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ABSTRACT This paper presents an automatic curriculum learning (ACL) method for object transportation
based on deep reinforcement learning (DRL). Previous studies on object transportation using DRL have
a sparse reward problem that an agent receives a rare reward for only the transportation completion of an
object. Generally, curriculum learning (CL) has been used to solve the sparse reward problem. However,
the conventional CL methods should be manually designed by users, which is difficult and tedious work.
Moreover, there were no standard CL methods for object transportation. Therefore, we propose an ACL
method for object transportation in which human intervention is unnecessary at the training step. A robot
automatically designs curricula itself and iteratively trains according to the curricula. First, we define
the difficult level of object transportation using a map, which is determined by the predicted travelling
distance of an object and the existence of obstacles and walls. In the beginning, a robot learns the object
transportation at an easy level (i.e., travelling distance is short and there are less obstacles around), then
learns a difficult task (i.e., the long travelling distance of an object is required and there are many obstacles
around). Second, training time also affects the performance of object transportation, and thus, we suggest
an adaptive determining method of the number of training episodes. The number of episodes for training is
adaptively determined based on the current success rate of object transportation. We verified the proposed
method in simulation environments, and the success rate of the proposed method was 14% higher than no-
curriculum. Also, the proposed method showed 63% (maximum) and 14% (minimum) higher success rates
compared with the manual curriculum methods. Additionally, we conducted real experiments to verify the
gap between simulation and practical results.

INDEX TERMS Curriculum learning, object transportation, deep reinforcement learning, difficulty level.

I. INTRODUCTION
Recently, object transportation has come to occupy an impor-
tant position in logistics [1], exploration [2], and service
robotics fields [3]. Traditionally, many researchers have tried
to study object transportation techniques by imitating nature’s
behavior models. A dung beetle rolls cow dung to build
a house using it or eat it [4], and ants transport prey to
their nest together [5]. They can transport an object using
prearranged behavior patterns such as pulling, pushing, and
enclosing actions. Inspired by these actions, four primary
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object transportation methods have been suggested in the
robotics field [6]: grasping, pushing, caging, and tool-using
methods. Each method has its own advantage, but it cannot
be generally applied to practical environments due to restric-
tions of high control complexity or tool-using. To overcome
these restrictions, deep reinforcement learning (DRL)-based
object transportation methods have been presented. The
DRL algorithm is an effective solution for addressing com-
plicated object transportation problems by reducing control
complexity.

In DRL-based object transportation, it is important that
proper rewards should be given at the right time during the
training process. However, one-time reward is given only
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when the object reaches a goal; it is difficult to achieve the
goal by the random actions of a robot, which is known as
a sparse reward problem [7]. Therefore, the effective design
of training procedures is necessary for receiving frequent
success rewards by step-wise learning; if an agent sufficiently
learns an easy object transportation task, then the agentmoves
on to a difficult task. This is referred to as curriculum learn-
ing (CL). The CL enables a robot to receive more rewards
and learn effectively. However, despite these advantages,
previous CL methods required to be manually designed by
a user [8], [9]; the CL should be frequently modified accord-
ing to the training results, and diverse curricula should be
tested to find a proper method as well. This trial-and-error
approach does not guarantee robust performance, and it is dif-
ficult to find an effective CL method. Thus, many researchers
have suggested automatic curriculum learning (ACL) meth-
ods which design curricula automatically without human’s
intervention [10], [11]. In the ACL, an agent determines the
proper difficulty level for efficient learning and assigns a
task for each episode. The whole learning procedures are
automatically designed, and the agent learns tasks according
to the curricula.

In this paper, we propose a novel ACL for object trans-
portation considering spatial and temporal information. First,
we define the difficulty level of object transportation accord-
ing to the predicted travelling distance of an object and the
existence of surrounding obstacles and walls; the success
rate of object transportation highly depends on the status
of travelling routes. The difficulty level can be described
as a probability between 0 and 1, and it can be converted
into a grayscale image; this image is exploited for selecting
pose-initialization region at the training step. An agent can
know the difficulty level of object transportation by referring
to the image. Second, an agent adjusts the number of episodes
in real time to secure a predefined success rate. The number
of training episodes is not fixed, and the agent modifies the
number while learning. Guaranteeing sufficient training time
is an important factor that affects performance.

The contributions of this paper are summarized as follows:
1) We present an automatic curriculum learning frame-

work for object transportation based on deep reinforce-
ment learning.

2) We present an automatic region selection method for
pose-initialization of an object by defining the diffi-
culty level of object transportation from a spatial point
of view.

3) An adaptive determining method of the number of
training episodes is suggested to guarantee a predefined
success rate.

4) We verified the proposed method by conducting prac-
tical experiments as well as simulations.

The proposed method appears to be partially similar to
our previous paper [8]. However, there are fundamentally
different parts as follows. First, this paper focuses on an auto-
matic curriculum method, not the manually built curriculum
that was presented in the previous paper. The previous study

required a manual design, but the proposed ACL method
enables a robot to make a training plan itself. Second, the pro-
posed curricula are automatically designed based on temporal
information. Guaranteeing sufficient training time to satisfy
the desired success rate is a key factor in the proposed ACL.
Third, we consider the feasible travelling distance by reflect-
ing surrounding obstacles and walls in this paper; the trav-
elling distance was calculated by a simple Euclidean norm
assuming the shortest distance without obstacles in the pre-
vious paper. Finally, we conducted practical experiments as
well as simulations to verify the proposed method.

This paper is organized as follows. Section II describes
related works for object transportation. Section III explains
the basic concepts of reinforcement learning, deep
Q-network, and curriculum learning. Section IV defines the
problem of this paper, and section V shows the system
overview of the proposed ACL framework. Two ACL meth-
ods are presented in section VI: the generation method of dif-
ficulty level map (section VI-A) and an adaptive determining
method of the number of training episodes (section VI-B).
Simulation and practical experiments are suggested in
section VII and VIII, respectively. We discuss the importance
of this paper and the future work in section IX. Finally,
the conclusion is given in section X.

