number of source symbols after which a coded symbol
should be inserted. If only one coded symbol is built for
each generation, then the code rate equals the generation
size.

An FEC implementation that is unaware of the transport
layer protocol might send multiple symbols per packet. How-
ever, when losses occur at the transport layer they affect entire
packets, not just a portion of them. Splitting a packet into
multiple symbols implies that redundancies that are required
to successfully decode a generation can be split between two
or more packets. With a code rate perfectly adjusted to the
network losses, a lost packet with both source and coded
symbols might never be recovered. To reduce the number
of cases where FEC would not be able to help, we assume
that the entire packet corresponds to one symbol. Hereinafter,
the words ‘‘symbol’’ and ‘‘packet’’ are used interchangeably.
In addition, coded packets can be referred to as redundant
packets or redundancies.

As already mentioned in Section II-B, convolutional cod-
ing with a constant coding window, a multiple of the code
rate, leads to uniformly overlapped generations, where each
source symbol belongs to the same number of generations.
We define the overlap as the number of generations to which
any source symbol belongs. An overlap of 1 corresponds to
the traditional block coding approach.When using systematic
convolutional coding, along with a code rate that adapts to
losses, focusing on overlap rather than on encoding window
might help to achieve a more uniform protection of source
symbols, and a more uniform distribution of coded symbols
among the source symbols.

As introduced in Section II-A, QUIC advanced recovery
schemes significantly reduce its recovery time compared to
TCP. Some coding schemes have an intrinsic delay that may
be longer than the original ARQ recovery. Our FEC imple-
mentation is intended to be an extension, not a replacement
for QUIC ARQ mechanism.

Following are summarized the coding approaches consid-
ered in rQUIC design.
• Systematic coding. Correctly received source packets
can be used immediately without waiting for the entire
generation.

• Adaptive coding. To minimize the overhead introduced
by coded packets, we adjust the number of redundancies
to the losses observed in the network.

• Convolutional coding. The overhead introduced by
coded packets can be distributed more uniformly by
focusing on overlapping the generations, thus reduc-
ing the waiting time between recovery attempts at the
decoder.

• No interleaving. Systematic coding with interleaving
presented in [28] has no transmission latency, while
the decoding latency remains high. Coded packets are
transmitted after the entire interleaving block, which
is multiple times greater than the generation size. The
authors of [30] showed that replacing interleaving tech-
niques with RLC at the link layer can reduce latency,
despite losing the ability to recover burst losses.

The adaptive FEC schemewill change either the generation
size g, overlap ϕ, or redundancies per generation r to adjust
the code rate Q to the observed loss rate. Given the definition
ofQ in this work and that each g source packets are protected
by rϕ coded ones, the relationship between coding parame-
ters can be expressed as follows:

Q =
g
rϕ

(1)

As previously mentioned, the focus on overlapping gener-
ations is intended to uniformly distribute coded packets. This
uniformity is achieved by shifting the ϕ overlapped genera-
tions by g/ϕ source packets, that is, every g/ϕ = Qr source
packets a generation is finished and replaced with a new
one. Fig. 1 shows an illustrative example of a communication
with 2 overlapped generations of 8 packets, protected with
2 redundancies per generation. The X axis represents source
symbols to be transmitted, and the Y axis corresponds to the
packets that are actually sent to the network. Source packets
are represented with blank squares and cover only one source
symbol, while dark squares correspond to coded packets,
covering all the sources symbols that were used to build it.
In this case, it is important to remark that a coded symbol cor-
responds to one single transmission, regardless of the number
of source symbols it covers. Coded packets are inserted every
g/ϕ = 8/2 = 4 source packets. To keep this periodicity
constant from the beginning, the first ϕ− 1 generations must
be shorter than the intended g.More specifically, gi = i·g/ϕ if
the generations are numbered starting with 1. To comply with
our overlap definition, the last overlapping generations also
need to be shortened. In the example illustrated in Fig. 1 this is
seen in the last 2 coded packets, which might be unnecessary
in a real implementation.

When a lost packet cannot be recovered with a block
code, the packets from the corresponding generation can be
delivered to the application and discarded. However, when
multiple generations are overlapped, all losses can be recov-
ered at once by the communication endpoint. Fig. 1 shows
a short transmission of only 15 source packets with losses.
Lost packets are marked with a zig-zag strike-through. Until

138228 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 1. Graphical representation of convolutional coding for 15 source
symbols protected with 2 overlapping generations of 8 symbols and
2 coded symbols per generation.

the last coded packet arrives, no lost source packets can be
recovered. This example can be extended to longer commu-
nications with different coding parameters. This shows the
robustness offered by convolutional coding, which could be
useless when FEC is combined with ARQ, since older losses
will surely have been recovered with a retransmission. It is
thus very important to carefully define coding parameters
and the way they are updated in an adaptive coding scheme,
because what is beneficial for FEC alone, might be useless
when FEC is combined with ARQ, resulting in the transmis-
sion of unneeded coded packets and an inefficient increase in
computational complexity.

D. CODING AT TRANSPORT LAYER
Various studies exploited coding techniques to increase the
performance (mostly throughput) offered by the transport
layer, both for reliable-service (TCP) and real-time applica-
tions (based on UDP). Below, we review some of the most
important examples.

The use of FEC as an extension of a reliable transport
protocol (mostly TCP) has been widely studied, in two main
directions: (i) protecting TCP data flows, and (ii) extending
TCP itself. An example of the first group is found in [31],
where the authors optimized video transmission by recov-
ering losses using an adaptive coding scheme. On the one
hand, this approach does not break the underlying transport
protocol, but on the other hand, it does not prevent unneces-
sary congestion window reduction that might be induced by
non-congestion losses, which are very frequent in wireless
links. Tsugawa et al. proposed TCP-AFEC [32], which is

an extension of TCP with an adaptive coding scheme to
improve video streaming. TCP-AFEC hides the recovered
losses from TCP congestion control. The authors argue that
the collapse of congested networks is avoided by the tradi-
tional TCP mechanism when FEC fails to recover a packet
and the loss is detected. Later, Teshima et al. proved in [33]
that TCP-AFEC is not optimized forWLAN, proposing TCP-
TFEC, an adaptive coding scheme that is more suitable for
this technology. Sato et al. extended TCP using the XOR
coding scheme in [34]. They interleave generations, as was
also suggested by [28], to mitigate burst losses and suppress
duplicate ACK packets, thus allowing the FEC scheme to
recover losses by itself. Packet losses are thus intentionally
hidden from congestion control mechanisms, allowing high
goodput to be maintained. Congestion avoidance relies on
Explicit Congestion Notification (ECN) signals.

When coding techniques are applied to reliable transport
protocols with congestion control, it is unclear how the latter
should interact with the encoder. It is worth noting that there
is an Internet Research Task Force (IRTF) draft describing
these interactions [35]. When coding techniques are applied
to a reliable transport protocol’s data flow, that is, above the
transport layer as in [31], coded symbols and packet losses
are visible to the congestion control. However, when cod-
ing techniques are integrated within the transport protocol,
successful recoveries may hide congestion losses from the
Congestion Control Algorithm (CCA). Depending on the
coding scheme, the impact on a congested network may not
be negligible. Hence, an appropriate CCA might need to be
aware of coding operations. To do so, the CCA should be
able to distinguish between congestion and random losses,
with the latter being responsible for unnecessary Congestion
Window (CWND) reduction. The challenge of distinguishing
the nature of packet losses has received significant attention
from the scientific community. Truchly et at. review in [36]
some of the most relevant CCAs that have been proposed.

Research on FEC protection of UDP data flows focuses on
real-time multimedia streaming. For this purpose, the most
common protocol is Real-time Transport Protocol (RTP) [37]
over UDP. RTP specifies different FEC extensions, such
as the generic FEC specification [38] and XOR coding
with interleaving [39], the latter being extensively evaluated
in [40]. Another example of UDP video streams protected
with an FEC is [41]. The authors propose the simultane-
ous use of TCP and UDP over different network interfaces
for smooth video streaming over HTTP, proving that their
approach is efficient not only in terms of goodput, but also
in terms of the energy consumption of mobile devices.

Another interesting approach that has recently gained rel-
evance is extending QUIC with coding techniques, although
there are not many evaluations of this approach, mostly due
to QUIC novelty. The first experiments integrating QUIC
and FEC, carried out by Google, are described in [42].
Although the results did not reflect a significant improve-
ment, other researchers continued to work on coding tech-
niques for QUIC. As a result, it has been contemplated

VOLUME 9, 2021 138229



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

in the corresponding standardization efforts, and the IRTF
draft [8] focuses on how to implement a generic FEC
scheme, while [9] focuses specifically on RLC. Furthermore,
Michel et al. presented an FEC extension with a fixed code
rate, assessing its performance over constrained links [5].
This extension is subsequently converted into a portable
plugin, integrated along with multipath and other transport
features in the pluginized QUIC [7]. Garrido et al. presented
the first version of rQUIC [6], an extension of QUIC with
an adaptive FEC. We improve the initial implementation by
designing a more generic scheme, which might be config-
ured to feature different coding solutions. As discussed in
Section VI, the results demonstrate that this implementation
yields a better performance than the original one. In addition,
we also assess the behavior that rQUIC exhibits when used
with services having real-time requirements, such as video
streaming.

As introduced previously, intra-flow NC can be seen as an
FEC scheme between coding capable nodes, applied on all
hops along the path between the two endpoints. One of its
more relevant benefits is the reduction of overhead introduced
by coded packets, as more reliable hops could require fewer
redundancies. The authors of [43] proposed the use of NC in
the transport layer. They argue that this approach grants back-
ward compatibility with legacy network equipment, as link
layer protocols are not changed. This can be seen as another
advantage of extending TCP with NC, while it is even more
important for QUIC, as it is meant to be implemented in the
application layer. However, to the best of our knowledge,
there is no proposal to extend QUIC with NC, despite the
benefits reported for TCP [43]–[46]. We argue that one of the
main obstacles lies in QUIC philosophy, since it prevents a
tight interactionwithmiddleboxes. If no interactionwithmid-
dleboxes is used, the intra-flow NC would boil down to the
traditional FEC. In any case, the design and implementation
of rQUIC described here is conceived to be able to integrate
the main functionalities of NC.

