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ABSTRACT Offloading tasks to cloud servers has increasingly been used to provide terminal users with
powerful computation capabilities for a variety of services. Recently, edge computing, which offloads tasks
from user devices to nearby edge servers, has been exploited to avoid the long latency associated with cloud
computing. However, edge server placement and task allocation strongly affect the offloading process and
the quality of a user’s experience. Therefore, appropriately deploying the edge servers within a network
and evenly allocating the workload to the servers are vital. This paper thus considers both the workload of
edge servers and the distances involved in offloading tasks to these servers. To improve the user experience,
edge server locations are carefully selected and the workload for the servers are allocated in a balanced
manner. This scenario is formulated as a mixed-integer linear programming problem, and a novel solution
that searches for the best server placement using simulated annealing while integrating task allocation using
the Lagrangian duality theory with the sub-gradient method is proposed. Numerical simulations verify that
the proposed algorithm can achieve better results than conventional heuristics.

INDEX TERMS Cloud computing, edge computing, server placement, task allocation.

I. INTRODUCTION
With the increasing popularity of smartphones and Internet-
of-Things (IoT) devices, many new applications that require
significant computation and prompt responses have been
developed. However, mobile devices and general embedded
systems usually have limited computation capabilities. One
solution to this problem is to offload individual tasks
to cloud servers because, in general, cloud servers have
massive computation resources [1]. Unfortunately, the servers
are often located far from the users, resulting in high
transmission latency. Recently, edge computing has been
proposed to enhance the efficiency of the task offloading
process [2], [3]. Edge computing deploys computational and
storage resources to the edge of a network. Because the
computational resources are relocated closer to the users,
the communication latency can be significantly reduced.
Nevertheless, given the rapid development of smartphone
and IoT device applications, offloading demand can increase
significantly and an unbalanced workload among edge
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servers may still result in longer computational latency when
offloading tasks.

Some previous studies have considered load balancing by
monitoring certain utilization metrics for load generated by
server-side computation [4], [5], but rarely considered com-
munication distance as the main factor impacting workload
balancing. The transmission time is usually determined by
the data size and data transmission rate [6], [7], with longer
transmission distances also creating greater loads within
the network. Traditional models for load balancing usually
consider only the computational load on the servers and do
not consider the transmission load due to distance.

In this paper, a task-offloading paradigm is considered.
A number of edge servers are deployed with edge nodes
within a network. Offloading requests from other edge nodes
can be allocated to the edge servers in order to fulfill the
demand for computational power. Edge server placement and
task allocation are tailored by considering both the workload
balance among the edge servers and the transmission distance
for the offloaded tasks. Balancing the workload among the
edge servers and reducing the transmission distance for
offloaded tasks is equivalent to reducing the computational
and communication latency, respectively. This is formulated
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as a mixed-integer linear programming problem. The Edge
Server Placement (ESP) Algorithm is thus proposed as an
efficient strategy to determine a better solution for edge
server placement and task allocation. The ESP algorithm
is based on simulated annealing and considers both edge
server placement and task allocation. Simulated annealing is
used to search the enormous solution space for edge server
locations, while task allocation is resolved for the selected
edge server locations using the Lagrangian duality theory [8]
and the sub-gradient method. Simulations are conducted
to evaluate the performance of the proposed scheme, with
the results indicating that the ESP algorithm exhibits great
flexibility in balancing the load among the edge servers and
the transmission distance.

The main contributions of this paper are as follows:
• This paper proposes a load balancing model that
considers both the computational load on the edge
servers and the transmission distance for task offloading
in edge-computing networks.

• An efficient and effective scheme is developed to
provide better solution for both task allocation and
server placement.

• The Lagrangian duality theory is integrated with the
simulated annealing process to improve the search
efficiency

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III presents the problem
formulation and solution in detail. Section IV describes
the simulation experiments and evaluates the performance.
Finally, Section V concludes the paper.

II. RELATED WORK
Task allocation and server placement problems have been
intensively studied in recent decades. Both problems are often
associated with optimization objectives and constraints that
make them non-trivial and very challenging.