II. RELATED WORK
A. OBJECT TRANSPORTATION METHODS
Object transportation methods are divided into four cate-
gories, such as grasping, pushing, caging, and tool-using
methods.

First, in the grasping method, a single or more robots grasp
an object with a robotic arm and transport it toward a goal
in 2D [12], [15], [16] or 3D environment [13], [14], [30].
Robots do not have to consider the motion of an object during
transportation because the object is tightly coupled with the
robotic arm; the object can be easily transported if it is
successfully grasped once by a gripper. However, a gripping
technique requires complicated preliminary steps [31] such
as 1) recognizing the object, 2) controlling the motion of a
robot, 3) determining where the gripper grasps, and 4) grasp-
ing control of a manipulator. These consecutive actions are
intractable and easy to fail. Additionally, a large object, which
is larger than the size of a gripper, cannot be transported.

Second, a single or more robots push an object in the push-
ing method [17]–[19], [21], [32]; the number of hired robots
is determined by the weight of a target object. In contrast to
the grasping method, preliminary actions are not necessary
for pushing the object. The movement of robots is free and
controllable because robots are not held tightly to the object.
However, external physical information such as ground fric-
tion, the stiffness of the object, or the geometrical shapes of
the object and robot should be known in advance for precise
control. The perfect prediction of the whole information is
almost impossible, which is the primary reason for inapplica-
bility in practical applications. Also, many studies assumed
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TABLE 1. Diverse object transportation methods.

a quasi-static environment, which is an inappropriate assump-
tion when a slippery object is transported.

Third, multiple robots approach and enclose an object
using a predefined caging formation (e.g., circle [22], [23]),
then transport the object to a goal while maintaining the
formation [24], [33]. In the caging method, the robots do
not have to predict the movement of an object because the
object cannot escape from the caging formation during the
transportation process; robots only need to maintain the for-
mation. Also, large or multiple objects can be transported
because objects are guaranteed to be inside the formation.
However, it is difficult to maintain a specific formation all
the time while moving. For robust and stable transportation,
multiple robots should be synchronized in real-time, which is
difficult in practical applications. Also, the excessive space
for enclosing the target object is necessary, which makes
object transportation more difficult in the environment where
narrow passages exist.

Finally, a single or more robots can transport an object
with the help of tools such as a lifter [26], handcart [34],
stick [29], spring [27], or rope [28]. Tools facilitate object
transportation by restricting the object’s motion in several
ways. However, the movement of robots is also restricted
by tools, like the grasping method. For example, two robots
connected with a rope cannot move freely and they should
move together by taking into account the connection between
them. In addition, a specific preparation step is needed for
object transportation in advance. For example, the action of
lifting an object should be completed before the beginning of
object transportation. The graspingmethod can be seen as one
of the tool-using methods because robots use manipulators.
Thus, the disadvantages of the tool-using method are almost
the same as those of the grasping method.

The descriptions, advantages, and disadvantages of the
above-mentioned object transportation methods are summa-
rized in Table 1. It is possible to select one of the methods
according to the purpose of use because each object trans-
portation method has different pros and cons. Initially, many

researchers studied the grasping method because of its robust
transportation ability [35]. After that, the pushing method
became the mainstream because of the advantage of not
requiring preliminary actions [36]. The caging method com-
bined the advantages of grasping and pushing methods; this
method does not have to consider the object’s complicated
motion but also the requirement of preliminary actions [37].
Recently, the pushing method has become applicable in prac-
tical environments again because of the rapid progress of
reinforcement learning (RL) [38]–[40]. Therefore, we focus
on RL-based object transportation using pushing behavior in
this paper.

B. OBJECT TRANSPORTATION TECHNIQUES USING
REINFORCEMENT LEARNING
Previous object transportation studies described in
section II-A have their own advantage, but there is a common
disadvantage that controlling the movement of an object is
difficult. In the real environment, unexpected motion errors
due to slippery ground’s material or inaccurate localization
can deteriorate transportation ability; the previously pre-
sented object transportation studies were difficult to cope
with such a situation. Recently, the DRL algorithm, com-
bining conventional RL with deep neural network, has risen
to prominence, and it has been known as an appropriate
solution for optimal decision and robust control. A repre-
sentative example of DRL applications was presented by
Google DeepMind Lab [41], [42]; the DRL algorithm showed
overwhelming performance compared with humans in the
Atari 2600 and Go games. Since then, many researchers have
tried to apply the DRL algorithm to the object transportation
field because of its positive aspects [43]–[45].

Zhang et al. [43] presented a decentralized cooperative
object transportation based on deep Q-network. Two robots
carry a large rod through a doorway using cooperative
behavior. Complicated motion prediction was not neces-
sary, but the rod should be attached to robots in advance;
this method cannot be applied to the general purpose of
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object transportation. Li et al. [46] introduced a deep recur-
rent neural network-based pushing method using visual
images as input. This method can be used to trans-
port an object that has unknown physical properties, and
Manko et al. [47] also uses a 2D-image map for learning.
Xiao et al. [48] suggested pushing-based object transporta-
tion which trains decentralized Q-network with the help
of a centralized Q-network for action selection. A vari-
ant caging method using DRL was presented by consider-
ing event-triggered communication and control [45]. Some
researchers have suggested the RL-based box-manipulation
method for animation generation [39], [44].

III. BACKGROUND
A. REINFORCEMENT LEARNING
Reinforcement learning is a kind of machine learning that
enables an agent to learn how to act in an interactive environ-
ment tomaximize accumulated rewards. An agent (i.e., robot)
can learn a policy itself using feedback on its actions. The
RL can be applied to solve sequential decision-making under
uncertainty, and this is formulated as the Markov Decision
Process (MDP).

