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ABSTRACT Reinforcement learning is an unsupervised learning algorithm, where learning is based upon
feedback from the environment. Prior research has proposed cognitive (e.g., Instance-based Learning or IBL)
and statistical (Q-learning) reinforcement learning algorithms. However, an evaluation of these algorithms
in a single dynamic environment has not been explored. In this paper, a comparison between the statistical
Q-learning algorithm and the cognitive IBL algorithm is presented. A well-known environment, ‘‘Frozen
Lake,’’ is used to train, generalize, and scale Q-learning and IBL algorithms. For generalizing, the Q-learning
and IBL agents were trained on one version of the Frozen Lake and tested on a permuted version of the same
environment. For scaling, the two algorithms were tested on a larger version of the Frozen Lake environment.
Results revealed that the IBL algorithm used less training time and generalized better to different environment
variants. The IBL algorithm was also able to show scalability by retaining its superior performance in the
larger environment. These results indicate that the IBL algorithm could be proposed as an alternative to
the standard reinforcement learning algorithms based on dynamic programming such as Q-learning. The
inclusion of human factors (such as memory) in the IBL algorithm makes it suitable for robust learning in
complex and dynamic environments.

INDEX TERMS Reinforcement learning, Q-learning, instance-based learning, openAI, cognitive modeling,
frozen lake, dynamic environment.

I. INTRODUCTION
Learning is acquiring new knowledge, behaviors, skills, pref-
erences, or modifying existing ones [1]. Children learn by
seeking environmental stimulation, which develops objects,
space, time, and causality [2]. Adults, on the other hand, use
their prior knowledge while interacting with the environment.
For instance, an adult and a child are likely to respond differ-
ently while engaging with an environment that contains fire.
The adult may choose not to interact with the fire due to her
prior experiences. Whereas the child, who has not interacted
with fire before, may decide otherwise. Only after this inter-
action, the child is likely to infer that fire is dangerous. The
above trial-and-error learning process, termed reinforcement
learning, may help adults and children learn over time [3].
Learning via reinforcements (i.e., rewards or punishments)
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in the real world is not only common to humans, but it is
an essential skill to possess even for robots or agents that
are built to work in real or virtual environments [4]–[6].
In the absence of real environments, virtual environments
(also called microworlds or games) allow researchers to com-
press time and space and to create different kinds of dynamic
complexities for intelligent algorithms [7]–[10]. Thus, these
environments are ideal platforms to investigate the potential
of reinforcement learning algorithms.

A popular example of a virtual environment is Frozen
Lake [11], a 4 × 4 (16 tiles) grid world. An agent must
begin at the start tile in Frozen Lake and reach the goal
tile [11], [12]. Some tiles are ‘‘frozen,’’ and the agent can
walk over them; other tiles have ‘‘holes.’’ If the agent steps on
a hole tile, it falls and dies. Furthermore, there is inherent ran-
domness in Frozen Lake. The agent can even slip on a frozen
tile with some probability. Thus, the agent’s actual movement
direction may differ from the agent’s intended movement
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direction due to slipping on the frozen tiles [11], [12]. For
example, the agent may move left even when it chooses
to move right. Frozen Lake has a default reward system
associated with it: The agent gets a reward of +1 when it
reaches the goal tile, and, at all other times, there is a 0 reward.
Overall, with its dynamic features, Frozen Lake provides
an ideal environment for evaluating reinforcement learning
algorithms.

There are at least two learning paradigms, namely, super-
vised and unsupervised [14], through which the agent can
learn the mechanics of an environment like Frozen Lake [15].
In supervised learning, an agent learns to navigate the envi-
ronment by comparing its decisions against the optimal deci-
sions (resulting in maximum reward) [14]. However, this
supervised approach may not work when the calculation of
optimal solution is complex or when the optimal solution
may change between the training and test conditions. In such
a case, the agent may rely upon unsupervised learning to
learn the environment’s mechanics. The agent does not know
optimal decisions in unsupervised learning and instead learns
from different outcomes [14]. Reinforcement learning (RL)
is an example of unsupervised learning algorithms, where
agents/people learn via making decisions and getting feed-
back on their decisions [3], [16]–[18].

Prior research has proposed several cognitive RL algo-
rithms in single-player and multi-player canonical games
with known optimal solutions [19]–[21]. These cognitive RL
algorithms possess free parameters that are motivated by
human cognition. For example, Erev and Roth [20] inves-
tigated how specific cognitive RL algorithms could predict
human data in simple single-player and multi-player games
with unique and mixed strategy equilibria (some of these
algorithms possessed recency and exploration parameters).
According to Erev and Roth [20], the cognitive RL algo-
rithm fitted human decisions better than the optimal predic-
tions, even with a single parameter. Similarly, Beggs [19]
further examined the convergence of payoffs and strategies
in certain cognitive RL algorithms given in [20] and [22].
Results revealed that when all players used the conver-
gence rule, it iteratively eliminated the dominant strategies.
Laslier et al. [21] evaluated a cumulative proportional rein-
forcement (CPR) rule in the same context. An agent played
an action with a probability proportional to the cumula-
tive utility of the action. The performance of the CPR rule
was compared with other reinforcement rules and replicator
dynamics. Dutt [23] proposed a cognitive RL algorithm for
capturing human decisions in a dynamic decision-making
task involving stock control. The proposed RL algorithm
possessed cognitive parameters such as attention and time for
making corrections to the stock.

Some researchers have compared the performance of
several statistical RL algorithms [24]–[27]. For exam-
ple, Singal et al. [25] compared several statistical RL algo-
rithms to capture human performance in a platform jumper
game. These authors compared imitation learning [28],
Q-learning [18], and DeepQ Learning [29] in their ability to

account for human decisions. Results revealed that imitation
learning and Q-learning performed similarly to human deci-
sions in a slow version of the game; however, the DeepQ algo-
rithm performed similarly to human decisions in the game’s
fast version. Mnih et al. [29] compared the DeepQ algo-
rithm’s performance with professional human game testers
on the classic 49 Atari 2600 games [30]. They showed that
the algorithm received only the pixel information and game
scores as input and achieved a level comparable to human
testers.

Although several cognitive and statistical RL algorithms
have been proposed, a comparison of these algorithms on a
single dynamic task is lacking in the literature. The primary
objective of this research is to overcome this literature gap.
Specifically, a statistical RL algorithm (Q-learning [18]) is
compared with a cognitive RL algorithm (Instance-based
learning (IBL) [14], [15]) across several variations in the
Frozen Lake environment. The proposed comparison allows
researchers working in cognitive science and artificial intel-
ligence areas to appropriately choose the approach that pro-
duces faster learning in lesser time.