The benefits offered by coding techniques are not limited
to improving the communication reliability. Multipath (MP)
is a feature of transport protocols that enables data exchange
between two endpoints, either over different network inter-
faces or different IP addresses. Selecting the right path to
transmit a new packet is not a trivial task, and it can be seen
as an entire research line on its own [47]. However, coding
techniques can greatly simplify this task, as in MPLOT [48].
This transport protocol uses the aggregated loss rate to build
redundancies and distribute the resulting generation with its
coded packets across all paths. MPLOT acknowledges the
generations instead of packets. In this way, source and coded
packets belonging to the same generation can be transmitted
over any path and in any order, as long as each path’s trans-
mission window is respected. Another approach to combine
coding and MP could be sending source and coded packets
on different paths, a strategy followed in fountain code-based
MPTCP (FMTCP) to mitigate the negative impact of path
heterogeneity [49]. Furthermore, the combination of coding

and multiple path networking can be efficiently handled from
the application layer, as shown in [41]. At the time of writ-
ing, there are multiple approaches and implementations of
multipath extension for QUIC [50]–[53], including additional
extensions, such as a FEC module [7]. However, there is still
no clear evaluation of the potential benefits of the simulta-
neous use of multipath and coding techniques. The rQUIC
design considers the main multipath functionalities, so that
both schemes can be combined. In this paper we do not assess
the potential benefits of this integration, but will be addressed
in our future work.

III. ARCHITECTURE OVERVIEW
We consider traditional client/server communication, where
the receiver (client) downloads the information sent by
the transmitter (server). We also assume that there may
be circumstances (congestion events or packet erasures)
where losses occur, and not all transmitted information
correctly arrives at the receiver. We propose the use of
a coding scheme to improve the original recovery mech-
anisms included in QUIC, which are based on an ARQ
scheme.

This section presents the high-level rQUIC architecture,
depicting the interactions between its components. The exten-
sion presented in this work applies FEC to short header QUIC
packets. Packets with long headers used before handshake is
finalized are not modified. Fig. 2 illustrates the architecture
of the proposed extension. The main components are the
encoder, integrated within the transmitter operation, and the
decoder, is placed at the receiver’s side. The figure also
shows the decoder’s buffer, which stores packets that might
be needed for future decoding operations.

A. ENCODER
The encoder intercepts short header QUIC packets transmit-
ted by an application, uses them to build coded packets, and
inserts the rQUIC header. Furthermore, it uses the congestion
window size and losses detected from ACK frames to deter-
mine when a coded packet should be transmitted. A more
detailed description of the coding operations is provided in
Section IV.

The encoder processes packets in different ways. If a
QUIC packet carries any frame that would eventually be
acknowledged, it will be protected with a coded packet. Oth-
erwise, it does not need to be protected and it will thus be
ignored. Hence, rQUIC packet types must be clearly iden-
tified. We introduce three main rQUIC packet types, whose
signaling is discussed in more detail in Section V-A.
• Unprotected Packet (UP): theywill not be acknowledged
by the other endpoint.

• Coded Packet (CP): linear combination of source pack-
ets.

• Protected Packet (PP): source packets protected by CPs.
These are transmitted, in systematic coding schemes,
with minimal FEC signaling, and can thus be used by
the application as soon as they are received.

138230 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 2. rQUIC architecture.

B. DECODER
The decoder removes the rQUIC header from the source
packets and uses CPs to recover the missing ones. It tries to
recover as many packets as possible upon receiving a PP or
CP. Depending on the packet type, the following may occur:
• Unprotected : the decoder removes the rQUIC header,
and forwards the packet to the QUIC session.

• Protected : the decoder subtracts it from every stored
coded packet protecting it. The source packet is then
buffered for further decoding operations. Buffer opera-
tions are detailed below.

• Coded : the decoder checks if it contains all the packets
from the corresponding generation. If no packet is miss-
ing, the new CP is discarded. Otherwise, the decoder
tries to recover any source packet sent by the transmit-
ter, by exploiting the PP it already has. The recovered
packets are then stored in the receiver buffer.

1) RECEIVER BUFFER
As mentioned previously, the decoder buffers the packets
for further decoding operations. In addition, this would also
allow the FEC module to recover packets that might have
been lost. Once source packets are passed to the QUIC
session, the latter might send an ACK frame2 reporting

2the normal operation establishes that an ACK is sent every two received
packets, but this might change depending on the implementation

all received and missing packet numbers. This could cause
packet retransmissions before the decoder can recover recent
losses. However, holding source packets for a long time leads
to an increase in latency. The decoder’s buffer delivers source
packets to the corresponding QUIC session when one of the
following conditions is met:
• The packet is unprotected.
• The packet is protected, and the previous one has already
been delivered to the QUIC session.

• The packet is protected, it is the first packet in the buffer,
and there are no previous PPs. In this case, the decoder
cannot distinguish if there is a missing packet before this
PP packet.

• At least 3 PPs3 from a newer generation were received.
At this point we assume that generation to which the
undelivered packet belongs is already finished.

• The packet has been buffered for too long, and it should
be released after a Buffer Timeout (BTO) to avoid com-
promising QUIC recovery.

Short BTO would make the buffer deliver non-consecutive
packets to the QUIC session too early, triggering packet
retransmission before the decoder was able to recover it.
On the other hand, there must be a tradeoff, and BTO should
not be too long, as it might delay retransmission when the
decoder is not able to recover a loss.

One of the transport parameters defined during connection
establishment is the maximum ACK delay [14], in which an
ACK must be sent for any packet. Therefore, we define BTO
as the maximum ACK delay D with a certain marginM :

BTO := D−M (2)

We set the margin M to 1 ms. The default maximum
ACK delay is 25 ms [14]. In the quic-go implementation,
the endpoints set their ACK delays to 26 ms, and thus BTO
in our experiments is set to 25 ms.

IV. FEC OPERATIONS
This section provides details on how FEC operations are per-
formed at both the encoder and decoder, their configuration,
and other operations on which they depend.

A. CODING CONFIGURATION
An encoder builds CPs and decides when to send them.
CP building techniques are coding schemes that define how
source symbols should be combined to build the coded ones.
The proposed rQUIC encoder is designed such that new cod-
ing schemes are easy to incorporate. In the implementation
we are using in the experiments reported in this paper, both
XOR and systematic RLC are supported.

The distribution and frequency of CPs depend on the fol-
lowing parameters, which are introduced in Section II-C:
• Code Rate (Q): the rate between source and coded
packets.

33 is the recommended value for kPacketThreshold, packet reorder-
ing threshold [10].

VOLUME 9, 2021 138231



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

• Generation size (g): the number of PPs used to create the
CP that protects them.

• Redundancies per generation (r): the number of CPs
created to protect a generation.

• Overlap (ϕ): the number of different generations to
which any PP belongs at the same time.

The rQUIC encoder can adjust the number of CPs it
sends based on network conditions (more details are given in
Section IV-B). To do so, it estimates the code rate Q required
to compensate a certain loss rate, estimated from received
ACK frames. Then, the generation size g is calculated using
Eq. 1. A generation is considered complete when adding
a new source packet will make encoder’s Q exceeds the
required value, or because the generation has reached its
maximum size:

gen. complete := (g+ 1 > Qrϕ) or (g ≥ gmax) (3)

Redundancies per generation (r) and overlap (ϕ) are static
parameters that are set at the beginning of the connection.
As explained in Section II-C, r CPs are inserted every g/ϕ =
Qr PPs. The lower the distance between the CPs, the more
often the decoder performs recovery operations. To minimize
this distance, r should be set to 1 redundancy per generation.
Big values of overlap ϕ yield a greater robustness, as

well as a generation size increase. Although losses at the
beginning of a generation could be recovered by FEC, ARQ
might recover them sooner. Moreover, a greater ϕ requires
more memory at the decoder. For these reasons, the use of
a large ϕ is impractical in protocols with ARQ. The value
that minimizes the decoder buffer’s length and increases the
usefulness of CPs is ϕ = 1.
The most practical coding scheme for adaptive code rate,

complying with the condition r = ϕ = 1 seems to be the
traditional XOR used in this study. Other values of r and ϕ
might lead to more efficient configurations, yet more com-
plex interactions with the corresponding congestion control
schemes. Research on other configurations is left for future
studies.

Upon generation completion, the CPs are sent with the last
PP it protects. There is a risk of comprising the transmitter
sending rate, known as pacing. References [12] recommends
implementing a pacing mechanism, and quic-go has one.
However, the impact on pacing should be minimal, when
using the XOR scheme with only one CP per generation.

At the receiver side, the decoder will try to recover as many
lost packets as possible with every new PP or CP. When a
new PP is either received or recovered, it is subtracted from
all the received CPs protecting it. Upon each CP reception,
the decoder checks if any of corresponding PPs are missing.
If no PP is missing, the new CP is discarded. Otherwise,
all received PPs corresponding to the new CP are subtracted
from it. If the generation of CP suffers more than one loss,
the subtraction will not recover them, and the resulting CP
will still protect at least two packets. In this case, the decoder
will try to decode as many source packets as possible, solving

the corresponding system of equations, built with all CPs
previously buffered.

B. DYNAMIC CODE RATE
To correct packet losses in environments with unpredictable
and varying loss rates, our extension includes the dynamic
code rate. The adaptive approach helps recover losses without
overloading the link with the CPs. We use the algorithm
proposed in [6], [54], [55].

The code rate Q changes depending on the Residual Loss
(RL), defined as the rate between lost and delivered packets.
The rQUIC encoder takes this information from the received
ACK frames. RLs are observed throughout a time period T
over N periods, and then the average value is used. As in
the original experiment, the period depends on the RTT,
T = 3 · RTT , and so the number of periods is N = 3.

