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ABSTRACT A convolutional neural network (CNN) based regression is proposed for estimating the brittle
fracture ratio (BFR) in a fracture image of a drop weight tear test (DWTT) specimen. Different with the
previous complex semantic segmentation-based estimator, the method extracts the feature vector through
global average pooling of feature map and calculates the BFR directly through the fully connected layer.
By removing decoder network, the number of weights, training time, and requiredGPUmemory dramatically
reduced. To train the proposed CNN, a new loss function, which is the sum of L1-norm between class
activation map and ground truth inspection image and L1-norm of BFR error, is also designed. To validate
the present method, fracture images of 1532, 79, and 158 DWTT specimens obtained from real industrial site
were used for training, validation, and test, respectively. The accuracy of the proposed method was evaluated
based on the number of test samples with an error of 5% or less divided by the total number of test samples,
which is the measure used in real industrial application. Despite having dramatically reduced the number of
weights and inference time by 85.8% and 64.8%, respectively, the proposed method has a higher accuracy
(96.2%) compared to that of the existing segmentation based BFR estimation method (94.9%).

INDEX TERMS Brittle fracture rate estimator, convolutional neural network regression, drop-weight tear
test, heatmap regulation.

I. INTRODUCTION
This study proposes an end-to-end convolutional neural
network (CNN)-based regression method for the estimation
of brittle fracture ratio (BFR) in the drop-weight tear test
(DWTT). The demand of line-pipe has increased owing to
the long-distance transportation of natural resources such
as crude oil and natural gas in extremely cold areas (e.g.,
Siberia and Alaska). Steel with extremely low-temperature
toughness is required to install line-pipes in these areas.
Therefore, testing the properties of steel products from
hot-rolling process has become more important. For the
evaluation of steel properties, the DWTT, which is first
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developed at the Battelle Memorial Institute, USA [1]–[6],
has been widely used. The DWTT to determine the fracture
characteristics of steel products is an integral part of the
material qualification programs in oil and gas, and other
industries. The schematic diagram of DWTT and the method
of acquiring the image of the fracture surface are shown
in Fig. 1. Through the DWTT, the test specimen is split
up owing to impact load by a hammer and its resistance
characteristic against brittle fracture propagation can be
determined through the ratio of the ductile and brittle fracture
surface areas. In various industries, these fracture surface
areas are generally segmented by a professional operator,
and the BFR or ductile fracture ratio (DFR) is estimated.
However, owing to the manual evaluation, which depends
on the operator’s condition and state of fatigue, not only
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FIGURE 1. Schematic diagram of DWTT and fracture surface image acquisition region.

are reliability and reproducibility degraded but accuracy is
also not guaranteed. Furthermore, because of the increasing
demand of steel worldwide, there is a need to speed up
material inspection. Therefore, development of an automated
estimation system is essential to quantify the BFR or DFR
efficiently and accurately from the DWTT.

To estimate BFR or DFR, many approaches have been
proposed [7]–[9]. In [7], three-dimensional (3D) scanner
was used to acquire the three-dimensional fracture surface
and a statistical method was applied to estimate BFR
and DFR for the DWTT specimen. In [8], along with an
expensive 3D scanner, a single charge-coupled device (CCD)
camera was used to acquire fracture surface images. The
K-means clustering algorithm was then applied to estimate
the multivariate characteristics of the fracture surface. In [9],
three input images with different angles of illumination were
obtained and then combined to form a single image. After
combining images, brittle and ductile regions were binarized.
Since the ductile and brittle surfaces were divided according
to the specified threshold value, the performance of the
algorithm is sensitively affected.