Some research has assumed that servers are already
deployed and focus on allocating the clients to servers with
fixed locations. For example, Ye et al. [9] studied user
association policies in heterogeneous networks (HetNets)
for load balancing and presented an efficient distribution
algorithm that obtained a near-optimal solution. In [10],
Athanasiou et al. modeled a client association problem that
assigned a client to access points in a 60-GHz wireless
access network. However, these studies did not consider
the transmission distance between the clients and servers.
Heuristic algorithms are often used for discovering the
effective association between clients and servers.

The studies reported in [11], [12], and [13] employed
genetic algorithms for server placement and task allocation,
while Lim and Lee [11] aimed to find an effective strategy
based on graph coloring to offload tasks to edge servers to
balance the load. Tang and Pan [12] focused on the energy
consumption in the communication network of a data center.
They proposed a hybrid genetic algorithm that improved
performance and efficiency by optimizing the placement of

virtual machines. Xu et al. [13] presented a computational
model based on vehicle-to-all communication (V2X) in edge
computing. A genetic algorithm-based method was proposed
as a balanced offloading strategy.

Game theory has also been widely adopted in task alloca-
tion for mobile-edge cloud computing [14], [15], [16], [17].
With distributed multiple users, every user is modeled as
a game player, with each can independently determining
their own offloading strategies. In [14], Chen presented a
computation offloadingmodel in which the tasks are assumed
to be either processed locally or offloaded entirely to a single
cloud server. The problem was formulated as a decentralized
computation offloading game that promised to achieve aNash
equilibrium. Based on [14], Chen [15] further considered the
problem of deciding whether to forward a user’s tasks to a
single remote cloud server with a single access point in each
round of the game. In contrast, instead of considering a single
access point, Ma et al. [16] took multiple access points into
account. In addition, in [17], a multi-user offloading problem
was formulated as a stochastic game, and a stochastic learning
algorithm was proposed in order to reach a Nash equilibrium.

Other researchers have proposed the task-offloading
schemes based on machine-learning techniques in edge
computing. Li et al. [18] and Shuja et al. [19] surveyed
solutions based on machine learning for caching in an edge
network. These approaches trained the model to offload
computationally-intense applications to a specified edge
server. However, the offloading model could be complex, and
a huge amount of data was required to train the model.

In term of server placement, previous studies have mostly
concentrated on searching for candidate server positions
as a cluster head to reduce the response time. Recently,
studies have investigated the K -edge server placement
(k-ESP) problem [20], [21]. k-ESP primarily focuses on
minimizing the number of edge servers to cover the entire
Internet while satisfying budget constraints. Zeng et al. [20]
presented a greedy algorithm to determine the fewest number
of servers required in wireless metropolitan area networks.
The proposed method iteratively selected as many nodes as
possible to maximize the edge servers’ coverage. In [21],
Yin et al. provided a dynamic, resource-provisioning frame-
work to obtain feasible edge server locations according to
the workload and users’ proximity. However, they did not
consider load balancing. Though the requirement for latency
constraints was met, their proposal may cause overloading.

Li and Wang [22] proposed an energy-aware edge server
placement model to reduce the energy consumption and
computing resource utilization. A discrete particle swarm
optimization algorithm was proposed for both server place-
ment and task allocation. In [23], Xu et al. proposed a
model tominimize amulti-objective problem for social media
services within the Cognitive Internet of Vehicles. An inte-
grated genetic algorithm was adopted to improve the quality
of the services. Guo et al. [24] described a multi-objective
optimization problem to minimize the communication delay
with load balancing between devices. Although the above
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studies aim to optimize multiple objectives, the weights
for each term in the objective function are usually selected
intuitively and, thus, can dramatically change the final results.
In contrast, the model proposed in this paper seamlessly
integrates the cost of computation and communication and
provides a more meaningful control between the loads of
computation and communication.

III. TASK ALLOCATION AND SERVER PLACEMENT
In this section, the systemmodel for the server placement and
task allocation problem is illustrated. An integer program-
ming problem is then formulated based on the system model.

