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ABSTRACT An important and challenging problem in the evaluation of baseball players is the quantification
of batted-ball talent. This problem has traditionally been addressed using linear regression or machine
learning methods. We use large sets of trajectory measurements acquired by in-game sensors to show that the
predictive value of a batted ball depends on its physical properties. This knowledge is exploited to estimate
batted-ball distributions defined over a multidimensional measurement space from observed distributions
by using regression parameters that adapt to batted ball properties. This process is central to a new method
for estimating batted-ball talent. The domain of the batted-ball distributions is defined by a partition of
measurement space that is selected to optimize the accuracy of the estimates.We present examples illustrating
facets of the new approach and use a set of experiments to show that the newmethod generates estimates that
are significantly more accurate than those generated using current methods. The new methodology supports
the use of fine-grained contextual adjustments and we show that this process further improves the accuracy
of the technique.

INDEX TERMS Baseball, estimation, prediction, regression, sensor data, analytics, predictive wOBAcon.

I. INTRODUCTION
Radar and optical sensors have been installed in Major
League Baseball (MLB) stadiums in recent years and col-
lect several terabytes of data during each game [1]. As a
result, the assessment of player skill and the prediction of
future performance is increasingly dependent on data-driven
models rather than subjective evaluation. The accuracy of
these models is critical to a team’s success. During 2021, for
example, the Los Angeles Angels completed a 240 million
dollar contract with player Albert Pujols but received only
41 million dollars of value [2]. Not surprisingly, the Angels
failed to meet expectations and did not win even a single
postseason game during the period of this contract.

Methods for evaluating and predicting player performance
on batted balls are of particular interest since the majority
of MLB matchups result in a batted ball. Player talent level
on batted balls is defined as the expected value of a statistic
which can be estimated from a sample of observations. The
utility of an estimate is often evaluated by its ability to pre-
dict player performance on unobserved data. An intuitively
appealing measure of talent level is the naive estimate which
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is the value of the batted ball statistic over a player’s observed
sample.

A disadvantage of using the naive estimate is that batted-
ball results are subject to a large amount of random variation
due to factors such as the response time and positioning
of fielders [3] and the moisture content and texture of the
playing surface [4]. These variables cause a player’s batted-
ball performance to have a low correlation across samples [5],
[6]. Batted ball results are also biased by variables such as
the atmospheric conditions [7], [8], the ballpark geometry [9],
and the batter’s running speed [10]. For these reasons, the pre-
diction of batted ball results is considered the most difficult
aspect of forecasting player performance [11], [12].

Machine learning (ML) algorithms [13] provide an alter-
native approach for deriving estimates of talent level.
ML methods have achieved success for a diverse range of
applications [14]–[16] and are especially appropriate for the
analysis of sports such as baseball which are defined by
a discrete series of events [17]. Several ML methods have
used sensor data to quantify player performance on batted
balls. These methods include a technique [18] that combines
k-nearest neighbors with a generalized linear model as well
as techniques [10], [19] that use kernel density estimates
within a Bayesian framework. These measures reduce the
impact of random variation compared to the naive estimate,
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but have the disadvantage that they are optimized for model-
ing performance on observed data rather than for predicting
performance on unobserved data.

Research in statistics [20]–[22] has shown that the naive
and ML measures will be less accurate for prediction than
estimates that are defined by a weighted average of a mea-
sure with the average performance over a group of players.
This weighting is typically implemented using linear regres-
sion (LR) where the weights depend on the correlation of the
performance measure across samples. Estimates generated
using LR have been utilized by several systems for predicting
player performance [12], [23]. A disadvantage of combining
LR with any of the various performance measures including
those generated by ML methods is that all batted balls are
assumed to have the same predictive value.

We derive a new method called measurement space parti-
tioning (MSP) for implementing the regression component of
a talent level estimator. The method is based on the principle
uncovered in this work that the predictive value of a batted
ball depends on its physical properties. In order to exploit
this principle we developed a new method for distribution
estimation that transforms an observed distribution over local
regions of measurement space. Implementation of this trans-
formation required the development of new methods for pre-
dicting the correlation of distribution values across samples
and for learning an optimal partition of measurement space.
The result is that a player’s underlying batted-ball distribution
and the corresponding talent level can be estimated using a
method that adapts to the physical characteristics of his par-
ticular collection of batted balls. We show that by modeling
the variation in the predictive value of batted balls, the MSP
method improves on the accuracy of existing methods for
estimating batted-ball talent level.