Meanwhile, deep learning has lately shown great per-
formance in various industrial fields. In [10], a two-
level hierarchical deep convolutional neural network was
applied for automatic extraction of feature representation for
sewer defects inspection. Also, in [11], a novel unsuper-
vised multiscale feature-clustering-based fully convolutional
autoencoder was proposed to efficiently and accurately
inspect various types of texture defects based on a small
number of defect-free texture samples. In [12], a multiple
classifier fusion strategy incorporated Faster R-CNN was
applied for small fruit detection. Especially, a deep learning-
based algorithm was applied to segment the fracture sur-
faces of specimen. In [13], VGG based U-Net (VU-Net),
which performs pixel-wise segmentation of fracture surface
by using the CNN-based on the encoder-decoder structure
was applied. After the original fracture surface image
passed the trained network, the segmented binary map
was obtained and BFR was calculated. To the best of the
authors’ knowledge, as the network used in the previous
study is based on the encoder-decoder structure, the number
of weights is large. Owing to this, it not only takes
a large inference time but also takes a large training
time.

To address the drawbacks of the aforementioned algo-
rithms, this study proposes a simple but accurate method: a
VGG based regression network (VR-net). Unlike the existing
VU-Net, which estimates the BFR by counting the pixels
classified in the segmentation map, VR-net estimates the
ratio directly after passing through the encoder of CNN. The
method for estimating a certain value directly by using a CNN
has been used in various fields, and its applicability has been
sufficiently verified. Moreover, in 2016, Li Kuo Tan et al.
developed a convolution neural network model based on the
MRI image of left ventricular (LV) endocardium at end-
diastole (ED) and end-systole (ES). It predicted mitosis
by automatically quantifying various clinical parameters,
including ejection fractions, and feeding them to the neural
network [14]. In addition, in 2016, Yao Xue et al. predictd
the number of cells through nuclear detection of cells in
an image through a convolution neural network based on
a cell image taken under a microscope [15]. In 2018,
Gerda Bortsore et al. developed a CNN-based learning
model to quantitatively estimate the extent of emphysema
from proportions of the diseased tissue [16]. In 2018,
S. Aich and I. Stavness proposed a CNN-based object
counting method that improves performance by using
heatmap regulation [17]. In addition to the aforementioned
studies, a deep regression network using input data that
was structured data rather than in the image form was
used. Representatively, in 2018, Gregory D. Merkel et al.
undertook the topic of short-term load forecasting of natural
gas through deep neural network regression based on
structured data for 62 regions [18]. Using the existing
techniques as a reference, the CNN used to predict a specific
value was developed in an appropriate form to estimate
BFR. Therefore, in this study, a new loss function based on
classmap regulation was proposed to improve accuracy.

The main contributions of this study are summarized as
follows.
• An automated estimation procedure for BFR was
proposed. Compared with the previous methods, it not
only reduces the manpower and time costs involved but
also performs an accurate evaluation.

• The equipment costs could be reduced because, unlike
the conventional methods, which used an expensive 3D
scanner, images for the surface of the broken specimens
were obtained from a CCD camera.
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FIGURE 2. Example of (a) an image after the DWTT and (b) its divided regions to estimate BFR.

• To the best of the authors’ knowledge, this study is
the first to exploit a deep learning based regression
algorithm for BFR estimation.

• To train the VR-net, a new loss function based
on classmap regulation was proposed. The effect of
loss function and depth of backbone network were
investigated.

• The performance of VR-net was verified by images
obtained in real industrial site. Therefore, the applica-
bility of VR-net was verified.

This paper consists of the four sections. In the second
section, the proposed CNN structure for BFR estimation and
new loss function using classmap regulation for training VR-
net will be explained. The composition of dataset, detailed
training process, and test results will be described in the third
section. Finally, conclusions and findings will be presented
in the fourth section.

II. CONVOLUTIONAL NEURAL NETWORK FOR BRITTLE
FRACTURE RATIO ESTIMATOR
In this section, the proposed regression method based on
CNN for brittle fracture ratio estimator is described. First, the
definition of brittle fracture ratio used in steel manufacture
industries will be explained. Next, the proposed network
structure and formulation of the loss function for training will
be described.