A. SYSTEM MODEL
Consider a network composed of nodes and links, as shown
in Fig. 1. The network topology can be considered an
undirected graph G = (V ,E), where V = {1, 2, . . . ,N }
denotes the set of nodes that could be base stations or access
points, and E is the set of links between the nodes. The nodes
provide access to the network for mobile users. To facilitate
task-offloading operations, a number of edge servers will be
deployed on some of the nodes. Users’ devices can attach
to the nodes in their vicinity. A variety of computationally
intensive and delay-sensitive tasks from user devices can be
offloaded to the edge servers through the nodes to which the
user is currently attached. For simplicity, each node allocates
a non-dividable task entirely to a solitary node equipped with
an edge server. The problem in which nodes can split tasks
between different edge servers can be modeled in a similar
way. In addition, every node can allocate its tasks to any node
with an edge server in the topology.

B. PROBLEM FORMULATION
Assume that there areK edge servers deployed in the network
to process the received tasks. In this system, each node i can
be allocated to node j deployed with an edge server. The
access delay between node i and j can be indicated by the
number of hops as follows:

dij = (hopij + 1)α, (1)

where hopij is the minimum number of hops between node
i and node j, and α is the weight factor for distance. The
distance is at least 1 because tasks from a mobile device are
initially offloaded to the nearest base station i.

Let λi be the offloading task request rate originating from
node i. The total workload is weighted by the distance. The
largest workload among all edge servers can be expressed as

η = max
j∈V

∑
i∈V

dijλiyij (2)

where yij is a binary variable that represents the allocation
decision. In particular, for all i, j ∈ V ,

yij =


1, if the task originated from node i

is allocated to edge server at node j
0, otherwise.

(3)

FIGURE 1. Illustration of task allocation in edge computing.

Note that the workload is weighted by the distance from
the node to the edge server. Let xi be another binary decision
variable that indicates whether node i is deployed with an
edge server and can be defined as follows:

xi =

{
1, if node i is deployed with an edge server
0, otherwise.

(4)

The goal of the problem is to minimize the largest
workload for edge server from among the set of all edge
servers. Specifically, the server placement and task allocation
problem can be formally expressed as follows:

minimize η (5)

subject to
∑
i∈V

dijλiyij ≤ η, ∀j ∈ V (6)∑
j∈V

yij = 1, ∀i ∈ V (7)

∑
i∈V

xi = K (8)

yij ≤ xj, ∀i, j ∈ V (9)

yij ∈ {0, 1}, ∀i, j ∈ V (10)

xi ∈ {0, 1}, ∀i ∈ V . (11)

Constraint (6) guarantees that the workload for all edge
servers is less than or equal to η, which is the largest workload
among the edge servers. Constraint (7) guarantees that tasks
originating from a particular node will be allocated to a single
edge server. The total number of edge servers is limited to K
as in constraint (8). Constraint (9) ensures that nodes must be
allocated to a node with an edge server. Instead of relying on
exponentially complex global methods, this paper proposes
an efficient approach that is feasible and better than simple
heuristics.

The proposed solution can be separated into two phases:
(1) the location of the edge servers is selected, and (2)
the tasks from each node are allocated to the edge servers.
To simplify the problem, the task allocation is resolved under
the assumption that the edge server locations have already
been selected. The edge server locations are then selected by
integrating the task-allocation scheme.
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C. TASK ALLOCATION PROBLEM
Assume that K -edge servers have already been deployed in
the network. Let X be the set of nodes for which edge servers
are deployed. Because the edge server locations have already
been selected, the problem can be simplified as follows:

minimize η (12)

subject to
∑
i∈V

dijλiyij ≤ η, ∀j ∈ X (13)∑
j∈X

yi,j = 1, ∀i ∈ V (14)

yij ∈ {0, 1}, ∀i ∈ V , ∀j ∈ X . (15)

This is a combinatorial problem. In the worst case,
the complexity of conventional algorithms in solving this
problem would grow exponentially with the increase of the
topology size.