Another advantage of the MSP approach is the ability
to incorporate fine-grained contextual information into esti-
mates. Contextual information includes a range of variables
that can affect batted-ball value. The weather conditions and
elevation, for example, will affect how far a batted ball will
carry in the air [8]. Batted balls that follow similar trajectories
can have different outcomes due to differences in outfield
geometry from ballpark to ballpark [9]. A player’s running
speed [10] and variables that include the height of the infield
grass and the composition of the infield surface [4] can affect
the value of batted balls hit on the ground. The fate of batted
balls also depends on the quality of the defenders in the field.

Contextual factors are typically accounted for by a coarse
adjustment that compensates for the average effect of the
environment [24]. These coarse adjustments often perform
poorly because a given environment affects batted balls in
different ways depending on their properties [25]. Since the
MSP method computes talent level estimates from estimated
batted ball distributions defined over physical parameters,
contextual adjustments can be employed that depend on the
characteristics of individual batted balls. A ball hit in the air
at high speed, for example, can be adjusted differently from
a ball hit softly on the ground. We will show that the use

of fine-grained contextual adjustments further improves the
accuracy of predictions made by the MSP method.

II. ESTIMATION AND PREDICTION
A. TALENT LEVEL
Talent for a skill varies from player to player and can be
represented by a statistic that is derived from a set of obser-
vations. The computed value of such a statistic equals talent
level T (j), which is the expected value of the statistic for
player j, plus estimation error. In this work, we examine
the problem of estimating player talent level on batted balls.
Consider a dataset that contains information on 2N batted
balls for each of P players where the data is arranged so
that the first N batted balls for each player are observed and
the second N batted balls for each player are unobserved. Let
R(i, j) represent the numerical value of batted ball i for player j
and define the observed performance statistic for player j as
the average over the first N batted balls

x(j) =
1
N

N∑
i=1

R(i, j) (1)

and define the unobserved performance for player j as the
average over the second N batted balls

y(j) =
1
N

2N∑
i=N+1

R(i, j). (2)

Estimation is the process of using the observed batted ball
data to estimate talent level T (j) for the x(j) statistic for each
player j. Prediction is the process of using the observed data
to predict the unobserved performance y(j) for each player j.

B. LINEAR REGRESSION
The naive estimate of T (j) is simply the observed perfor-
mance x(j) for player j. However, the James-Stein para-
dox [21], [22] as illustrated by Effron and Morris [20] shows
that a more accurate estimate of T (j) is obtained by adjust-
ing the x(j) using an average of the observed R(i, j) values
over multiple players. Since an estimate for talent level can
be assessed by its ability to predict the unobserved perfor-
mance y(j), we can define an estimate ŷ(j) for T (j) by mini-
mizing the sum of the square errors

E =
P∑
j=1

(y(j)− ŷ(j))2 (3)

using the linear regression model

ŷ(j) = a+ bx(j). (4)

The values of a and b that minimize E are

a = µy −
rµxσy
σx

(5)

b =
rσy
σx

(6)

where µx and σx are the mean and standard deviation for
the x(j), µy and σy are the mean and standard deviation for
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the y(j), and r is the correlation coefficient for the set of P
points (x(j), y(j)) [26].
Since the data used to generate the y(j) are unobserved,

the parameters µy, σy, and r in equations (5) and (6) cannot
be computed directly. The y(j), however, are generated in
the same way for the same players as the x(j) which allows
us to use the approximations µy = µx and σy = σx . The
remaining unknown parameter, the correlation coefficient r,
can be approximated from the observed R(i, j) values using
Cronbach’s alpha [27]

α(N ) =
N

N − 1

(
1−

∑N
i=1 σ

2
Ri

σ 2
RT

)
(7)

where σ 2
Ri is the variance of the observed R(i, j) values over

players j for batted ball i and σ 2
RT is the variance of

RT (j) =
N∑
i=1

R(i, j) (8)

over players j. Using these approximations, equation (4)
becomes

ŷ(j) = α(N )x(j)+ (1− α(N ))µx (9)

which can be computed using the observed data. ŷ(j) in
equation (9) is consistent with the James-Stein result that an
improved estimate for T (j) can be obtained by adjusting x(j)
using the overall mean µx .

C. VARYING OBSERVED SAMPLE SIZE
The α(N ) that is used to compute the estimate ŷ(j) in equa-
tion (9) is derived using a dataset of N observed batted balls
for each of P players using equation (7). The utility of the
method is enhanced if we can use this dataset to compute the
estimate ŷ(j) using a sample of N ′ batted balls for player j
where N ′ 6= N . The value of α(N ) tends to increase with
N due to a decrease in the variance of the random error in
the observed performance x(j) [28]. The Spearman-Brown
prophecy formula [29], [30] allows us to predict α(N ′) from
the estimated α(N ) using

α(N ′) =
Cα(N )

1+ (C − 1)α(N )
(10)

where C = N ′/N . This α(N ′) can be used in equation (9) to
compute ŷ(j) using an observed performance x(j) computed
using any number of samples N ′.