A. DEFINITION OF BRITTLE FRACTURE RATIO
As shown in Fig. 1, the surface of specimen after the DWTT
can be divided into four categories. The area for the BFR or
DFR estimation region, the excluded region, the notch area,
and the impact point by the hammer are denoted by a, b, c, and
d, respectively, in Fig. 1. T is the thickness of the specimen.
After the BFR estimation region is defined, the inspection
is performed by a professional operator. An example of
broken surface with brittle feature is shown in Fig. 2(a)
and its divided regions extracted by the operator are shown
in Fig. 2(b). The pixel values of original input image are
denoted by phw with h = 1, · · · ,H and w = 1, · · · ,W ,
where H and W are height and width of input image,

respectively. After the inspection by the operator, the pixel
values of inspected image, rhw, can be generated with the
value of 1 if it belongs to the brittle region, Rb, and
0 otherwise as shown in (1).

rhw =

{
1, if phw ∈ <b
0, otherwise,

(1)

After the inspection, the BFR value, Rb, can be formulated
as follows.

Rb =

∑
h
∑

w rhw
H ·W

(2)

In other words, the BFR is the value of the brittle fracture
area divided by the total area of the image inspected.

B. CONVOLUTIONAL NEURAL NETWORK STRUCTURE
In this study, VR-net was proposed to estimate the BFR.
Unlike the previous study using VU-net [13], the proposed
network does not include a decoder that performs decon-
volution to make an annotation map, which has the same
size as the original input image, as shown in Fig. 3. The
VR-net performs global average pooling for the feature
map and calculates the BFR value directly through the
fully connected layer. By the elimination of the decoder
network, the VR-net has two advantages. First, the training
time as well as the inference time decreases because the
number of weights dramatically decreases by 86% (from
141,828,812 to 20,024,897). Second, when the annotation
map generated by the operator at the actual industrial site
contains some noise, a regression technique such as the
proposed method may be more suitable for the purpose of
predicting BFR than semantic segmentation, which requires
accurate segmentation map.

A detailed explanation of the network structure is as
follows. First, the encoder extracts high-dimensional features
from the fracture surface image. The encoder has a role
similar to the feature extractor of famous CNNs such as
VGGNet [19], ResNet [20], and Densenet [21]. These CNNs
provide pre-trained weight values using ImageNet’s dataset.
In the training of a CNN, the initial weight value plays
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FIGURE 3. The proposed brittle fracture ratio estimation method.

FIGURE 4. The description of loss function for training of the proposed convolutional neural network.

an important role in obtaining fast convergence and good
accuracy. Therefore, training is often performed using the
initial weight of a pre-trained neural network. In this study,
the pre-trained weights of VGGNet, Densenet, and Resnet
are used. Note that, different with the original VGGNet using
max pooling, average pooling was applied. After the last
convolution operation, global average pooling was performed
using an extracted feature map.

C. DEFINITION OF LOSS FUNCTION
The new loss function, proposed for the training of the
network, will be described in this subsection. The loss
function is formulated in (3).

L =
∣∣∣R̃b − R∗b∣∣∣+ L1 (Cmap, Imap) (3)

where, R̃b and R∗b are the predicted and ground truth BFR
values, respectively. Cmap and Imap are the two-dimensional
class activation map (CAM) and image inspected by an
industry operator, respectively. Both Cmap and Imap have the

same size as the input image. The second L1 loss term is
termed classmap regulation.

Furthermore, the detailed explanation of the loss function
is described in Fig. 4 for intuitive understanding. As shown in
the figure, the red marked box is added for the calculation of
loss function. For the calculation of loss function, an image
inspected by an operator is needed. The loss function is the
summation of two values. The first value is the absolute
difference between the ground truth BFR value and predicted
value calculated by the VR-net. The second value is the
L1 loss between the CAM and inspected image. In the
inspected image, the pixel value of the brittle surface region is
one and the rest are zero. The CAM is a method developed to
express the features that the CNN is paying attention to in the
classification model [22]. In this study, the CAMwas applied
to define the loss function for training the regression model.
In Fig. 4, a feature map of 512 channels, whose height and
width are reduced 32 times, is output through the encoder.
The output feature maps are resized to the same size as the
input image and the weight value of each fully connected
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FIGURE 5. Definition of class activation map.