The task allocation problem differs from the general
assignment problem in that the objective is to reduce the
largest load among the edge servers rather than the sum of
the assignment costs. The Lagrangian duality theory applied
for the association problem in [10] is referred to solve the
problem. For completeness, the derivation is briefly described
as follows. The Lagrangian duality theory aims to solve
the original objective function by finding the solution for a
dual function that is derived from the original function. The
transformed dual function is usually easier to solve, and the
obtained solution can place a bound on the primal function.
First, denote u = (uj)j∈X as the vector of the Lagrange
multipliers to dualize constraint (13) in problem (12). The
partial Lagrangian can be formed as

L(η, y,u) = η(1−
∑
j∈X

uj)+
∑
i∈V

∑
j∈X

dijλiujyij. (16)

To simplify the notation, let Y be the set of all possible
solutions for the allocation vectors y according to the
constraints in Eqs. (14) and (15). Y can further be denoted
as a Cartesian product for the set of Yi ⊂ R, i ∈ V

Y = Y1 × Y2 × · · · × Yn (17)

where Yi is given by

Yi = {yi = (yij)j∈X |
∑
j∈X

yij = 1, yij ∈ {0, 1}}. (18)

Furthermore, the Lagrange dual function g(u) can be
obtained by minimizing the partial Lagrangian in (16) with
the input including η, y and u as follows:

g(u) = inf
y∈Y

L(η, y,u) (19)

=

{
infy∈Y

∑
i∈V

∑
j∈X dijλiujyij,

∑
j∈X uj=1

−∞, otherwise
(20)

=

{∑
i∈V infyi∈Yi

∑
j∈X dijλiujyij,

∑
j∈X uj=1

−∞, otherwise
(21)

=

{∑
i∈V gi(u),

∑
j∈X uj = 1

−∞, otherwise.
(22)

In Eq. (16), η(1 −
∑

j∈X uj) should be zero or the value
of this equation would be infinity. Therefore,

∑
j∈X uj = 1

is needed to prevent the objective function from going to
infinity. In particular, the constraints for task allocation in
Eqs. (14) and (15) are implied in Eqs. (17) and (18). The
optimal value of gi(u) in problem (22) can be obtained from

min
∑
j∈X

dijλiujyij (23)

s.t. yi ∈ Yi. (24)

Finally, the Lagrange dual problem can be formulated as

max g(u) =
∑
i∈V

gi(u) (25)

s.t.
∑
j∈X

uj = 1 (26)

uj ≥ 0, j ∈ X . (27)

The load-balancing problem in (12) is converted to the
Lagrange dual problem which is now a convex problem.

According to the properties of the Lagrangian duality
theory, if the primal problem is convex, the optimal value of
the primal problem and the corresponding dual problem is
the same. In contrast, if the primal problem is non-convex,
there would be a duality gap between the optimal value
of the two problems. Though a gap exists, a feasible solution
approximating the optimal solution for the primal problem
can still be obtained by solving the dual problem.

The objective g(u) in problem (25) is a non-differentiable
function. Therefore, instead of using gradient-based algo-
rithms, a sub-gradient method [25] is used to solve this
problem.

In problem (23), although it is combinatorial, the solution
can be obtained trivially as follows:

y∗ij =

{
1, j = argmink∈X dikλiuk
0, otherwise.

(28)

The solution y∗ij determines whether the task requests of
node i are allocated to server j.
The sub-gradient method is used for the problem in (25).

Let s = (sj)j∈X denote the sub-gradient of −g at a feasible u,
where sj can be obtained as follows:

sj = −
∑
i∈V

dijλiy∗ij (29)

where y∗ij is the solution obtained from Eq. (28) for
problem (23). The iterative projected sub-gradient method
can be formulated as

u(k+1) = P((u)(k) − βks(k)) (30)

where k is the index of the iteration in the projected
sub-gradient method, and P is the function of Euclidean
projection that can project a value onto the unit simplex
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5 = (u|
∑

j∈V uj = 1, uj ≥ 0) [26]. βk is the step size at the
kth iteration. In this work, βk is set as βk = β / k , where β is a
constant greater than 0. In the beginning, the value uj is given
randomly; u is optimized with the iteration of the projected
sub-gradient method, and the dual problem (25) can be solved
gradually.