III. EXPLOITING SENSOR MEASUREMENTS
A. PARTITIONING THE MEASUREMENT SPACE
Sensors allow batted balls to be represented by a point in a
measurement space with dimensions defined by properties
such as speed, direction, and spin. The measurement space
can be partitioned into B disjoint subsets. For the dataset
described in Section II-A let M (i, j, k) be a binary-valued
function which is one if batted ball i for player j is in subset k

and zero otherwise. Define the observed batted ball distribu-
tion for player j over the subsets k by

px(j, k) =
1
N

N∑
i=1

M (i, j, k) (11)

and define the unobserved batted ball distribution for player j
over the subsets k by

py(j, k) =
1
N

2N∑
i=N+1

M (i, j, k). (12)

We will show that an estimate for py(j, k) can be used to
generate an estimate for the talent level T (j).

B. ESTIMATING MEASUREMENT SPACE DISTRIBUTIONS
For a given subset k we can use a linear regression model
and approximations similar to those described in Section II
to estimate py(j, k) from the observed data according to

p̂y(j, k) = α(N , k)px(j, k)+ (1− α(N , k))µ(k) (13)

where µ(k) is the average

µ(k) =
1
P

P∑
j=1

px(j, k) (14)

and α(N , k) is the Cronbach approximation to the correlation
coefficient for the set of P points (px(j, k), py(j, k)) for sub-
set k. Specifically, α(N , k) is computed using

α(N , k) =
N

N − 1

(
1−

∑N
i=1 σ

2
Mi

σ 2
MT

)
(15)

where σ 2
Mi

is the variance of the observed M (i, j, k) values
over players j for batted ball i and subset k and σ 2

MT
is the

variance of

MT (j) =
N∑
i=1

M (i, j, k) (16)

over players j for subset k. α(N , k) can then be used in
equation (13) to compute the regressed distribution p̂y(j, k)
using only the observed data. We note that the calculation in
equation (15) can yield α(N , k) values that are negative [28]
and in these cases α(N , k) is set to zero for the calculation
of p̂y(j, k).

C. ESTIMATING TALENT USING MEASUREMENT SPACE
PARTITIONING
The batted ball distribution estimate p̂y(j, k) for player j can
be used to estimate the player’s talent level T (j). If R(j, k) is
an estimate of the expected value of batted balls for player j
in subset k then T (j) can be estimated by

ŷs(j) =
B∑
k=1

p̂y(j, k)R(j, k). (17)

For cases where we would like to estimate ŷs(j) using a
sample of N ′ batted balls for player j, the values α(N ′, k)
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for each k in equation (13) can be computed using the
Spearman-Brown formula as described in Section II-C.

The ŷs(j) estimate in equation (17) is equivalent to the
linear regression estimate ŷ(j) in equation (9) if α(N , k) has
the same value α(N ) for all subsets k and the average value
of the observed batted balls in any subset k is the same for
all players j. For this special case, if we let R(j, k) equal the
overall mean of the observed R(i, j) for subset k

R(k) =

N∑
i=1

P∑
j=1

M (i, j, k)R(i, j)

N∑
i=1

P∑
j=1

M (i, j, k)

(18)

then equation (17) can be written

ŷs(j) =
B∑
k=1

[α(N )px(j, k)+ (1− α(N ))µ(k)]R(k)

=

[
α(N )

B∑
k=1

px(j, k)R(k)

]

+

[
(1− α(N ))

B∑
k=1

µ(k)R(k)

]
(19)

where the first sum in equation (19) equals x(j) and the second
sum equals µx which demonstrates the equivalence to equa-
tion (9). We will see that by allowing α(N , k) to vary over
subsets k and by allowing R(j, k) to vary over players j, the
model in equation (17) can generate estimates that are more
accurate than the linear regression estimate in equation (9).

IV. EXPERIMENTAL RESULTS
A. SENSOR DATA
The Trackman (TM) phased-array Doppler radar has been
used by MLB’s Statcast system [1] since 2017 to track
and characterize batted balls. The TM radar operates in the
X-band at approximately 10.5 GHz and is positioned high
behind home plate. The measured initial speed s and vertical
launch angle v (Figure 1) for batted balls play an important
role in determining batted ball value [19]. In particular, batters
tend to achieve the best results for batted balls with an initial
speed of greater than 90 miles per hour and a vertical launch
angle between 10 and 30 degrees.