The MDP consists of 5 tuples such as the state space (S),
a set of actions (A), the reward function (R), the state tran-
sition probability (T ), and the discount factor (γ ). The state
space S is an observable set, and an agent observes a state
st ∈ S at timestamp t . The agent selects an action at ∈ A
using a policy function π (a|s); the policy is a mapping func-
tion from S to A. The reward function is an expected return
when an agent takes an action a in the state s: R(s, a) =
E[rt+1|st = s, at = a]. The state transition probability T
is the probability of moving from s to s′ when an agent takes
action a: T (s, s′, a) = P[st+1 = s′|st = s, at = a]. Finally,
the discount factor γ ∈ [0, 1] affects how much weight it
gives to future rewards in the value function. If the discount
factor is zero (γ = 0), immediate reward is given only by
current state and action. In contrast, if the discount factor is
one (γ = 1), the future rewards are calculated without loss.

B. DEEP Q-NETWORK
Q-learning is a model-free RL and it trains in a way that max-
imizes expected accumulated rewards [49]. In Q-learning,
the state-action value functionQπ (s, a) is the expected return
when taking an action a given state s following a policy π :

Qπ (s, a) = Eπ (Rt |st = s, at = a)

= Eπ
( ∞∑
k=0

γ krt+k+1|st = s, at = a
)
, (1)

where Rt is discounted return at timestamp t , which is the
sum of total rewards obtained by the agent while exploring
an environment. In this case, the reward is proportionally
reduced in the far-off future by the discount factor γ ∈ [0, 1].
The Q-learning algorithm updates the Q-value using the

weighted sum method by adding the old Q-value and the

learned value as follows:

Q(st , at )← (1− α)

old value︷ ︸︸ ︷
Q(st , at )

+α [rt + γ max
a
Q(st+1, a)]︸ ︷︷ ︸

learned value

, (2)

where α ∈ [0, 1] is the learning rate which controls how
fast an agent learns. If the learning rate is high, the Q-value
is modified quickly. On the contrary, if the learning rate
is low, the Q-value will be updated slowly. For example,
if the learning rate is zero (α = 0), an agent will not learn
anything.

The Q-table is a lookup table for recording the maximum
expected future rewards of actions in each state. Q-values are
recorded in a finite-sized table, and these values are updated
by a Q-learning algorithm using (2). This tabular method can
be applied in a finite small-sized environment such as the grid
world [50] because the information amount for describing
the small environment is not large. In the real environment,
however, it is difficult to describe the whole environment
using the Q-table because the state and action space are large.

Deep Q-network (DQN), therefore, was presented to
overcome the limited dimension representation of the
Q-table [41], [51]. A Q-table was replaced with a neural
network (NN) using function approximation; the NN can
return all Q-values of possible actions given the state. If the
NN has multiple hidden layers, we call it the DQN. The
weights of DQN are described by θ , and thus, (2) is modified
as follows:

Q(st , at ; θ)← (1− α)Q(st , at ; θ )

+α[rt + γ max
a
Q(st+1, a; θ−)], (3)

where θ and θ− are the weight parameters of the local and
target network, respectively. The loss function of DQN is
represented as follows:

Lt (θt ) = Est ,at ,rt ,st+1
[ target︷ ︸︸ ︷
rt + γ max

at+1
Q(st+1, at+1; θt−)

−Q(st , at ; θt )︸ ︷︷ ︸
prediction

]2
, (4)

where θt and θ
−
t are the parameters of the local and target

Q-network at timestamp t , respectively. An agent trains the
network to minimize the loss function Lt .

Meanwhile, the target Q-network is updated at reg-
ular intervals to reduce unstable learning. In addition,
an experience replay memory was introduced to disconnect
the time-correlation between training steps [52]. Instead,
an agent samples a small batch of tuples from a replay buffer
and trains it. The periodical update of the target network
and the experience replay were key factors in applying the
DRL algorithm to real applications [41].
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C. CURRICULUM LEARNING FOR OBJECT
TRANSPORTATION
Curriculum learning is a step-wise training method for high
performance and fast learning completion [53]. An agent
learns how to achieve a goal according to a curriculum which
consists of gradual steps from easy to difficult tasks. The
objective of object transportation is transporting an object to
a goal, and two sequential processes, i.e., approaching and
pushing an object, should be executed in order to accomplish
the objective. Generally, a reward is given once when the
object reaches a goal at the learning step; reaching a spe-
cific goal position by random actions of a robot is a sparse
situation, which is a sparse reward problem. For solving
the sparse reward problem, the CL can be applied to the
DRL-based object transportation method. The definitions of
easy and difficult tasks could differ for each application; we
define the difficulty level of object transportation according
to the following criteria: 1) estimated travelling distance of an
object and 2) the number of training episodes. First, it is more
difficult to transport an object to a goal as the estimated trav-
elling distance increases. If an object travels a long distance,
it is easily stuck or loses its way due to surrounding obstacles
or walls. Second, learning will be easier as the training time
increases. This means that the number of training episodes
affects learning performance. Therefore, the CL design of
object transportation should be considered by these two
factors.

Meanwhile, the manual CL design is tedious and trial-
and-error prone; thus, many studies have proposed automatic
curriculum learning (ACL) methods [7], [11], [54]. In ACL
methods, an agent automatically selects the range of training
tasks, syllabus, or sub-goals; humans do not have to intervene
in the training procedures. Using ACL, an agent easily learns
how to manipulate an object without the complicated manual
design of CL. In this paper, a novel ACL design is presented
by considering estimated travelling distance and the number
of training episodes.

IV. PROBLEM DEFINITION
The problem of this paper is finding the optimal ACLmethod
for maximizing the success rate of object transportation.
An example of object transportation is presented in Fig. 1;
a robot pushes an object toward a goal by avoiding obstacles.
If the center of an object is located within dsuccess from the
goal, the robot succeeds in object transportation. On the con-
trary, if the object cannot be transported within a given time,
object transportation fails. Thus, the object transportation
addressed in this paper is an episodic task.

Meanwhile, the ACL design D(i) consists of the free con-
figuration space Qfree(i) at ith episode and the number of
training episodes Nepisode(i) as follows:

D(i) = {Qfree(i),Nepisode(i)}, (5)

whereQfree(i) = Q(i)\
⋃

jQOj,Q(i) is the permissible pose
initialization region of an object at ith episode, andQOj is the
configuration of a robot that intersect an obstacle j.