The corresponding dynamic code rate update is presented
in Algorithm 1. If the FEC scheme does not prevent losses,Q
should be decreased to introduce more CPs. If few (or no)
losses are observed, Q should be increased to reduce the
redundancies sent to the network. Hence, if the average RL is
greater than a certain threshold γ , Q is multiplied by 1 − δ;
otherwise, Q is multiplied by 1 + δ, where δ is an arbitrary
parameter. In our implementation, γ = 0.01 and δ = 0.33.

Algorithm 1 Adaptive Code Rate in rQUIC
1: Q← Qinit
2: if RL > γ then
3: Q← Q× (1− δ)
4: else
5: Q← Q× (1+ δ)
6: end if

In the absence of losses,Qmay grow beyondCWND. If the
latter closes, the CP protecting the last PPs will be sent after
CWNDopens again. If one of the PPs from the last generation
is lost before CWND closes, it will not be recovered with
FEC. To minimize such cases, we keep the code rate below
the CWND (expressed in terms of packets). To convert the
CWND from bytes to packets, we use the maximum QUIC
packet size allowed by the implementation.

V. IMPLEMENTATION DETAILS
Hereafter, we will refer to the QUIC specification corre-
sponding to the draft version 29 [14], which was implemented
in the base code we chose at the time of experimentation.

A. PACKET FIELDS
Protecting QUIC packets requires distinguishing coded pack-
ets from source packets. In addition, for correct recovery and
in-order delivery, the source packets must be appropriately
signaled. One approach is to insert these new fields as new
frame types. In this way, all rQUIC signaling and coded
payloads are encrypted within a QUIC packet. This implies
that coding coefficients, a new field, will also be encrypted.
However, intra-session NCmight use middleboxes (recoders)

138232 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

to improve performance, as discussed in Section II. Although
extending QUIC with NC is beyond the scope of this study,
we decided to leave coding coefficients unencrypted, so that
we could experiment with it in the future. This implies that
FEC coding is called after QUIC finishes its own encryption,
whereas decoding is performed before QUIC decrypts.

There are other ways to enable the use of NC with QUIC,
such as tunneling and the establishment of dedicated QUIC
connections for each hop. These solutions are more com-
plex, and the comparison in terms of complexity, connec-
tion establishment latency, and power consumption impact
on endpoints, such as cybersecure IoT edge devices, define
another line of research on their own.

Fig. 3 illustrates the new fields introduced by rQUIC,
which are explained in more detail below.

FIGURE 3. New fields for different types of rQUIC packets.

1) HEADERS
The fixed part of the short header packets ends with the
Destination Connection ID field [56], after which rQUIC
headers are inserted. For correct header insertion, the original
QUIC packet size is limited during construction.

The decoder applies different operations to different packet
types. Therefore, the first field is the type: PP, UP, and CP.
CPs also need to specify the coding scheme used for their
creation, that is, coded packet sub-types. We used 1 byte for
the type field, including the coding schemes used by the CPs.

All rQUIC packets, in addition to the unprotected ones,
need to be identified for correct recovery operations. The
next field corresponds to the packet ID, which is 1 byte-
length. Packet ID is a sequence number incremented by one
after each PP, allowing the identification of PP within the
generation. rQUIC reuses old packet IDs. CPs cover multiple
PPs and take their IDs from the last PP they protect.

Long generations with a systematic coding scheme might
generate CPs that, due to packet ID reuse, might look obso-
lete. This issue can be overcome by identifying generations
using their own IDs. Generation IDs also help the decoder
to identify obsolete packets. This field is also 1 byte long
and reuses its IDs. As mentioned in Section II-C, PPs can
belong to multiple generations; therefore, they indicate the
most recent generation to which they belong.

Owing to the packet ID field, we know that the most recent
PP a CP is covering. The next CP field after generation
ID, which is also 1 byte long, indicates the generation size.
rQUIC has been designed to accommodate non-sparse coding
schemes. A sparse coding scheme should set this field as if it
was covering all PPs between the oldest and the most recent
ones, indicating skipped packets with coding coefficients set
to 0 in the next field.

Depending on the coding scheme, the CP might need to
indicate the coding coefficients that were applied to its PPs,
or the seed used to generate them. The size and use of this
field depend on both the coding scheme and the generation
size, which were included in previous fields. An RLC scheme
will use this field to include its coefficients, so its length
equals the generation size. On the other hand, the XOR
scheme does not use this field because its coding coefficients
are always one.

The use of variable-size generations implies dealing with a
different number of coding coefficients. For coding schemes
that write their coefficients in the protocol header, such as
RLC, the corresponding field length would also be dynamic.
The longer the generation, the smaller the packet payload. It is
not possible to know its size in advance, especially during PP
assembly. Based on the results obtained in [6] (cf. Fig. 2 in
that paper), we set the maximum generation size to 63, only
reached in the absence of losses.

Because the CP header is longer than the PP header, the PP
payload should be limited to the maximum size of the CP
payload. Our implementation sets the PP header as long as the
CP header without coding coefficients, writing in the fourth
field the overlap value used by the encoder.

2) PAYLOADS
QUIC leaves unprotected the Connection ID field, as well as
some bits of the first byte [14]. On the other hand, the pay-
load of both the PP and UP goes after the rQUIC header.
Because the first byte is partially protected, the FEC must
also protect it.

For the CP payload, PP payloads of different lengths can
be padded before coding. When transferring large volumes
of information or downloading web page objects, most of
the packets would be of full length, and only the last one
would need padding. However, in the case of an IoT traffic
aggregator, with highly variable packet lengths, padding can
be much more relevant. An IoT traffic aggregator bundles
information from edge devices into a single flow and sends
packets either because they are of full length or upon a

VOLUME 9, 2021 138233



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

timeout expiration. Instead of padding, rQUIC includes the
packet length in a dedicated field of 2 bytes.

The coded payload of the CP consists of three fields: (1) the
length of the remaining payload, (2) the first byte, and (3) the
rest of the QUIC packet after the connection ID. This is the
payload that the FEC uses to build a CP, highlighted with a
square pattern in Fig. 3.

To guarantee privacy, endpoints may change their connec-
tion IDs, which is the only field that remains unprotected by
FEC. If such a change occurs before a generation is complete,
the new CP will have a new connection ID. Then, if this
is used to recover a PP that was lost before the ID change,
the recovered QUIC packet will differ from the original
packet in its connection ID. QUIC implementation at the
client’s side might keep track of the first packet number
corresponding to the current connection ID, interpreting older
packet numbers sent with the new connection ID as an attack,
as QUIC never repeats packet IDs. FEC activity does not
aim to undermine the original QUIC operation, nor should
it appear to be doing it. Therefore, the encoder checks the
destination connection ID, and if it changes, sends all coded
packets even if it temporarily increases the coding rate. In this
way, every CP will cover PPs with the same connection ID.

B. OBSOLETE PACKETS
The decoder must keep all packets from a generation to
decode its CPs. If generations are overlapped, old CPs com-
bined with recent ones could also recover more recent losses
along with the older ones, if the decoder keeps enough
buffered packets. Because there might be memory limita-
tions, obsolete packets should be detected and discarded.

As explained in Section V-A1, packet and generation IDs,
defined in PPs and CPs, are 1 byte long, and their values are
reused once the maximum value is reached. The difference
between recently arrived packet IDs is expected to be very
small; therefore, the comparisons are rather simple. These
comparisons might become more complex with large gen-
eration sizes and a large number of overlapped generations.
Since in this work we evaluate the performance with an XOR
scheme without overlapping, packet ID comparison remains
quite simple. Nevertheless, we included in our implementa-
tion algorithms for the careful detection of obsolete packets.
We do not provide more details here for the sake of text
simplicity.4

C. ASSUMPTIONS AND DESIGN SIMPLIFICATIONS
The coding extension for QUIC proposed in this work has
been designed to support other schemes, and thus exploit the
potential benefits of combining QUIC with, for instance, NC.
For this purpose, FEC headers and coding coefficients are
added after QUIC encrypts its packets. On the other hand,
unencrypted coding coefficients can be used for pollution
attacks. Although there are ways to protect the protocol
operation against them [57], they can be completely avoided

4The reader might check these in the corresponding implementation

by applying coding techniques before encryption, leaving
coefficients encrypted, as in [5]. Furthermore, unencrypted
and recyclable packet IDs can also be used to hinder com-
munication. Coding before encryption not only protects these
IDs, but also simplifies the whole process because QUIC
packet IDs can be used for FEC.

Even if FEC is applied before encryption, the difference
between protected and coded packet lengths may reveal that
the communication is protected by the FEC. It also allows
the classification of protected and coded packets. Dealing
with privacy issues is beyond the scope of this paper, but
we are aware of the next steps to address this issue. Our
implementation uses shorter headers for PPs than for CPs.
By making PP headers as long as CP headers, most PPs will
be as long as CPs.

As discussed in Section V-A2, there can be cases of fre-
quent short packets not reaching full length. In these situ-
ations, even with the same header length for PPs and CPs,
a CP will be detectable because it would be as long as
the longest PP it is protecting. One possible solution would
be to artificially increase the payload of some randomly
selected PPs after the encoder has processed them, so that
PPs sent to the network seem larger than CPs. Another option
would be to randomly split the CP payload into two packets.
Their lengths would not be necessarily similar, and if one
of them was shorter than the average PP, they could be
expanded with random values that would be discarded at the
decoder.

One of the key functionalities of congestion control algo-
rithms at the transport level is to detect congestion events,
and to take appropriate corrective actions, such as limiting
the transmission rate. If the encoder is not appropriately
configured, it might increase the network congestion with
its CPs. Furthermore, it is well known that congestion losses
usually occur in bursts, as Cataltepe and Moghe concluded
in [58]. On the other hand, [35] suggests that FEC coding
could likely benefit communications with persistent non-
congestion losses, which is often the case for wireless net-
works.