Q-learning is a statistical RL algorithm proposed by
Watkins and Dayan [18]. In Q-learning, there are states,
actions, and rewards. Although the Q-learning approach is
attractive and popular, it is statistical, and it works based
on exploring new actions and exploiting the tried actions in
different states [18].

Beyond Q-learning, the cognitive IBL algorithm has been
proposed in the literature [14], [15]. In IBL, an agent
may decide on a situation and then experience an outcome
(reward/punishment) as the feedback [17]. These experiences
are stored in memory in the form of instances, which have
three parts: situation (S; a set of attributes describing the
environment), decision (D; responses to the situation by the
agent), and utility (U; how good the decision was, as deter-
mined by the feedback from the task) [14], [15]. When a
decision-maker finds itself in a situation (a set of cues),
the most activated and similar instances to this situation
are matched and retrieved from the memory. Prior research
has built many IBL models for several environmental tasks,
including the water purification plant, multi-arm bandit prob-
lems, cybersecurity, and 2 × 2 games [31]–[37].

This work’s novelty is a comprehensive comparison of the
statistical Q-learning and the cognitive IBL RL algorithms
across three different experiments. In the first experiment,
the Q-learning and IBL algorithms were compared using
their default parameters in different outcome conditions in
the Frozen Lake environment. In the second experiment,
the algorithms’ parameters were re-calibrated, and the algo-
rithms were again compared to different outcome conditions
in the Frozen Lake environment. In the third experiment, the
original Frozen Lake was scaled to a larger environment,
and the calibrated IBL and Q-learning algorithms were com-
pared in the larger environment. Another novel contribution
of the work is the definition of a new testing framework
for the RL algorithms. The algorithms were trained in the
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FIGURE 1. The agent-environment interaction in the Q-learning
algorithm. Source: [38].

default environment. However, the environment was changed
for testing by randomly permuting it while maintaining the
same difficulty level. Also, the environment was scaled up to
an 8 × 8 (64 tiles) grid world, and different reward functions
were varied to test the algorithms’ generalization.

Furthermore, two new metrics, success ratio and optimal
actions, which captured how and what the algorithms were
learning, were developed and evaluated for both IBL and
Q-learning algorithms. Overall, these measures allowed us
to compare the convergence speed of the two algorithms.
Specifically, the calculation of optimal actions allowed us
to test to what extent the two algorithms were following the
optimal paths in the environment.

It is believed that this combination of different training
and testing environments and the custom-made matrices (to
assess whether the algorithms were following the optimal
paths) provided superior ways of quantifying algorithms’
generalization capabilities. These features also forced the
algorithms to learn the underlying subtleties in the task and
facilitated learning from one environment to another.

In what follows, first, the mechanics of the Q-learning and
IBL algorithms are explained. Second, the methodology of
different Frozen Lake environments used across the three
experiments is provided. Next, the results across the three
experiments are discussed. Finally, the implications of devel-
oping the Q-learning and IBL algorithms in modeling agents
in synthetic environments are discussed.

II. REINFORCEMENT LEARNING ALGORITHMS
In this section, the Q-learning and IBL algorithms are dis-
cussed. These algorithms are later evaluated on the Frozen
Lake environment (more details ahead in the manuscript).

A. Q-LEARNING
Q-learning is a form of reinforcement learning that uses
Q-values (also called action values) to iteratively improve a
learning agent’s decision actions across different states in the
environment [18]. The environment is modeled with a finite
Markov Decision Process [38], where the environment has
states that change due to the agent’s action. Fig. 1 shows the
working of the Q-learning algorithm. As shown in Fig. 1,
at time step t, the agent receives the environment’s state st
and, based on st , the agent selects an action at . In the next time
step, as a result of the action, the agent receives a numerical
reward of rt+1 and finds itself in a new state, st+1. A Q-value
is associated with each state and action pair (the starting

TABLE 1. Q-learning for frozen lake.

Q-value may be zero or randomly assigned). A change in the
Q-value is governed by the Bellman equation [39], and it is
calculated by the following:

Qt+1 (st , at) = (1− α)Qt(st ,at )
+α (rt + γmax [Q (st+1, at)]) (1)

where, Qt+1(st , at ) and Qt (st , at ) are newer and older
Q-values corresponding to the state st and action at . The rt+1
is the reward obtained by moving from the state st to the
state st+1 by taking action at . The α is the learning rate that
controls howmuch of the difference between older and newer
Q-values is considered to update the Q-values. The γ is the
discount factor that controls the discounting of the Q-values
for future states.

Table 1 presents the Q-learning algorithm in the context
of the Frozen Lake environment. In lines 1-4 (Table 1),
the agent is initialized, the algorithm’s parameters are set,
and the Q-table is initialized (for each state and action pair).
The Q-table is used for selecting the actions of the agent in
a state. Line 5 defines the loop to make the agent play the
game for n episodes. In an episode, there are three stopping
conditions for the agent: The agent falls into a hole, dies,
and the game stops; the agent cannot reach the goal after
a maximum number of steps (indicated by max steps); or,
the agent successfully reaches the goal. These stopping crite-
ria are checked in lines 6 and 15-19. In line 7, the environment
is reset so that each episode starts with a new environment.
In lines 8-12, the agent selects an action based on exploration
or exploitation. Once the action is decided, the agent takes
action and collects the resulting reward in line 13. With the
received reward, the state and action pair’s Q-value is updated
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TABLE 2. Hyper-parameters and their default values for Q-learning
algorithm.

in line 14. Line 22 updates the performance metrics, which
are discussed ahead in this article.

In Q-learning, the learning rate, discount factor (gamma),
and epsilon are hyper-parameters. These parameters are
set empirically to improve the algorithm’s performance.
The learning rate is defined in the range [0, 1], where
0 means that the Q-values are never updated, and noth-
ing is learned. In contrast, a high learning rate value (e.g.,
equal to 0.9) means that agent’s learning of the environment
occurs quickly. The discount factor γ, also in the range [0,
1], models the discounting of future rewards compared to
the immediate rewards. Mathematically, the discount factor
needs to be set to less than 1 for the algorithm to con-
verge [39]. Finally, epsilon works as a threshold for the algo-
rithm to randomly choose the action or maximize Q-value.
The epsilon parameter is responsible for the exploration-
exploitation tradeoff in Q-learning [39]. The default values
for these hyper-parameters are mentioned in Table 2.