FIGURE 1. The example of problem description. A single robot transports
an object to a goal by pushing behavior. There are multiple (three in this
figure) static convex-shaped obstacles in an environment.

Therefore, the problem is formulated as follows:

argmaxDE
[ Nf∑
k=1

(
p(τk )|πD

θ

)]
,

s.t p(τk ) = 1 if do,gt ≤ dsuccess, ∀t ≤ Tmax
p(τk ) = 0 if do,gt > dsuccess, ∀t ≤ Tmax (6)

where τk is a k th task, p(τk ) is a success flag represented by
a boolean value, Nf is the total number of tasks, and πD

θ is
a policy if an agent is trained according to the curriculum D.
The value Tmax is the maximum steps for each episode and
the time t should be lesser than or equal to Tmax .

Five assumptions are made in this paper. First,
a two-wheeled mobile robot is used in a 2D-Euclidean plane.
In a 3D-environment, we cannot apply the pushing method.
Second, we assume that the shape of a robot is a circle.
Third, we assume that a robot can detect and recognize
the surrounding environments, such as a goal, an object,
and obstacles. Diverse tracking methods can be exploited to
localize them, but these are not the main focus of this paper.
Thus, we omit the detailed tracking method. Fourth, there is
a feasible transporting path of an object when the positions
of a robot and the object are initialized at the learning stage.
If there is no feasible transport route, the problem of object
transportation cannot be solved. Finally, all obstacles are
assumed to be convex shapes. If the shape of obstacles is
concave, an object is easily stuck due to the concave structure
of obstacles. A robot cannot transport an object when it is
stuck once.

V. SYSTEM OVERVIEW
The proposed object transportation learning consists of three
components such as an automatic curriculum learning (ACL)
module, simulator, and training modules.

First, the ACL module generates a difficulty level
map (DLM) by considering the predicted travelled
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distance and surrounding obstacles. In addition, the number
of training episodes is determined in the ACL module. The
detailed explanations of the ACL module will be described
in section VI.

Second, the simulator receives the pose initialization infor-
mation of an object and the number of training episodes from
the ACL module, then builds simulations. An agent (a robot)
takes an action at at the state st and receives a new state st+1
according to state transition probability T and a reward rt .
The probability T is reflected by the physical model in the
simulator. The tuple (st , at , rt+1, st+1) is transmitted to the
training module.

Finally, the agent learns how to transport an object using
the deep Q-network with an experience replay in the training
module. The state of an agent is described as follows:

st = [d r,ot , cos θ r,ot , sin θ r,ot , d r,gt , cos θ r,gt , sin θ r,gt ], (7)

where θ
i,j
t and d i,jt are the angle and distance between

i and j (i, j ∈ {robot, object, goal}), as shown in Fig. 1.
Three consecutive states {st , st−1, st−2}(t ≥ 3) are concate-
nated to form a unified state (s̃t ). The action space consists
of 6 actions: {F, B, FL, FR, BL, BR}, where F, B, L, and
R represent forward, backward, left, and right, respectively.
The specific values of actions are determined by considering
the size of a target object and the environment. For example,
we set a large translational velocity to forward action if the
environment is large. An agent receives+1 and -0.01 rewards
if an object reaches a goal and collides with obstacles or
walls, respectively. In the working process without collisions,
the agent receives 0.1×1d r,ot +0.5×1do,gt , where1d r,ot is
the distance difference between a robot and an object, and
1do,gt is the distance difference between an object and a
goal. A robot can learn the obstacle avoidance method using
the reward function without referring to the obstacles’ state
because all positions of obstacles and a goal are fixed; a
robot can infer the existence of walls and obstacles from the
state st using the reward function related to collision. Deep
Q-network consists of three dense layers with rectified linear
unit (ReLU) and each layer has 256 nodes. The ε-greedy
algorithm is used for selecting an action, which is helpful for
balancing the ratio between exploration and exploitation [55].
In addition, the experience replaymemory is adopted to break
the temporal correlation between training data [41].

VI. AUTOMATIC CURRICULUM LEARNING
The proposed ACL method uses spatial and temporal
approaches to adjust the difficulty level of object transporta-
tion; the spatial approach is the generation of difficulty level
map (DLM), and the temporal approach is the adaptive deter-
mination of the number of training episodes (ADE). A robot
determines the region itself where an object is initialized
using the DLM. The difficult level of object transportation
is affected by the initialized position of an object at the
beginning of each episode. The DLM provides a basis for
determining where the position of an object is initialized
while training, and thus, the DLM is related to the effective

learning method. In addition, a robot can set up the number
of training episodes to become an expert at a current task. If a
robot does not show the desired performance for the current
task, then the robot learns the task continuously until the robot
is familiar with it; the ADE can adjust the learning speed
by limiting the desired performance. Two above-mentioned
methods have in common that they are both intended to solve
a sparse reward problem. Efficient and robust learning is
possible by allowing more frequent success for a robot. The
detailed explanations of DLM and ADE will be described in
the next sections.

A. THE GENERATION OF DIFFICULTY LEVEL MAP
The DLM is generated using the predicted travelling dis-
tances of an object and the existence of obstacles and walls.
If an object is transported a long distance, it is easy to fail
transportation due to unexpected motion errors. In addition,
the closer an object is to obstacles or walls, the more difficult
it is to transport due to their route disturbance. Therefore,
a robot should reflect these factors to build a DLM.

The overall procedures of a DLM generation example
are shown in Fig. 2. We assume that three obstacles (two
rectangular and one circular shapes) exist in an environment,
as shown in Fig. 2(a). The travelling distances, starting from
an initial position to a goal, are calculated by the A* algo-
rithm [56] with normalization under obstacles’ configuration
space, as shown in Fig. 2(b): distance DLM (DDLM). Multi-
ple levels of configuration space with obstacle’s variant radii
and walls are stacked up, as shown in Fig. 2(c): boundary
DLM (BDLM). Finally, Fig. 2(d) shows the final DLM sum-
ming up the multiple DLMs, Fig. 2(b) and Fig. 2(c).