Hence, our main assumption is that isolated losses are
mostly caused by transmission errors rather than actual con-
gestion. Our design also aims to avoid tampering with the
operation of congestion control algorithms. In this sense,
rQUIC is configured to send only one CP per generation, and
the generation sizes are limited to the congestion window.
We argue that these measures do not hinder the performance
of real congestion events. In any case, this work focuses on
the QUIC/FEC interaction, while we leave a more in-depth
analysis of the complex interactions between FEC and con-
gestion control for our future work.

VI. EVALUATION RESULTS
In this section we discuss the evaluation that we carried out
to assess the performance yielded by rQUIC and compare
its behavior with that exhibited by the traditional QUIC
operation.

138234 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

A. SETUP
To carry out the experiments, we exploited the ns-3 simula-
tor5 version 3.30.1. All networks have the same topology,
as depicted in Fig. 4. The corresponding binary files of
rQUIC test applications are placed in lxc containers6 (Ubuntu
Trusty Tahr images), which are connected to ns-3 ghost nodes
through CSMA links with large bandwidth and low delay.
These ghost nodes are then connected with a point-to-point
link, whose characteristics are modified in the experiments
to emulate different technologies and network conditions.

FIGURE 4. Emulation scenario.

The point-to-point link behavior depends on three parame-
ters: Bandwidth (BW), RTT, and loss rate. We consider three
networking technologies, with different BW and RTT, and
then evaluate rQUIC performance over the three of them,
modifying the loss rate.

In particular, we selected the same parameters as those used
in [6]. We aim to loosely model the following technologies:
(1) Wi-Fi (BW = 20 Mbps, RTT = 25 ms); (2) cellular
(10 Mbps, 100 ms); and (3) satellite (1.5 Mbps, 400 ms).
In all cases, we introduce different link error rates, α: 0, 1,
2, 3 and 5%.

As discussed earlier, rQUIC can use adaptive or static code
rates. In all our experiments, we used adaptive code rate,
with residual loss threshold γ = 0.01 and ratio variation
parameter δ = 0.33, as mentioned in Section IV. The residual
loss measurement period is of 3 RTTs, and it is averaged
over 3 measurement periods. As explained in Section IV-A,
we used XOR as the coding scheme in all experiments, so the
number of redundancies per generation (r) and overlap (ϕ)
were both set to 1.

B. BULK TRANSFER
The server test application is launched in one container and
waits for incoming communications. The client test applica-
tion connects to the server from another container, and as soon
as the connection is established, the server transmits 20 MiB
of random data for the Wi-Fi and cellular configurations, and
5 MiB for the satellite.

5https://www.nsnam.org/
6https://linuxcontainers.org/

We then compared the performance exhibited byQUIC and
rQUIC bymeasuring the download completion time, which is
defined as the time required to complete the transfer. In addi-
tion, to facilitate the comparison between the two protocols,
we introduce the completion rate, as defined in Eq. 4. This
corresponds to the rQUIC completion time divided by the
average of the corresponding QUIC measurements. In this
sense, a value of ξ lower than 1 implies that rQUIC outper-
forms QUIC.

ξ =
rQUIC Completion Time

QUIC Completion Time
(4)

As discussed earlier, a coding scheme (in particular, FEC)
aims to improve communication performance at the expense
of sending extra packets to the network. Hence, in addition
to completion times, we also study the overhead Ô caused by
coded packets:

Ô =
CP

PP+ CP
(5)

Fig. 5 shows the results of the bulk transmission experi-
ment. We ran more than 1150 independent experiments for
each configuration. Whisker plots were used to represent
the overall delay observed for both QUIC and rQUIC. The
boxes represent the interquartile range with the median mark
inside of the boxes. Thewhiskers represent Tukey fences. The
overhead bar plots (Fig. 5d) 95% confidence intervals are
represented, although they are difficult to appreciate, since
the results are statistically very tight.

For loss rates greater than zero, rQUIC clearly outperforms
QUIC. For the Wi-Fi network (Fig. 5a), the rQUIC comple-
tion time is less than half of the QUIC time in most runs.
As the loss rate increased, the improvement became more
relevant. For instance, when the packet loss rate is 5%, rQUIC
completes the 20 MiB downloads in less than 40% of the
QUIC completion time. Similar completion time reduction
patterns can be observed for the other technologies, where
the gain brought by rQUIC becomes more relevant when the
loss rate increases.

On the other hand, the figure also shows that rQUIC
performs well over ideal channels (0% loss), although the
completion time is slightly larger than that shown for QUIC,
owing to the small overhead introduced byCPs. Fig. 5d shows
that at a 0% loss rate, when there is nothing to recover, rQUIC
continues to send some CPs. However, this time increase is
very small, and it can hardly be appreciated in Figures 5a–5c.

Fig. 5d shows that rQUIC sends more CPs as the loss rate
increases. Furthermore, we can also see that more CPs are
sent for cellular and satellite technologies, which means that
rQUIC observes more losses in these scenarios.

Despite the higher overhead observed for longer RTT val-
ues, the results indicate that the gain of the proposed scheme
is less relevant for satellite and cellular links, regardless
of the loss rate (i.e., when it is greater than 1%). In this
sense, the completion time rate stays below 50%, 70%, and
80% for Wi-Fi, cellular, and satellite links, respectively. This

VOLUME 9, 2021 138235



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 5. Completion time for bulk transfer and the overhead generated by coded packets.

behavior can be explained by the decoder’s buffer delivering
non-consecutive packets (the ones arriving after a loss event)
to the QUIC session too early. In these cases, FEC has fewer
opportunities to recover lost packets, and thus QUIC reports
losses to the transmitter, whose encoder will send CPs more
frequently to compensate for the observed losses.

As explained in Section III, the buffer delivers non-
consecutive packets to QUIC because either the BTO has
been reached, or at least 3 packets from a more recent
generation have been received. The latter will contribute to
early packet delivery when generations are small, which is a
consequence of the increased code rate. Themost likely cause
of this performance loss is inappropriate BTO values. A more
detailed discussion of the impact of BTO on the performance
is included in Section VI-E.
The above analysis reveals that excessive overhead can

impair FEC by making the decoder’s buffer see new genera-
tions too often. Another consequence of excessive overhead is
tampering with the congestion control. To better understand
this circumstance, we obtained the average code rate from
Fig. 5d.

The overhead Ô defined in Eq. 5 can be rewritten as
follows, where ḡ is the average generation size, and Q̄ is the
average code rate.

Ô =
rϕ

ḡ+ rϕ
=

1
ḡ
rϕ + 1

=
1

Q̄+ 1
(6)

From Eq. 6 the average code rate can be calculated as:

Q̄ =
1

Ô
− 1 (7)

Fig. 5d shows that at a loss rate of 5%, the overhead is
above 20%, surpassing 25% for the satellite network. Apply-
ing Eq. 7, such overheads correspond to the average code
rates of 4 and 3, respectively. Because we are using the
XOR scheme, the average generation size is, at a 5% loss
rate, below 4 packets, very close to QUIC’s recommended
minimum CWND of 2 packets [10]. Although at this loss rate
the rQUIC completion time is less than a half of that achieved
by QUIC over all networks, the interaction with conges-
tion control should not be neglected. Hence, the assumption

that only 1 redundant packet per generation should prevent
worsening congestion events might not be true for network
conditions that require high overhead.

Fig. 6 compares the results with those obtained in [6] by
illustrating the completion rate metric for both cases (the
results of our implementation are represented with stronger
colors). Confidence intervals have not been represented to
simplify the comparison. As can be seen, the rQUIC imple-
mentation discussed in this paper exhibits a similar per-
formance to the previous implementation, yielding better
behavior when the channel conditions worsen. In addition,
the results indicate a more sensible behavior, since the gain
with the original QUIC increases for higher loss rates shows
a more sensible relationship with the underlying technology
(i.e., RTT). In any case, it is worth noting that the QUIC code
base was a different one, and that the number of experiments
that we used to obtain our results is more than 10 times, which
ensures amore precise characterization. In this case, we could
not compare the performance of rQUIC with QUIC-FEC [5]
because they did not assess the performance of their solution
with bulk transfers.

FIGURE 6. Bulk transfer average completion rates for the current rQUIC
and its previous version presented in [6].

C. WEBPAGE DOWNLOAD
This experiment is similar to the one described for bulk trans-
fer. Instead of bulk-data transmission, the client downloads
a web page from the server using HTTP. To appropriately

138236 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 7. Completion time for web page download and the overhead generated by coded packets.

emulate web traffic, we used the tool Epload,7 which saves
downloaded objects and records a dependency graph. These
graphs allow us to precisely mimic webpage download pat-
terns, including the time used to process the objects.

The goal of this experiment was to evaluate rQUIC in
short-lived communications with realistic traffic dynamics.
We used the flickr.com webpage, obtained from Eproof
example data sets.8

Fig. 7 shows the results of the web page download experi-
ment. We performed 3500 independent experiments for each
configuration, thus ensuring the statistical validity of the
results.

The web experiment results show a similar trend to those
discussed for bulk transfer. In the presence of losses, rQUIC
strongly improves the QUIC completion times. Under ideal
conditions, the results were similar.

One aspect that becomes more visible in this experiment
(see Fig. 7a) is that QUIC completion times have much
greater dispersion than rQUIC. This aspect might be of
interest, since services with stringent real-time requirements
should not only ensure a particular average delay, but also an
acceptable jitter (variability).

When the QUIC connection is established, the initial
CWND grows rapidly until the first loss event. The larger the
CWND, the more data is advanced before it shrinks. When
the first loss occurs, more or less data will be transferred,
having an immediate effect on the connection termination
time. This initial CWND variation effect especially impacts
short communications, such as the web page download exper-
iment presented here. To better understand this effect, Fig. 8
illustrates the evolution of the CWND for two QUIC connec-
tions over a satellite link, with a 5% loss. The first one (red)
reaches large CWND values, and it finishes (completing the
web download) in less than 70 seconds, while the second
one (blue) suffers a loss at the beginning of the connection,
which yields an early CWND shrink, causing the download
time to go beyond 110 seconds.