B. REPRESENTING BATTED BALL VALUE
Many statistics [24] can be used to quantify a batter’s per-
formance on batted balls. Batting average, for example,
is the fraction of batted balls that result in a hit but has
the deficiency that all hits are given equal value. Slugging
percentage allocates different weights to different kinds of
hits, e.g. single or double, but has been shown to overweight
doubles, triples, and home runs. Weighted on base average
(wOBA) [23] uses weights for each batted ball outcome that
are proportional to run value and, for this reason, we use
wOBA to represent batted ball value R(i, j).

FIGURE 1. Vertical launch angle v .

C. CONTEXTUAL INFORMATION
A batted ball with a given set of physical parameters such as
s and v occurs in a context that can affect its value. Variation
in the outfield geometry across stadiums [9] and variation in
the ambient weather conditions [8] can affect the value of a
ball hit in the air. The batter’s running speed [10] plays a role
in determining batted ball value especially for balls hit on the
ground. The quality of defenders can also affect the value of
a batted ball hit to a given region of the field. These factors
cause the batted ball value R(j, k) for subset k to vary depend-
ing on the distribution of contextual variables for player j.We
will show later in this section how contextual information
can be combined with the batted ball distribution estimates
p̂y(j, k) to improve the accuracy of the ŷs(j) predictions.

D. ASSESSING PREDICTION ACCURACY
Statcast data from MLB games in 2019 was employed to
evaluate methods for using observed data to predict player
performance in unobserved data. After removing bunts from
the dataset, each of the P = 159 players with at least
300 batted balls during the 2019 season was considered.
Switch-hitters who bat both right-handed and left-handed
were regarded as a different batter for each handedness. The
first 300 batted balls for each player were divided into an
observed set of N = 150 batted balls and an unobserved set
of N = 150 batted balls. The odd batted balls in chrono-
logical order for each player defined the observed set and
the even batted balls defined the unobserved set. The batted
ball value R(i, j) for batted ball i and player j was defined by
the wOBA weight for the batted ball result as described in
Section IV-B. For the 2019 MLB season the wOBA weights
are out=0.000, single=0.870, double=1.217, triple=1.529,
homerun=1.940, and batter reaches on error= 0.920 [31].
The observed batted ball data was used to generate predic-
tions for the unobserved performance y(j). The accuracy of a
set of predictions ŷ(j) is evaluated using the sum of squared
errors (SSE)

SSE =
P∑
j=1

(y(j)− ŷ(j))2 (20)

between the unobserved performance and its prediction.
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E. LINEAR REGRESSION
The linear regression model defined by equation (9) was
used to generate the ŷ(j) predictions for the data described
in Section IV-D. The resulting model is

ŷ(j) = 0.294x(j)+ (1− 0.294) · 0.402

= 0.294x(j)+ 0.284 (21)

where the observed batted ball data was used to compute
α(150) = 0.294 andµx = 0.402 as described in Section II-B.
This model gives an SSE of 0.647 using equation (20). Two
boundary instances of the linear regression model are the
naive prediction ŷ(j) = x(j) for α(N ) = 1 and the baseline
prediction ŷ(j) = µx for α(N ) = 0. For this dataset, the naive
prediction gives an SSE of 0.780 and the baseline prediction
gives an SSE of 0.743 which are both larger than the SSE
obtained using the linear regression model in equation (21).
The ŷ(j) prediction lines for the linear regression model and
the naive and baseline predictions are shown in Figure 2 along
with the (x(j), y(j)) points for each of the 159 players. The
SSE results for these methods are summarized in Table 1.

TABLE 1. SSE for prediction methods using x(j ).

FIGURE 2. (x(j ), y (j )) points with naive, regression, and baseline
predictions.

F. MACHINE LEARNING
A machine learning method [18] based on utilizing sensor
measurements in combination with k-nearest neighbors and a
generalized linearmodel has also been used to quantify player
performance on batted balls. This method generates a value
R′(i, j) called xwOBAcon for batted balls and is publicly

available at baseballsavant.com. The xwOBAcon prediction
ŷm(j) = x ′(j) is given by

x ′(j) =
1
N

N∑
i=1

R′(i, j). (22)

This prediction gives an SSE of 0.688 for the dataset
described in Section IV-D. This result is worse than the
SSE of 0.647 obtained using LR as shown in Table 1 since
the xwOBAcon prediction is optimized for modeling the
observed data rather than for predicting the unobserved data.

