
Received September 2, 2021, accepted October 2, 2021, date of publication October 4, 2021, date of current version October 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117987

Ring-Based Crossovers in Genetic Algorithms:
Characteristic Decomposition and
Their Generalization
SUNISA RIMCHAROEN AND NUTTHANON LEELATHAKUL
Faculty of Informatics, Burapha University, Saen Suk 20131, Thailand

Corresponding author: Nutthanon Leelathakul (nutthanon@buu.ac.th)

This work was supported by the Faculty of Informatics, Burapha University.

ABSTRACT Effective crossover methods are essential for genetic algorithms because they enhance popu-
lation diversity, resulting in an increase in the search space to be explored and the mitigation of trapping at
local optima. Ring-based crossovermethods are designed to address the shortcomings of traditional crossover
techniques; for example, the ends of binary-encoded chromosomes tend to remain unaltered, even when their
fitness values are low. By conjoining the leftmost and rightmost parts of a chromosome to form a ring, the
ring-based crossovers allow offspring bits to be inherited from parent bits at the front and rear positions.
Such a ring-based technique helps increase population diversity while requiring a relatively low number of
fitness evaluations. To the best of our knowledge, there has been no comparative study or comprehensive
analysis of ring-based crossover techniques. In this paper, we study and compare the characteristics of
various existing ring-based crossover techniques (i.e., circle-ring (CRC), annular (AC), ring (RC) and
front-rear crossover (FRC)). Although they each have distinct characteristics, they share a common crossover
concept: bits at different positions can be swapped. We propose a generalized ring-based crossover (GRC)
as an umbrella of the ring-based crossovers, embodying all of their beneficial characteristics. Chromosome
shifting, ring forming, chromosome exchange and offspring creation are integrated into the proposed
model. The experimental results show that GRC outperforms the other ring-based crossover methods in
all experiments, and these results are consistent with the results of behavioral analysis. In a trap problem,
GRC outperformed the state-of-the-art BOA method and require 40-times fewer fitness evaluations. GRC
tends to maintain a variety of candidates in populations and to preserve the building blocks of solution, and
it requires 93% and 57% fewer fitness evaluations (on average) compared to traditional crossover and other
ring-based crossover methods.

INDEX TERMS Building block, generalized crossover, genetic algorithm, ring representation.

I. INTRODUCTION
Evolution is the most essential process for living organisms
to survive. They adapt or evolve to fit in ever-changing
environments and/or to compete with other species. In the
reproduction process, genetic operators (such as chromosome
crossover and mutation) make natural evolution possible.
Naturally, creatures survive and evolve by inheriting superior
genomes from their ancestors, crossing over/mutating the
genomes, and passing the genomes down to subsequent gen-
erations. The crossover and mutation operators can improve
the survival of even the fittest species and allow species to
continually evolve. Genetic algorithms (GAs) adopt natu-
ral evolutionary processes and employ both crossover and

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

mutation for offspring generations. In [1], the author (who
proposed the first GA) wrote that the crossover operator helps
GAs to explore (or jump through) the search space, and muta-
tion is merely ‘‘a background operator’’. There have been
several studies in the literature confirming the usefulness of
the crossover operator. Jansen and Wegener [2] verified that
the use of the crossover could decrease the expected run time
of a model. Doerr et al. [3] showed that the crossover operator
was useful for solving the classical all-pair shortest path
problem. Sudholt [4] demonstrated that this operator could
accelerate building-block assembly. Pinto and Doerr [5] pre-
sented a mathematical proof and empirical evaluations of the
usefulness of crossover in black-block optimizations.

There are various crossover methods in the literature. Pavai
and Geetha [6] classified more than one hundred crossover
methods into two broad categories: 1) methods for the

137902 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8827-2902
https://orcid.org/0000-0001-8883-3629
https://orcid.org/0000-0001-5100-6072


S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

representation of applications and 2) methods for improving
GA performance. For the former category, the methods were
designed based on chromosome representations, e.g., binary
encoding, integer encoding, and permutation encoding. For
the latter, the methods (such as adaptive crossover and mul-
tiparent crossover) were designed with the aim of achieving
optimal solutions. Gwiazda [7] also provided a comprehen-
sive review of crossover techniques in his reference book; he
described 11 standard, 66 binary-coded, 89 real-coded and
9 statistic-based crossover operators.

At present, research on crossover techniques is ongoing
to address problems in various GA domains. For exam-
ple, Manzoni et al. [8] investigated the effect of balanced
crossover operators in combinatorial optimization problems.
Ali et al. [9] introduced four new crossover operators to
solve a dynamic job scheduling problem. Koohestani [10]
presented a new version of partially mapped crossover
(PMX) to improve the efficiency of permutation-based GA.
Pan et al. [11] proposed a modification of simulated binary
crossover (SBX) to improve the performance of multiobjec-
tive evolutionary algorithms (MOEAs) in problems involving
rotated Pareto sets.

Among the various crossover techniques in the literature,
the crossover methods designed for binary-encoded repre-
sentations are general-purpose and classic methods; binary
encoding is the most common form and simplest to imple-
ment. A unique group of crossover methods that transform
linear binary-encoded chromosomes into circular chromo-
somes (i.e., forming rings) exists [12], [13]–[15]. This kind
of technique promotes the diversity of the chromosomes and
prevents the algorithm from being trapped at local optima.
For example, the front-rear crossover (FRC [12]), of which
simple operation can yield promising results in solving the
trap problem, which is known as one of the hard benchmark
problems. One state-of-the-art algorithm that can efficiently
solve the trap problem is the Bayesian optimization algorithm
(BOA) [16]. However, the BOA requires a long computa-
tional time to construct and evolve a Bayesian networkmodel,
which is used to estimate the joint probability distribution of
all promising candidate bit pairs. Surprisingly, FRC could
solve the trap problem and require 40-times fewer fitness
evaluations than the BOA, in which the trap size is 180 bits.
Pavez-Lazo and Soto-Cartes [14] also noted the disadvantage
of the linear-chromosome representation: genetic information
at the ends of the chromosomes tends to remain unaltered,
even after multiple crossovers; they addressed this disadvan-
tage by employing annular crossover to form a ring rep-
resentation. They reported that the method provides faster
convergence and better solutions than traditional crossover
techniques. Kaya et al. [15] showed that ring and traditional
crossover methods provide significant differences in terms of
variety in the population; notably, ring crossover tends to gen-
erate more genetically variant children than does traditional
crossover.

According to the studies mentioned above, ring-based
crossover techniques seem promising. Nevertheless, to the

best of our knowledge, there have been no comprehen-
sive studies or comparative analyses of the behavior of
ring-based crossover techniques. In this paper, we study
and compare the existing ring-based crossover methods (i.e.,
circle-ring (CRC), annular (AC), ring (RC) and front-rear
crossover (FRC)), all of which share a common crossover
concept: transforming the chromosome representations from
linear to circular. We then propose a generalized ring-based
crossover (GRC) method that incorporates the advantages of
various techniques (e.g., chromosome shifting, ring forming,
chromosome exchange and offspring creation).

Our contributions are outlined as follows.
1) A new crossover technique called GRC is proposed;

it is able to capture and embody the characteristics
of the previous ring-based crossover methods in one
framework.

2) The characteristics of the previous ring-based crossover
methods are studied. The underlying components of the
crossover techniques are decomposed to identify the
features commonly shared among the techniques.