Algorithm 1: Task Allocation Algorithm
Input:
K -edge servers’ positions X
Output:
Task allocation result y∗

1 Given uj randomly with
∑

j∈X uj = 1
2 Set sub-gradient iteration number k = 1
3 Temporary allocation result set ỹ = ∅
4 for k ← 1 to ϕ do
5 Step 1 Determine task allocation yij by Eq. (28)
6 Step 2 Store the allocation result into ỹ
7 Step 3 Compute sj of each edge server j by Eq. (29)
8 Step 4 Update each uj by projected sub-gradient

method in Eq. (30) as uk+1

9 compute cost of primal problem (12) with each
allocation result store in ỹ

10 y∗ = the allocation with the lowest cost by problem (12)
in ỹ

However, as mentioned previously, the primal prob-
lem (12) is non-convex, so a feasible solution for the primal
problem cannot be obtained from the dual problem directly.
In our problem, let ϕ be the number of iterations running for
the projected sub-gradient method. The most feasible primal
solution for task allocation is taken as the best dual solution
from the ϕ iterations in Algorithm 1. The complete process
for the allocation algorithm is presented in Algorithm 1.

D. THE PROPOSED SCHEME
In the next phase, the edge server locations are selected.
The task allocation scheme presented above is integrated
with the server placement. Selecting locations for the edge
servers is important because different edge server locations
may lead to different workloads, which are weighted with
the distance between the servers and the allocated nodes.
Given the increasing size of the toplogy, it has become
very challenging to optimally deploy edge servers due to
the exponential increase in the number of combinations in
task allocation and server location selection. To deal with
this large combinatorial optimization problem, simulated
annealing is adopted in the search for the global optimal
solution for edge server placement and task allocation. The
proposed algorithm is listed in Algorithm 2.

Initially, the K -edge servers are deployed at the nodes
with the highest request rates. There are several parts in the
simulated annealing process. First, the configuration state of
the system has to be defined. Server placement S∗ and task
allocation y∗ are the configurations of the architecture. S∗ is

Algorithm 2: Edge Server Placement Algorithm
Input:
A network topology G = (V ,E)
Output:
Edge server location set S∗

Task allocation result y∗

1 T = T0
2 η∗ = inf, η = 0
3 S← the K nodes with the largest request rates
4 while T>Tf do
5 Obtain y by Algorithm 1 for the edge servers in S
6 Compute the largest edge server workload η
7 if η<η∗ then
8 S∗← S, y∗ = y, η∗ = η
9 else

10 1 = η − η∗

11 P = min(1, e(−1f )/T )
12 if with probability P then
13 S∗← S, y∗ = y, η∗ = η
14 else
15 S← S∗

16 Update S by Algorithm 3
17 T = T ∗ γ

18 return S∗, y∗

a set of nodes that are chosen to place edge servers, and y∗ is
the allocation results obtained from Algorithm 1 according
to the specified edge server locations. Second, the accep-
tance probability for the generated configurations needs to
be calculated. While the generation mechanism provides
candidate configurations, the probability decides whether
worse configurations are selected as the next state or not.
In the proposed algorithm, if the new configuration exhibits
a better objective value, it is accepted directly. If not, it may
still be accepted based on this probability, which depends on
Boltzmann’s function, formulated as

P = min(1, exp−1f /T ) (31)

where 1f is the difference between the current and previous
values of the objective function at the iteration, and T is
the current temperature. The purpose for accepting worse
configurations is to provide chance to jump out of local
minima which may obtain better results.

Third, a generation mechanism for new configurations
is required. To search efficiently in the large combi-
natorial problem, simulated annealing explores different
configurations to obtain better results. At every iteration,
the configurations are updated and compared, allowing
the better configuration to be determined. In the proposed
algorithm, at each iteration, the configuration is updated as
follows. One of the edge servers including the group of
nodes that are allocated to the edge server is selected. Then,
in the cluster, the node which will has the least workload
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Algorithm 3: Edge Server Updating Algorithm
Input:
Edge server location set S
Task allocation result y
Output:
New edge server location set S

1 Randomly select an s from S
2 S← S / s
3 Gs = ∅
4 for i← 1 to N do
5 if yis = 1 then
6 Gs← Gs ∪ i

7 s′ = argmini∈Gs
∑

j∈Gs dij λj
8 S← S ∪ s′

9 return S

if performing as the edge server is chosen as the new edge
server. Algorithm 3 lists the sever updating process. Finally,
the nodes in the network are then reallocated according to the
new set of servers in the next iteration. The algorithm stops
when the temperature is lower than the set threshold.