Although it is not part of the xwOBAcon calculation, the
James-Stein paradox [20]–[22] suggests that we can improve
the predictive accuracy of xwOBAcon by applying the steps
in Section II-B to the R′(i, j) values. This results in a regressed
xwOBAcon prediction which is given by

ŷ′m(j) = 0.709x ′(j)+ (1− 0.709) · 0.394

= 0.709x ′(j)+ 0.115. (23)

The SSE obtained using this prediction is 0.578 which
improves on the xwOBAcon prediction and provides more
empirical evidence for the James-Stein result. The xwOBA-
con baseline prediction ŷm(j) = µ′x where µ

′
x is the mean for

the x ′(j) gives an SSE of 0.736 which is slightly smaller than
for the standard baseline prediction ŷ(j) = µx . The results
obtained using x ′(j) are summarized in Table 2 andwe see that
the SSE are smaller than the corresponding values in Table 1.

TABLE 2. SSE for prediction methods using x ′(j ).

G. MEASUREMENT SPACE PARTITIONING
The measured initial speed and launch angle can be used to
represent a batted ball as a point in a two-dimensional (s, v)
measurement space. This space can be partitioned into B dis-
joint subsets as described in Section III-A. In the Appendix,
we show that the accuracy of the prediction in equation (17)
depends on the partition. In this section we define different
ways to partition the (s, v) measurement space and show how
training data can be used to optimize partition selection.

1) PARTITION DEFINITION
The (s, v) space can be divided into an internal region defined
by

(smin ≤ s < smax) and (vmin ≤ v < vmax)

which includes the large majority of batted balls and four
boundary regions B1,B2,B3,B4 defined by

B1 : s < smin

B2 : s ≥ smax

B3 : (smin ≤ s < smax) and (v < vmin)

B4 : (smin ≤ s < smax) and (v ≥ vmax).
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The internal region can be further divided into rectangular
subregions b(i, j) of dimension swidth × vwidth which are
defined by

b(i, j) : (smin + (i− 1) ∗ swidth) ≤ s < (smin + i ∗ swidth)

and

(vmin + (j− 1) ∗ vwidth) ≤ v < (vmin + j ∗ vwidth)

so that there are a total of
(smax − smin)(vmax − vmin)

swidth ∗ vwidth
b(i, j) subregions.

We defined the internal and boundary regions for the
2019 data using smin = 37.5 mph, smax = 117.5 mph, vmin =

−75◦, and vmax = 85◦ which yields an internal region
that includes 99.5 percent of all batted balls. The internal
region was partitioned into different configurations of fixed-
size rectangular subregions b(i, j) where the subregion widths
were allowed to vary over the values

swidth = 2.5, 5, 10, 20, 40, 80 mph

vwidth = 2.5, 5, 10, 20, 40, 80, 160 degrees

By considering all combinations of the six swidth values
and the seven vwidth values we can define 42 partitions
with each denoted Pswidth,vwidth where the boundary regions
B1,B2,B3,B4 are the same for each partition. Figure 3, for
example, depicts the P10,40 partition with the four bound-
ary regions and thirty-two internal subregions b(i, j) where
b(2, 3) is explicitly labeled.

FIGURE 3. The P10,40 partition of measurement space.

The prediction method described in Section III-C was used
to process the observed and unobserved data described in
Section IV-D using each of the 42 partitions. For the finer
partitions the observed data does not contain enough samples
to reliably estimate R(j, k) for each (j, k). Therefore, the mean
R(k) in equation (18) was used to approximateR(j, k) for each
j and k. The smallest SSE of 0.532 was obtained for P2.5,40

while the largest SSE of 0.743 was obtained for P80,160 . If we
neglect the effect of the boundary regions, the use of P80,160

is equivalent to the baseline prediction ŷ(j) = µx for which
we also reported an SSE of 0.743 in Section IV-E.

2) PARTITION SELECTION
Partition selection is an important issue since there are large
differences in the SSE for different partitions. To address
this issue, we examine whether the analysis of previous year
data can be used to optimize partition selection for current
year data. To this end, we computed the SSE for each of the
42 partitions defined in Section IV-G1 using 2018 batted ball
data arranged as described in Section IV-D for the 2019 data.
There were P = 158 players with at least 300 batted balls
in 2018 that were considered for analysis. Figure 4 plots the
(SSE 2018, SSE 2019) point for each of the 42 partitions
and we see that there is a strong correlation between the SSE
values for the two years. In particular, the partitions that give
the smallest SSE values in 2018 also give the smallest SSE
values in 2019. This result suggests that we can use previous
year data to select an optimized partition for current year
data. The P5,10 partition gives the smallest SSE of .419 on
2018 data. Using this partition for the 2019 data gives an SSE
of 0.546 which is close to the smallest value of 0.532 and
significantly better than the LR and ML results reported in
Sections IV-E and IV-F.

