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ABSTRACT Let p be any prime, s and m be positive integers. In this paper, we completely determine the
Hamming distance of all constacyclic codes of length ps over the finite commutative chain ring Fpm+uFpm+
u2Fpm (u3 = 0). As applications, we identify all maximum distance saparable codes (i.e., optimal codes
with respect to the Singleton bound) among them.

INDEX TERMS Hamming distance, constacyclic codes, optimal codes, MDS codes.

I. INTRODUCTION
Constacyclic codes form one of the most important class of
codes, due to their easiness in encoding and decoding via
simple shift registers, and their many practical applications.
This class of codes can be seen as a generalization of cyclic
codes, that have been extensively studied since the late 1950s
(cf. [25]–[29]).

Let Fpm be a finite field of pm elements, where p is a
prime, and let ` ≥ 2 be an integer. Then the ring R =
Fpm [u]/〈u`〉 = Fpm+uFpm+. . .+u`−1Fpm (u` = 0) is a finite
commutative chain ring.Many new and good codes have been
constructed by using this type of commutative chain rings
(see, for instance, ( [18], [31], [32]). Finite commutative chain
rings also have practical applications in connections between
modular lattices and linear codes over Fp+uFp [3].
When ` = 2, there are a lot of literatures on constacyclic

codes over rings Fpm [u]/〈u2〉 = Fpm+uFpm for various prime
p and positive integersm (see, e.g., [1], [2], [4], [8], [10]–[13],
[16], [17], [19], [30].) In particular, structure of andHamming
distance distibution of all constacyclic codes of length ps over
Fpm+uFpm were completely determined in [8], [14], [21].

When ` = 3, in 2015, [34] determined the struc-
ture of (δ+αu2)-constacyclic codes of length ps over
Fpm [u]/〈u3〉 = Fpm+uFpm+u2Fpm . Recently, [22] obtained
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the structure of all constacyclic codes of length ps over Fpm+
uFpm+u2Fpm by classifying them into 8 types. [33] stud-
ies the structure of repeated-root constacyclic codes of any
length over Fpm+uFpm+u2Fpm and provided the Hamming
distnace of some of them. However, the complete Hamming
distance distribution of all constacyclic codes of length ps

over Fpm+uFpm+u2Fpm was still left open. That motivates us
to complete that task in this paper. As an application, we use
this Hamming distance distribution to identify all MDS codes
among them. These MDS codes are optimal in the sense that
among codes of the same length and dimension, they have the
best error-correcting capacities.

II. SOME PRELIMINARIES
For a fintie ring R, consider the set Rn of n-tuples of elements
from R as a module over R in the usual way. A subest C ⊆
Rn is called a linear code of length n over R if C is an
R-submodule of Rn.

For a unit λ of R, the λ-constacyclic (λ-twisted) shift τλ on
Rn is the shif

τλ((x0, x1, . . . , xn−1)) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C , i.e., if
C is closed under the λ-constacyclic shift τλ. In case λ = 1,
those λ-constacyclic codes are called cyclic codes, and when
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λ = −1, such λ-constacyclic codes are called negacyclic
codes.

Each codeword c = (c0, c1, . . . , cn−1) ∈ C is custom-
arily identified with its polynomial representation c(x) =
c0+c1x+· · ·+cn−1xn−1, and the code C is in turn identified
with the set of all polynomial representations of its code-
words. Then in the ring R[x]/〈xn−λ〉, xc(x) corresponds to a
λ-constacyclic shift of c(x). From that, the following fact is
well known (cf. [20], [23]) and straightforward:
Proposition 1: A linear code C of length n is

λ-constacyclic over R if and only if C is an ideal of
R[x]/〈xn−λ〉.

For a codeword x = (x0, x1, . . . , xn−1) ∈ Rn, the Hamming
weight of x, denoted by wtH (x), is the number of nonzero
components of x. The Hamming distance dH (x, y) of two
words x and y equals the number of components in which
they differ, which is the Hamming weight wtH (x−y) of x−y.
For a nonzero linear code C , the Hamming weight wtH (C)
and the Hamming distance dH (C) are the same and defined
as the smallest Hamming weight of nonzero codewords of C :

dH (C) = min{wtH (x) | 0 6= x ∈ C}.

The zero code is conventionally said to have Hamming
distance 0.

In this paper, let Fpm be a finite field of pm elements, where
p is a prime number, and denote

R = Fpm+uFpm+u2Fpm (u3 = 0).