3) The steps in RC are transformed to create offspring
by forming two rings, making RC generalizable while
retaining the same functionality. In particular, CRC,
AC and FRC include crossover steps that are easily gen-
eralized. In contrast, RC generates offspring differently
by forming only one ring (instead of two rings, as in the
other methods), thus requiring transformation.

4) Performance and behavioral analyses of all ring-based
crossover methods are conducted, and these methods
are compared with traditional crossover. The analysis
results are used to explain why ring-based crossover
methods are promising.

5) The benefits and limitations of ring-based crossover
techniques are outlined.

The rest of this paper is organized as follows. Section II
introduces the background on the genetic algorithms,
crossover methods and benchmark problems addressed in
the experiments. Section III explains the proposed general-
ized crossover approach. Section IV presents the compara-
tive results obtained from experiments. Section V discusses
and analyzes the behaviors and advantages of ring-based
crossover methods. The conclusions are drawn in Section VI.

II. BACKGROUND
A. GENETIC ALGORITHMS
Genetic algorithms (GAs) are known as search and
optimization techniques inspired by the principle of natu-
ral evolution. The basic processes of GAs are population
representation, population initialization, fitness evaluation,
selection, crossover, mutation, and termination. Solutions to
particular problems are represented by chromosomes (which
are sequences of genes). The initialization process is a step to
create the first pool of candidate solutions (called a popula-
tion). To determine how close candidate solutions are to the
desired solution, the fitness function is designed specifically
for each problem; it takes a candidate solution as the input and

VOLUME 9, 2021 137903



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

returns a fitness value as a score, used to guide the algorithms
to search for targets. The fitter a candidate is, the greater
the chance they are selected to become parents of the next
generation. Crossover creates offspring by conjoining the
parents’ gene segments, allowing the gene properties to be
passed from generation to generation. Some modifications to
one or more genes are performed using a mutation operator.
These processes are repeated until the termination condition
is met.

The success of applying GAs depends on multiple factors,
and the design of crossover is one of them. The significance
of each crossover method lies in its capability to help GAs
explore a wide area of the search space [1], thus improving
GA performance [17]. Over time, various crossover methods
have been developed; some are designed for general pur-
poses, and some are designed for certain problems. In this
section, we begin explaining traditional crossover, including
single-point, two-point and uniform crossover methods, fol-
lowed by the crossover methods that are the focus of this
paper, i.e., unique crossover methods that transform linear
chromosomes into circular chromosomes before crossover is
performed.

B. TRADITIONAL CROSSOVER TECHNIQUES
1) SINGLE-POINT CROSSOVER (SPC)
Single-point crossover (also called one-point crossover) [1]
is one of the earliest forms of crossover. One cut point on
each parent’s chromosome is randomly selected. The parents’
bitstrings at the cut point are swapped to form offspring,
as shown in Fig. 1.

FIGURE 1. Single-point crossover.

2) TWO-POINT CROSSOVER (TPC)
Two-point crossover [18] involves the random selection of
two cut points on the parents’ chromosomes. The offspring
are produced by exchanging the middle segments of the
parents’ chromosomes, as illustrated in Fig. 2.

FIGURE 2. Two-point crossover.

3) UNIFORM CROSSOVER (UC)
Uniform crossover [19] involves determining whether the
parents’ bits at the same position should be swapped while

passing them to the offspring. In other words, with equal
chance, each bit in one child’s chromosome is inherited from
one parent, while that in the other child’s from the other,
as shown in Fig. 3.

FIGURE 3. Uniform crossover.

C. RING-BASED CROSSOVER TECHNIQUES
1) CIRCLE-RING CROSSOVER (CRC)
Circle-ring crossover was proposed by Zhang et al. [13] and
involves joining both ends of each parent’s chromosomes
to form a ring. The chromosome-mixing method starts by
rotating both rings by an arbitrary angle. In other words,
CRC performs an n-bit cyclic shift. The cut point is always
at the middle of the bitstrings. The bits following the cut
point are swapped between the two parents to form offspring.
As shown in Fig. 4, 3-bit cyclic shifting is performed on both
parents’ chromosomes. The cut point is between the second
(b5/2c = 2) and third bits.

FIGURE 4. Circle-ring crossover.

2) ANNULAR CROSSOVER (AC)
Annular crossover was proposed by Pavez-Lazo and
Soto-Cartes [14] and involves transforming parents’ linear
chromosomes into rings. Both ends of a chromosome are
conjoined. Let l be the length of a semiring (or a ring
segment), which is uniformly chosen in the range of 1 to L/2,
where L is the chromosome length (in AC, the lengths of
both parents’ semirings are equal.) Then, one cut point is
randomly selected in the range of 1 to L for each parent. (The
parents’ cut points can be different.) The semirings of length l
from both parents (starting from the cut points) are swapped.
In Fig. 5, we illustrate the 3-bit-length semirings. The cut
points are the second and fourth positions associated with the
first and second parents’ chromosomes, respectively.

3) RING CROSSOVER (RC)
Ring crossover, proposed by Kaya et al. [15], combines pairs
of parent chromosomes into rings by conjoining the genes in
head-to-head and tail-to-tail arrangements. The cut point is

137904 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 5. Annular crossover.

randomly selected at the position of each ring to separate it
into halves.

The first offspring’s chromosome starts from the bit at
the cut point and proceeds to the next bits in the clockwise
direction. The other’s chromosome consists of the bits in the
other half of the ring, starting from the bit at the cut point and
proceeding to those in the counterclockwise direction. The
example is shown in Fig. 6.

FIGURE 6. Ring crossover.

Note that RC forms a ring in a different fashion than the
other ring-based crossover methods. The other ring-based
crossover methods convert one linear chromosome into one
ring. Generating an offspring requires two parents’ chro-
mosomes and hence two rings. In contrast, RC joins two
chromosomes to form only one ring. Therefore, before we
can generalize RC, we have to transform (or reduce) the ring
formation to the common form (i.e., one ring representing
only one chromosome), which is a shared characteristic in the
proposed generalized method. Fig. 7 illustrates the reduced
form of RC. Reduced RC starts with randomly determining
the cut point of the first parent (the ith position). The sec-
ond parent’s cut point is then at the (L-i)th position among
chromosomes, where L is the chromosome length. Next,
the parents’ chromosomes are converted into two rings, and
the associated semirings are determined. For the first ring,
the bits starting from the first bit to the cut point are reversed.

FIGURE 7. Reduced form of ring crossover.

For the second ring, the bits starting from the cut point to
the last bit are reversed, as illustrated in Fig 7. The two
reversed semirings are then exchanged. The rings (starting
from the ring cut points) are converted back into the linear
chromosomes of offspring and are the same as those obtained
from nonreduced RC, as shown in Fig. 6.

4) FRONT-REAR CROSSOVER (FRC)
Front-rear crossover was proposed by Pumsuwan et al. [12].
During this process, FRC produces each offspring by contin-
uously selecting two parents and swapping the first parent’s
front chromosomewith the second parent’s rear chromosome.
Given the chromosome length L, the segment length (l) is
uniformly randomized in the range of (0, L). The cut points
for the first and second parents are at positions l and L-l of the
chromosomes, respectively. Each of the offspring is created
by swapping the first parent’s 1st – l th bits with the second
parent’s (L − l + 1)th – L th bits. Fig. 8 illustrates an example
of FRC.

FIGURE 8. Front-rear crossover.