FIGURE 4. Prediction SSE in 2018 and 2019 for 42 partitions.

3) EXAMPLE
In this section we illustrate the mechanics of the MSP
method using the 2019 batted ball data. The example con-
siders the P5,10 partition defined in Section IV-G1 that was
selected using prior year data as described in Section IV-G2.
Figure 5 plots the α(150, k) function and Figure 6 plots the
mean µ(k) function over the subregions k for this partition.
The α(150, k) function is approximately in the shape of a
rotatedVwithmost of the larger values occurring for s greater
than 95 mph.

Figures 7 and 8 demonstrate properties of α(150, k) and
µ(k) for specific subregions S1 and S2 of P5,10 defined by

S1 : (87.5 mph ≤ s < 92.5 mph) and (5◦ ≤ v < 15◦)

S2 : (107.5 mph≤s<112.5 mph) and (15◦≤v<25◦)
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FIGURE 5. α(150,k) for P5,10 partition.

FIGURE 6. µ(k) for P5,10 partition.

which correspond respectively to b(11, 9) and b(15, 10) using
the notation in Section IV-G1. The observed data described in
Section IV-D gives values of

α(150, S1) = 0.01, µ(S1) = 0.017,

α(150, S2) = 0.61, µ(S2) = 0.011

which predict little correlation between the fraction of bat-
ted balls in the observed and unobserved data for S1 and a
larger correlation between the fraction of batted balls in the
observed and unobserved data for S2. Figure 7 plots the P =
159 points (px(j, S1), py(j, S1)) as defined by equations (11)
and (12) along with the prediction line from equation (13)
where each point in the figure has been moved by a small
random amount to increase the visibility of the points. There
is little correlation between the px(j, S1) and the py(j, S1) as
predicted by the small estimated value of α(150, S1). Figure 8
is the same plot for S2 where the points have a larger positive
correlation as predicted by α(150, S2). In each figure the red
prediction line agrees reasonably well with the structure of
the data.

FIGURE 7. py (j,S1) versus px (j,S1) with α(150,S1) = 0.01.

FIGURE 8. py (j,S2) versus px (j,S2) with α(150,S2) = 0.61.

Figure 9 displays the full observed distribution px(j, k) for
player j = Jorge Polanco as left-handed batter using P5,10 .

Figure 10 is the corresponding regressed distribution p̂y(j, k)
computed using equation (13). We see that the regressed
distribution captures the overall structure of px(j, k) but is
substantially smoother. The regressed distribution results in
a talent level estimate ŷs(j) in equation (17) of.397. This ŷs(j)
is much closer to the unobserved performance y(j) of 0.386
than the LR prediction ŷ(j) = .424 or the naive prediction of
x(j) = .475 which corresponds to the observed distribution
shown in Figure 9.

4) COMPARISON WITH LINEAR REGRESSION
In this section we compare properties of the LR and MSP
predictions. For the data described in Section IV-D the LR
prediction is defined by the line (equation (21)) plotted
in Figure 11. This figure also plots the 159 ŷs(j) predic-
tions for the same data using the P5,10 partition. We see
that players j1 and j2 with the same observed perfor-
mance x(j1) = x(j2) and therefore the same LR prediction
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FIGURE 9. Observed distribution px (j,k) for Jorge Polanco as left-handed
batter.

FIGURE 10. Regressed distribution p̂y (j,k) for Jorge Polanco as
left-handed batter.

ŷ(j1) = ŷ(j2) can be assigned different MSP predictions
ŷs(j1) 6= ŷs(j2).
In Section III-C we showed that an important difference

between ŷ(j) and ŷs(j) is that the former is defined using a
single α(N ) while the latter employs a separate α(N , k) for
each subset k. Players with an observed batted ball distribu-
tion px(j, k) that includes a large fraction of batted balls in
subsets k with large values of α(N , k) will have less regres-
sion to the mean in the calculation of ŷs(j) than players with
a batted ball distribution that has smaller values of α(N , k).
This allows the ŷs(j) prediction to adapt the amount of regres-
sion to a player’s collection of batted balls. By comparing
equations (13) and (17) with the LR model of equation (9)
we see that the correlation-weighted expected wOBA

C(j) =
B∑
k=1

α(N , k)px(j, k)R(k) (24)

should capture a large fraction of the variance in the differ-
ence ŷs(j)− ŷ(j). Figure 12 is a scatterplot of ŷs(j)− ŷ(j) versus

FIGURE 11. ŷs(j ) predictions for 159 batters using P5,10 partition and LR
line.