FIGURE 2. The generation process of difficulty level map of object
transportation. (a) Original map (b) Difficulty level map according to
predicted travelling distance of an object using A* algorithm, i.e., distance
DLM (DDLM). (c) Difficulty level map according to obstacles and walls,
i.e., boundary DLM (BDLM) (d) Final difficulty level map.

For describing above-mentioned steps as mathematical
expressions, we define a configuration space ith obstacle,
QOi(j), with an extended radius rj of jth obstacle as follows:

QOi(j) = {q ∈ Q|R(q, rj) ∩WOi 6= ∅}, (8)

where q ∈ R2 is a robot pose, Q is the configuration space,
and WOi is the workspace of ith obstacles. The function
R(q, rj) is written as

R(q, rj) = {(x ′, y′)|(x − x ′)2 + (y− y′)2 ≤ (r + rj)2}, (9)
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FIGURE 3. The generation process of travelling distance matrix for
building a distance difficulty level map (DDLM). First, divide the whole
environment into grids with a specific resolution; it can be expressed as a
matrix form if the whole environment is assumed to be a rectangular
shape. Second, calculate the travelling distances for all starting points
using the path planning algorithm. In this case, any planning algorithm
can be used to calculate distances; we select the A* algorithm in this
paper [56]. Finally, generate a travelling distance matrix by recording the
path planning results of an object for all start points.

where r is the radius of a robot, and rj is the extended radius
of an obstacle at jth step.
The distance DLM (DDLM) generation steps are as fol-

lows. First, generate the free configuration space Qfree =

QOi(0) ignoring the extended radius of obstacles (r0 = 0).
Second, divide the whole region into multiple grids with a
specific resolution. If we assume the world has a rectangu-
lar shape, the whole region can be described as a matrix
form. In the case of irregular-shaped environments, we can
approximate the environment as a rectangular shape based
on the outer-most contour line. In this case, the regions that
do not really exist are colored black. Third, calculate the
travelling distance from all starting points to a goal using
the A* algorithm. In this case, the available path planning
algorithm is not limited to theA*. Fourth, make the calculated
distances as a matrix form. The above steps from the second
to fourth are shown in Fig. 3. Finally, normalize the travelling
distance matrix as a gray-scale figure from 0 to 255 level.
For example, the near region from a goal is covered in white,
and the far region from a goal is covered in black. The final
output of above processes is illustrated in Fig. 2(b). The
DLM generation processes considering obstacles and walls
are shown in Fig. 4. First, generate multiple configuration
spaces obstacles QOi(j) by changing the extended radius of
obstacles rj(j ∈ {1, 2, . . . ,Ner }). Second, assign different
weight ratios ωj according to the proximity of obstacles

Algorithm 1: The Difficulty Level Map Generation
Input:M, r , pG
Output: Difficulty level map, NT

1 Load 2D-environmental map,M;
2 Generate the free configuration space, Qfree;
3 for pr in Qfree do
4 PathA∗(pr ,pG)← A*-planning(M, pr , pG);
5 dist(pr )←

∑
‖1PathA∗(pr ,pG)‖2;

6 end
7 QO← Generate an obstacle DLM using (10);
8 QW(M)← Generate a wall DLM using (11);
9 ND← Normalize(dist);
10 NOW ← Normalize(QO +QW(M));
11 NT ← Normalize(ND +NOW);

FIGURE 4. Example of the boundary difficulty level map (BDLM)
generation process. An ODLM is the weighted sum of the different
configuration spaces defined by the extended radii of obstacles. In this
figure, the larger the index, the larger the radius: r1 < r2 < r3. The value
of r0 is zero. WDLM is generated by following the outer-most boundary.
A BDLM is the sum of ODLM and WDLM.

or walls. Third, summing-up the whole configuration space
obstacles, and build an obstacle DLM (ODLM) as follows:

QO =
Mobs∑
i=1

Ner∑
j=1

ωj{QOi(j)−QOi(j− 1)}, (10)

where Mobs is the number of obstacles. Fourth, assign the
same thickness value to walls because it is easy to be stuck if
an object approaches the walls closely; We eliminate the pos-
sibility of pose-initialization near the walls. This wall DLM
(WDLM), QW(m), is generated by the following equation:

QW(m) = {q ∈ Q|R(q) ∩W(m) 6= ∅}, (11)

where m is an environmental map in the grid world. Finally,
a BDLM including obstacles and walls is generated by nor-
malizing the sum of the ODLM and WDLM.

The summary of the total DLM generation is described
in Algorithm 1. First, load a 2D-map, M, and generate the
free configuration space, Qfree (line 1–2). Second, generate
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a path PathA∗(pr ,pG) using the A* algorithm for all pr ∈
Qfree, and the total travelling distances of each path are
calculated (line 3–6). Third, an obstacle and a wall DLM
(QO and QW) are generated by (10) and (11), respectively
(line 7–8). Finally, normalize the DDLM and BDLM, and
the total DLM (NT ) is calculated by normalizing the sum
of DDLM and BDLM (line 9–11).

The proposed DLM provides comparable indices only
according to the spatial difficulty level of object trans-
portation, which means that the problem of selecting the
pose-initialization region using the DLM remains. Generally,
the uniform partitioning of the region is appropriate because
we already consider feasible travelling distances using path
planning and surrounding obstacles. For example, we divided
the whole area into two regions in the bisection partitioning
with [0, 0.5) and [0.5, 1.0) ratios of the DLM. Meanwhile,
we should also determine how many regions are divided
into, and it depends on the size of the whole environment.
If the environment is small, we partition the whole area
into 2 or 3 regions. On the contrary, if the environment is
large, we have to divide the whole region into many regions,
such as 5 or more regions. As a result, all we have to do
is determine the size of the region partitioning; a manual
curriculum design is not necessary.