D. BENCHMARK PROBLEMS
The crossover techniques stated in the previous subsection
and the proposed generalized ring-based crossover method
are evaluated based on the benchmark problems described
below. We selected four benchmark problems because they
epitomize problems in which chromosomes are binary coded
and fitness functions involve unitation. Furthermore, these
problems are commonly used to compare and analyze the

VOLUME 9, 2021 137905



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

behaviors of algorithms in composing building blocks con-
sidering their ease of identification and inspection.

1) ONE-MAX AND ZERO-MAX PROBLEMS
One-max and zero-max problems are simple bit counting
problems designed for assessing Gas.We selected these prob-
lems to ensure that the crossover techniques are unbiased
toward all-one-bit and all-zero-bit candidates. The candi-
dates’ fitness values in one-max and zero-max problems are
calculated by counting the numbers of one and zero bits,
respectively. Given the length L of a chromosome, the opti-
mal solutions of the one-max and zero-max problems are
the chromosomes for which all L bits are ones and zeros,
respectively. Although the problems usually require unimodal
fitness functions that are relatively simple, Culberson [20]
noted that using the single-point crossover could cause the
algorithm to be stuck at a local optimum. Notably, the number
of local optima could increase exponentially in the one-max
problem as the chromosome length increases.

2) ROYAL ROAD PROBLEM
The royal road problem [21] is designed for benchmarking
GAs, especially in terms of their capability to compose build-
ing blocks (i.e., short low-order schemas that are a part of the
optimal solution [22]). A schema is represented by a set of
characters {bi|bi ∈ {0, 1, ∗} and 1 ≤ i ≤ L}. For example,
the schema ’∗∗∗111’ describes a set of 23 = 8 bitstrings, and
the first three bits of each can be either 0 or 1; last three bits
are always ’111’. The royal road fitness function is defined
as

F (x) =
∑
si∈S

csiσsi (x), (1)

where x is a bitstring, S is the set of all schemas, csi is a value
of the ith schema, and σsi is defined as shown in Eq. (2).

σsi =

{
1, if x follows the ith schema
0, otherwise

(2)

For the royal road problem, the set of schemas S =
{s1, . . . , s15} is defined as shown in Table 1.

TABLE 1. The royal road schemas.

3) HIERARCHICAL IF-AND-ONLY-IF PROBLEM
The hierarchical if-and-only-if (H-IFF) problem was pro-
posed by Watson et al. [23]. The evaluation structure in the
H-IFF problem is a binary tree, in which each node stores one
character (either ’0’, ’1’, or ’−’). Fitness value determination
is based on all the node points at each level of the tree. At the
lowest level, all leaf nodes, with characters corresponding to
’0’ or ’1’ in the bitstring, are assigned points of 1. A parent
node stores ’0’ or ’1’ if both of its children store ’0’ or ’1’,
respectively; otherwise, the parent stores ’−’ (or a NULL
value). The H-IFF fitness function is defined as

H − IFF (x) =
H∑
h=0

2(H−h)∑
i=1

chi , (3)

where H is the height of the binary tree, h denotes the tree
level, and chi is the point associated with the ith node at the
level of h defined in Eq. (4).

chi =

{
2i, if the ith node stores 0 or 1
0, if the ith node stores ’−’

(4)

Fig. 9 shows an example. The bitstring ’00011111’ has a
fitness value of 18. The optimal solution of this problem is
either all zeroes or all ones (with ’11’ or ’00’ as the building
block).

FIGURE 9. Fitness value calculation for an H-IFF problem.

4) TRAP PROBLEM
The trap problem [24]–[28] is one of the most difficult prob-
lems considered in GA benchmarking; it was designed to
delude gradient-based optimizers into favoring zero bits, but
the optimal solution is actually all one bits. In the k-bit trap
problem [29], each block score is defined by the trap function
as follows:

fk (b0 . . . bk−1) =

vhigh, if u = k

vlow − u
vlow
k − 1

, otherwise,
(5)

where bi is the ith gene (or the ith bit) in a chromosome
where bi ∈ {0, 1}, k is the trap size (or block size), u is the
summation of bit values in the block, where u =

∑k−1
i=0 bi, and

vhigh and vlow are the scores of the k-bit block when all bits
are ones and zeroes, respectively. Usually, vhigh is set to k , and
vlow is set to k-1. For example, if the trap size, vhigh and vlow

137906 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

are 3, 3, and 2, the scores of the ’111’ (u = 3), ’000’ (u = 0),
’001’ (u = 1) and ’011’ (u = 2) blocks are 3, 2, 1 and 0,
respectively. Fig. 10 illustrates the value of fk (b0 . . . bk−1) as
the number of bits in the block increases.

FIGURE 10. Trap function.

To increase the difficulty of solving a k-bit trap problem,
m blocks of k bits are formed as additive blocks (B0, B1 . . . ,
and Bm−1). The corresponding fitness function is defined as
follows:

Fk×m (B0 . . .Bm−1) =
m−1∑
i=0

fk (Bi) , Bi ∈ {0, 1}k (6)

5) HIERARCHICAL TRAP PROBLEM
The hierarchical trap problem (H-Trap) was proposed by
Pelikan and Goldberg [30]. The optimal solution is an all-
one bitstring. The H-Trap structure is a balanced k-ary tree,
where k ≥ 3 (throughout this paper, we set k to 3.) Similar to
the H-IFF structure, in the H-Trap structure, each node stores
one character (either ’0’, ’1’, or ’−’). If all three children
store ’0’, the parent node stores ’0’. Similarly, if all three
children store ’1’, the parent stores ’1’. Otherwise, the parent
stores ’−’. Let h be the height of nodes. At the root level,
vh=Hhigh and vh=Hlow are 1 and 0.9, respectively, where H is the
highest tree height. At the lower tree levels, both values of
vh6=1,Hhigh and vh6=1,Hlow are 1, where 1 < h < H . The point of
the ith nonleaf node (at tree level h) is determined according
to Eq. (7) and (8), where b0, b1 and b2 are the characters
stored by the child nodes. The fitness value is determined
by considering all values at nonleaf node points based on the
H-Trap fitness function in Eq. (9).

f hk (b0 . . . bk−1)

=

v
h
high, if u = k

vhlow − u
vhlow
k − 1

, otherwise
(7)

chi

=

{
f h3 (b0b1b2)× 3h, if bj 6= ‘−’for all 0 ≤ j ≤ 2
0, otherwise

(8)

FIGURE 11. Fitness value calculation in an H-Trap problem.

Fig. 11 shows the fitness value calculation when the bit-
string is ’000111000’.

H − Trap (x) =
∑H

h=1

∑3(H−h)

i=1
chi (9)

III. THE PROPOSED GENERALIZED CROSSOVER METHOD
This section presents the characteristics of earlier ring-based
crossover techniques. The characteristics are extracted, corre-
lated, grouped, and, finally, generalized to establish a newly
designed method. The pseudocode of the proposed general-
ized ring-based crossover approach, its relation to the previ-
ous ring-based techniques, and a time complexity analysis are
also presented in this section.

A. GENERALIZED CROSSOVER AND THE OTHER
RING-BASED CROSSOVER METHODS
As mentioned in Section II, there are crossover techniques
that benefit from ring-based chromosome formation. Such
techniques share the concept of connecting both ends of
chromosomes to form rings before exchanging semirings
(i.e., the segments of a ring). However, there are sub-
tle nuances among the ring-based crossover techniques.
For instance, CRC shifts bits before exchanging semirings.
AC allows the swapping of semirings starting at differ-
ent chromosome positions. RC performs semiring reversion
before an exchange. FRC always chooses the front and
rear parts of chromosomes as semirings to be swapped.
Table 2 summarizes the characteristics of the existing
ring-based crossover techniques.