The ring R can be expressed as R = Fpm [u]/〈u3〉 = {a+
bu+cu2 | a, b, c ∈ Fpm}. It is easy to check that R is a local
ring with maximal ideal 〈u〉 = uFpm . Therefore, it is a chain
ring. Every invertible element inR is of the form: a+bu+cu2

where a, b, c ∈ Fpm and a 6= 0.
From now onwards, we shall focus our attention on

γ -constacyclic codes of length ps over R, i.e., ideals of the
ring

Rγ = R[x]/〈xp
s
−γ 〉,

where γ is a nonzero element of Fpm . By applying the Divi-
sion Algorithm, there exist nonnegative integers γq, γr such
that s = γqm+γr with 0 ≤ γr ≤ m−1.Let γ0 = γ p

(γq+1)m−s
=

γ p
m−γr . Then γ p

s

0 = γ
p(γq+1)m

= γ .
In [22], Laaouine et al. classified all γ -constacyclic codes

of length ps over R and their detailed structures are also
established.
Theorem 1 (cf. [22]): The ring Rγ is a local ring with

maximal ideal 〈u, x−γ0〉, but it is not a chain ring. The γ -
constacyclic codes of length ps over R, i.e, ideals of the ring
Rγ , are

Type 1 (C1) :

〈0〉, 〈1〉.

Type 2 (C2) :

C2 = 〈u2(x−γ0)τ 〉, where 0 ≤ τ ≤ ps−1.

Type 3 (C3) :

C3 = 〈u(x−γ0)δ+u2(x−γ0)th(x)〉,

where 0 ≤ L ≤ δ ≤ ps−1, 0 ≤ t < L, either h(x) is 0 or

h(x) is a unit in Rγ of the form
L−t−1∑
i=0

hi(x−γ0)i with hi ∈

Fpm and h0 6= 0. Here L is the smallest integer satisfying
u2(x−γ0)L ∈ C3.

Type 4 (C4) :

C4 = 〈u(x−γ0)δ+u2(x−γ0)th(x), u2(x−γ0)ω〉,

where 0 ≤ ω < L ≤ δ ≤ ps−1, 0 ≤ t < ω, either h(x)

is 0 or h(x) is a unit in Rγ of the form
ω−t−1∑
i=0

hi(x−γ0)i with

hi ∈ Fpm , h0 6= 0 and L is the smallest integer satisfying
u2(x−γ0)L ∈ C3.

Type 5 (C5) :

C5 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x)〉,

where 0 < V ≤ U ≤ a ≤ ps−1, 0 ≤ t1 < U, 0 ≤ t2 < V,

h1(x) is either 0 or a unit inRγ of the form
U−t1−1∑
j=0

aj(x−γ0)j

with aj ∈ Fpm , a0 6= 0 and h2(x) is either 0 or a unit in Rγ

of the form
V−t2−1∑
j=0

bj(x−γ0)j with bj ∈ Fpm , b0 6= 0. Here

U is the smallest integer satisfying u(x−γ0)U+u2g(x) ∈ C5,
for some g(x) ∈ Rγ and V is the smallest integer such that
u2(x−γ0)V ∈ C5.
Type 6 (C6) :

C6 = 〈(x−γ0)a+u(x−γ0)t1h1(x)
+u2(x−γ0)t2h2(x), u2(x−γ0)c〉,

where 0 ≤ c < V ≤ U ≤ a ≤ ps−1, 0 ≤ t1 < U, 0 ≤ t2 < c,

h1(x) is either 0 or a unit inRγ of the form
U−t1−1∑
j=0

aj(x−γ0)j

with aj ∈ Fpm , a0 6= 0, h2(x) is either 0 or a unit in Rγ

of the form
c−t2−1∑
j=0

bj(x−γ0)j with bj ∈ Fpm , b0 6= 0 and

U is the smallest integer satisfying u(x−γ0)U+u2g(x) ∈ C5,
for some g(x) ∈ Rγ , V is the smallest integer such that
u2(x−γ0)V ∈ C5.
Type 7 (C7) :