During training, the default parameters are set, and an agent
starts interacting with the environment. The agent decides to
take a particular action that maximizes the Q-value in the
state. After the agent takes action, the state of the environ-
ment changes, and the environment responds with a reward.
Based on the reward, the agent updates the Q-value of the
state and the associated action. An episode is defined as a
sequence of states, actions, and rewards resulting in the agent
reaching the goal tile or dying. The Q-learning algorithm
updates the parameters during the episode and carries forward
the learned or best parameters from one episode to another.
Hence, an agent is trained overmultiple episodes, and it learns
the subtleties of the environment.

B. INSTANCE-BASED LEARNING
Instance-based Learning (IBL) proposes that humans make
dynamic decisions by accumulating and refining instances.
These instances comprise situation, action, and utility [31].
When an IBL agent interacts with the dynamic environ-
ment, it recognizes the present situation by comparing it to
the past instances in its memory. In the absence of similar
instances, the IBL agent uses a heuristic rule. However, with
the accumulation of instances, the agent makes decisions
based on retrieving the most similar and activated instances
from memory. These instances are then blended (one per
decision action), and the action that has the highest blended
value is the one that gets executed. The IBL algorithm uses the
formulations of activation, probability of retrieval, and blend-
ing from the ACT-R architecture to facilitate the encoding,

TABLE 3. IBL in frozen lake.

storage, and retrieval processes [40]. ACT-R is a cognitive
modeling architecture built on principles of human cognition.
It is supported by many empirical studies in memory, learn-
ing, and problem-solving [40]. In every situation, the IBL
agent executes an action with the highest blended value. The
blended value Vj is updated as per the following equation:

Vj =
∑n

i=1
pixi (2)

where, xi is the observed outcome and pi is the retrieval
probability of the instance i containing the outcome. The pi
is given by the following equation:

pi,t =
eAi,t/τ∑
j e
Aj,t/τ

(3)

where, τ is the random noise and Ai,t is the activation of the
instance i. Ai,t is given by:

Ai,t = σ ln
(
1− γi,t
γi,t

)
+ ln

∑
tp∈1,...t−1

(
t − tp

)−d (4)

where, d is the decay parameter, which determines the mem-
ory decay. The σ is the cognitive noise parameter, which
determines the agent-to-agent variability in activations. The
γ is a random draw from a uniform probability distribution,
which controls the cognitive noise, and tp is each previous
trial index in which the instance i was observed. The IBL
algorithm was modified to work with Frozen Lake, and the
resulting pseudo-code of the algorithm is given in Table 3.

In lines 1-4 (Table 3), the agent is initialized, the model
parameters are set, and the situation is initialized (for each
state and action pair) in IBL. Line 5 defines the loop to make
the agent play the game for n episodes. During an episode,
there are three stopping conditions for the agent: The agent
falls into a hole, dies, and the game stops; the agent does
not reach the goal state after a maximum number of steps
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TABLE 4. Hyper-parameters and their values for the IBL algorithm.

indicated by max steps; or, the agent successfully reaches the
goal state. These conditions are checked on lines 6 and 11-15.
In line 7, the environment is reset so that each episode starts
with a new environment. In lines 8-9, the agent selects an
action based upon the blended value and collects the reward.
With the received feedback, the utility values of the situation
and decision pair are updated on line 10. Lines 17-18 update
the performance metrics, which are discussed later in this
article.

In IBL, there are three hyper-parameters, i.e., cognitive
noise, decay, and default utility [31]. The default utility pro-
vides the goodness of action in the absence of an outcome
experienced by the agent. The decay hyper-parameter con-
trols the rate at which activation for the previously experi-
enced instances decays with time. Cognitive noise is added
to capture the variability in decisions from one agent to
the other in the same situation. The default values of the
hyperparameters are shown in Table 4.

During the training, an IBL agent interacts with the envi-
ronment and stores instances in its memory from this inter-
action. The agent decides for the action that has the highest
blended value among all actions. After the agent takes action,
the agent updates the outcome in the instance corresponding
to the action. The outcome is based upon the reward received
by the agent as feedback in the task.

C. INSTANCE-BASED LEARNING VERSUS Q-LEARNING
IBL, being a cognitive algorithm, has a decision-making
process that is similar to how people make decisions. The
learning in IBL is distinct from Q-learning, and it is much
more than simply accumulating a single value over episodes
(like the Q-value in Q-learning). Learning in IBL is a com-
pilation of learning mechanisms proposed by Langley and
Simon [41] in 1981. It not only comprises of accumulation
of instances (situation-decision-utility or SDU triplets), but it
consists of five distinct mechanisms:

• Instance-based knowledge: The accumulation of knowl-
edge in the form of instances containing the SDU.

• Recognition-based retrieval:Memory retrieval of SDUs
according to the similarity between the evaluated situa-
tion and instances stored in memory.

• Adaptive strategies: Adaptation from heuristic-based to
instance-based decisions according to interactive prac-
tice in the dynamic task.

• Necessity: Method to control the continuation of the
alternative search.

• Feedback update:Method to update the utility of SDUs
and maintain the causal attribution of results to actions.

These IBL mechanisms are different from the mecha-
nisms in the Q-learning algorithm. For example, there is no
recognition-based retrieval in Q-learning because there is no
concept of memory. However, memory is an integral part of
learning in IBL. Another difference between the mechanisms
of IBL and Q-learning is the presence of feedback updates in
IBL and its absence in Q-learning. On receiving the reward
rt, IBL updates the utility of all instances in memory that
led to the decision action. In Q-learning, one only updates
the Q-value of the current state and action pair. Similarly,
there is no concept of reward discounting in IBL. However,
in Q-learning, the temporal discounting of rewards is imple-
mented through a linear decline of rt with time.
Next, different experiments to compare IBL and

Q-learning are discussed.

III. EXPERIMENTS
Three separate experiments were performed to compare IBL
andQ-learning algorithms based on certain performancemet-
rics. In each experiment, the performance and generalization
capabilities of the IBL and Q-learning algorithms were com-
pared. First, both the algorithms were trained on the default
Frozen Lake environment with the default reward function
(+1 for reaching the goal state and 0 otherwise) in all three
experiments. After training, the algorithms were tested in a
permuted environment with different reward functions. Along
with the permuted environment and new reward functions,
newmetrics weremade to judge the algorithms’ performance.
It was hypothesized that the training and testing steps would
help compare the performance of the Q-learning and IBL
algorithms.