We analyzed the characteristics of the four ring-based
crossover techniques and found that FRC is an AC variant.
AC operates exactly as FRC does in the case that the semir-
ings (being swapped) are always the front and rear parts
of chromosomes. Furthermore, CRC and AC are similar.
AC can be considered CRC if the semirings being swapped
are always halves of the full rings and bit shifting is omitted.
RC and FRC share only one common characteristic: both
select the front and rear parts of chromosomes as semirings.
The differences between them are 1) RC reverses semiring
bits before semiring exchange, and 2) RC converts rings to
linear chromosomes from the parent cut points, and FRC
converts rings to linear chromosomes starting from the first
bit of parents.

The above observations were considered in the design of
generalized ring-based crossover (GRC), which incorporates

VOLUME 9, 2021 137907



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

TABLE 2. Characteristics of the existing ring-based crossover techniques.

TABLE 3. Time complexity.

all the characteristics discussed. In other words, all previous
techniques can be considered GRC variants. Algorithm 1
illustrates each step of GRC. In particular, GRC has
three main steps: 1) chromosome shifting, 2) chromosome
exchange, and 3) chromosome rearranging.

Based on the shifting probability, GRC determines whether
a chromosome is circularly sLength-bit shifted (lines 2–6).
The second step (lines 7–32) is to randomize the semiring
lengths and the cut point locations before swapping them.
Note that the semiring length of the two chromosomes is
always the same. The variables pos_r1 and pos_r2 are the
cut points of parents’ chromosomes, which may be at dif-
ferent positions. With the reverse probability, GRC reverses
semirings while exchanging chromosome parts (lines 15–24).
The first parent’s semiring (starting at pos_r1) and the second
parent’s semiring (starting at pos_r2) are swapped. Note that
all arrays are circular. With the probability of 1-reverse_prob,
the semirings are exchanged without a reverse procedure
(lines 26–31). The final step (lines 33–41) is to rearrange the
offspring bits. The algorithm uses the rearranging probability
to determine whether the offspring chromosomes should be
rearranged so that they start from the parents’ cut points
instead of the parents’ first-bit positions. If the algorithm
determines that the offspring chromosomes start from the
parents’ first-bit positions, bit rearrangement is unnecessary.
Otherwise, the offspring chromosomes are rearranged by first
copying each parent’s bit at the cut point to the corresponding
offspring’s first bit. The copying (in circular fashion) process
continues until all parent bits are copied.

Given the two parents, which are 11111111 and 00000000,
Fig. 12 illustrates the parameter configuration for GRC,

which corresponds with that for the previous ring-based
crossover techniques.

B. TIME COMPLEXITY ANALYSIS
The run time of the proposed GRC along with the existing
ring-based crossover techniques can be derived in each of the
following steps: 1) circular bit shifting, 2) cut-point determi-
nation, 3) semiring exchange, and 4) offspring chromosome
rearrangement. As shown in Table 3, the worst-case run time
complexities for all the ring-based crossover techniques are
O(N ), where N is the chromosome length.
The overall GA run time includes the time spent creating

(i.e., crossover and mutation operations) all offspring and
evaluating their fitness values. Let M, T , and fe(N ) be the
population size, the number of generations, and the amount
of time used for fitness evaluation, respectively.

Given that the run time of eachmutation is O(1), as the total
number of generated offspring isMT, the run time required to
create all offspring is O(MT(N + 1)). The run time required
to evaluate all offspring is O(MTfe(N )). Therefore, GA’s total
run time is O(MT(N + 1 + fe(N ))).

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental and behavioral
analysis results regarding the crossover techniques. We first
discuss the experimental results and the behavioral analysis
for a case in which crossover techniques are used to solve
the one-max and zero-max problems, which are considered
simple problems. We then report the experimental results and
perform behavioral analyses for royal road problems, repre-
senting any problems with solutions composed of building

137908 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

Algorithm 1 Generalized Ring-Based Crossover
1: procedure GRC(parent1, parent2)
2: if prob_1 < shifting_prob then
3: sLength = random(1, chromosomeLength-1)
4: parent1 = CircularShift(parent1, sLength))
5: parent2 = CircularShift(parent2, sLength)
6: end if
7: child1 = parent1
8: child2 = parent2
9: semiRingLength = random(1, chromosomeLength-1)
10: pos_r1 = random(1, chromosomeLength-1)
11: pos_r2 = random(1, chromosomeLength-1)
12: p1 = pos_r1
13: p2 = pos_r2
14: if prob_2 < reverse_prob then

// reverse and exchange semirings
15: for i = 0 to semiRingLength-1
16: revpos = (p2 + (semiRingLength – 1)) mod
17: child1[p1] = parent2[revpos]
18: child2[revpos] = parent1[p1]
19: p1 = (p1 + 1) mod chromosomeLength
20: p2 = p2 – 1
21: if p2 < 0 then
22: p2 = chromosomeLength - 1
23: end if
24: end for
25: else

// exchange semirings without reverse
26: for i = 0 to semiRingLength-1
27: child1[p1] = parent2[p2]
28: child2[p2] = parent1[p1]
29: p1 = (p1 + 1) mod chromosomeLength
30: p2 = (p2 + 1) mod chromosomeLength
31: end for
32: end if
33: if prob_3 < rearrange_prob then
34: pos_r1 = (pos_r1 + semiRingLength) mod
35: for i = 0 to chromosomeLength −1
36: child1[i] = parent1[pos_r1]
37: child2[i] = parent2[pos_r2]
38: pos_r1 = (pos_r1 + 1) mod

chromosomeLength
39: pos_r2 = (pos_r2 + 1) mod

chromosomeLength
40: end for
41: end if
42: return child1, child2
43: end procedure

blocks. Furthermore, the performance and behavior of each
crossover technique for the H-IFF problem are studied. The
H-IFF problem is a multimodal problem (i.e., a problem
with multiple optimal solutions), and solutions are based on
hierarchical building-block structures. The final two experi-
ments are conducted to study the performance and behavior
of crossover methods when solving trap and hierarchical trap

TABLE 4. Experimental environment and parameter setting.

problems, which are considered very difficult benchmark
problems. These problems are designed to fool algorithms,
causing them to search in the direction opposite the one that
leads to the optimal solution.

In all experiments, we set the crossover rate to 0.8 and
chose bitwise mutation as the mutation scheme, with a muta-
tion rate of 0.01. A tournament selection of size 4 is used
in the selection process, and the parameters are the same as
those in [12]. Table 4 shows the experimental and parameter
settings.

To quantify the algorithm’s performance, we consider not
only fitness values but also the number of fitness evalua-
tions, which is a computational cost measurement commonly
used in the field of evolutionary computations. Efficient
algorithms require fewer fitness evaluations than inefficient
algorithms. The number of fitness evaluations represents the
number of times that each algorithm consults the clairvoy-
ant to guide the search and identify the optimal solution.
Therefore, the number of fitness evaluations can be used to
fairly compare different genetic algorithms. The performance
results are presented in Tables 5–9.