C7 = 〈(x−γ0)a+u(x−γ0)t1h1(x)
+u2(x−γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x)〉,

where 0 ≤ W ≤ b < U ≤ a ≤ ps−1, 0 ≤ t1 < b, 0 ≤
t2 < W, 0 ≤ t3 < W, h1(x) is either 0 or a unit in Rγ of

the form
b−t1−1∑
j=0

aj(x−γ0)j with aj ∈ Fpm , a0 6= 0, h2(x) is
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either 0 or a unit in Rγ of the form
W−t2−1∑
j=0

bj(x−γ0)j with

bj ∈ Fpm , b0 6= 0 and h3(x) is either 0 or a unit in Rγ of

the form
W−t3−1∑
j=0

cj(x−γ0)j with cj ∈ Fpm , c0 6= 0. Here W is

the smallest integer satisfying u2(x−γ0)W ∈ C7 and U is the
smallest integer satisfying u(x−γ0)U+u2g(x) ∈ C5, for some
g(x) ∈ Rγ .

Type 8 (C8) :
C8 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x),

u(x−γ0)b+u2(x−γ0)t3h3(x), u2(x−γ0)c〉,

where 0 ≤ c < W ≤ L1 ≤ b < U ≤ a ≤ ps−1, 0 ≤ t1 < b,
0 ≤ t2 < c, 0 ≤ t3 < c, h1(x) is either 0 or a unit in R′

of the form
b−t1−1∑
j=0

aj(x−γ0)j with aj ∈ Fpm , a0 6= 0, h2(x)

is either 0 or a unit in Rγ of the form
c−t2−1∑
j=0

bj(x−γ0)i with

bj ∈ Fpm , b0 6= 0 and h3(x) is either 0 or a unit in Rγ of

the form
c−t3−1∑
j=0

cj(x−γ0)j with cj ∈ Fpm , c0 6= 0. Here L1

is the smallest integer such that u2(x−γ0)L1 ∈ 〈u(x−γ0)b+
u2(x−γ0)t3h3(x)〉, U is the smallest integer satisfying u(x−
γ0)U+u2g(x) ∈ C5, for some g(x) ∈ Rγ andW is the smallest
integer such that u2(x−γ0)W ∈ C7.
Proposition 2 (cf. [22]): We have

L =

{
δ, if h(x) = 0,

min{δ, ps−δ+t}, if h(x) 6= 0.

L1 =

{
b, if h3(x) = 0,

min{b, ps−b+t3}, if h3(x) 6= 0.

U =

{
a, if h1(x) = 0,

min{a, ps−a+t1}, if h1(x) 6= 0.

V =


a, if h1(x) = h2(x) = 0,

min{a, ps−a+t2}, if h1(x) = 0 and h2(x) 6= 0,

min{a, ps−a+t1}, if h1(x) 6= 0.

W =



b, if h1(x) = h2(x) = h3(x) = 0

or h1(x) 6= 0 and h3(x) = 0,

min{b, ps−a+t2}, if h1(x) = h3(x) = 0, h2(x) 6= 0,

min{b, ps−b+t3}, if h1(x) = h2(x) = 0, h3(x) 6= 0

or h1(x) 6= 0 and h3(x) 6= 0,

min{b, ps−a+t2, ps−b+t3}, if

h1(x) = 0, h2(x) 6= 0, h3(x) 6= 0.

Theorem 2 (cf. [22]): Let C be a γ -constacyclic codes of
length ps over R. Then following the same notations as in
Theorem 1, we have the following results:

• If C = 〈0〉, then |C|= 1.
• If C = 〈1〉, then |C| = p3mp

s
.

• If C = 〈u2(x−γ0)τ 〉 with 0 ≤ τ ≤ ps−1, then

|C| = pm(p
s
−τ ).

• If C = 〈u(x−γ0)δ+u2(x−γ0)th(x)〉 is of theType 3, then

|C| = pm(2p
s
−δ−L)

=


p2m(p

s
−δ), if h(x) = 0 or h(x) 6= 0,

and 0 ≤ δ ≤
ps+t
2
,

pm(p
s
−t), if h(x) 6= 0 and

ps+t
2

< δ ≤ ps−1.

• If C = 〈u(x−γ0)δ+u2(x−γ0)th(x), u2(x−γ0)ω〉 is of the
Type 4, then

|C| = pm(2p
s
−δ−ω).

• If C = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x)〉 is
of the Type 5, then

|C|
= pm(3p

s
−a−U−V)

=



p3m(p
s
−a), if h1(x) = h2(x) = 0

or h1(x) = 0, h2(x) 6= 0 and 0 < a ≤
ps+t2
2

or h1(x) 6= 0 and 0 < a ≤
ps+t1
2

,

pm(p
s
+a−2t1), if h1(x) 6= 0,

and
ps+t1
2

< a ≤ ps−1,

pm(2p
s
−a−t2), if h1(x) = 0, h2(x) 6= 0,

and
ps+t2
2

< a ≤ ps−1.