A. EXPERIMENT 1: IBL VERSUS Q-LEARNING WITH
DEFAULT PARAMETERS IN THE 4 × 4 FROZEN LAKE
ENVIRONMENT
The experiment’s objective was to compare the performance
of IBL andQ-learning algorithms on the default and permuted
versions of a 4 × 4 Frozen Lake environment.

FIGURE 2. Default 4 × 4 Frozen Lake with S: Starting Cell, F: Frozen
Surface Cell, H: Hole Cell, and G: Goal Cell.

1) METHODS
a: DEFAULT 4 × 4 FROZEN LAKE ENVIRONMENT
First, the default Frozen Lake was considered the Q and
IBL agents’ training environment (see Fig. 2). The default
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environment consisted of a specific combination of frozen
and hole cells. The frozen cells represented a solid surface,
where the agent could walk safely without dying. The hole
represented the lake area, where the agent would fall into the
lake and die. The agent started at the first (start) cell (marked
as S) and had to reach the last (goal) cell (marked as G). Each
algorithm aimed to make the agent reach the G cell starting
from the S cell.

b: PERMUTED 4 × 4 FROZEN LAKE ENVIRONMENT
The permuted 4× 4 Frozen Lake environment was generated
by swapping the second and third row of the default envi-
ronment (see Fig. 3). This swap ensured that the difficulty
levels of the default and permuted environment were similar.
The difficulty level of the environment could be judged by
the number of holes and the optimal paths leading to the Goal
cell. The suggested permutation kept the number of holes and
the optimal paths, the same for both environments. Again,
each algorithm aimed to make the agent reach the goal cell
from the start cell. The permuted environment was used to test
the agents’ learned ability (via training on the default 4 × 4
Frozen Lake).

FIGURE 3. Permuted 4 × 4 Frozen Lake with S: Starting Cell, F: Frozen
Surface Cell, H: Hole Cell, and G: Goal Cell.

c: REWARD FUNCTIONS
Table 5 shows the different reward functions investigated in
this research. The first reward function (referred to as default
rewards) gave the agent feedback of +1 on reaching the goal
and feedback of 0 otherwise. The second function (referred
to as negative rewards) punished the agent with feedback of
−1 when it fell in a hole and rewarded it with feedback of
+1 when it reached the goal. The third function (referred to
as negative-and-positive rewards) punished the agent with a
reward of −1 for falling in a hole; however, it also rewarded
the agent with a small positive reward (+0.01/cell) when the
agent walked on the frozen cells (except the goal cell). Like
the previous two reward functions, the agent got a reward
of +1 when it reached the goal. In the default Frozen Lake
environment, the reward function used was default rewards.
However, in the permuted Frozen Lake environment, the
reward functions used were negative rewards and negative-
and-positive rewards.

TABLE 5. Different reward functions to test the robustness of the
Q-learning and IBL algorithms.

d: PERFORMANCE MEASURES
SUCCESS RATIO AND EPISODE BINS
Success ratio was defined as the number of times an agent
successfully reached the goal cell divided by the number of
times the agent tried to reach the goal cell. For example, if the
agent succeeded in reaching the goal cell ten times out of
a total of 50 tries, then the success ratio was 0.2 (=10/50).
An episode in the Frozen Lake environment was defined as a
successful movement of an agent from the S cell to the G
cell or the death of an agent mid-way while moving from
the S cell to the G cell. The success ratio was averaged for
each set of 50 contiguous episodes into an episode bin to
visualize the results. For instance, if an agent in an algorithm
attempted 1500 episodes, then the number of episode bins
was 30 (=1500 episodes/50 episodes per bin).

OPTIMAL PATHS AND ACTIONS
An optimal path was defined as a path that started in the S cell
and helped the agent move towards the G cell in the shortest
possible manner. Only the forward movements toward the
G cell were considered in the optimal path. The number of
optimal paths was kept the same across both the default (train-
ing) and the permuted (test) environments for keeping the
comparisons fair. As shown in Fig. 4a and 4b, there were three
optimal paths shown by arrows in both environments.

For example, in the default 4× 4 Frozen Lake environment
given in Fig. 4a, if the agent was in cell 3 and it took a
down action and reached cell 7, this move was considered an
optimal action. Similarly, the agent could take two optimal
actions, right and down, from cell 1. The percentage of times
the agent took an optimal action from each cell was calcu-
lated to evaluate the performance. The percentage of optimal
actions in a Frozen Lake cell was defined as the number of
times the agent chose an optimal action in the cell divided
by the agent’s total actions from that cell. The number of
optimal actions taken in a cell is a measure that may explain
the difference in the performance of the two algorithms in
terms of success ratio.

e: MODEL PARAMETERS AND MODEL EXECUTION
In the first experiment, IBL was compared with Q-learning
by keeping the hyper-parameters in both algorithms to their
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FIGURE 4. Optimal paths in (a) the default 4 × 4 Frozen Lake
environment and (b) the permuted 4 × 4 Frozen Lake environment.

default values. Table 1 and Table 2 detail the default values
of parameters in each algorithm.

In IBL, the default value of decay meant weak recency, and
the default value of cognitive noise referred to a small amount
of noise to capture variability. The default value of utility
referred to a reasonable value to drive exploration in the IBL
model. In Q-learning, the default value of the learning rate
meant quicker learning. The default value of gamma meant
moderate discounting of future rewards. Finally, the default
value of epsilon meant moderate exploration.

Both IBL andQ-learning algorithmswere run for 50 agents
each. These number of agents accounted for the agent-
to-agent variability in performance. Each agent ran for
1500 episodes on the default 4× 4 Frozen Lake environment
(see Fig. 2). The agents’ memory (in IBL) or the Q-matrix
(in Q-learning) were not reset between episodes. After com-
pleting these 1500 episodes, the algorithm’s generalizability
was tested by running the same agent for 1500 episodes on
the permuted 4 × 4 Frozen Lake environment (see Fig. 3).
Again, the memory (in IBL) or the Q-matrix (in Q-learning)
were not reset during the switch from the default environ-
ment to the permuted environment. Overall, 50 agents were
first trained on the default environment and then tested on
a permuted environment. This training and test framework
helped investigate how much learning was transferred from
the default 4 × 4 Frozen Lake environment to the permuted
4 × 4 Frozen Lake environment [42].

f: DATA ANALYSES
One-way ANOVAs were performed to evaluate the main
effect of the models (IBL and Q-learning) on the success
ratios, keeping the alpha level at 0.05 and the power level
at 0.80. Also, mixed factorial ANOVAs were performed to
evaluate the interaction effects of the success ratio variations
with the episodes for both the models (IBL or Q-learning).
For mixed factorial ANOVAs, the alpha level was kept at
0.05 and the power levels at 0.80. Based on the Q-Q plots
(between expected quantiles and normal quantiles) and the
K-S test, the dependent variable (success ratio) was found to
be normally distributed. Mauchly’s test of sphericity was also
reported.