The first row of the table for each problem contains the
best solution (i.e., the greatest fitness value) each crossover
technique yields after all 100 runs. The second row of each
table includes the average of the 100 best fitness values, each
of which is associatedwith a specific run. The third and fourth
rows of each table contain the average numbers of fitness
evaluations and the percentages of successful runs in which
the algorithms discover the optimal solution, respectively.
The last row in each table lists the exact time consumption
(in seconds) of each crossover technique.

The behavior of each algorithm in terms of diver-
sity and convergence is illustrated in Figs. 13–19. The

VOLUME 9, 2021 137909



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 12. Parameter-setting examples in GRC, in which the method operates in the same ways as the methods in previous ring-based techniques.

TABLE 5. The performance of crossover techniques for the one-max and zero-max problems.

algorithms, which perform crossover operations, terminate
under two conditions: 1) the optimal solution is discovered
or 2) the algorithm reaches the maximum number of fitness

evaluations allowed. Additionally, note that diversity is mea-
sured by the Hamming distance at the chromosome level,
as described in [31].

137910 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 13. Population diversity and convergence for the one-max problem.

A. ONE-MAX AND ZERO-MAX PROBLEMS
The fitness value of each candidate is calculated directly from
the number of ones or zeros that appear in the chromosome.

The one-max problem favors 1 bit, while the zero-max prob-
lem favors 0 bits. We used both problems to verify that the
crossover techniques are unbiased toward ones or zeros.

VOLUME 9, 2021 137911



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

TABLE 6. The performance of crossover techniques for the royal road problem.

TABLE 7. The performance of crossover techniques for H-IFF problems.

Table 5 presents the efficiency of the crossover methods
as the size of each problem increases. In the one-max and
zero-max problems of size 30, all crossover techniques can
obtain the optimal solution. However, there are large gaps
in the numbers of fitness evaluations performed by the SPC,
TPC, UC and ring-based crossover methods. When the prob-
lem size is large, the traditional crossovermethods (SPC, TPC
and UC) seem unpromising; notably, for a problem size of 60,
their success rates vary from approximately 35–70%. If the
problem size increases to 120, SPC and TPC cannot find the
optimal after 100 runs. UC performs just slightly better than
SPC and TPC, as it still provides a few successful runs.

The ring-based crossover methods manage to successfully
discover the optimal solution for all problem sizes. However,
the number of fitness evaluations varies among techniques.
The results show that the proposed GRC method requires the
fewest fitness evaluations.

In terms of population diversity and convergence,
Figs. 13 and 14 demonstrate how the crossover methods
behave for the one-max and zero-max problems, respectively.
The population diversities of SPC, TPC and UC decrease
more quickly than those for other methods during the first
few generations. The larger the problem size is, the larger the
diversity gap between the traditional and ring-based crossover
results. The convergence graphs also confirm that as the
problem size increases, the traditional crossover methods are
unlikely to converge to the optimal solutions.

B. ROYAL ROAD PROBLEM
In this experiment, we tested the algorithms based on prob-
lems with solutions composed of building blocks. In the GA
literature, building-block preservation is essential for GAs

to obtain satisfactory solutions [32]. The famous royal road
function is often used in studies and behavioral analyses of
GAs.

Table 6 shows the performance of the algorithms. The
traditional crossover methods are able to reach the optimal
solution after a certain number of runs (with a success rate
of 44–52%). In contrast, the ring-based crossover methods
always successfully discover the optimal solution. Among
them, GRC requires the fewest fitness evaluations.

The population diversity and the convergence of each
algorithm are shown in Fig. 15. For traditional crossover,
the diversity decreases early before discovering the optimal
solution. Although UC is able to maintain high diversity,
it converges slowly toward local optima.

C. HIERARCHICAL IF-AND-ONLY-IF PROBLEM
The experiments in this subsection are based on the H-IFF
problem, which is hierarchical and multimodal. As shown
in Table 7, for almost all runs, SPC and TPC are successful
in discovering the optimal solution to the 32-bit problem;
notably, the optimal solutions are found with success rates
of 93% and 92%, respectively. Nevertheless, when the prob-
lem size increases to 64 and 128 bits, the success rates drop to
approximately 15% and 0%, respectively. UC performsworse
than SPC and TPC; its success rates are 22%, 1% and 0% for
the problems with different numbers of bits. The behaviors
in terms of population diversity and convergence are shown
in Fig. 16. SPC, TPC and UC behave the same way as they
did when solving the royal road problem. The diversities of
SPC and TPC decrease very early in the algorithm process.
Although the UC diversity is high, its convergence time is
large, and it tends to move toward local optima. All the

137912 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 14. Population diversity and convergence for the zero-max problem.

ring-based crossover methods successfully obtain the optimal
solution. As in the previous two problems, GRC requires the
fewest fitness evaluations.

D. TRAP PROBLEM
In this subsection, we benchmark the algorithms based on the
trap problem (with k = 3 and k = 5). This problem is more

challenging than those in subsections 4.1–4.3 because it is
designed to persuade the algorithms to search in the wrong
direction.

Table 8 presents the performance results for all crossover
methods. The success rates of SPC, TPC, and UC are gener-
ally low; these methods rarely discover the global optimum
for 30-bit trap problems (with k values of 3 and 5) and never

VOLUME 9, 2021 137913



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 15. Population diversity (left) and convergence (right) for the royal road problem.

find the optimum in 60- and 120-bit trap problems. The ring-
based crossover methods all achieve a 100% success rate for
the 30-, 60-, and 120-bit trap problems (with k = 3). Our pro-
posed GRC approach requires the fewest fitness evaluations.

For a trap size of 5, only FRC and GRC achieve a 100%
success rate, while AC, RC, and CRC succeed in discovering
the optimal solutions in approximately 96–97%, 60–81%,
and 47–81% of all runs, respectively. The competency of
FRC in solving the trap problem was discussed in [12], and
FRC solved problems with 40 fewer fitness evaluations than
BOA [16]. Our proposed GRC approach surprisingly outper-
forms FRC in terms of the number of fitness evaluations.

The graphs in Figs. 17–18 confirm that the diversities
of the traditional crossover methods decrease more quickly
than those of the ring-based crossover methods, resulting in
trapping at local optima. Fig. 18 clearly demonstrates that
FRC and GRC yield the two highest diversities among the
crossover methods compared.

E. HIERARCHICAL TRAP PROBLEM
This section presents the experimental results for the
H-Trap problem, which is more challenging than the prob-
lems addressed above because it is designed to fool GAs. The
problem structure is also hierarchical, making the solutions
comparatively obscure to the algorithms.

Table 9 presents the performance results for the algorithms
in solving the 27-bit H-Trap problem. Although the problem
size is small, no crossover technique can successfully dis-
cover the optimal solution 100% of the time.

The graphs in Fig. 19 show that all crossover methods
lose diversity in early generations. The populations of FRC,
AC and GRC (ranked in ascending order) are more diverse
than those of other methods in later generations. Neverthe-
less, this diversity is insufficient for obtaining the optimal
solution, and all algorithms converge to a local optimum.

For extremely difficult problems such as hierarchical traps,
traditional and ring-based crossover techniques cannot ensure

the discovery of the global optimum. Although the pro-
posed GRC method outperforms the other methods for this
problem, it yields a maximum of 88% success. Thus, more
complex methods (e.g., HBOA) are required at the expense
of increased computational resources and additional fitness
evaluations to solve the H-Trap problem.

V. DISCUSSION
Based on our main experimental results in the previous
section, this section discusses the behaviors of the ring-based
crossover algorithms that are beneficial for discovering better
solutions than those of traditional algorithms. The reasons
why the proposed GRC technique outperforms other methods
are discussed, and the limitations of GRC and future work are
described.