• If C = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x),
u2(x−γ0)c〉 is of the Type 6, then

|C| = pm(3p
s
−a−U−c)

=



pm(3p
s
−2a−c), if h1(x) = 0 or h1(x) 6= 0

and 0 < a ≤
ps+t1
2

,

pm(2p
s
−t1−c), if h1(x) 6= 0

and
ps+t1
2

< a ≤ ps−1.

• If C = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x),
u(x−γ0)b+u2(x−γ0)t3h3(x)〉 is of the Type 7, then

|C| = pm(3p
s
−a−b−W)
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=



pm(3p
s
−a−2b), if h1(x) = h2(x) = h3(x) = 0,

or h1(x) 6= 0 and h3(x) = 0,
or h1(x) = h3(x) = 0, h2(x) 6= 0,
and 0 ≤ b ≤ ps−a+t2,

or h1(x) = h2(x) = 0, h3(x) 6= 0,

and 0 ≤ b ≤
ps+t3
2

,

or h1(x) 6= 0, h3(x) 6= 0 and 0 ≤ b ≤
ps+t3
2

,

or h1(x) = 0, h2(x) 6= 0, h3(x) 6= 0,

and 0 ≤ b ≤ min{ps−a+t2,
ps+t3
2
},

pm(2p
s
−b−t2), if h1(x) = h3(x) = 0, h2(x) 6= 0,

and ps−a+t2 < b < ps−1,
or h1(x) = 0, h2(x) 6= 0, h3(x) 6= 0,
and ps−a+t2 < b ≤ a+t3−t2,

pm(2p
s
−a−t3), if h1(x) = h2(x) = 0, h3(x) 6= 0,

and
ps+t3
2

< b < ps−1,

or h1(x) 6= 0, h3(x) 6= 0,
ps+t3
2

< b < ps−1,

or h1(x) = 0, h2(x) 6= 0, h3(x) 6= 0,

and max{a+t3−t2,
ps+t3
2
} < b < ps−1.

• If C = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−γ0)t2h2(x),
u(x−γ0)b+u2(x−γ0)t3h3(x), u2(x−γ0)c〉 is of the
Type 8, then

|C| = pm(3p
s
−a−b−c).

III. HAMMING DISTANCE
In [7], [8] the algebraic structure and Hamming distances of
γ -constacyclic codes of length ps over Fpm were established
and given by the following theorem.
Theorem 3 (cf. [7], [8]): Let C be a γ -constacyclic code

of length ps over Fpm . Then C = 〈(x−γ0)i〉 ⊆

Fpm [x]/〈xp
s
−γ 〉, for i ∈ {0, 1, . . . , ps}, and its Hamming

distance dH (C) is completely determined by:

dH (C) =



• 1, if i = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ i ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1,
• 0, if i = ps.

Note that Fpm is a subring of R, for a code C over R,
we denote dH (CF) as the Hamming distance of C|Fpm .
As we mentioned in Section II the γ -constacyclic codes

of length ps over R are precisely the ideals of the
ring Rγ . In order to compute the Hamming distances of all
γ -constacyclic codes of length ps over R, we count the
Hamming distance of the ideals of the ring Rγ as classified
into 8 types in Theorem 1.

It is easy to see that dH (C1) = 0 when C1 = {0}, and that
dH (C1) = 1 when C1 = {1}. For a code C2 = 〈u2(x−γ0)τ 〉
of Type 2, 0 ≤ τ ≤ ps−1, the codewords of C2 are pre-
cisely the codewords of the γ -constacyclic codes 〈(x−γ0)τ 〉
in Fpm [x]/〈xp

s
−γ 〉 multiplied by u2. Therefore dH (C2) =

dH (〈(x−γ0)τ 〉F), which are given in Theorem 3.
Theorem 4: Let C2 = 〈u2(x−γ0)τ 〉 be a γ -constacyclic

codes of length ps over R of Type 2 (as classified in The-
orem 1), where 0 ≤ τ ≤ ps−1. Then the Hamming distance
of C2 is given by

dH (C2) = dH (〈(x−γ0)τ 〉F)

=



• 1, if τ = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ τ ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