2) RESULTS
Results are presented as the average success ratio of IBL,
and Q-learning algorithms averaged over all episodes and
agents for the training and testing environments. The default
4 × 4 Frozen Lake environment (see Fig. 2) and the default
reward setting (see Table 5) were used for training. For
testing, the permuted 4 × 4 Frozen Lake environment (see
Fig. 3) was used in different reward settings, namely default
rewards, negative rewards, and negative-and-positive rewards
(see Table 5). Besides the average success ratio, the success
ratio (averaged over 50 agents) in each episode bin was also
analyzed. Lastly, the percentage of optimal actions took by
the agent in each state of the training and testing environments
was analyzed.

a: TRAINING IBL AND Q-LEARNING ON THE DEFAULT 4 × 4
FROZEN LAKE ENVIRONMENT WITH DEFAULT REWARDS
Fig. 5(a) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and par-
ticipants in the default 4 × 4 Frozen Lake environment
with default rewards. As seen in the figure, IBL achieved
a better average success ratio compared to Q-learning
(IBL: 0.023 > Q-learning: 0.015; F (1, 97) = 49.289, p <
0.001, η2 = 0.337). Fig. 6(a) shows the success ratio of IBL
and Q-learning algorithms in each episode bin averaged over
all participants. There was a significant interaction between
the algorithms and episode bins (F (1, 253.84) = 2.663,
p < 0.001, η2 = 0.027). As shown in Fig. 6(a), although the
success ratio increased rapidly in the first 3-episodes in both
IBL and Q-learning algorithms, this increase and subsequent
stabilization were much higher in the IBL algorithm than the
Q-learning algorithm.

b: TESTING OF IBL AND Q-LEARNING ON THE PERMUTED
4 × 4 FROZEN LAKE ENVIRONMENT WITH DEFAULT
REWARDS
Fig. 5(b) shows the success ratio of IBL and Q-learning algo-
rithms averaged over all episodes and participants in the per-
muted 4 × 4 Frozen Lake environment with default rewards.
As seen in the figure, IBL achieved a better average success
ratio compared to Q-learning (IBL: 0.024 > Q-learning:
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FIGURE 5. Average success ratio of IBL and Q-learning during (a) training
on the default 4 × 4 Frozen Lake environment with default rewards;
(b) testing on the permuted 4 × 4 environment with default rewards;
(c) testing on the permuted 4 × 4 environment with negative
rewards; and, (d) testing on the permuted 4 × 4 environment with
negative-and-positive rewards. The error bars show 95% CI around the
point estimate.

0.016; F (1, 97) = 43.61, p < 0.001, η2 = 0.310. Fig. 6(b)
shows the success ratio of IBL and Q-learning algorithms in
each episode bin averaged over all participants. There was
a significant interaction between the algorithms and episode
bins (F (1, 264.53) = 3.62, p < 0.001, η2 = 0.036). The
changes in success ratios of IBL and Q-learning algorithms
over episode bins followed the same pattern (a subsequent
stabilization followed the initial rapid increase) as shown

FIGURE 6. Average success ratio in each episode bin across both IBL and
Q-learning during (a) training on the default 4 × 4 Frozen
Lake environment with default rewards; (b) testing on the permuted
4 × 4 environment with default rewards; (c) testing on the permuted
4 × 4 environment with negative rewards; and, (d) testing on the
permuted 4 × 4 environment with negative-and-positive rewards. The
error bars show 95% CI around the point estimate.

in the default 4 × 4 Frozen Lake environment with default
rewards (see Fig. 6(b)). The stabilization was much higher in
the IBL algorithm compared to the Q-learning algorithm.
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c: TESTING OF IBL AND Q-LEARNING ON THE PERMUTED
4 × 4 FROZEN LAKE ENVIRONMENT WITH NEGATIVE
REWARDS
Fig. 5(c) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and partic-
ipants for the permuted 4× 4 Frozen Lake environment with
negative rewards. As seen in the figure, IBL achieved a better
average success ratio compared to Q-learning (IBL: 0.022 >
Q-learning: 0.017; F (1,97) = 75.6, p < 0.001, η2 = 0.438).
Fig. 6(c) shows the success ratio of IBL and Q-learning
algorithms in each episode bin averaged over all participants.
There was a significant interaction between the algorithms
and episode bins (F (1, 255.64) = 2.40, p < 0.001, η2 =
0.024). As seen in Fig. 6(c), the success ratio of the IBL
algorithm was higher than that of the Q-learning algorithm,
and it took some number of episode bins to stabilize the
success ratio at a value. However, at no point in time, the IBL
algorithm lagged behind the Q-learning algorithm.

d: TESTING OF IBL AND Q-LEARNING ON THE PERMUTED
4 × 4 FROZEN LAKE ENVIRONMENT WITH
NEGATIVE-AND-POSITIVE REWARDS
Fig. 5(d) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and par-
ticipants for the permuted 4 × 4 Frozen Lake environment
with negative-and-positive rewards. As seen in the figure,
the Q-learning algorithm achieved a better average success
ratio compared to IBL (Q-learning: 0.017 > IBL: 0.006;
F (1, 97) = 68.8, p < 0.001, η2 = 0.415). Fig. 6(d)
shows the success ratio of IBL and Q-learning algorithms in
each episode bin averaged over all participants. There was
a significant interaction between the algorithms and episode
bins (F (1, 265.54) = 2.687, p < 0.001, η2 = 0.027).
Unlike the other reward functions, Q-learning performed bet-
ter than IBL. As shown in Fig. 6(d), although the success ratio
increased rapidly in the first 3-episodes in both algorithms,
this increase and subsequent stabilization were much higher
in Q-learning than in IBL.