E. TIME COMPLEXITY
In the ESP algorithm, time is primarily spent on the allocation
algorithm. At each iteration, server placement and task
allocation are updated, with the complexity of updating the
server in Algorithm 3 is about O(N 2). In Algorithm 1,
the calculation time is primarily consumed in Step 1, with the
time complexity for determining the allocation beingO(NK ).
The total time complexity for Algorithm 1 is O(ϕ(NK )),
where ϕ is the number of iterations for the sub-gradient
method. The computation and comparison of the costs can
be calculated in constant time. Let r be the number of moves
executed in simulated annealing. The total time complexity is
O((N 2

+ ϕ(NK )) ∗ r) which is executed in polynomial time.

IV. SIMULATIONS
In this section, the proposed algorithm is verified and
evaluated using topologies of various sizes. The experimental
results are discussed to determine the effectiveness of the
proposed algorithm in terms of the placement and allocation
problem.

A. ENVIRONMENTAL SETUP
In the experiments, 100 different topologies are generated
with different numbers of links ranging from 1.1 × N to
2.0 × N , where N is the number of nodes. The offloading
task request rate from the nodes are randomly selected, but
the sum of the injected task request rates is controlled by
the size of the topology, i.e., the number of nodes N . In the
simulations, the total injected task rate is set to 20 × N .
For the parameters used in the Algorithms, the total iteration
number ϕ for sub-gradient is set to 100. The initial and final

FIGURE 2. The impact of the number of nodes.

temperatures are 300 and 10, respectively. The cooling rate
γ is set to 0.9. In addition, the number of hops between
nodes is obtained using the Dijkstra algorithm. The value
for every data point in the figures is the average over the
100 topologies.

The performance of the proposed scheme is compared to
classic K-medoids clustering [27] and a greedy algorithm.
The greedy algorithm deploys the edge server one by one.
In each iteration, it places an edge server at the node with the
highest request rate among the remaining nodes that have not
yet been allocated to an edge server. The nodes in its vicinity
are allocated to that edge server starting with the closest node
until the sum of the allocated task request rate reaches the
average, i.e.,

∑
i∈V λi / K . This process repeats until K edge

servers are deployed and all of the nodes are allocated.

B. SIMULATION RESULTS
Fig. 2 presents the results for the largest server workload
against the number of nodes in the topology. Twenty edge
servers are deployed in the topology. Intuitively, the average
objective value (η) increaseswith an increase in the number of
nodes. The greedy approach is better thanK-medoids because
its task allocation strategy focuses on balancing the weighted
load, which considers the task request rates and the distance
from the nodes to the edge servers. In contrast, K-medoids
only considers the distance between the nodes and the edge
servers. The larger the environment, the stronger the impact of
this load balancing mechanism. The proposed ESP algorithm
always exhibits a lower value than the greedy and K-medoids
algorithms and has the lowest increase rate, indicating that its
performance will improve for larger topologies.

In Fig. 3, N is fixed at 200 and K is varied from 10 to
30 to observe the impact of the number of servers on the
average objective value. With an increase in the number of
edge servers, each node has a higher chance of finding a
closer edge server, thus lowering the total workload. The
results reveal that the optimization mechanism used by
the proposed method is much better than the greedy and
K-medoids algorithms. Fig. 4 investigates the impact of the
number of links in the topology. N is fixed at 200 and K is
fixed at 20. The proposed ESP produces a better performance
than the other approaches. With a rise in the number of
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FIGURE 3. The impact of the number of servers.

FIGURE 4. The impact of the number of links.