In order to compute the Hamming distances of those codes
for the rest cases (Type 3, 4, 5, 6, 7 and 8), we first observe
that

wtH (a(x)) ≥ wtH (ua(x)), (1)

where a(x) ∈ Rγ .
Theorem 5: Let C3 = 〈u(x−γ0)δ+u2(x−γ0)th(x)〉 be a

γ -constacyclic codes of length ps over R of Type 3 (as
classified in Theorem 1). Then the Hamming distance of C3
is given by

dH (C3) = dH (〈(x−γ0)L〉F)

=



• 1, if L = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ L ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)L ∈ C3, it follows that

dH (C3) ≤ dH (〈u2(x−γ0)L〉) = dH (〈(x−γ0)L〉F).

Now, consider an arbitrary polynomial c(x) ∈ C3. Thus,
by (1), we obtain that

wtH (c(x)) ≥ wtH (uc(x))

≥ dH (〈u2(x−γ0)δ〉)

= dH (〈(x−γ0)δ〉F).

Since, 〈(x−γ0)δ〉 ⊆ 〈(x−γ0)L〉, we have

dH (〈(x−γ0)δ〉F) ≥ dH (〈(x−γ0)L〉F).

Hence, dH (〈(x−γ0)L〉F) ≤ dH (C3), forcing

dH (C3) = dH (〈(x−γ0)L〉F).

The rest of the proof follows from Theorem 3 and the
discussion above.
Theorem 6: Let C4 = 〈u(x−γ0)δ+u2(x−γ0)th(x), u2(x−

γ0)ω〉 be a γ -constacyclic codes of length ps overR ofType 4
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(as classified in Theorem 1). Then the Hamming distance of
C4 is given by

dH (C4) = dH (〈(x−γ0)ω〉F)

=



• 1, if ω = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ ω ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)ω ∈ C4, it follows that

dH (C4) ≤ dH (〈u2(x−γ0)ω〉) = dH (〈(x−γ0)ω〉F).

Now, consider an arbitrary polynomial c(x) ∈ C4\〈u2(x−
γ0)ω〉. Thus, by (1), we obtain that

wtH (c(x)) ≥ wtH (uc(x))

≥ dH (〈u2(x−γ0)δ〉)

= dH (〈(x−γ0)δ〉F)

≥ dH (〈(x−γ0)ω〉F).

Hence, dH (〈(x−γ0)ω〉F) ≤ dH (C4), forcing

dH (C4) = dH (〈(x−γ0)ω〉F).

The rest of the proof follows from Theorem 3 and the discus-
sion above.
Theorem 7: Let C5 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x)〉 be a γ -constacyclic codes of length ps over R
of Type 5 (as classified in Theorem 1). Then the Hamming
distance of C5 is given by

dH (C5) = dH (〈(x−γ0)V〉F)

= (n+1)pk ,

where ps−pr+(n−1)r+1 ≤ V ≤ ps−pr+nr , r = ps−k−1,
1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)V ∈ C5, it follows that

dH (C5) ≤ dH (〈u2(x−γ0)V〉) = dH (〈(x−γ0)V〉F).

Now, consider an arbitrary polynomial c(x) ∈ C5. Thus,
by (1), we obtain that

wtH (c(x)) ≥ wtH (u2c(x))

≥ dH (〈u2(x−γ0)a〉)

= dH (〈(x−γ0)a〉F).

Since, 〈(x−γ0)a〉 ⊆ 〈(x−γ0)V〉, we have

dH (〈(x−γ0)a〉F) ≥ dH (〈(x−γ0)V〉F).

Hence, dH (〈(x−γ0)V〉F) ≤ dH (C5), forcing

dH (C5) = dH (〈(x−γ0)V〉F).

The rest of the proof follows from Theorem 3 and the
discussion above.
Theorem 8: Let C6 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u2(x−γ0)c〉 be a γ -constacyclic codes of length

ps over R of Type 6 (as classified in Theorem 1). Then the
Hamming distance of C6 is given by

dH (C6) = dH (〈(x−γ0)c〉F)

=



• 1, if c = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ c ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)c ∈ C6, it follows that

dH (C6) ≤ dH (〈u2(x−γ0)c〉) = dH (〈(x−γ0)c〉F).