e: OPTIMAL ACTIONS BY IBL AND Q-LEARNING
Next, the percentage of optimal actions taken by both the
IBL and Q-learning algorithms during training (in the default
environment) and testing (in the permuted environments)
was investigated. Fig. 7(a) shows the percentage of optimal
actions taken from each cell of the default 4× 4 Frozen Lake
environment with default rewards. IBL achieved a higher
percentage of optimal actions than Q-learning in 100% of the
cells (i.e., ten out of the ten cells). Fig. 7(b) shows the per-
centage of optimal actions taken from each cell of the per-
muted 4 × 4 Frozen Lake environment with default rewards.
IBL achieved a higher percentage of optimal actions than
the Q-learning algorithm in 100% of the cells (i.e., 8 out
of the 8 cells). Similarly, Fig. 7(c) shows the percentage
of optimal actions taken from each cell of the permuted
4 × 4 Frozen Lake environment with negative rewards. IBL

FIGURE 7. Optimal action percentages by IBL and Q-learning algorithms
during (a) training with default rewards; (b) testing with default rewards;
(c) testing with negative rewards; and (d) testing with
negative-and-positive rewards. Each cell represents the percentage of
optimal actions taken by IBL, followed by Q-learning.

again achieved a higher percentage of optimal actions than
Q-learning in 100% of the cells (i.e., 8 out of the 8 cells).
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Finally, Fig. 7(d) shows the percentage of optimal actions
taken from each cell of the permuted 4× 4 Frozen Lake envi-
ronment with negative-and-positive rewards. In this environ-
ment, the Q-learning algorithm achieved a higher percentage
of optimal actions than the IBL algorithm in 100% of the cells
(i.e., 8 cells out the 8 cells).

3) DISCUSSION
In the first experiment, the IBL and Q-learning algorithms
were trained on the default Frozen Lake environment with
the default reward function. After training, the two algorithms
were tested on the permuted environment with three differ-
ent reward functions. Results showed that IBL outperformed
Q-learning during training (on the default environment with
default rewards). Furthermore, IBL performed better than
Q-learning for the default and negative reward functions
during testing on the permuted environment. Wherever IBL
performed better, it achieved a better average success ratio,
taking more optimal actions than Q-learning. The difference
between the IBL and Q-learning algorithms’ success ratios
could be attributed to the percentage of optimal actions.

During testing with the negative-and-positive reward func-
tion, results showed that Q-learning performed better than
IBL. A likely reason behind the reduced success ratio of
IBL for negative-and-positive rewards may be the signifi-
cant change from the way rewards were given in the default
reward function. However, another reason could be the val-
ues of the default value of the hyperparameters in the IBL
model. For example, the default value of the decay parameter
(=0.5) [43], [44]meant that the algorithm’s agent relied heav-
ily on distant memories. However, these distant memories
may not have worked well when the IBL agent was tested
in the negative-and-positive reward function, which differed
from the training environment. In contrast, Q-learning does
not support any form of memory besides the initialization
of the new environment’s Q-values. Perhaps, this absence of
memory helped the Q-learning agent explore the test environ-
ment with the negative-and-positive reward function.

There is literature that shows that calibrating memory-
based ACT-R model parameters may help the model [45].
For example, Reitter and Lebiere [45] proposed a foraging
game where the agents were supposed to communicate with
each other and an agent’s performance depended on the
communicating facts stored in memory. Results revealed that
increasing the individual decay rate increased the agent’s
average task performance. Thus, forgetting was helpful, and
it allows the agent to discard outdated information. In a
different study, Lebiere [46] showed that first-grade students
exhibited a decay value of 0.75 for making additions on
large numbers, and proposed that the reliance on calculation
(instead of memory) is higher for first-grade school children.
Gonzalez et al. [47] built IBL models for market entry tasks,
which involved four persons and two alternatives (enter or
stay out) games. The winning model used a 1.97 value of
decay, which made it rely on recent experiences and lowered
the chances of repeating past choices over trials in the task.

Together, these results suggest that modelers may calibrate
the decay hyperparameter’s value to alter the model’s reliance
on memory. This calibration and more careful testing is the
goal of the next experiment.

B. EXPERIMENT 2: IBL VERSUS Q-LEARNING WITH
NEGATIVE-AND-POSITIVE REWARD FUNCTION IN THE
4 × 4 PERMUTED FROZEN LAKE ENVIRONMENT
This experiment’s objective was to compare the performance
of IBL and Q-learning on the permuted 4 × 4 Frozen Lake
environment with the negative-and-positive reward func-
tion after tuning hyper-parameters. The genetic algorithm
(GA) [48] was used for hyper-parameter tuning.

1) METHODS
a: ENVIRONMENT, REWARD FUNCTION, PERFORMANCE
METRICS, MODEL PARAMETERS, AND DATA ANALYSES
GA [48] is an optimization algorithm inspired by Charles
Darwin’s natural evolution theory and natural selection [48].
Effectively, the fittest individuals are selected for reproduc-
tion to produce the offspring of the next generation. The
success ratio (as described in experiment 1) was used as the
fitness function in this context. A population size of 20 was
chosen, and 100 generations were run with a 20% mutation
rate and 80% crossover rate [49]. An average of 5 agents per
algorithm was taken (for each hyper-parameter combination)
instead of a single agent to reduce the effect of randomness.
If the change in the fitness value was less than 0.05 in the last
ten generations, the calibration process was stopped.

The hyper-parameter values found by GA for IBL were
0.76, 1.21, and 5,764 for the cognitive noise, decay, and
default utility, respectively. The hyper-parameter values
found for Q-learning were 0.81, 0.96, and 0.90 for the learn-
ing rate, gamma, and epsilon, respectively. During train-
ing, the default 4 × 4 Frozen Lake environment with the
default reward function (Table 5) was used. The negative-and-
positive reward function (Table 5) was used during testing in
the permuted 4 × 4 Frozen Lake environment. The success
ratio and optimal actions were used for the performance met-
rics (as described in experiment 1). IBL and Q-learning algo-
rithms were run with 50 agents and for 1500 episodes (with
the newly found hyperparameters) to generate the dependent
measures during testing. The same data analyses as experi-
ment 1 were performed.