FIGURE 6. Examples of DWTT fracture surface image and corresponding inspection image obtained from real industry.

layer is multiplied. Thereafter, all of them are added to obtain
a CAM of one channel, as shown in Fig. 5.

III. DATA AND EXPERIMENTS
To verify the performance of the VR-Net for the BFR
estimator, it should be applied to a real dataset. Therefore,
in this section, the dataset organization and augmentation will
be described. Moreover, the experiments and process used to
verify the proposed method and their results will be explained
in detail.

A. DATASET ORGANIZATION AND AUGMENTATION
The dataset, consisting of the original DWTT fracture image
and corresponding inspection image, was obtained from
actual industrial sites. The examples of dataset are shown
in Fig. 6. In the previous research, the total number of
image and inspected pairs is 1,611, which were divided
into 1,532 and 79 for training and validation, respectively.
In addition, performance was verified by using 158 pairs
of test data that was not used for training and validation.
In this study, the same dataset organization was used for
comparison with the previously used method. According

TABLE 1. Statistical size distribution of the fracture surface images.

to the specimen, the image size of the fracture specimens
was different, and their statistical size distribution is shown
in Table 1. To enhance accuracy and generalization ability,
the training dataset is augmented eight times by using
flip and 90 degrees rotation on the original images, and
corresponding inspected images are generated. By using the
data augmentation, the number of training dataset becomes
12,256.

B. EXPERIMENTS
As described in subsection 2.3, the network is trained by
using the proposed loss function. During the training process,
the validation accuracy is calculated at a specific number of
iterations. The validation accuracy is the average absolute
error (AAE) for the entire validation dataset. To reduce the
error of BFR, the model with the minimum AAE rather than

136556 VOLUME 9, 2021



S. H. Jeong et al.: Automatic BFR Estimation Using CNN Regression Based on Classmap Regulation

TABLE 2. Test cases specifications and results.

the minimum loss is chosen. The weights with minimum
AAE are saved and applied for the test dataset.

For the comparison, four indices were used to evaluate the
performance of the networks. The indices used to evaluate
the performance of the prediction values of test set are the
maximum absolute error (MAE), the AAE, and the accuracy
used in real industrial applications, defined as the number of
samples with an error of 5% or more divided by the total
number of samples, Nerror≥ 5%. Since an error of 5% or less
is acceptable in the industrial site considering the uncertainty
of the brittle fracture area, this definition of accuracy was
adopted.

VR-net was implemented by using Tensorflow and trained
by using Adam optimizer. The initial learning rate was set to
0.00001 and decayed 4% per 10,000 iterations. The images
are 8-bit gray level and have different sizes according to
specimens. The images were not resized, and the batch size
was set to one. For the experiment, a workstation with Intel
Xeon CPU E5-2690v4 2.60GHz, 192GB ram, and Nvidia
GTX 1080Ti was used.

The proposedmethod tested from several perspectives. The
effect of loss function, backbone network, and batch size are
compared by changing test cases as shown in Table 2.

1) THE EFFECT OF PROPOSED REGULATION OF LOSS
FUNCTION
The effects of the regulation term of loss function were
tested. MAE, AAE, Nerror ≥ 5%, and accuracy for each
case in Table 2 are listed in Table 2. As shown in Table 2,
in terms of AAE and Nerror ≥ 5%, VR-net with proposed