Now, consider an arbitrary polynomial c(x) ∈ C6\〈u2(x−
γ0)c〉. Thus, by (1), we obtain that

wtH (c(x)) ≥ wtH (u2c(x))

≥ dH (〈u2(x−γ0)a〉)

= dH (〈(x−γ0)a〉F)

≥ dH (〈(x−γ0)c〉F).

Hence, dH (〈(x−γ0)c〉F) ≤ dH (C6), forcing

dH (C6) = dH (〈(x−γ0)c〉F).

The rest of the proof follows from Theorem 3 and the
discussion above.
Theorem 9: Let C7 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x)〉 be a γ -constacyclic
codes of length ps over R of Type 7 (as classified in Theo-
rem 1). Then the Hamming distance of C7 is given by

dH (C7) = dH (〈(x−γ0)W〉F)

=



• 1, if W = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤W ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)W ∈ C7, it follows that

dH (C7) ≤ dH (〈u2(x−γ0)W〉) = dH (〈(x−γ0)W〉F).

Now, consider an arbitrary polynomial c(x) ∈ C7. We con-
sider two cases.
∗Case 1: c(x) ∈ 〈u〉. In this case, by (1). We have

wtH (c(x)) ≥ wtH (uc(x))

≥ dH (〈u2(x−γ0)b〉)

= dH (〈(x−γ0)b〉F).

∗Case 2: c(x) /∈ 〈u〉. In this case, by (1). We have

wtH (c(x)) ≥ wtH (u2c(x))

≥ dH (〈u2(x−γ0)a〉)

= dH (〈(x−γ0)a〉F).
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Since, 〈(x−γ0)a〉 ⊆ 〈(x−γ0)b〉 ⊆ 〈(x−γ0)W〉, we have

dH (〈(x−γ0)a〉F) ≥ dH (〈(x−γ0)b〉F) ≥ dH (〈(x−γ0)W〉F).

Hence, dH (〈(x−γ0)W〉F) ≤ dH (C7), forcing

dH (C7) = dH (〈(x−γ0)W〉F).

The rest of the proof follows from Theorem 3 and the
discussion above.
Theorem 10: Let C8 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x), u2(x−γ0)c〉 be a
γ -constacyclic codes of length ps over R of Type 8 (as
classified in Theorem 1). Then the Hamming distance of C8
is given by

dH (C8) = dH (〈(x−γ0)c〉F)

=



• 1, if c = 0,
• (n+1)pk , if
ps−pr+(n−1)r+1 ≤ c ≤ ps−pr+nr,
where r = ps−k−1, 1 ≤ n ≤ p−1

and 0 ≤ k ≤ s−1.

Proof: First of all, since u2(x−γ0)c ∈ C8, it follows that

dH (C8) ≤ dH (〈u2(x−γ0)c〉) = dH (〈(x−γ0)c〉F).

Now, consider an arbitrary polynomial c(x) ∈ C8\〈u2(x−
γ0)c〉. We consider two cases.
∗Case 1: c(x) ∈ 〈u〉. In this case, by (1). We have

wtH (c(x)) ≥ wtH (uc(x))

≥ dH (〈u2(x−γ0)b〉)

= dH (〈(x−γ0)b〉F)

≥ dH (〈(x−γ0)c〉F).

∗Case 2: c(x) /∈ 〈u〉. In this case, by (1). We have

wtH (c(x)) ≥ wtH (u2c(x))

≥ dH (〈u2(x−γ0)a〉)

= dH (〈(x−γ0)a〉F)

≥ dH (〈(x−γ0)c〉F).

Hence, dH (〈(x−γ0)c〉F) ≤ dH (C8), forcing

dH (C8) = dH (〈(x−γ0)c〉F).

The rest of the proof follows from Theorem 3 and the
discussion above.

IV. MAXIMUM DISTANCE SEPARABLE CODES WITH
RESPECT TO HAMMING DISTANCE
In [24], Norton et al. discussed the Singleton bound for finite
chain ring R with respect to the Hamming distance dH (C)
and is given as |C| ≤ |R|(n−dH (C)+1). Maximum Distance
Separable (MDS) codes are classified as an important class of
linear codes that meet the Singleton bound. They have high
error correction capability as compared to non MDS codes.
Theorem 11 (Singleton Bound With Respect to Hamming

Distance [24]):LetC be a linear code of length n overRwith

Hamming distance dH (C). Then, the Singleton bound with
respect to the Hamming distance dH (C) is given by |C| ≤
p3m(n−dH (C)+1).
Definition 1: Let C be a linear code of length n over R.