FIGURE 5. The process of the edge placement algorithm.

links, the average objective value steadily decreases. This
is because the nodes can find shorter paths to servers when
there are more links. However, once a certain number of links
has been reached, the decline in η gradually slows down
because a load balance status can be maintained. In Fig. 5,
the convergence behavior of the proposed ESP algorithm is
presented with N fixed at 200 and K fixed at 20. During
the simulated annealing process, the largest workload among
edge servers is reduced along the execution. The average
objective value becomes stable after about 30 iterations.

In addition, the algorithms are also compared with the
approximate solution obtained using CPLEX, an IBM tool
for optimization problems. CPLEX is used as a comparison
because its solution is considered to be close to the optimal.

FIGURE 6. Comparison to the results from CPLEX.

FIGURE 7. The execution time.

The community edition of the optimizer is employed in the
experiments, so the solver can only handle small topologies.
The number of edge servers is fixed at K = 5, and the number
of nodes N ranges from 11 to 20. Fig. 6 presents the average
objective value for each scheme. The results of the proposed
ESP algorithm are the closest to those from CPLEX, which
implies that the results of ESP are much closer to the optimal
than the other schemes.

The computational efficiency of each algorithm is also
compared. Fig. 7 shows the average execution time according
to the number of nodes.K is fixed at 5 and n ranges from 11 to
20. Although the ESP algorithm has a higher computation
time than the greedy and K-medoids algorithms, it is still
within an acceptable range because the average objective
value it obtains is much better. For CPLEX, the average
execution time grows exponentially with an increase in
the number of nodes. The execution time of the proposed
algorithm also grows as the nodes increase, but this increase is
much slower than the CPLEX. Predictably, CPLEX is much
more computationally expensive for large-scale topologies.

Experiments are also conducted to evaluate the impact
of the distance factor α by the ESP algorithm. In Fig. 8,
by adjusting the distance factor α, the average number of hops
is evaluated for different numbers of nodes. K is fixed at 20.
By increasing α, the average number of hops between the
nodes and edge servers decreases gradually. Because when
the weight of distance is higher, nodes tend to offload to
closer edge servers to reduce the transmission load, which
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FIGURE 8. The impact of distance factor α on node distance.

FIGURE 9. The impact of distance factor α on server workload.

results in a lower average number of hops. In addition, when
n increases, the topology becomes larger. The number of hops
also increases since the nodes are farther away from the edge
servers.

In Fig. 9, the difference in the weighted load between
servers is evaluated with different distance factor α.N is fixed
at 200 and K is fixed at 20. In the figure, the upper bound of
the vertical bars represents the largest server weighted load,
while the lower bound represents the smallest, and the data
point is the average. With an increase in α, the difference in
the weighted load becomes larger.When α is large, the weight
of the distance becomes higher and offloading tasks to more
distant edge servers is prevented to reduce the load. However,
this prevents nodes from being allocated to servers that would
produce a better load balance and leads to a larger difference
between the loads of edge servers. α can be adjusted based
on specific scenarios; for example, if transmission costs are
expensive, α could be set higher.

In Fig. 10, an example of the effect of the distance factor α
is illustrated using the USNET topology [28], which contains
24 nodes and four edge servers are deployed. The ESP
algorithm is used to solve the server placement and task
allocation problem. For lower values of α, task allocation in
each cluster is more widely dispersed. With an increase in α,
each cluster becomes more centralized because the distance
becomes more important, so nodes tend to offload their tasks
to a closer edge server.

FIGURE 10. The impact of the distance factor α.

V. CONCLUSION
Edge server placement strongly affects the efficiency of
task allocation. In this paper, a server placement and
task allocation method for an edge-computing network is
studied. We formulate the scenario as a mixed-integer linear
programming problem and propose a simulated annealing-
based edge server placement and task allocation algorithm.
To evaluate the performance of the proposed algorithm,
different topology sizes are considered, including real-world
networks. The impact of the distance factor is also examined
in detail. The results show that, by adopting the proposed ESP
algorithm, the costs of the largest server, i.e., the objective
value in this paper, can be effectively reduced while the
runtime remains manageable.

In reality, the ability of each server to handle the workload
may differ. Furthermore, mobile users may offload different
types of task, and those tasks could be processed by different
edge servers. Thus, a more advanced model with different
types of task and different computing capacities for the edge
servers should be considered in the future.
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