7http://wprof.cs.washington.edu/spdy/tool/
8http://wprof.cs.washington.edu/spdy/tool/server.tar.gz

FIGURE 8. Original QUIC CWND evolution for a fast and a slow web page
download over the satellite link at 5% loss.

The main reason for dispersion reduction with rQUIC is
that FEC recovery prevents CWND from shrinking in the
presence of a stable loss rate, and thus delays a strong CWND
shrink at the beginning of a communication.

The overhead behavior (both in terms of network technol-
ogy and loss rate), illustrated in Fig. 7d is similar to that
discussed for the bulk transfer experiment. We can see that
the web experiment yields lower overhead. This is due to
the shorter communication duration, as well as to the initial
generation size, which is as large as the initial CWND, that
is, 32 packets. This results in an overhead that might not be
sufficient for certain network conditions.

As we also observed in the bulk experiment, Fig. 7d shows
that, as the RTT increases, the overhead increases, although,
as can be seen in Figures 7a–7c, rQUIC completion time
does not necessarily improve, compared to QUIC. The reason
for this overhead increase, without a clear FEC performance
improvement, is likely the same as that discussed for the bulk
transfer experiment: a too short BTO. Further discussion on
BTO is included in Section VI-E.

As was done for the bulk experiment, Fig 9 compares the
performance exhibited by the rQUIC implementation dis-
cussed here with the one discussed in [6]. In this case, we can
see that the corresponding completion rates exhibit much
better behavior. Again, the relationship between both the loss
rate and RTT is more sensible. In this case, the behavior of
the cellular and, especially, the satellite technologies is clearly

VOLUME 9, 2021 138237



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 9. Web page download average completion rates for the current
rQUIC and its previous version presented in [6].

better than that obtained in [6]. Again, it is worth highlighting
that, although the characteristics of the experiment are sim-
ilar, we have used a more recent QUIC code base, and the
number of experiments is notably higher than those that were
run in [6].

The results presented by Michel et al. in QUIC-FEC [5]
are not directly comparable with ours owing to different
setups and coding schemes. They only used two scenarios:
(1) Direct Air-To-Ground Communication, with a bandwidth
of 0.468Mbps, where FEC yielded a worse performance, due
to a large overhead of 33.33%. (2) Mobile Satellite Services,
with a bandwidth of 1.89 Mbps, an RTT of 761 ms and a loss
rate of 6%. In the latter case, the 1 MB file transfer is some-
what similar to our web page download experiment, where
less than 2 MB is transferred with a bandwidth of 1.5 Mbps,
an RTT of 400 ms, and a maximum loss rate of 5%. The rest
of the experiments carried out in [5] imply the transmission
of short files, and they are thus not comparable with our
results. While QUIC-FEC [5] increases the completion time
owing to its relevant overhead, the rQUIC adaption scheme
maintains the overhead at a reasonable level, slightly greater
than 25%, leading to a significant improvement compared to
the original QUIC. In any case, the setup parameters are not
the same, and both implementations take different trade-offs:
QUIC-FEC sacrifices bandwidth by sending more redundant
information, while rQUIC worsens congestion awareness by
masking losses from congestion control. Thus, we can con-
clude that a combination of an adaptive coding scheme, full
congestion awareness, and an advanced CCA could bring
additional benefits.

D. VIDEO STREAMING
The last bunch of experiments uses video streaming to ascer-
tain whether rQUIC can yield some gains with this real traffic.

Dynamic Adaptive Streaming over HTTP (DASH) is a
standardized technique [59] for sending video streams over
HTTP. We used go-dash,9 an implementation in the GO
language of the DASH protocol, published in [60], as well as
a DASH testbed.10

9https://github.com/uccmisl/godash
10https://github.com/uccmisl/godashbed

The DASH server streams ‘‘Tears of Steel’’ short movie.
We used the p1203 [61] Quality of Experience (QoE) param-
eter to compare rQUIC with QUIC. To better understand the
benefits of rQUIC, we also performed a qualitative compar-
ison, by studying the video resolution that was used under
different network conditions.

Fig. 10 depicts the average p1203 score with 95% con-
fidence intervals for DASH video streaming. For the Wi-Fi
network (Fig. 10a), the results indicate that rQUIC outper-
forms QUIC when network conditions worsen (link error rate
greater than 1%). In the other two cases, the performance
is almost similar to that exhibited by QUIC. In the cellular
network, rQUIC is able to yield a higher score than QUIC in
all cases, but for the ideal channel, where the performance
is almost alike (i.e., rQUIC does not hinder the performance
exhibited by the original QUIC). These observations are
aligned with those observed in the two other experiments
(bulk and web traffic). For the satellite link, there is almost
no difference between the two protocols, and rQUIC does not
yield any improvement compared to QUIC, as can be seen on
Fig. 10c. In any case, the scores are rather low, implying that
this technology might not be able to provide an appropriate
quality of service for this type of real-time application.

To complement the previous p1203 score results, Fig. 11
depicts the video resolution probability distribution. The
aim is to quantitatively show how rQUIC can outperform
QUIC when using video streaming services by allowing the
transmission of higher quality frames. Because the results
that were observed for the satellite technology evince rather
low quality for both rQUIC and QUIC, we only illustrate,
in Fig. 11, the results obtained for Wi-Fi and cellular tech-
nologies.

Fig. 11a shows that when the loss rate is ≥ 2%, rQUIC is
able to transmit higher resolution frames than QUIC. Even
for the worst conditions (5% loss rate), rQUIC can maintain
most of the resolutions at 1280×720, while with QUIC most
of the time the transmitted resolution is 640×360. For better
quality channels (0% and 1% loss rate), the resolutions for
both QUIC and rQUIC are rather similar, corresponding to
the p1203 score that was discussed earlier.

The same behavior is observed over the cellular link, where
rQUIC clearly yields better resolutions than QUIC when the
conditions of the underlying links become worse (Fig. 11b).
In this case, we observe this behavior for all values of loss
rate, but for the ideal case (loss rate 0%), where the resolu-
tions that were seen for the two transport protocols are almost
alike.

E. BUFFER TIMEOUT EXPLORATION
We observed that the FEC performance worsened for larger
RTT values. Our initial assumption is that this degradation
is caused by an inappropriate BTO value. However, using a
fixed BTO may not be a good solution for changing network
conditions.

If packet transmission rate is paced, the optimum BTO
can be searched according to the pacing algorithm. Based

138238 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 10. QUIC and rQUIC performance comparison using p1203 score.

FIGURE 11. QUIC and rQUIC performance comparison in terms of achieved video resolutions.

on the recommendations in [10], quic-go implements its
sending rate as shown in Eq. 8, where sRTT corresponds to
a smoothed RTT. By default, the endpoints do not commu-
nicate their congestion windows, but each endpoint estimates
the RTT. Thus, defining the BTO in terms of sRTT could yield
a nearly optimum value.

sending rate =
5
4
CWND
sRTT

(8)

To better understand the impact of different BTO values
on the rQUIC performance, we repeated the bulk transfer and
web page experiments with different BTO values.

Figures 12 and 13 show the completion time rate (ξ ) for
a loss rate of 3%. The figures show, with a vertical line,
the RTTs of the three networks. The default BTO is 25 ms,
corresponding to the RTT for the Wi-Fi network. Since there
was some dispersion in the results, caused by the depen-
dency on both the congestion control algorithm and the net-
work conditions (loss rate), we have included, as thick lines,
the 3rd order least squares regression of the results observed
for different BTO values.

The corresponding trend would ease the identification of
an optimum point, where the BTO would yield a higher gain
(shorter completion time).

FIGURE 12. Average completion rates for different values of BTO in web
page download.

Since the optimum BTO depends on the sending rate,
impacted itself by the RTT, it would be reasonable to expect
that a BTO equal or proportional to the RTT would yield
a minimum completion rate. Figures 12 and 13 show the
reduction in completion rates for cellular and satellite links
when BTO equals the underlying RTT. However, the results
indicate that lower completion rates might be obtained with
BTOs greater than RTT.

We can see that there is no clear or constant relationship
between the BTO that yields the minimum completion time

VOLUME 9, 2021 138239



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

FIGURE 13. Average completion rates for different values of BTO in bulk
transfer scenario.

and the corresponding RTT for the web traffic experiments.
In this sense, the minimum values in Fig. 12 are observed at,
approximately, 90, 240 and 700 ms for Wi-Fi, cellular and
satellite links, respectively, 3.6, 2.4 and 1.75 times greater
than their corresponding RTTs. Bulk transfer experiments
neither yield a constant BTO to RTT relationship, with mini-
mum completion rates in Fig. 13 found around 300 (12 RTT),
400 (4 RTT), and 2500 ms (6.25 RTT) for Wi-Fi, cellular,
and satellite links, respectively. Thus we can conclude that the
optimum BTO cannot be defined as a function of RTT alone.
However, a BTO that is equal to RTT seems to be a safe and
efficient solution for both short (web) and long (bulk) com-
munications, as the difference with the potential optimum
performance is not very relevant.

On the other hand, excessively large BTO values
would jeopardize the overall communication delay.
Figures 12 and 13 show that the completion time rates for
the three considered technologies grow as the BTO increases.
This is due to the highest BTO values used for the test, which
are comparable to the completion times in this particular
scenario. On the other hand, BTO values are approximately
one order of magnitude smaller than the completion times
(see Figures 5 and 7) are greater than the optimum BTO, and
completion rates are growing (see Figures 13 and 12). This
growth is more difficult to appreciate in Fig. 13 for cellular
and satellite links, because the communication is longer, and
the observed growth rate is still low.

VII. DISCUSSION AND FUTURE EXTENSIONS
In this work, we have seen that QUIC performance can be
significantly improved using the adaptive FEC extension that
we have integrated. However, more enhancements may be
added to boost communication robustness and efficiency.