regulation method (Case no. 3 in Table 2) has the best
accuracy. As can be seen in case no.2 in Table 2, when the
regulation is not used, the accuracy is less than 93%. It was
confirmed that the regression without regulation could not
be used in the actual industrial field because 12 samples
showed an error of 5% or more. By adding the proposed
regulation term to the loss function, more information is
given for training the network and thereby high accuracy is
obtained. In addition, three samples were randomly selected,
and original fracture images, inspection images, and CAMs
were drawn per sample in Fig. 7. As shown, owing to the
proposed regulation term, the training is performed to mimic
inspection image; thus, the shapes of the activated region of
inspection image and CAM are similar. The figures in the
last row represent CAM of three DWTT images. As shown,
the CAM tends to follow the shape of the inspected image,
but it is more ambiguous than the results obtained using
regulation. In the test, the sample showing the maximum
error is the same for the VU-net and VR-net with proposed
regulation. Therefore, the original fracture image, inspection
image, and CAM are plotted in Fig. 8 to figure out the reason
of maximum error. As shown in the figure, the ambiguous
fracture region in the center of the CAM has been activated,
causing a large error. In summary, the prediction accuracy
could be increased by using the proposed loss function, and
a method capable of tracking the brittle fracture region was
proposed.

2) THE EFFECT OF DEPTH OF BACKBONE NETWORK
To test the effects of depth of backbone network, as can be
seen in Table 2, the depth of convolution layer is changed to
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FIGURE 7. A fracture image, inspected image, and class activation map according to loss function and depth of backbone network.

FIGURE 8. A fracture image, inspected image, and class activation map of worst accuracy test sample.

VGG11, 13, 16, and 19. In addition to VGGNet, experiments
was performed by changing the backbone network of the
proposed method into Resnet and Densenet. For all the
models, weight values are initialized by using the pre-trained
values using ImageNet’s dataset. The accuracy of the four
VGG models is listed in Table 2 (Case no. 3, 4, 5, and 6).

As shown in the Table 2, accuracy is improved as the depth
increased, and VGG19 shows the best results. Moreover,
as shown in Fig. 7, as the depth of the backbone network
becomes shallower, the CAM tends to fail to follow the
shape of the inspected image in detail. As shown in Table 2,
for the rest of the models other than the VGG models,
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different batch size and depth were applied respectively.
In the case of Densenet, when one factor of depth or batch
sizewas fixed and the other factor was increased, the accuracy
tended to increase. However, when the batch size was four,
the accuracy decreased as the depth increased. In the case
of Resnet, the batch size had a significant effect on the
accuracy, but the depth did not. As a result, Densenet121 that
batch size was set to four showed the same accuracy as the
proposed VGGNet using average pooling layer. According to
the average inference time, the proposed VGGNet was about
10 times faster than the Densenet121 although it has about
2.9 times more number of weights.

IV. CONCLUSION
This study presents a new deep neural network-based regres-
sion network, named VR-net. The network structure and loss
function for estimating BFR value were newly developed.
The proposed network used VGG19 with average pooling
as the backbone network and classmap regulation, which
improve performance of BFR estimation. The proposed CNN
based regression is to be suitable for application in real
industrial sites where it is difficult to create an accurate
annotation map. The accuracy of the proposed method
was evaluated by using the accuracy measure used in real
industrial site, which is defined by the number of samples
with absolute error of BFR estimation less than 5% divided
by total number of test samples. Despite drastically reducing
the number of weights, the accuracy of the proposed method
is 96.20%, which is higher than that of the previous VU-
net based method (94.95%). Moreover, to improve accuracy,
the average inference time for the test samples was drastically
reduced from 0.165 s to 0.058 s owing to the simple network
structure and reduced number of weights. In this paper,
in addition to the performance evaluation, the effect of
loss function and depth of backbone network were also
investigated. Through several tests, it was found that the
proposed classmap regulation loss term improves accuracy as
the CAMbecomes similar to the inspection image. Moreover,
the accuracy was improved with the increase of backbone
network depth. Based on the proposed VR-Net, accuracy and
effectiveness of an automated estimation system for BFR
was improved, which not only reduces money, human and
time costs but also makes a consistent decision regarding the
quality of steel.
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