A. TRADITIONAL VERSUS RING-BASED CROSSOVER
TECHNIQUES
For comparison, assume the first bit of each parent chromo-
some is 0. In this situation, offspring, for which the left-most
bit is 1, are never produced by SPC, TPC and UC because
these methods preserve bit positions. Specifically, after deter-
mining the cut points of the parent chromosomes, SPC always
exchanges only the right parts of the chromosomes. Similarly,
TPC randomly selects 2 cut points, and then the middle
chromosome parts are swapped. UC produces offspring by
selecting either the first or second parent’s ith bit. Therefore,
if the 1st bits of both parents are zeros, it is impossible for the
offspring’s 1st bit to be 1. Conversely, ring-based crossover
methods allow offspring bits to be inherited from the parents’
bits at different positions. It is possible that the leftmost bit
of the offspring chromosome can be inherited from one of
the parents’ rightmost bits, and vice versa. In particular, CRC
might shift bits before crossover. AC allows the swapping of
semirings, the cut points of which are at different positions.
RC forms a ring by conjoining the parents’ chromosomes and
splitting rings in half at a random cut point. The ith bit of the

137914 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 16. Population diversity and convergence for the H-IFF problem.

offspring might be inherited from parent chromosomes at any
position. FRC allows the swapping of the front and rear parts
of chromosomes. GRC encompasses all the features of the

abovementioned ring-based crossover methods. Such charac-
teristics of ring-based crossover are beneficial for enhancing
chromosome diversity and avoiding premature convergence.

VOLUME 9, 2021 137915



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

TABLE 8. The performance of crossover techniques for trapping problems.

TABLE 9. The performance of crossover techniques for the hierarchical trapping problem.

Generating offspring chromosomes with a variety of bit pat-
terns is important because avoiding premature convergence is
vital in GA research [33].

Based on the experimental results, SPC, TPC and UC
perform inefficiently when solving the trap and H-Trap prob-
lems. The problems are designed to fool GA algorithms to
favor zeros, but the optimal solution is all ones. According
to the behavior of these methods, as previously described,
the algorithms produce chromosomes dominated by zero bits.
If the 1st bits of both parents’ chromosomes are zeros, it is
impossible for SPC, TPC and UC to determine any paths
leading toward the optimal solution. In contrast, ring-based
crossover methods produce a more diverse population and are
more likely to escape from traps.

B. SPECIFIC VERSUS GENERALIZED RING-BASED
CROSSOVER TECHNIQUES
The proposed GRC method outperforms the other ring-
based crossover techniques because it incorporates all the

distinct characteristics of each method, including diversity
and building-block preservation.

CRC, AC and RC are able to maintain high diversity. They
allow the ith bit of the first parent to be exchanged with the
jth bit of the second parent, where i is not always equal to j.
This characteristic encompasses CRC bit shifting, AC ran-
dom semiring selection from both parents, and RC semir-
ing reversion. The diversity graphs illustrated in Figs. 13–17
show that CRC and RC are the two highest-diversitymethods.
Figs. 18–19 show that AC produces more diversified pop-
ulations than CRC and RC for difficult problems (the trap
and H-Trap problems). Although the three methods maintain
diversity, their mechanisms differ. CRC bit shifting and RC
semiring reversion could destroy the bit patterns containing
the solution building blocks. However, AC’s random semiring
selection mechanism is able to preserve the bit pattern, and
building blocks are likely to be preserved.

Dissimilar to the above three methods, FRC allows the
swapping of the front and rear parts of chromosome.

137916 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 17. Population diversity and convergence for the trap problem (k = 3).

Although FRC sounds less flexible and diversified than
other crossover methods, it preserves building blocks, as dis-
cussed in [12], and can efficiently solve problems. However,

there are certain cases in which FRC cannot avoid trap-
ping. For instance, given the two parents’ chromosomes (000
111 000 and 000 111 000), FRC cannot generate offspring

VOLUME 9, 2021 137917



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 18. Population diversity and convergence for the trap problem (k = 5).

chromosomes with the long building block of 111 111, but
CRC and AC can generate offspring bit patterns such as 111
111 000 and 000 111 111, which are comparatively closer to
the optimal solution.

In short, GRC, which is designed as an umbrella of ring-
based crossover methods, embodies the advantages of ring
operations. GRC able to maintain population diversity and
can preserve intrinsic building blocks.

137918 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

FIGURE 19. Population diversity and convergence for the H-Trap problem.

C. LIMITATIONS AND FUTURE RESEARCH

In this paper, we evaluated crossover techniques based on
one-max, zero-max, royal road, hierarchical if-and-only-
if, trap, and hierarchical trap problems. We selected these
problems because their solutions are binary coded (i.e.,
solvable with the ring-based crossover methods considered
in this paper, which are designed for operating binary-
representation chromosomes). Furthermore, the correspond-
ing fitness functions are unitation functions, which facilitate
specification and analysis. These problems are often selected
to comparatively analyze algorithm behaviors considering
the building block composition. There are various nonring-
based crossover techniques (e.g., sphere crossover [34], aver-
age crossover [35], flat crossover [36], edge recombination
crossover [37] and partially mapped crossover [38]) that can
be used to solve various problems (such as numerical opti-
mization, traveling salesman, and vehicle routing problems)
with chromosomes that are integer- or real-value encoded.
Such problems are not within the scope of this paper.

However, to further assess the limitations of ring-based
crossover, we conducted additional experiments that involved
solving other kinds of problems, namely, numerical mini-
mization problems, based on 30 functions from the CEC
2014 benchmark dataset [39]. To solve such problems,
we changed the chromosome encoding from bit-string encod-
ing to real-value encoding. For mutation, instead of bitwise
mutation, we employed polynomial mutation [40], as it pro-
vides more promising preliminary results than does Gaussian
mutation [40]. The crossover and mutation rates are the same
as those in previous experiments, as shown in Table 4. The
search space is [−100, 100]D, whereD is set to 10. According
to CEC 2014, the number of runs per problem is 51, and
the number of fitness evaluations per run is 100,000. The
experimental results are shown in Table 10.

Overall, all crossover techniques yield similar results. GRC
slightly outperforms the other methods, as its solutions are
slightly closer to the optimal solution for most of the prob-
lems. As expected, in all test problems, GRC yields the
best solutions superior than the other ring-based crossovers,

as it incorporates the beneficial features of other crossover
methods, thus enlarging search space and enhancing the prob-
ability of obtaining superior solutions.

However, for problem number 2 (f2 (x) = x21 +

106
∑D

i=2 x
2
i ) and problem number 3 (f3 (x) = 106x

2
1 +∑D

i=2 x
2
i )), all the ring-based crossover techniques yield

results farther from the optimal results than those of the
traditional techniques.We note that both problems have initial
x1 terms that are not summations, as are the subsequent terms.
As a result, x1 contributes to the fitness value differently from
the other terms, and the chromosome positions are not of
equal importance. Let ei and Ei be the difference between
the value of xi and its optimal value (x∗i ), and the difference
between the value of fi and its optimal value (f ∗i ), respectively.
e1 contributes toE2 less than the other ei (i 6= 1) do by a factor
of 106. However, e1 causes E3 to be larger than the other ei
(i 6= 1) do by a factor of 106. During the evolution process,
swapping x1 for the elite parent with xi from the other parent
might change the elite status between parents. All ring-based
crossover techniques exchange genes at different positions;
therefore, they perform worse than traditional methods for
these two problems. The experimental results suggest that
although ring-based crossover techniques are good at promot-
ing diversity, they are not promising for problems inwhich the
elite status of the parents can be preserved only if their genes
are inherited without position changes.