C(j) for the P5,10 partition of the 2019 data which shows that
the variables have a strong relationship as expressed by a cor-
relation coefficient of 0.87. Thus, C(j) is a batter-controlled
component of ŷs(j) that measures the combined value and
α-correlation of a player’s batted balls and is strongly related
to the deviation of a player’s ŷs(j) prediction from the LR
prediction ŷ(j).

FIGURE 12. Prediction difference ŷs(j )− ŷ (j ) versus correlation-weighted
expected wOBA C .

Table 3 considers four players with similar ŷ(j) LR pre-
dictions. The table also shows that several of the players
have significant differences in correlation-weighted expected
wOBA C . The players (Hernandez, DeJong) with below
average values ofC have negative ŷs− ŷ differences while the
players (Acuna, Donaldson) with above average values of C
have positive ŷs − ŷ differences as predicted by Figure 12.
We see from the last two columns of the table that these
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TABLE 3. Players with similar ŷ, 2019.

differences benefit the MSP prediction as the LR prediction
error ŷ−y is larger in absolute value than the MSP prediction
error ŷs − y in each case.

5) INCORPORATING CONTEXTUAL INFORMATION
In Section IV-C we described several contextual factors that
can affect the value of a batted ball with parameters (s, v).
Accounting for each of these factors can improve the accu-
racy of the MSP predictions. In this section we describe a
method that can be used to estimate R(j, k) in equation (17)
to account for the effects of varying outfield geometry and
atmospheric conditions across ballparks. Since a player j
typically plays about half of his games in a single home
park these effects can have a significant impact on R(j, k).
As an example, Figure 13 plots the outfield boundaries for
Fenway Park in Boston and Yankee Stadium in New York
where the batter’s location is at home plate in the lower left
corner. A shorter distance from home plate to the outfield
boundary typically improves the batter’s likelihood of a home
run for a batted ball hit in the air. In addition, the altitude of
the ballpark affects the air density which plays an important
role in determining how far a batted ball will carry [8]. The
outfield geometry can affect players differently depending
on whether they bat right-handed or left-handed since right-
handed batters tend to hit most of their home runs to left field
while left-handed batters tend to hit most of their home runs
to right field.

FIGURE 13. Outfield geometry for Fenway Park and Yankee Stadium.

We will learn ballpark-dependent batted ball values from
2018 data and use these values to process the 2019 data
described in Section IV-D. The value of batted balls in a
subset k will depend on the quality of the fielders that defend
against these batted balls. The home team defenders are on the
field about half of the time for games played in park p which
can cause bias in batted ball values for a given (k, p). Define
Rh(k, p) as the average wOBA value for batted balls hit by
batters of hand h in subset k and park pwith the visiting team
on defense in 2018. Let Rh(k) be the average wOBA value for
batted balls hit by all batters of hand h in subset k in all parks
in 2018.

For (h, k, p) groups that correspond to vertical launch
angles v ≥ 15◦ and include at least ten batted balls in the
calculation of Rh(k, p) we compute the factor

Fh(k, p) =
Rh(k, p)

Rh(k)
(25)

where otherwise Fh(k, p) is set to 1. For a player j of hand h
with home park p in 2019 we define

R(j, k) = 0.5
[
R(k)+ R(k)Fh(k, p)

]
(26)

where R(k) is defined in equation (18) and the 0.5 accounts
for the fact that a player plays approximately half of his games
in the same home ballpark. The R(j, k) can be used to improve
the accuracy of the prediction in equation (17).

To illustrate this process we consider the b(13, 12) subre-
gion of the P5,10 partition which is defined by

(97.5 mph ≤ s < 102.5 mph) and (35◦ ≤ v < 45◦).

For this subregion we have the R(j, k) values shown
in Table 4 which demonstrate that right-handed batters have
an advantage in Fenway Park and left-handed batters have
an advantage in Yankee Stadium. These observations are
consistent with the outfield geometries shown in Fig. 13.

TABLE 4. R(j,k) for player j of hand h with home park p for b(13,12).