2) RESULT
a: TESTING OF IBL AND Q-LEARNING ON THE PERMUTED
4 × 4 FROZEN LAKE ENVIRONMENT WITH
NEGATIVE-AND-POSITIVE REWARDS
Fig. 8(a) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and
participants for the permuted 4 × 4 Frozen Lake test
environment with negative-and-positive rewards (after
hyper-parameter calibration). As seen in Fig. 8(a), IBL
achieved a similar success ratio as Q-learning for the
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TABLE 6. Results for training and testing of IBL and Q-learning algorithms.

negative-and-positive reward function in the permuted 4 × 4
Frozen Lake (IBL: 0.017 ∼ Q-learning: 0.018; F (1, 97) =
1.072, p = 0.31, η2 = 0.011). Fig. 8(b) shows the success
ratio of IBL and Q-learning algorithms in each episode bin
averaged over all participants. Mauchly’s test for the success
ratio indicated that the assumption of sphericity was violated
(χ2 (434) = 6525.87, p < 0.05). Therefore, degrees of
freedomwere corrected using Greenhouse-Geisser correction
(ε = 0.089). The interaction between algorithm and episodes
(F (1,255.98) = 0.59, p = 0.10, η2 = 0.005) was also
non-significant.

b: OPTIMAL ACTIONS BY IBL AND Q-LEARNING
Table 7 shows that the IBL algorithm achieved a higher
or equal percentage of optimal actions than the Q-learning
algorithm in 100% of the cells (i.e., 8 out of the 8 cells) in the
permuted 4× 4 Frozen Lake test environment with negative-
and-positive-reward.

3) DISCUSSION
In this experiment, the hyper-parameters of both algorithms
were tuned using GA. Both algorithms were run on the
permuted 4 × 4 Frozen Lake environment (with positive-
and-negative reward). This environment was where IBL
(with default hyperparameters) had performed poorly against
Q-learning (with default hyperparameters) in experiment 1.
Results showed that IBL matched Q-learning’s performance
after the hyper-parameter tuning, and the difference in the
success ratio was not significant. Also, the number of
optimal actions was equal or higher in IBL compared to
Q-learning. IBL always took equal or more optimal actions
than Q-learning.

Thus, the increase in the success ratio of IBL can be
attributed to the change in the hyper-parameter values. The
new values of cognitive noise, decay, and default utility
were 0.76, 1.21, and 5,764, different from the default values
0.25, 0.50, and 10000 used in experiment 1. The increased

decay reflects the reduced reliance on memory, while the
increase in cognitive noise makes the IBL agent more robust
to the change in environment. The decrease in the default
utility meant that the agent would be forced to explore less.
Together, it meant that the agent could adjust better to the
changes in the environment during testing.

The results of the first and second experiments showed
that IBL could perform and generalize better than Q-learning.
In the next experiment, the scalability of the two algorithms
was compared by scaling the Frozen Lake environment to an
8 × 8 matrix instead of the default 4 × 4.

C. EXPERIMENT 3: IBL VERSUS Q-LEARNING WITH
DEFAULT PARAMETERS IN THE 8 × 8 FROZEN LAKE
ENVIRONMENT
This experiment’s objective was to compare IBL and
Q-learning algorithms’ performance on a scaled 8× 8 Frozen
Lake environment.

1) METHODS
a: ENVIRONMENT, REWARD FUNCTION, AND
PERFORMANCE METRICS, MODEL PARAMETERS, AND DATA
ANALYSES
In the third and last experiment, the original Frozen Lake was
scaled to an 8× 8 matrix, and the experiments were repeated
with default reward to compare IBL and Q-learning’s scala-
bility. Fig. 9 shows the new 8× 8 environment that was used
for training. For testing, the 8 × 8 Frozen Lake environment
was randomly permuted (see Fig. 10). Default reward was
used for both the new and permuted 8 × 8 Frozen Lake
environments (as described in Table 5). Success ratio and
optimal actions (as described in experiment 1) were used to
compare the two algorithms. The only change in this exper-
iment’s parameters was increasing the number of episodes
to 5000 due to the increase in the number of cells (sixty-
four compared to sixteen in the previous experiments). Like
experiment 1, for visualizing the results, the success ratio
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FIGURE 8. Performance of the algorithms when tested with
negative-and-positive rewards on the permuted 4 × 4 Frozen Lake test
environment. (a) The average success ratio for IBL and Q-learning; (b) The
average success ratio in each episode bin across both IBL and Q-learning
algorithms. The error bars show 95% CI around the point estimate.

was averaged for each set of 50 contiguous episodes into
an episode bin. Here, the number of episode bins was 100
(=5000 episodes/50 episodes per bin). A similar analysis of
the number of optimal steps taken at each cell was performed
to ensure that the agents were learning. The other parameters
remained the same as described in experiment 1. The same
data analyses, as experiment 1, were performed.

2) RESULTS
a: TRAINING OF IBL AND Q-LEARNING ON THE DEFAULT
8 × 8 FROZEN LAKE ENVIRONMENT WITH DEFAULT
REWARDS
Fig. 11(a) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and par-
ticipants in the default 8 × 8 Frozen Lake training environ-
ment with default rewards. As seen in Fig. 11(a), IBL in
the training environment achieved a better average success

FIGURE 9. Default 8 × 8 Frozen Lake training environment with
S: Starting Cell, F: Frozen Surface, H: Hole, and G: Goal.

FIGURE 10. Permuted 8 × 8 Frozen Lake test environment with S: Starting
Cell, F: Frozen Surface, H: Hole, and G: Goal.

ratio than Q-learning (IBL: 0.008 > Q-learning: 0.002; F
(1, 97) = 468.01, p < 0.001, η2 = 0.828). Fig. 11(b)
shows the success ratio of IBL and Q-learning algorithms in
each episode bin averaged over all participants in the training
environment. Mauchly’s test showed that the success ratio’s
sphericity was not violated (p = .188, χ2 (302) = 4892).
As seen in the previous experiments, there was an interaction
effect of the algorithm and episodes (F (1, 97) = 2.781,
p < 0.001, η2 = 0.028). The success ratio increased rapidly
for the first few episodes, and the increase and subsequent
stabilization were much higher in the IBL algorithm than
in the Q-learning algorithm. The difference in the average
success ratio between the two curves was much higher in the
scaled version. It is evident that even for large environments,
IBL performed better than Q-learning.

b: TESTING OF IBL AND Q-LEARNING ON THE PERMUTED
8 × 8 FROZEN LAKE ENVIRONMENT WITH DEFAULT
REWARDS
Fig. 12(a) shows the average success ratio of IBL and
Q-learning algorithms averaged over all episodes and partic-
ipants in the permuted 8 × 8 Frozen Lake test environment
with default rewards. As seen in Fig. 12(a), IBL achieved a
better average success ratio than Q-learning during testing as
well (IBL: 0.025 > Q-learning: 0.006; F (1, 97) = 43.678,
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FIGURE 11. Performance of the algorithms when run in default 8 × 8
Frozen Lake environment with default rewards. (a) The average success
ratio for IBL and Q-learning and (b) The average success ratio in each
episode bin across both IBL and Q-learning algorithms. The error bars
show 95% CI around the point estimate.