B. ADAPTIVE DETERMINING THE NUMBER OF TRAINING
EPISODES
If a robot does not fully learn a task, then it is necessary
to learn until the robot is familiar with the task. In other
words, learning a difficult task is almost impossible in RL if
there is not secured learning time for easier tasks. Therefore,
we set a target success probability, Psuccess, and move on to
the more difficult task only if the success probability of a
current task exceeds the Psuccess; the robot learns the current
task continuously until the desired success rate is reached.
In other words, we can determine the trade-off relationship
between the training time and success rate by adjusting the
target success probability. For example, if the Psuccess is high,
the training takes a long time, but the success rate of object
transportation is high. On the contrary, if the Psuccess is low,
the training takes a short time, but the success rate will be low.

Algorithm 2 describes the ADE procedure including the
DQN training method. First, initialize related variables such
as the number of unit episode (Nunit ), success counting array
(Sn), replay memory (D), a local and target DQNs, and total
DLM (NT ) (line 1–5). Second, record the success of the
recent Nc trials to Sn (line 7–11). Third, increase the episode
index and save the previous and current episode indices
(line 12–18). In this case, if the average success rate is lower
than the predefined success probability (Psuccess), then an
agent learns again in the current region. Fourth, calculate
the minimum and maximum difficulty levels according to
an episode index from the DLM, respectively (line 19–20).
These levels are uniformly partitioned by the size of thewhole
environment, as already described in section VI-A. If the
maximum difficulty level reaches 1, then the training process

Algorithm 2: Adaptive Determining Method of Training
Episodes
Input: Psuccess,Nunit ,Nc, pratio(·)
Output: DQN training

1 Initialize the unit episode indices: npstep, ncstep← 0;
2 Initialize the success counting array Sn with size Nc;
3 Initialize a replay memory D;
4 Initialize a local and target network;
5 Generate the total DLM (NT ) using the Algorithm 1;
6 while True do
7 if object transportation is success then
8 Sn(iep MOD Nc)← 1;
9 else
10 Sn(iep MOD Nc)← 0;
11 end
12 iep← iep + 1;
13 ncstep← (iep MOD Nunit )+ 1;
14 if ncstep 6= npstep and

∑
Sn

Nc
< Psuccess then

15 iep← iep − Nunit ;
16 ncstep← (iep MOD Nunit )+ 1;
17 end
18 npstep← ncstep;
19 ρmin← pratio(ncstep);
20 ρmax ← pratio(ncstep + 1);
21 if ρmax = 1 then
22 break;
23 end
24 Reset an environment using the NT within

[ρmin, ρmax].;
25 Set ε according to ε-greedy algorithm;
26 for iteration = 1 to L do
27 Take an action at with a probability ε;
28 Receive next state st+1;
29 Store a MDP tuple to replay memory D;
30 Train the DQN network by minimizing (4).;
31 end
32 Update a target network with the local Q-network

every K episodes.;
33 end

finishes (line 21–23). Fifth, reset an environment within the
difficulty levels [ρmin, ρmax]. Finally, the conventional DQN
training process is executed using an ε-greedy algorithm,
an experience replay, and a target network (line 25–32) [41].

VII. SIMULATIONS
A. SIMULATION ENVIRONMENT
We constituted a simulation environment assuming a ware-
house scenario, as shown in Fig. 5; a robot transports a target
object (i.e., pallet) to a desired goal. The size of the total envi-
ronment was 6.0 m (W) × 7.5 m (H), and the coordinate of
the goal was (5.0 m, 0.0 m). The sizes, locations, and weights
of a robot, pallet, and obstacles are presented in Table 2.
We defined the proper velocities of a robot by considering
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TABLE 2. The information of robot, pallet, and obstacles.

TABLE 3. Distance ratio intervals according to different function types when the total size of total episodes is 1000.

FIGURE 5. Simulation environment assuming a warehouse scenario. Two
rectangular and one circular obstacles are placed in a virtual warehouse.
The target object is a pallet, and the motion model of a robot follows that
of a real robot (turtlebot3-waffle) in a Gazebo simulator. The total size of
the environment is 6.0 m (W) × 7.5 m (H), and the sizes of each
component are described in Table 2.

the total size of an environment; the forward and backward
transitional velocities of a robot were 0.3 m/s and −0.3 m/s,
respectively, and the left and right rotational velocities were
1.0 rad/s and -1.0 rad/s, respectively. We assumed that a robot
could not push obstacles; their positions were fixed regardless
of external forces. The resolution of the DLM was 5 cm.

A Gazebo simulator with Robot Operating System (ROS)
was exploited to build a simulation environment [57].
An open dynamics engine (ODE) was applied to the Gazebo
simulator, and thus, the motion of a robot was analogous to
real experiments as we will describe in section VIII-B. For
fast training, we played the Gazebo simulator 70 times faster;
total training time was about 6 hours for 1000 episodes on
Geforce GTX-1650 with Intel i7-9700, 3.00 Ghz.

The hyper parameters of the proposed method are as fol-
lows. The number of obstacles Mobs is 3, and that of the

extended radii Ner is 4 in (10). The weight ratio ωi is propor-
tional to each step: ωi = 1.0× i for i ∈ {1, 2, . . . ,Ner }. The
size for evaluating current performance (Nc) was 30, and the
unit episode size for ε-decay (Nunit ) was 500. To analyze
the performance according to the criterion of success prob-
ability (Psuccess), we selected two criteria as 0.8 and 0.9,
respectively. The discount factor (γ ) and learning rate (α)
were 0.999 and 0.001, respectively. In the Algorithm 2,
the size of the replay memory (D) was 10 million, and the
maximum step size (L) was 1000. The update period of the
target network was 20: K = 20. The batch size was 512, and
the value of ε linearly decreased from 1.0 to 0.1.