Then, C is said to be a maximum distance separable (MDS)
code with respect to the Hamming distance if it attains the
Singleton bound.

In this section, we identify the MDS codes for each type
of γ -constacyclic codes one by one. First, we consider the
γ -constacyclic codes of length ps of Type 1.
Theorem 12: Let C1 be a γ -constacyclic code of length ps

overR of Type 1 (as classified in Theorem 1), then the only
MDS code is 〈1〉.

Proof: Case 1: If C1 = 〈0〉, then the Hamming distance
is dH (C1) = 0. For C1 to be MDS we must have, |C1| =
p3m(p

s
−dH (C1)+1), i.e., 1 = p3m(p

s
+1), i.e., ps+1 = 0, which

is not true for any p and s.
Case 2: If C1 = 〈1〉, then dH (C1) = 1. For C1 to beMDSwe

must have, |C1| = p3m(p
s
−dH (C1)+1), i.e., p3mp

s
= p3m(p

s
−1+1),

which is true for all p and s. Thus, the code C1 is MDS in this
case.

Now we examine the MDS condition for Type 2
γ -constacyclic codes.
Theorem 13: Let C2 = 〈u2(x−γ0)τ 〉 be a γ -constacyclic

codes of length ps over R of Type 2 (as classified in Theo-
rem 1), where 0 ≤ τ ≤ ps−1. Then no MDS codes exist.

Proof: Here, we have |C2| = pm(p
s
−τ ). So, C2 is a MDS

code if and only if |C2| = p3m(p
s
−dH (C2)+1), i.e., pm(p

s
−τ )
=

p3m(p
s
−dH (C2)+1), i.e., τ = 3 dH (C2)−2ps−3.We consider two

cases as follows:
Case 1: If τ = 0, then dH (C2) = 1. For C2 to be MDS we

must have, ps = 0, which is not true for any p and s. Thus, C2
is not MDS for τ = 0.
Case 2: If ps−pr+(n−1)r+1 ≤ τ ≤ ps−pr+nr, where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C2) = (n+1)pk .
Now,

τ ≥ ps−ps−k+(n−1)ps−k−1+1
= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1
≥ p(3pk−1)−2ps+(n−1)+1
≥ (n+1)(3pk−1)−2ps+n
= 3(n+1)pk−2ps−1
> 3(n+1)pk−2ps−3
= 3 dH (C2)−2ps−3.

Since, τ > 3 dH (C2)−2ps−3, no MDS code exists in this
case.

Here, we consider the γ -constacyclic codes of Type 3 to
verify the MDS condition for these codes. Here, we have
|C3| = pm(2p

s
−δ−L). So, C3 is a MDS code if and only if

|C3| = p3m(p
s
−dH (C3)+1), i.e., pm(2p

s
−δ−L)

= p3m(p
s
−dH (C3)+1),

i.e., L = 3 dH (C3)−ps−δ−3. Hence, follows the theorem.
Theorem 14: Let C3 = 〈u(x−γ0)δ+u2(x−γ0)th(x)〉 be a

γ -constacyclic codes of length ps over R of Type 3 (as
classified in Theorem 1). Then, there is no MDS code.
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Proof: We consider two cases as follows:
Case 1: If L = 0, then dH (C3) = 1. For C3 to be MDS we

must have, δ = −ps, which is not true for any p and s. Thus,
C3 is not MDS for L = 0.
Case 2: If ps−pr+(n−1)r+1 ≤ L ≤ ps−pr+nr, where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C3) = (n+1)pk .
Now,

L ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3 dH (C3)−2ps−1.

Now, L ≥ 3 dH (C3)−ps−δ−3 if and only if δ ≥ ps−2,
i.e., equality when δ = ps−2. Thus, equality occurs when
n = p−1, k = s−1, δ = ps−2, i.e., L = ps−1, which is a
contradiction, since L ≤ δ. Thus, there is no MDS code in
this case.
Now we examine the MDS condition for Type 4

γ -constacyclic codes.
Theorem 15: Let C4 = 〈u(x−γ0)δ+u2(x−γ0)th(x), u2(x−

γ0)ω〉 be a γ -constacyclic codes of length ps overR ofType 4
(as classified in Theorem 1). Then, there is no MDS code.