When CPs are inserted, they do not interact with the
congestion control mechanism. This is sensible because the
transmission of just 1 CP per generation should not have
a strong impact on congestion control. However, we have
seen, for both bulk transfer and short web page download
experiments, that when loss rates grow, the number of CPs
should not be neglected from the perspective of congestion
control mechanisms. More specifically, at a 5% loss rate,

the overhead in both experiments is above 20%, meaning
that 1 CP is inserted every 4 or even 3 PPs. Therefore, it is
important to establish an appropriate interaction between the
FECmodule and the congestion control scheme, which might
comprise accounting CPs and the corresponding modifica-
tions to the adaptive code rate, introducing features such as
the eventual skipping of CP transmission during congestion
events. The latter would also require distinguishing between
congestion and network losses.

In the FEC implementation presented in this work, all cod-
ing operations are performed over already encrypted packets
to enable further research on QUIC improvements with NC.
However, given that encryption is the last step in QUIC packet
construction, performing coding operations on unencrypted
payloads would greatly simplify the interaction between FEC
and other features or extensions. For instance, this would
greatly simplify the interaction with the congestion control
scheme, leading to a congestion-aware FEC implementation,
as the one introduced in [5]. The interaction between the
coding module and the eventual multipath extensions can
also be simplified. Secondary paths could be probed with
CPs, which can be naturally acknowledged by the QUIC
session, if coding techniques are applied before encryption.
Pre-encryption FEC should not replace the existing solution
because both can be combined to implement BATS coding
techniques [62].

The FEC encoder presented in this work buffers only coded
packets under construction, adding the original packets on
the fly. Another possible approach would be to buffer the
original (source) packets and build the coded packets imme-
diately before their transmission. Although this would require
more memory at the encoder, it would allow the selection of
only unacknowledged source packets for building the coded
ones. Another benefit would be the reduction of the decoder’s
buffer length because fewer source packets would be required
to decode a coded one. Either of the two approaches should
be selected, based on the constraints of the particular devices
(transmitter and receiver), especially in terms of memory.

At the end of a communication, it is quite likely that the
last generation could not be completed, since the number of
the last PPs might be smaller than the generation size, and
the corresponding CPs had not been transmitted. The losses
of such packets, including tail losses of the very last ones,
are recovered with QUIC retransmissions. To send protection
packets for small generations, the encoder requires a rather
short timeout for CP transmission. This would be particularly
beneficial for short communications, where multiple packets
are sent, but they might not be enough to complete a sin-
gle generation (32 packets, as imposed by quic-go initial
CWND), which could be the case for monitoring devices
sending short reports every minute.

The decoder presented in this work delays PP delivery
to allow the FEC to recover lost packets before the lat-
ter are retransmitted. We define a maximum delay time,
the Buffer Timeout (BTO). To comply with the QUIC speci-
fication, BTO is defined as a function of max_ack_delay,

138240 VOLUME 9, 2021



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

a transport parameter that is set at the beginning of the
communication and never changed. The BTO exploration
experiment (Section VI-E) revealed a significant boost in
rQUIC performance when BTO was slightly greater than
RTT. In future rQUIC updates, in order to define a more
suitable BTO, the endpoints might estimate their RTTs during
connection establishment or further extend the original QUIC
functionality to renegotiate themax_ack_delay parameter
after the connection has already been established, or upon
detecting a significant change in the observed RTT. A less
universal yet simpler solution would be to set the appropriate
max_ack_delay from the application before the actual
connection establishment.

The current implementation of the decoder prevents the
delivery of PPs received after a loss was detected. The reason
for this is to delay the corresponding ACK transmission,
which triggers lost packet retransmission. This is not the
safest way to delay the generation of ACK. At the time of
writing, there are two active IETF drafts addressing the ACK
frequency variation [63], [64]. We argue that an extension
delaying ACK frame generation would allow the FEC mod-
ule to recover lost packets, and thus avoid retransmissions,
simplifying the decoder implementation. Another potential
improvement in the decoder implementation is the modifica-
tion of the QUIC behavior when an ACK is received, defining
a new logic for delaying the retransmission of lost frames.

In this work we have used XOR coding for two rea-
sons: (1) it corresponds to a scheme whose redundancies
per generation r and generation overlap ϕ equal to 1, min-
imizing the generation size (and so the recovery latency)
and the decoder’s buffer length; (2) we have assumed that
single loss events are due to wireless link impairments,
and are not a consequence of congestion situations. How-
ever, wireless losses can also occur in bursts. Cardoso and
de Rezende analyze in [65] Wi-Fi bursty losses and pro-
posed a model for them. In their setup, they observed bursts
that might have been rather long. The FEC module has
been designed with the goal of correcting persistent non-
congestion losses [35], which can already be achieved with
the adaptive algorithm taken from [54], [55]. The next step in
improving the behavior upon persistent losses is to estimate
the average burst length and adapt the encoder’s configura-
tion.We argue that an appropriate configuration of the coding
scheme (r and ϕ) would likely yield better performance
when considering bursty links. Since our design is flexible
enough to modify the coding strategy, we will broaden the
analysis, to assess the potential impact of changing the coding
configuration.

Section II-B introduces the interleaving of coded packets.
However, interleaving blocks do not have to be a multiple
of generation size or depend on coding. As shown in [66],
interleaving can be applied in audio transmission over packets
without any coding, distributing the impact of burst losses
over non-consecutive audio samples. Depending on applica-
tion data transmission rate, the latency introduced by building
small interleaving blocks could be acceptable. Decoupling

interleaving from FEC coding would allow using the basic
XOR scheme with a nearly random distribution of coded
packets in the transmission queue.

VIII. CONCLUSION
We presented the design and implementation of rQUIC,
an integration of the QUIC protocol with a coding module.
Our proposal can be configured to consider different coding
schemes, including various Network Coding flavors. The
implementation in the go language has been made available
in a public repository.

We assessed the performance of our proposed method by
comparing it with that exhibited by the original QUIC proto-
col. We exploited the ns-3 simulation framework, which by
means of virtualization, allows the integration of containers
hosting real nodes. Thus, we were able to use realistic traffic
patterns. The simulator also allowed us to perform repeti-
tive and systematic experiments, in which different technolo-
gies and conditions (link qualities) were considered. After
an extensive measurement campaign, the obtained results
demonstrate that the proposed scheme not only yields a lower
average delay, but it also brings a more predictable behavior,
because the observed delays show less variability. We used
complementary traffic patterns, embracing both long (with
bulk data transmission) and short flows (typical for web
transfers). In the two cases, rQUIC clearly outperformed
the original QUIC protocol, as well as previous works that
also integrated QUIC with a coding module. Furthermore,
we have also studied the benefits that the coding module
could bring for a real-time service, by integrating our pro-
posal with the DASH protocol. In this case, the results show
that in scenarios where the video stream quality is reasonable,
the use of rQUIC increases the QoE perceived by the end user,
allowing the transmission of frames with a higher resolution.

In our future work, we will exploit the rQUIC implemen-
tation to evaluate the benefits of using more advanced cod-
ing strategies, which were already considered in our design.
We will also focus on the relationship between the coding and
congestion control mechanisms. In addition, we will evaluate
the improvements that might be brought about by including
additional functionalities. We will pay special attention to the
use of multipath, and its integration with the coding module.
In this sense, we argue that coded packets might be useful for
various endpoints, which could recover different lost packets
with the same coded packet.

REFERENCES
[1] A. Langley, A. Riddoch, A.Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,

F. Kouranov, I. Swett, J. Iyengar, and J. Bailey, ‘‘The QUIC transport
protocol: Design and internet-scale deployment,’’ in Proc. Conf. ACM
Special Interest Group Data Commun. (SIGCOMM). NewYork, NY, USA:
ACM Press, 2017, pp. 183–196.

[2] Usage Statistics of QUIC for Websites, August 2021.
Accessed: Aug. 2, 2021. [Online]. Available: https://w3techs.com/
technologies/details/ce-quic

[3] J. Iyengar andM. Thomson,QUIC: A UDP-Based Multiplexed and Secure
Transport, document RFC 9000, Internet Requests for Comments, RFC
Editor, May 2021.

VOLUME 9, 2021 138241



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

[4] R. Paulo. Implementations Quicwg/Base-Drafts Wiki. Accessed:
Aug. 2, 2021. [Online]. Available: https://github.com/quicwg/base-drafts/
wiki/Implementations

[5] F. Michel, Q. D. Coninck, and O. Bonaventure, ‘‘QUIC-FEC: Bringing the
benefits of forward erasure correction to QUIC,’’ in Proc. IFIP Netw. Conf.
(IFIP Netw.), May 2019, pp. 1–9.

[6] P. Garrido, I. Sanchez, S. Ferlin, R. Aguero, and O. Alay, ‘‘RQUIC:
Integrating FEC with QUIC for robust wireless communications,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–7.

[7] Q. D. Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, ‘‘Pluginizing QUIC,’’ in Proc.
ACM Special Interest Group Data Commun., Aug. 2019, pp. 19–24.

[8] I. Swett, M.-J. Montpetit, V. Roca, and F. Michel, Coding for
QUIC, document Internet-Draft Draft-Swett-Nwcrg-Coding-for-Quic-
04, Internet Engineering Task Force, Mar. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-swett-nwcrg-coding-for-quic-04

[9] V. Roca, F. Michel, I. Swett, and M.-J. Montpetit, Sliding Window
Random Linear Code (RLC) Forward Erasure Correction (FEC) Schemes
for QUIC, document Internet-Draft Draft-Roca-Nwcrg-Rlc-Fec-Scheme-
for-Quic-03, Internet Engineering Task Force, Mar. 2020. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-roca-nwcrg-rlc-fec-
scheme-for-quic-03

[10] J. Iyengar and I. Swett, QUIC Loss Detection and Congestion
Control, document Internet-Draft Draft-Ietf-Quic-Recovery-29,
Internet Engineering Task Force, Jun. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-29

[11] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, ‘‘Is it still possible to extend TCP?’’ in Proc. ACM SIGCOMM
Conf. Internet Meas. Conf. (IMC), 2011, pp. 181–194.