B. SIMULATION RESULTS
We compared the proposed and manually-designed CLmeth-
ods, as shown in Table 4. For testing the manually-designed
CL methods in diverse environments, we introduced the dis-
tance ratio concept. The distance ratio is simply assigned
by the distance between an initial position and a goal,
which is different from the calculation method using the pro-
posed DLM. For example, the distance ratio of the maximum
distance from the goal is 1.0 in the environment, and that of
the minimum distance from the goal is 0.0; the distance ratio
of the middle is 0.5. We divided the whole region into several
areas according to the distance ratio. The distance ratios are
defined by three different functions: uniform, convex, and
concave. Equation (12) presents diverse function types:

fpartition(nstep) =



nstep
Nmax

, if uniform( nstep
Nmax

)2
, if convex√

nstep
Nmax

, if concave

(12)

whereNmax is the maximum step size. This size is determined
by the number of total training episodes Nepisodes and unit
step size, Nunit : Nmax =

Nepisodes
Nunit

. The value nstep is the
quotient of the current episode index iep divided by Nunit :
nstep ← (iep MOD Nunit ). Table 3 shows the distance ratio
intervals according to bisection and quadrisection region
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TABLE 4. Success rates when the maximum number of training episodes was 1000 except for PP2.

partitioning. For example, in the convex region partition at
quadrisection, a pallet was initialized only in a specific region
according to the distance ratios from a goal for each episode:{
[0, 0.06), [0.06, 0.25), [0.25, 0.56), [0.56, 1.0)

}
distance

ratios for
{
[0, 250), [250, 500), [500, 750), [750, 1000)

}
epi-

sode indices, respectively. This strategy implies following an
assumption; if a robot learns how to transport in a small-sized
region first, then the robot can easily learn how to transport
an object in a large region.

We tested various manual curricula using distance ratios,
as shown in Table 4. We can derive two main conclusions
from the results. First, manual curricula show unstable and
inconsistent performance. In the manual curricula, the per-
formances are affected by how to partition regions and set
the number of training episodes. Among them, the number
of episodes highly affected the performance. For example,
the third concave-increasing combination (CCI3) is much
lower than the second one (CCI2). The only difference
between them was the number of episodes. Meanwhile,
uniform region partitioning methods seem better than oth-
ers (i.e., convex and concave) but not always; the artifi-
cial manipulation of region partitioning sometimes has an
adverse effect on performance. Moreover, most cases of
manual curriculum show worse performance than even the
no-curriculum case. These results show the limitations of
manual curriculum learning. Second, the proposed methods
(i.e., PP1 and PP2) showed better performance than manual
curricula and no-curriculum cases. We considered the diffi-
culty level of object transportation for the automatic curricu-
lum. Critical factors affecting performance are automatically

designed in the proposed methods. We restricted the number
of total training episodes to 1000 by defining Psuccess = 0.8
(PP1) for fair comparisonwith other cases; the that of all other
cases was 1000. If we lift the restricted number of training
episodes, the proposed method (PP2) showed a better success
ratio: 0.91. In this case, the number of total episode was 2000.

Fig. 6 shows the average reward curves of each method.
The reward of the proposed method gradually increased dur-
ing the training process although it was not the highest. The
learning curves of manual curricula were various because the
numbers of training episodes differed for each design. For
example, the average reward of the second convex-decreasing
curriculum (CVD2) increased and decreased at sharp points
such as (500, 800, 950, 1000) episodes. The second proposed
method (PP2) was not illustrated in the figure because the
total episode length of the PP2 was 2000.

VIII. PRACTICAL EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
We constituted a practical environment for verifying pro-
posed method, as shown in Fig. 8 and 9. We tested the pro-
posed object transportation method using a DQN which was
already learned in the Gazebo simulator. Fig. 7 shows the pic-
ture of a robot, an object, and obstacles in the practical exper-
iment. A turtlebot3-waffle robot was used for the experiment
because we assumed this robot as a training model in the
simulator. The forward and backward transitional velocities
are 0.15 m/s and -0.15 m/s, respectively, and the left and right
rotational velocities are -0.2 rad/s and 0.2 rad/s, respectively.
We set the velocities of a robot as low compared with the
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FIGURE 6. Average reward of each method in Table 4. (a) Average reward graphs using the manually-designed curricula with uniform region partitioning.
(b) Average rewards using manual curricula with convex region partitioning. (c) Average rewards of the manually-designed curricula with concave region
partitioning. Average rewards of no-curriculum and the proposed methods are also drawn.

FIGURE 7. A robot (turtlebot3-waffle), an object (empty box), and two
large and small obstacles (heavy boxes) were used in practical
experiments. The robot could push the object because of the light weight
of the object. In contrast, the robot could not push any obstacles because
they were heavy.

simulation due to the restrictions of the environmental size.
The total environmental size is 2.3 m (W) × 4.0 m (H). The
size of the object is 0.48 m (W) × 0.36 m (H) and that of
obstacles is 0.54 m (W) × 0.35 m (H) (large) and 0.32 m
(W) × 0.23 m (H) (small), respectively. The positions of an
object and obstacles are detected by 2D-LiDAR equipped in
the turtlebot3-waffle. The main objective of practical exper-
iments is to verify how similar the performances of object
transportation between simulation and real environments are.

B. RESULTS
We conducted two experiments in an environment where
there were one or two obstacles. Fig. 8 shows the object trans-
portation process in a one-obstacle environment. Initially,
a robot approached an object with a straight line (0–6 s). The
robot began to push the object when the robot arrived in the
position of the object (6 s). The robot pushed an object toward
the left direction to avoid an obstacle (i.e., yellow obstacle to
the right of the robot) (6–12 s). Once the robot passes the
obstacle, then it pushes the object toward the direction of the

FIGURE 8. Object transportation process in a one-obstacle environment.
A robot approached a target object straightly for the first 6 seconds. The
robot pushed the object to the left because there was a small obstacle on
the right side (t = 6–12 s). The robot pushed the object toward a goal
on the right after the robot avoided the obstacle (t = 12–18 s). Finally,
the robot succeeded in transporting the object to the goal (t = 21 s).

goal (12–18 s). Finally, the object arrived at the desired goal
at 21 s. This process was analogous to the Gazebo simulation
result, and the success rate of object transportation was 60%
(6 out of 10).