As shown in Table 10, GRC outperforms all the other
crossover methods (both the traditional and ring-based meth-
ods) for 22 problems, performs equally well for 4 prob-
lems, and is outperformed for 4 problems. For problem
numbers 4 and 7, GRC yields results slightly further from
the optimal values (the GRC results are 401.2 and 701.3,
while the results of traditional methods are 400.1 and 700.1,
respectively). We note that for unimodal functions (problem
numbers 1–3) and simple multimodal functions (problem
numbers 4–16), the traditional methods and GRC yield
similar performance (except for problem numbers 2 and 3,
as previously explained). For the considered hybrid func-
tions (problem numbers 17–22) and composition functions

VOLUME 9, 2021 137919



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

TABLE 10. The performance of crossover techniques based on the CEC 2014 numerical optimization problems.

137920 VOLUME 9, 2021



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

TABLE 10. (Continued.) The performance of crossover techniques for the CEC 2014 numerical optimization problems.

(problem numbers 23–30), GRC outperforms all the
crossover techniques, confirming that GRC is better at explor-
ing and discovering solutions in wide and complex search
spaces.

We are also motivated by the previous ring-based method
proposed in [12], which demonstrated FRC’s outstanding
performance in solving the trap problem. We therefore fur-
ther evaluated the performance of FRC based on the other
selected problems and proposed the GRC scheme. In the
hierarchical trap problem, which is the most difficult to solve
among the selected problems, the proposed GRC method
outperforms other techniques. It, however, yields only 88%
success at best. Thus, one limitation of ring-based crossover
techniques is that they cannot ensure the discovery of the
global optimum when problems have both deceptive and
hierarchical properties. More complexmethods (e.g., HBOA)
could solve this kind of problem at the expense of requiring
additional computational resources in terms of the number
of fitness evaluations. For instance, HBOA computes the
conditional probabilities of the bits at all possible chromo-
some positions, thus requiring 90% more fitness evaluations
than GRC. Consequently, ring-based crossover methods are
more appropriate for applications involving time-sensitive
computations.

In the future, we will enhance the GRC approach to solve
hierarchical problems, and overlapping semirings should be
further explored. Other future works will include evaluat-
ing enhanced GRC methods based on other benchmark and
real-world problems in various domains and experimentally
and mathematically analyzing the behavior and performance
of improved GRC methods.

VI. CONCLUSION
This paper proposed a new crossover technique called gener-
alized ring-based crossover (GRC). This method is a gener-
alization of the existing ring-based crossover techniques, and
it incorporates their characteristics. In particular, GRC allows
the shifting of bits among chromosomes, semirings reversion,
semiring swapping (starting at different positions), and the
exchange of front and rear semirings. We evaluated the pro-
posed method based on well-known benchmark problems:
one-max, zero-max, royal road, hierarchical if-and-only-if,
trap, and hierarchical-trap problems. The proposed method
yields superior results (higher discovery rates or fewer fit-
ness evaluations) for all benchmark problems compared with
those of traditional crossover methods (SPC, TPC and UC)
and other ring-based crossover methods (CRC, AC, RC and
FRC). In the small-size one-max and zero-max problems
(size = 30), the discovery rate of all crossover methods was
100%. In the one-max (size > 30), zero-max (size > 30),
royal road, hierarchical if-and-only-if, and trap (k = 3) prob-
lems, GRC outperformed the traditional crossover methods
and yielded the same performance as the ring-based methods
in terms of the discovery rate. In the trap (k = 5) problem,
only GRC and FRC could discover the optimal solution
in 100% of cases. For the hierarchical-trap problem, which
is considered one of the most difficult problems for GAs to
solve, GRC outperforms all the other methods in terms of the
discovery rate. In addition, GRC requires the fewest fitness
evaluations to solve all problems. Overall, according to the
results of all the experiments, GRC requires, on average, 93%
and 57% fewer fitness evaluations than traditional methods
and other ring-based methods, respectively.

VOLUME 9, 2021 137921



S. Rimcharoen, N. Leelathakul: Ring-Based Crossovers in GAs: Characteristic Decomposition and Their Generalization

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[2] T. Jansen and I. Wegener, ‘‘The analysis of evolutionary algorithms—
A proof that crossover really can help,’’ Algorithmica, vol. 34, no. 1,
pp. 47–66, Sep. 2002.

[3] B. Doerr, E. Happ, and C. Klein, ‘‘Crossover can provably be useful
in evolutionary computation,’’ Theor. Comput. Sci., vol. 425, pp. 17–33,
Mar. 2012.

[4] D. Sudholt, ‘‘How crossover speeds up building block assembly in genetic
algorithms,’’ Evol. Comput., vol. 25, no. 2, pp. 237–274, Jun. 2017.

[5] E. C. Pinto and C. Doerr, ‘‘A simple proof for the usefulness of crossover
in black-box optimization,’’ in Proc. PPSN, vol. 11102, 2018, pp. 29–41.

[6] G. Pavai and T. V. Geetha, ‘‘A survey on crossover operators,’’ ACM
Comput. Surv., vol. 49, no. 4, pp. 1–43, Feb. 2017.

[7] T. D. Gwiazda, Genetic Algorithms Reference: Crossover for Single-
Objective Numerical Optimization Problems, vol. 1. Poland: Tomasz
Gwiazda, 2006.

[8] L. Manzoni, L. Mariot, and E. Tuba, ‘‘Balanced crossover operators
in genetic algorithms,’’ Swarm Evol. Comput., vol. 54, May 2020,
Art. no. 100646.

[9] K. B. Ali, A. J. Telmoudi, and S. Gattoufi, ‘‘Improved genetic algo-
rithm approach based on new virtual crossover operators for dynamic job
shop scheduling,’’ IEEE Access, vol. 8, pp. 213318–213329, 2020, doi:
10.1109/ACCESS.2020.3040345.

[10] B. Koohestani, ‘‘A crossover operator for improving the efficiency of
permutation-based genetic algorithms,’’ Expert Syst. Appl., vol. 151,
Aug. 2020, Art. no. 113381.

[11] L. Pan, W. Xu, L. Li, C. He, and R. Cheng, ‘‘Adaptive simulated binary
crossover for rotated multi-objective optimization,’’ Swarm Evol. Comput.,
vol. 60, Feb. 2021, Art. no. 100759.

[12] D. Pumsuwan, S. Rimcharoen, and N. Leelathakul, ‘‘Front-rear crossover:
A new crossover technique for solving a trap problem,’’ in Proc. 14th Int.
Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Jul. 2017, pp. 1–6, doi:
10.1109/JCSSE.2017.8025922.

[13] Z. Liang-Jie, M. Zhi-Hong, and L. Yan-Da, ‘‘Mathematical analysis of
crossover operator in genetic algorithms and its improved strategy,’’ in
Proc. IEEE Int. Conf. Evol. Comput., Nov./Dec. 1995, pp. 412–417, doi:
10.1109/ICEC.1995.489183.

[14] B. Pavez-Lazo and J. Soto-Cartes, ‘‘A deterministic annular crossover
genetic algorithm optimisation for the unit commitment problem,’’ Expert
Syst. Appl., vol. 38, no. 6, pp. 6523–6529, Jun. 2011.