[12] M. Thomson and S. Turner, Using TLS to Secure QUIC, document
Internet-Draft Draft-Ietf-Quic-Tls-29, Internet Engineering Task Force,
Jun. 2020. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
ietf-quic-tls-29

[13] P. Wang, C. Bianco, J. Riihijärvi, and M. Petrova, ‘‘Implementation and
performance evaluation of the QUIC protocol in Linux kernel,’’ in Proc.
21st ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile Syst.
New York, NY, USA: ACM, Oct. 2018, pp. 227–234.

[14] J. Iyengar and M. Thomson, QUIC: A UDP-Based Multiplexed and
Secure Transport, document Internet-Draft Draft-Ietf-Quic-Transport-
29, Internet Engineering Task Force, Jun. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-29

[15] J. Postel, Transmission Control Protocol, document STD 793, Internet
Requests for Comments, RFC Editor, Sep. 1981. [Online]. Available:
https://rfc-editor.org/rfc/rfc793.txt

[16] G. Albertazzi, M. Chiani, G. E. Corazza, A. Duverdier, H. Ernst,
W. Gappmair, G. Liva, and S. Papaharalabos, Forward Error
Correction. Boston, MA, USA: Springer, 2007, pp. 117–174. [Online].
Available: http://link.springer.com/10.1007/978-0-387-34649-6_4, doi:
10.1007/978-0-387-34649-6_4.

[17] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, ‘‘Network information
flow,’’ IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.
[Online]. Available: http://ieeexplore.ieee.org/document/850663/

[18] D. Katabi, S. Katti, and H. Rahul, ‘‘Harnessing network coding in
wireless systems,’’ in Network Coding. Boston, MA, USA: Academic,
2012, pp. 39–60. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/B9780123809186000020

[19] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, ‘‘The benefits
of coding over routing in a randomized setting,’’ in Proc. IEEE Int. Symp.
Inf. Theory, Jul. 2003, p. 442.

[20] T. Ho,M.Médard, R. Koetter, D. R. Karger,M. Effros, J. Shi, andB. Leong,
‘‘A random linear network coding approach to multicast,’’ IEEE Trans. Inf.
Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[21] M. Wang and B. Li, ‘‘How practical is network coding?’’ in Proc. 14th
IEEE Int. Workshop Quality Service, Jun. 2006, pp. 274–278. [Online].
Available: http://ieeexplore.ieee.org/document/4015763/

[22] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen, ‘‘Network coding
for mobile devices–systematic binary random rateless codes,’’ in Proc.
IEEE Int. Conf. Commun. Workshops, no. 2, Jun. 2009, pp. 1–6.

[23] H. Liu, H. Ma, M. E. Zarki, and S. Gupta, ‘‘Error control schemes for
networks: An overview,’’ Mob. Netw. Appl., vol. 2, no. 2, pp. 167–182,
1997, doi: 10.1023/A:1013676531988.

[24] S. Wunderlich, F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein,
‘‘Caterpillar RLNC (CRLNC): A practical finite sliding window RLNC
approach,’’ IEEE Access, vol. 5, pp. 20183–20197, 2017.

[25] F. Gabriel, S. Wunderlich, S. Pandi, F. H. Fitzek, andM. Reisslein, ‘‘Cater-
pillar RLNC with feedback (CRLNC-FB): Reducing delay in selective
repeat ARQ through coding,’’ IEEE Access, vol. 6, pp. 44787–44802,
2018.

[26] M. Zverev, P. Garrido, R. Agüero, and J. Bilbao, ‘‘Systematic network
coding with overlap for IoT scenarios,’’ in Proc. Int. Conf. Wireless Mobile
Comput., Netw. Commun. (WiMob), Oct. 2019, pp. 1–6.

[27] Z. Huang, X.Wang, X. Chen, andH. Kan, ‘‘Network codingwith interleav-
ing,’’ in Proc. Int. Conf. Parallel Process. Workshops (ICPPW), Sep. 2007,
pp. 1–6.

[28] D. Stolpmann, C. Petersen, V. Eichhorn, and A. Timm-Giel, ‘‘Extending
On-the-fly network coding by interleaving for avionic satellite links,’’ in
Proc. IEEE 88th Veh. Technol. Conf. (VTC-Fall), Aug. 2018, pp. 1–5.

[29] B. Adamson, C. Adjih, J. Bilbao, V. Firoiu, F. Fitzek, S. A. M. Ghanem,
E. Lochin, A. Masucci, M.-J. Montpetit, M. V. Pedersen, G. Peralta,
V. Roca, P. Saxena, and S. Sivakumar, Taxonomy of Coding Techniques
for Efficient Network Communications, document RFC 8406, Jun. 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8406.txt

[30] W. An, M. Médard, and K. R. Duffy, ‘‘Keep the bursts and ditch the inter-
leavers,’’ inProc. IEEEGlobal Commun. Conf. (GLOBECOM), Dec. 2020,
pp. 1–6.

[31] J. Wu, B. Cheng, M. Wang, and J. Chen, ‘‘Priority-aware FEC coding for
high-definition mobile video delivery using TCP,’’ IEEE Trans. Mobile
Comput., vol. 16, no. 4, pp. 1090–1106, Apr. 2017.

[32] T. Tsugawa, N. Fujita, T. Hama, H. Shimonishi, and T. Murase, ‘‘TCP-
AFEC: An adaptive FEC code control for end-to-end bandwidth guaran-
tee,’’ in Proc. Packet Video, Nov. 2007, pp. 294–301.

[33] F. Teshima, H. Obata, R. Hamamoto, and K. Ishida, ‘‘TCP-TFEC: TCP
congestion control based on redundancy setting method for FEC over wire-
less LAN,’’ IEICE Trans. Inf. Syst., vol. E100.D, no. 12, pp. 2818–2827,
2017.

[34] Y. Sato, H. Koga, and T. Ikenaga, ‘‘TCP using adaptive FEC to improve
throughput performance in high-latency environments,’’ IEICE Trans.
Commun., vol. E102.B, no. 3, pp. 537–544, 2019.

[35] N. Kuhn, E. Lochin, F. Michel, and M. Welzl, Coding and Conges-
tion Control in Transport, document Internet-Draft Draft-Irtf-Nwcrg-
Coding-and-Congestion-09, Internet Engineering Task Force, Jun. 2021.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-irtf-nwcrg-
coding-and-congestion-09

[36] P. Truchly, M. Sith, and R. Repka, ‘‘End-to-end packet loss dif-
ferentiation algorithms and their performance in heterogeneous net-
works,’’ in Proc. 17th Int. Conf. Emerg. eLearning Technol. Appl.
(ICETA), Nov. 2019, pp. 777–783. [Online]. Available: https://ieeexplore.
ieee.org/document/9040082/

[37] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, RTP: A Trans-
port Protocol for Real-Time Applications, document RFC 3550, Jul. 2003.
[Online]. Available: https://rfc-editor.org/rfc/rfc3550.txt

[38] A. H. Li, RTP Payload Format for Generic Forward Error Correc-
tion, document RFC 5109, Dec. 2007. [Online]. Available: https://rfc-
editor.org/rfc/rfc5109.txt

[39] A. C. Begen, RTP Payload Format for 1-D Interleaved Parity Forward
Error Correction (FEC), document RFC 6015, Oct. 2010. [Online]. Avail-
able: https://rfc-editor.org/rfc/rfc6015.txt

[40] L. Liu and X. Dong, ‘‘Evaluating packet-level forward error correction: 1-
D interleaved parity codes,’’ in Proc. 8th Int. Conf. Comput. Technol. Inf.
Manage. (ICCM), vol. 1, Apr. 2012, pp. 370–375.

[41] Y. Go, H. Noh, G. Park, and H. Song, ‘‘Energy-efficient HTTP adaptive
streaming with hybrid TCP/UDP over heterogeneous wireless networks,’’
in Proc. IEEE 20th Int. Symp. World Wireless, Mobile Multimedia Net-
works (WoWMoM), Jun. 2019, pp. 1–10.

[42] I. Swett. (2016). QUIC FEC V1. Accessed: Aug. 6, 2021. [Online].
Available: https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-
isovCo8VEjjnuCPTcLNJewj7Nk/edit

[43] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. Leith,
and M. Medard, ‘‘Network coded TCP (CTCP),’’ 2013, arXiv:1212.2291.
[Online]. Available: https://arxiv.org/abs/1212.2291

[44] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak,
M. Mitzenmacher, and J. Barros, ‘‘Network coding meets TCP: Theory
and implementation,’’ Proc. IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.
[Online]. Available: http://ieeexplore.ieee.org/document/5688180/

[45] J. Ridgewell and H. Elaarag, ‘‘NCTCP: A network coded TCP protocol,’’
Simul. Ser., vol. 48, no. 3, pp. 39–46, 2016.

138242 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-0-387-34649-6_4
http://dx.doi.org/10.1023/A:1013676531988


M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

[46] K. Alferaidi, R. Piechocki, and F. Alfordy, ‘‘Improving TCP performance
in multi-hop coded wireless networks,’’ in Proc. 2nd Int. Conf. Comput.
Appl. Inf. Secur. (ICCAIS), May 2019, pp. 1–6.

[47] B. Y. L. Kimura, D. C. S. F. Lima, and A. A. F. Loureiro, ‘‘Packet
scheduling in multipath TCP: Fundamentals, lessons, and opportunities,’’
IEEE Syst. J., vol. 15, no. 1, pp. 1445–1457, Mar. 2021.

[48] V. Sharma, S. Kalyanaraman, K. Kar, K. K. Ramakrishnan, and
V. Subramanian, ‘‘MPLOT: A transport protocol exploiting multipath
diversity using erasure codes,’’ in Proc. 27th Conf. Comput. Commun.
(IEEE INFOCOM), Apr. 2008, pp. 121–125.

[49] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, ‘‘FMTCP: A fountain
code-based multipath transmission control protocol,’’ IEEE/ACM Trans.
Netw., vol. 23, no. 2, pp. 465–478, Apr. 2015.