p < 0.001, η2 = 0.310). Fig. 12(b) shows the success ratio
of IBL and Q-learning algorithms in each episode averaged
over all participants in the test environment. Mauchly’s test
showed that the success ratio’s sphericity was not violated
(p = .152, χ2 (302)= 4850). There was an interaction effect
of the algorithm and episodes (F (1, 97)= 3.628, p < 0.001,
η2 = 0.036). A similar curve was observed during testing,
with IBL significantly outperforming Q-learning.

c: OPTIMAL ACTIONS BY IBL AND Q-LEARNING
Fig. 13(a) shows that for the default 8 × 8 Frozen Lake
training environment with default rewards. The IBL algo-
rithm achieved a higher percentage of optimal actions than
the Q-learning algorithm in 100% of the cells (i.e., 51 cells
out of the 51 cells). Fig. 13(b) shows that for the permuted
8 × 8 Frozen Lake test environment with default rewards.
The IBL algorithm again achieved a higher percentage of
optimal actions than the Q-learning algorithm in 100% of
the cells (i.e., 41 out of the 41 cells). The hyper-parameter

FIGURE 12. Performance of the algorithms when run in permuted 8 × 8
Frozen Lake environment with default rewards. (a) The average success
ratio for IBL and Q-learning (b) The average success ratio in each episode
bin across both IBL and Q-learning algorithms. The error bars show 95%
CI around the point estimate.

TABLE 7. Optimal actions taken in negative-and-positive reward after
hyper-parameter calibration.

values for both IBL and Q-learning were the same as in
experiment 1.

3) DISCUSSION
In this experiment, the algorithms were run on a larger 8 × 8
version of Frozen Lake to test the scalability. Results showed
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FIGURE 13. Optimal action percentages by IBL and Q-learning on
(a) 8 × 8 Frozen Lake training environment with default rewards;
(b) permuted 8 × 8 Frozen Lake test environment with default rewards.
Note: I represent IBL, and Q represents Q-learning.

that IBL outperformed Q-learning and the difference was
higher than the 4 × 4 versions in experiment 2. The success
ratio and optimal actions reinforced that the IBL algorithm
was better than the Q-learning algorithm in terms of success
ratios and optimal actions.

IV. GENERAL DISCUSSION
In this paper, two approaches to reinforcement learning were
compared when the algorithms were articulated to maximize
the expected reward in a Markov decision process [3]. While
Q-learning used statistical algorithms for learning, IBL relied
on cognitivemechanisms, which humans appear to learn [35].

In the first experiment, it was observed that IBL outper-
formedQ-learning in two of the three reward functions during
testing. It was hypothesized that the underperformance of IBL
was due to the significant change in the reward functions
during training and testing. The underlying reason was the
decay hyper-parameter in IBL, which controlled how much
the algorithm relied on thememory [17]. A value of 0.5meant
that the algorithm was relying heavily on a distant memory.
Perhaps, the IBL algorithm could not explore enough in a
different environment.

For this reason, it was decided to undertake the second
experiment, where the hyper-parameters of both algorithms
were calibrated using a genetic algorithm. The new values of
hyper-parameters indicated that the amount of randomness
in IBL might be increased, which confirmed our hypothe-
sis. The second experiment’s results were as expected, and
IBL outperformed Q-learning for the positive-and-negative
reward function as well. In the third experiment, the environ-
ment was scaled to an 8 × 8 Frozen Lake. It was found that
IBL could retain its lead even in the scaled environment, and
the margin of difference was even higher this time.

V. CONCLUSION
To conclude, the results showed that IBL ran faster and
learned the optimal paths better than Q-learning. The role
of memory was also investigated when the agent was tested
in a significantly different environment from the training
environment. Having taken memory into account, the IBL
agent trained faster, scaled, and generalized better. Our test-
ing framework also allowed us to infer the two algorithms’
learning mechanisms correctly. The hyper-parameters were
set via GA to find better and more robust learning parameters
in IBL.

The current investigation on using IBL (as a possible alter-
native to Q-learning) has revealed promising results. It is
expected that the reported results would generalize to other
similar environments given their testing in several reward
settings and on the scaled 8 × 8 matrices. One theoreti-
cal implication of the results is developing better machine
learning algorithms for complex dynamic environments that
incorporate the different cognitive mechanisms proposed in
the IBL algorithm. These cognitive mechanisms in the IBL
algorithm have been developed by relying on humans’ behav-
ioral data across several studies [14], [15]. One practical
implication of cognitive techniques inclusion may enable
machine learning algorithms to make faster decisions as peo-
ple do in different decision tasks. Also, including cognitive
techniques in machine learning algorithms may make them
learn faster while training and transfer faster to novel envi-
ronments. In IBL, at any point in time, the decision-making
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process can be investigated by enumerating the memory
contents, what could be retrieved, and why something gets
retrieved. This interpretability allows us to explain the IBL
algorithm’s decisions, which is not necessarily the case with
deep learning algorithms. Thus, the IBL algorithm promises a
solution to two of the most significant drawbacks of machine
learning or deep learning algorithms: generalizability and
interpretability.

The IBL algorithm promises to improve the machine
learning algorithms and could also be used as a decision
aid to improve learning among people. Cognitive algo-
rithms like IBL have already been used to improve learning
among people in several practical applications like teaching
LISP [50] and Algebra [51] to kids. One could also use
IBL-like algorithms to improve learning abilities among chil-
dren [52]. Overall, there are several practical applications of
this research to both machine and human learning.

However, there are certain limitations in the current study.
For example, some learning rate decay techniques were not
used in the Q-learning algorithm, which could have sped
up the convergence. However, even after using learning
rate decay, one may not expect differences in the IBL and
Q-learning algorithms’ reported results. The IBL algorithm
would have also converged faster if the learning decay had
been used in it. Another limitation of our approach is that
the Q-learning algorithm’s deep learning variants were not
considered in this paper. One reason for not doing so was that
there was no deep version available for the IBL algorithm.
The comparisons of deeper variants of IBL and Q-learning
algorithms are planned as a future endeavor.

There are several research questions to pursue as part
of future research. For example, one could explore other
OpenAI gym environments, including gaming environments,
and compare different IBL and Q-learning algorithms. Sec-
ond, it may be worthwhile to investigate different sampling
strategies while exploring IBL and Q-learning algorithms.
These sampling strategies may be motivated by how people
search between different options. Some of these ideas form
the immediate next steps in our program ofmodel comparison
in learning environments.
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