The result in the two-obstacle environment was analogous
to that in the one-obstacle case, as shown in Fig. 9. A robot
approached an object at first (0–4 s). Then, the robot pushed
the object toward a narrow passage between obstacles for
transportation (4–10 s). Then, the robot moved backward to
detect obstacles and an object, and readjusted its pushing
direction (10–22 s). After that, the robot carried pushing
the object and readjusting its heading repeatedly until the
object reached a goal (22–38 s). Finally, the object was trans-
ported successfully at 40 s. Iterative backward and pushing
motions seem like ineffective methods, but the robot learned
this method in the simulation. The success rate was 40%
(4 out of 10).

The success rates of object transportation in the above two
experiments were lower than those of simulation. There are
three main reasons. First, the pushing power of a robot was
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FIGURE 9. Object transportation process in a two-obstacle environment. First, a robot approached an object for the first 4 seconds. Then, the robot
pushed the object toward a narrow passage between a small and large obstacles (t = 4–10 s). The robot moved slightly backward and forward to change
its heading direction when the object was located between obstacles (t = 10–22 s). After that, the robot pushed the object to the left side because the
direction of the goal was left (t = 22–26 s). The robot moved backward and forward again (t = 26–36 s), and the object was successfully transported
in 38 seconds. Moving motion forward and backward of the robot is the RL result of object transportation for adjusting transport’s direction.

not sufficient to push an object. In the simulation, we assumed
that an object was light enough to be pushed by a single robot.
However, a real robot could not push an object freely because
the robot had insufficient pushing power due to hardware
constraints. Second, a robot slips over a floor, especially when
it pushes an object. In this case, a robot easily loses its pose,
and the object cannot be controlled by the robot. Finally,
there were unexpected errors due to communication delays
or inaccurate positioning. In the simulation, these errors were
not considered at all or these were negligible. However, these
errors highly affected the performance of object transporta-
tion in the real environment.

IX. DISCUSSION
Curriculum learning is an effective training guide, and a
sparse reward problem can be solved using it. Thus, many
researchers have tried to adopt curriculum learning for their
research fields such as collision avoidance and object trans-
portation. However, there were several difficulties in intro-
ducing curriculum learning. First, it is difficult to design
an effective curriculum for achieving a desired goal. Cur-
riculum learning requires a manual design, which totally
differs according to the type of task. For example, diverse
factors affect the learning results in object transportation,
such as the determination of pose-initialization region and
the number of training episodes. Determining these factors
properly is difficult and tedious. Second, users should design
a new curriculum each time because there are no specific
design rules. Based on training results, users should redesign
the curriculum each time to improve performance. Finally,
there is no standard curriculum learning method for object
transportation. In some cases, the performance of object
transportation without the curriculum showed a better result
than that with the curriculum. A curriculum highly affects not

only the positive but also the negative, and thus, it is difficult
to design an effective hand-crafted curriculum.

To overcome the limitations of the conventional CL,
an ACL method for object transportation was suggested in
this paper. First, we defined the difficulty level of object trans-
portation from the spatial point of view. The core assumption
for defining the difficulty level is that the following: object
transportation will be more difficult if an object should be
transported for a long distance or in a complex environment
where many obstacles exist. We could generate the DLM
by this assumption, and the pose-initialization region of an
object for each episode was automatically determined. More-
over, we adaptively adjusted the number of training episodes
during the training process because it is an important factor
that affects performance. This means that we determine the
training procedure from the temporal point of view.

However, there are some limitations to our work. First,
we considered static obstacles only. In the real environ-
ment, there are many dynamic obstacles and multiple agents
(e.g., ground vehicles and UAVs [58]), and thus, we will
study effective object transportation methods in dynamic
environments in the future. Second, we did not consider
path-planning methods for complex environments where
there are many obstacles. Precise planning is sometimes
needed for transporting an object to a goal in a cluttered
environment. In extreme cases, there may be no feasible
planning. A robot should recognize these situations for suc-
cessful transportation. In this paper, we considered only
the limited number of obstacles (e.g., two or three static
obstacles) by reflecting their motions to the reward func-
tion. This is insufficient to be generalized to actual fields.
Third, object transportation can be executed by multiple
robots, which is called cooperative object transportation.
An assumption should be changed if multiple robots are used.
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An environment has non-stationary characteristics because
robots affect each other during the training process.
We should consider this characteristic to apply to multi-robot
case. Finally, the action of robots can be continuous. If a robot
takes an action with continuous transitional and rotational
velocities, then the robot can transport an object more pre-
cisely. In this case, the proximal policy optimization (PPO)
algorithm can replace the function of DQN.

X. CONCLUSION
This paper proposed an automatic curriculum design for
object transportation based on deep reinforcement learning.
The proposed curricula for effective training of object trans-
portation are automatically determined from two points of
views: spatial and temporal difficulty levels. From a spa-
tial point of view, the difficulty level of object transporta-
tion grows as the predicted travelling distance of an object
increases. Object transportation is also difficult in environ-
ments where many obstacles and walls are near an object.
These spatial constraints affect the success rate of object
transportation, and thus, we suggested the generation method
of the difficulty level map for automatic curriculum design.
Meanwhile, from a temporal point of view, the difficulty
level of object transportation is related to the number of
training episodes. It is difficult to determine how long a robot
should learn to complete the current task. We introduced the
criterion of success probability, and trained the robot until the
current performancewas satisfiedwith the predefined success
rate. The success rate of the proposed automatic curriculum
design was 14% (min)∼63% (max) higher than that of the
manually-designed curriculum. The proposed method can be
applied to the applications of DRL-based object transporta-
tion, such as plenary exploration, warehouse, foraging, and
waste retrieval.

In the future work, we will investigate more effective
ACL methods in a cluttered environment where multiple
obstacles exist. We expect that a robot can find and learn an
effective path-finding of object transportation by helpingwith
the previous path-planning algorithms. Moreover, coopera-
tive object transportation based on the ACL method will be
studied.
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