Let ŷs1(j) be the prediction of equation (17) using R(j, k) =
R(k) and let ŷs2(j) be the prediction using R(j, k) as defined by
equation (26). As reported in Section IV-G2, ŷs1(j) produces
an SSE of 0.546 for partition P5,10 on the data described in
Section IV-D. The use of ŷs2(j) reduces the SSE to 0.526.
Table 5 presents the five players j with the largest differ-

ences ŷs2(j) − ŷs1(j) and Table 6 presents the five players
with the smallest differences ŷs2(j)− ŷs1(j). Thus, the players
in Table 5 are expected to benefit from their home ballpark
while the players in Table 6 are expected to be hindered
by their home ballpark. The parks represented in Table 5
are known to benefit batters. Coors Field in Denver has an
altitude of 5197 feet which enables batted balls to carry longer
distances and Citizens Bank Park in Philadelphia has an
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TABLE 5. Players with largest ŷs2 − ŷs1, 2019.

TABLE 6. Players with smallest ŷs2 − ŷs1, 2019.

outfield geometry which is beneficial to right-handed batters.
Similarly, both Busch Stadium in St. Louis and Marlins Park
in Miami which appear in Table 6 have outfield geometries
that are detrimental to right-handed batters. The last two
columns in each table give the prediction errors E1(j) =
ŷs1(j) − y(j) and E2(j) = ŷs2(j) − y(j) where y(j) is the
unobserved performance. E1(j) is negative for each of the
players in Table 5 which is consistent with the expectation
that these players should benefit from their home ballpark
while E1(j) is positive for four of the five players in Table 6
which is consistent with the expectation that these players
should be hindered by their home ballpark. We see that for
nine of the ten players in the two tables we have |E1| > |E2| so
that the use of home park information reduces the prediction
error.

V. CONCLUSION
Sensor systems that acquire large sets of data have been
deployed to document the mechanics of several sports includ-
ing baseball [1], basketball [32], football [33], and golf [34]
at unprecedented levels of detail. Data-driven techniques have
been applied to these sensor measurements to discover new
skills [35], quantify known skills with greater accuracy [36],
and understand biomechanical principles [37] to improve per-
formance and prevent injury. This information has been used
by professional sports teams in search of an advantage [38].
While there are large disparities in the financial resources
available to teams, the use of data-driven models has enabled
small market franchises to compete successfully against their
more affluent opponents [39].

We have used ball-tracking radar data to show that the pre-
dictive value of a batted ball in baseball depends on its speed
and vertical launch angle. This constraint enables a batted
ball distribution to be estimated from a set of observations
using a regression process that adapts to a player’s particular
collection of batted balls. We showed that these estimated
distributions can be used to make improved predictions about
unobserved data. The methodology can be adapted to include
additional sensor measurements for properties such as spin
and horizontal angle as they become available. Since the
approach is based on estimating distributions defined over
a partition of measurement space, fine-grained contextual

adjustments can be included to improve the accuracy of the
predictions. The measurement space partitioning process can
be used for several applications in baseball including perfor-
mance forecasting and defensive positioning as well as for a
range of other estimation and prediction tasks involving large
sets of multidimensional sensor data.

APPENDIX: DEPENDENCE OF PREDICTION ACCURACY ON
THE PARTITION
The error in a prediction generated using the MSP approach
depends on the partition of measurement space. Using equa-
tion (17), we can write the unobserved performance for
player j as

y(j) =
B∑
k=1

(̂
py(j, k)+ εp(j, k)

) (
R(j, k)+ εR(j, k)

)
. (27)

The error terms are defined by εp(j, k) = py(j, k)− p̂y(j, k)
and εR(j, k) = Ry(j, k)− R(j, k) where Ry(j, k) is the average
value of the unobserved batted balls in subset k for player j.
The prediction error is given by

y(j)− ŷs(j)

=

B∑
k=1

[̂
py(j, k)εR(j, k)+ R(j, k)εp(j, k)+ εp(j, k)εR(j, k)

]
(28)

where each term in the sum depends on the subset k.
The error terms have a complex dependence on the group

of subsets that define the partition. Reducing the size of the
εR(j, k) error depends on balancing the competing goals of
using subsets k that include enough data to estimate R(j, k)
accurately but which also allow a single R(j, k) to be repre-
sentative of any particular sample within a subset that might
occur in y(j). The variance of the εp(j, k) error is given by [26]

VAR
[
εp(j, k)

]
= σ 2

p (k)
(
1− α2(N , k)

)
(29)

where σ 2
p (k) is the variance of px(j, k) over batters j for sub-

set k. Thus, VAR
[
εp(j, k)

]
depends on both the distribution

of the px(j, k) and the α(N , k). Since the error terms and the
prediction error in equation (28) have a complex dependence
on the interaction between the measurement space partition
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and the structure of the data we use a learning process for
partition selection as described in Section IV-G2.
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