[15] Y. Kaya, M. Uyar, and R. Tekin, ‘‘A novel crossover operator
for genetic algorithms: Ring crossover,’’ Proc. Inf. Comput. Sci.,
vol. 1, pp. 1286–1292, 2012. [Online]. Available: http://archives.un-
pub.eu/index.php/P-ITCS/article/view/868/1093

[16] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, ‘‘BOA: The Bayesian
optimization algorithm,’’ in Proc. 1st Ann. Conf. Genet. Evol. Com-
put. (GECCO). San Francisco, CA, USA: Morgan Kaufmann, 1999,
pp. 525–532.

[17] G. E. Liepins and M. D. Vose, ‘‘Characterizing crossover in genetic algo-
rithms,’’ Ann. Math. Artif. Intell., vol. 5, no. 1, pp. 27–34, Mar. 1992.

[18] L. Booker, ‘‘Improving search in genetic algorithms,’’ in Proc. Genet.
Algorithm Simulation Annealing, L. Davis, Ed. San Mateo, CA, USA:
Morgan Kaufmann, 1987, pp. 61–73.

[19] G. Syswerda, ‘‘Uniform crossover in genetic algorithms,’’ in Proc. 3rd Int.
Conf. Genet. Algorithm. San Mateo, CA, USA: Morgan Kaufman, 1989,
pp. 2–9.

[20] J. C. Culberson, ‘‘Mutation-crossover isomorphisms and the construction
of discriminating functions,’’ Evol. Comput., vol. 2, no. 3, pp. 279–311,
Sep. 1994.

[21] M. Mitchell, S. Forrest, and J. H. Holland, ‘‘The royal road for genetic
algorithms: Fitness landscapes and GA performance,’’ in Proc. 1st Eur.
Conf. Artif. Life. Cambridge, MA, USA: MIT Press, 1992, pp. 245–254.

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA, USA: Addison-Wesley, 1989.

[23] R. A. Watson, G. S. Hornby, and J. B. Pollack, ‘‘Modeling building-
block interdependency,’’ in Parallel Problem Solving From Nature. Berlin,
Germany: Springer, 1998, pp. 97–106.

[24] K. Deb and D. E. Goldberg, ‘‘Analyzing deception in trap functions,’’
Found. Genet. Algorithms, vol. 2, pp. 93–108, Jan. 1993.

[25] S. Nijssen and T. Bäck, ‘‘An analysis of the behavior of simplified evolu-
tionary algorithms on trap functions,’’ IEEE Trans. Evol. Comput., vol. 7,
no. 1, pp. 11–22, Feb. 2003.

[26] K. Deb and D. E. Goldberg, ‘‘Sufficient conditions for deceptive and easy
binary functions,’’ Ann. Math. Artif. Intell., vol. 10, no. 4, pp. 385–408,
Dec. 1994.

[27] D. E. Goldberg, K. Deb, and J. Horn, ‘‘Massive multimodality, deception,
and genetic algorithms,’’ in Parallel Problem Solving From Nature. Ams-
terdam, The Netherlands: Elsevier, 1992, pp. 37–45.

[28] T. Jones and S. Forrest, ‘‘Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,’’ in Proc. 6th Int. Conf. Genet.
Algorithms, 1995, pp. 184–192.

[29] D. E. Goldberg, ‘‘Simple genetic algorithms and the minimal deceptive
problem,’’ in Genetic Algorithms and Simulated Annealing. San Mateo,
CA, USA: Morgan Kaufmann, 1987.

[30] M. Pelikan and D. E. Goldberg, ‘‘Escaping hierarchical traps with com-
petent genetic algorithm,’’ in Proc. Genet. Evol. Comput. Conf., 2001,
pp. 511–518.

[31] P. A. Diaz-Gomez and D. F. Hougen, ‘‘Initial population for genetic
algorithms: A metric approach,’’ in Proc. Int. Conf. Genet. Evol. Methods,
2007, pp. 43–49.

[32] J. Holland, ‘‘Building blocks, cohort genetic algorithms, and hyperplane-
defined functions,’’ Evol. Comput., vol. 8, no. 4, pp. 373–391, Dec. 2000.

[33] H. M. Pandey, A. Chaudhary, and D. Mehrotra, ‘‘A comparative review of
approaches to prevent premature convergence in GA,’’ Appl. Soft Comput.,
vol. 24, pp. 1047–1077, Nov. 2014.

[34] T. Grueninger and D. Wallace, ‘‘Multi-modal optimization using genetic
algorithms,’’ CAD Lab., Massachusetts Inst. Technol., Cambridge, MA,
USA, Tech. Rep. 96.02, 1996.

[35] R. A. Rahman andR. Ramli, ‘‘Average concept of crossover operator in real
coded genetic algorithm,’’ in Proc. Econ. Develop. Res., 2013, pp. 73–77.

[36] R. R. Sharapov, ‘‘Genetic algorithms: Basic ideas, variants and analysis,’’
in Vision Systems: Segmentation and Pattern Recognition, G. Obinata and
A. Dutta, Eds. Rijeka, Croatia: InTech, 2007.

[37] D. E. Goldberg and R. Lingle, Jr., ‘‘Alleles, loci, and the traveling salesman
problem,’’ in Proc. 1st Int. Conf. Genet. Algorithms Their Appl., 1985,
pp. 154–159.

[38] D. Whitley, T. Starkweather, and D. Shaner, ‘‘Travelling salesman and
sequence scheduling: Quality solutions using genetic edge recombina-
tion,’’ in Handbook of Genetic Algorithms, L. Davis, Ed. New York, NY,
USA: Van Nostrand Reinhold, 1991.

[39] J. J. Liang, B. Y. Qu, and P. N. Suganthan, ‘‘Problem definitions and
evaluation criteria for the CEC 2014 special session and competition on
single objective real-parameter numerical optimization,’’ Nanyang Tech-
nol. Univ., Singapore, Tech. Rep. 201311, 2013.

[40] K. Deb and D. Deb, ‘‘Analyzing mutation schemes for real-parameter
genetic algorithms,’’ J. Artif. Intell. Soft Comput., vol. 4, no. 1, pp. 1–28,
2014.

SUNISA RIMCHAROEN received the B.Sc.
degree in computer science from Burapha Uni-
versity, Chon Buri, Thailand, in 2003, and the
M.Sc. and Ph.D. degrees in computer science
from Chulalongkorn University, in 2005 and 2009,
respectively. She has been a Faculty Member
of the Faculty of Informatics, Burapha Univer-
sity, since 2009. Her current research interests
include evolutionary computation, machine learn-
ing, prediction, and algorithmic trading.

NUTTHANON LEELATHAKUL received the
B.Eng. degree (Hons.) in electrical engineering
from Kasetsart University, Bangkok, Thailand,
in 1999, the M.Eng. degree in electrical and
computer engineering from Cornell University,
in 2004, and the Ph.D. degree in electrical and
computer engineering from Carnegie Mellon Uni-
versity, in 2010. He has been a Faculty Member
of the Faculty of Informatics, Burapha University,
Chon Buri, Thailand, since 2010. His current

research interests include computer networking, security in the IoT, deep
learning, and data analytics.

137922 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2020.3040345
http://dx.doi.org/10.1109/JCSSE.2017.8025922
http://dx.doi.org/10.1109/ICEC.1995.489183