[50] Q. De Coninck and O. Bonaventure, ‘‘Multipath quic: Design and eval-
uation,’’ in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol., 2017,
pp. 160–166.

[51] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
‘‘Multipath QUIC: A deployable multipath transport protocol,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–7.

[52] Q. D. Coninck and O. Bonaventure, Multipath Extensions for QUIC
(MP-QUIC), document Internet-Draft Draft-Deconinck-Quic-Multipath-
07, Internet Engineering Task Force, May 2021. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-07

[53] Y. Liu, Y. Ma, C. Huitema, Q. An, and Z. Li, Multipath Exten-
sion for QUIC, document Internet-Draft Draft-Liu-Multipath-Quic-
03, Internet Engineering Task Force, Mar. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-03

[54] S. Ferlin and O. Alay, ‘‘TCP with dynamic FEC for high delay and
lossy networks,’’ in Proc. Int. Conf. Emerg. Netw. EXperiments Technol.
(CoNEXT) Student Workshop, 2016, pp. 1–3.

[55] S. Ferlin, S. Kucera, H. Claussen, and O. Alay, ‘‘MPTCP meets
FEC: Supporting latency-sensitive applications over heterogeneous net-
works,’’ IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2005–2018,
Oct. 2018.

[56] M. Thomson, Version-Independent Properties of QUIC, document
Internet-Draft Draft-Ietf-Quic-Invariants-09, Internet Engineering
Task Force, Jun. 2020. [Online]. Available: https://datatracker.ietf.
org/doc/html/draft-ietf-quic-invariants-09

[57] V.Adat Vasudevan, C. Tselios, and I. Politis, ‘‘On security against pollution
attacks in network coding enabled 5G networks,’’ IEEE Access, vol. 8,
pp. 38416–38437, 2020.

[58] Z. Cataltepe and P. Moghe, ‘‘Characterizing nature and location of conges-
tion on the public Internet,’’ in Proc. 8th IEEE Symp. Comput. Commun.
(ISCC), vol. 2, Jul. 2003, pp. 741–746.

[59] Information Technology—Dynamic Adaptive Streaming Over HTTP
(DASH)—Part 1: Media Presentation Description and Segment Formats,
Int. Org. Standardization, Geneva, Switzerland, Dec. 2019.

[60] D. Raca, M. Manifacier, and J. J. Quinlan, ‘‘GoDASH—GO accelerated
HAS framework for rapid prototyping,’’ in Proc. 12th Int. Conf. Qual.
Multimedia Exper. (QoMEX), May 2020, pp. 1–4. [Online]. Available:
https://ieeexplore.ieee.org/document/9123103/

[61] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Goring, and B. Feiten,
‘‘A bitstream-based, scalable video-quality model for HTTP adaptive
streaming: ITU-T P.1203.1,’’ in Proc. 9th Int. Conf. Qual. Multimedia
Exper. (QoMEX), May 2017, p. 1203.

[62] S. Yang and R. W. Yeung, ‘‘Batched sparse codes,’’ IEEE Trans. Inf.
Theory, vol. 60, no. 9, pp. 5322–5346, Sep. 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6847232/

[63] G. Fairhurst, A. Custura, and T. Jones, Changing the Default QUIC
ACK Policy, document Internet-Draft Draft-Fairhurst-Quic-Ack-Scaling-
04, Internet Engineering Task Force, Mar. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-fairhurst-quic-ack-scaling-04

[64] J. Iyengar and I. Swett, QUIC Acknowledgement Frequency,
document Internet-Draft Draft-Ietf-Quic-Ack-Frequency-00,
Internet Engineering Task Force, Jul. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-ack-frequency-00

[65] K. V. Cardoso and J. F. D. Rezende, ‘‘Accurate hidden Markov modeling
of packet losses in indoor 802.11 networks,’’ IEEE Commun. Lett., vol. 13,
no. 6, pp. 417–419, Jun. 2009.

[66] C. Perkins, O. Hodson, and V. Hardman, ‘‘A survey of packet loss recovery
techniques for streaming audio,’’ IEEE Netw., vol. 12, no. 5, pp. 40–48,
Sep. 1998.

MIHAIL ZVEREV received the degree in telecom-
munications engineering from the University
of Cantabria, Santander, Spain, in 2014, and
the M.Sc. degree in project management from
La Salle, University of Ramón Llull, Barcelona,
in 2017. He is currently pursuing the joint Ph.D.
degree with Ikerlan Technology Research Centre
in collaboration with the University of Cantabria.
His area of work is mainly centered around reduc-
ing latency in transport layer protocols.

PABLO GARRIDO received the degree in
telecommunications engineering, theM.Sc. degree
in mathematics and computing, and the Ph.D.
degree in information technologies from the
University of Cantabria, in 2013, 2014, and
2018, respectively. From 2018 to 2021, he was
a Research and Development Engineer at the
IoT Cybersecurity Department, Ikerlan Technol-
ogy Research Center and currently the Innova-
tive Solutions Architect at Nemergent Solutions.

He has published more than 20 papers in peer-review conferences and
journals in his research fields. His area of work is mainly centered on network
coding, transport protocols, the IoT, and mission critical solutions.

FÁTIMA FERNÁNDEZ received the degree in
telecommunication technologies engineering and
the M.Sc. degree in telecommunication engineer-
ing from the University of Cantabria, Santander,
Spain, in 2017 and 2019, respectively. She is cur-
rently pursuing the joint Ph.D. degree with Ikerlan
Technology Research Centre in collaboration with
the University of Cantabria. In 2019, she was a Fel-
low Researcher with the Communications Engi-
neering Department, University of Cantabria. Her

area of work is mainly centered around congestion control algorithms for
transport layer protocols.

JOSU BILBAO (Senior Member, IEEE) received
the degree in telecommunication engineering from
the Faculty of Engineering of Bilbao (UPV/EHU),
Spain, the M.Sc. degree in communications and
control from the University of the Basque Country,
Spain, and the Ph.D. degree in computer science
from the University of Navarra, Spain. He has
been with Ikerlan Technology Research Centre,
Arrasate/Mondragón, Spain, since 2003, where he
is the Head of the Information and Communication

Technologies Area. His current research interests include reliable commu-
nications, real-time cyber-physical systems integration in the Internet of
Things (IoT), fog-based the IoT architectures, 5G, artificial intelligence, and
edge computing. He has taken part in different standardization bodies and
platforms, such as IETF, IEEE, HANA, and ETG.

VOLUME 9, 2021 138243



M. Zverev et al.: Robust QUIC: Integrating Practical Coding in Low Latency Transport Protocol

ÖZGÜ ALAY (Member, IEEE) received the B.Sc.
and M.Sc. degrees in electrical and electronic
engineering from Middle East Technical Univer-
sity, Turkey, and the Ph.D. degree in electrical
and computer engineering from Tandon School of
Engineering, New York University, USA. She is
currently an Associate Professor with the Univer-
sity of Oslo, Norway, and also the Head of Mobile
Systems and Analytics (MOSAIC) Department,
Simula Metropolitan, Norway. She is the author

of more than 70 peer-reviewed publications. Her research interests include
5G networks, multi-connectivity and multipath protocols, the IoT, drone
communications, and multimedia systems for future mobile networks.

SIMONE FERLIN received the Dipl.-Ing. degree
in information technology with major in telecom-
munications from Friedrich-Alexander Erlangen
Nuernberg University, Germany, in 2010, and the
Ph.D. degree in computer science from the Uni-
versity of Oslo, Norway, in 2017. Her research
interests include intersection of cellular networks
and the Internet, with her research focusing on
QoS and cross-layer design, transport protocols,
congestion control, network performance, secu-

rity, and measurements. Her dissertation focused on improving robustness
in multipath transport for heterogeneous networks with MPTCP. She is
currently a Software Architect at Ericsson AB. She also actively serves on
technical boards of major conferences and journals in these areas.

ANNA BRUNSTROM (Member, IEEE) received
the B.Sc. degree in computer science and math-
ematics from Pepperdine University, CA, USA,
in 1991, and the M.Sc. and Ph.D. degrees in com-
puter science from the College of William and
Mary, VA, USA, in 1993 and 1996, respectively.
She joined the Department of Computer Science
at Karlstad University (KAU), Sweden, in 1996,
where she is currently a Full Professor and a
Research Manager of the Distributed Systems and

Communications Research Group. Her research interests include internet
architectures and protocols, techniques for low latency internet communica-
tion, multipath communication, performance evaluation, and optimization of
mobile broadband systems, including 5G. She is currently the KAU Principal
Investigator within the EU H2020 Project 5GENESIS. She is the Co-Chair
of the RTPMedia Congestion Avoidance Techniques (rmcat) working group
within the IETF. She has authored/coauthored over 200 international journals
and conference papers.

RAMÓN AGÜERO (Senior Member, IEEE)
received the M.Sc. degree (Hons.) in telecom-
munications engineering from the University of
Cantabria, Santander, Spain, in 2001, and the
Ph.D. degree (Hons.), in 2008. Since 2016, he has
been the Head of the IT area (deputy CIO) at the
University of Cantabria. He is currently an Asso-
ciate Professor with the Communications Engi-
neering Department, University of Cantabria. His
research interests include future network architec-

tures, especially regarding the (wireless) access part of the network and its
management. He is interested on multihop (mesh) networks and network
coding. He has published more than 200 scientific articles in such areas.
He has supervised five Ph.D. students and more than 70 B.Sc. and M.Sc.
theses. He is the main instructor in courses dealing with networks and traffic
modeling at B.Sc. and M.Sc. levels. He is a regular TPC member and a
reviewer on various related conferences and journals. He has been serving
in the Editorial Board of IEEE COMMUNICATION LETTERS as a Senior Editor,
since 2019. He serves in the Editorial Board of IEEE OPEN ACCESS JOURNAL
OF THE COMMUNICATIONS SOCIETY, Wireless Networks (Springer), and Mobile
Information Systems (Hindawi).

138244 VOLUME 9, 2021