Proof: Here, we have |C4| = pm(2p
s
−δ−ω). So, C4

is a MDS code if and only if |C4| = p3m(p
s
−dH (C4)+1),

i.e., pm(2p
s
−δ−ω)

= p3m(p
s
−dH (C4)+1), i.e., ω = 3 dH (C4)−

ps−3−δ. We consider two cases as follows:
Case 1: If ω = 0, then dH (C4) = 1. For C4 to be MDS we

must have, δ = −ps, which is a contradiction, since 1 ≤ δ ≤
ps−1. Thus, C4 is not MDS for ω = 0.
Case 2: If ps−pr+(n−1)r+1 ≤ ω ≤ ps−pr+nr, where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C4) = (n+1)pk . For C4 to be MDS we
must have ω = 3 dH (C4)−ps−3−δ. Let δ = ps−m, where
1 ≤ m ≤ ps−1. Thus, the condition for C4 to be a MDS
constacyclic code becomes ω = 3dH (C4)−2ps−3+m.

Now,

ω ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3 dH (C4)−2ps−1.

Now, ω ≥ 3 dH (C4)−2ps−3+m if and only if 2 ≥ m,
i.e., equality when m = 2. Thus, equality occurs when

n = p−1, k = s−1,m = 2, i.e., δ = ps−2 and ω = ps−1,
which is a contradiction, since ω < δ. Thus, there is no MDS
code in this case.
Now we examine the MDS condition for Type 5

γ -constacyclic codes. Here, we have |C5| = pm(3p
s
−a−U−V).

So, C5 is a MDS code if and only if |C5| = p3m(p
s
−dH (C5)+1),

i.e., pm(3p
s
−a−U−V)

= p3m(p
s
−dH (C5)+1), i.e., V = 3dH (C5)−

a−U−3. Thus, we get the following cases:
Case 1: When h1(x) = h2(x) = 0 then, V = U = a.

For C5 to be MDS we must have a = dH (C5)−1. Hence,
the MDS codes for Type 5 ideals are similar to the MDS
γ -constacyclic codes over Fpm [15, Corollary 13]. Hence,
we have the following theorem:
Theorem 16: Let C5 = 〈(x−γ0)a〉 be a γ -constacyclic

codes of length ps over R of Type 5 (as classified in The-
orem 1). Then C5 is a MDS code if and only if one of the
following conditions holds:

• If s = 1 then a = n for 1 ≤ n ≤ p−1, in such case,
dH (C5) = n+1.

• If s ≥ 2, then

∗ a = 1, in such case, dH (C5) = 2,
∗ a = ps−1, in such case, dH (C5) = ps.

Case 2: When h1(x) = 0, h2(x) 6= 0 and 1 ≤ a ≤ ps+t2
2

then, V = U = a. For C5 to be MDS we must have a =
dH (C5)−1, which is similar to the result in case 1. But we
have 1 ≤ a ≤ ps+t2

2 and 0 ≤ t2 < a, which implies that
max{2a−ps, 0} ≤ t2 < a. Hence, we conclude the following
theorem.
Theorem 17: Let C5 = 〈(x−γ0)a+u2(x−γ0)t2h2(x)〉 be

a γ -constacyclic codes of length ps over R of Type 5 (as
classified in Theorem 1), where h2(x) 6= 0 and 1 ≤ a ≤ ps+t2

2 .
Then C5 is a MDS code if and only if one of the following
conditions holds:

• If s = 1, a = n, 1 ≤ n ≤ p−1 and max{2n−p, 0} ≤
t2 < n, then dH (C5) = n+1.

• If s ≥ 2,

∗ a = 1 and t2 = 0, then dH (C5) = 2,
∗ a = ps−1 and t2 = ps−2, then dH (C5) = ps.

Case 3: When h1(x) 6= 0 and 1 ≤ a ≤ ps+t1
2 then, V =

U = a. For C5 to be MDS we must have a = dH (C5)−1,
which is similar to the result in case 1. But we have 1 ≤ a ≤
ps+t1
2 and 0 ≤ t1 < a, which implies that max{2a−ps, 0} ≤

t1 < a. Hence, we conclude the following theorem.
Theorem 18: Let C5 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x)〉 be a γ -constacyclic codes of length ps over R of
Type 5 (as classified in Theorem 1), where h1(x) 6= 0 and
1 ≤ a ≤ ps+t1

2 . Then C5 is a MDS code if and only if one of
the following conditions holds:

• If s = 1, a = n, 1 ≤ n ≤ p−1 and max{2n−p, 0} ≤
t1 < n, then dH (C5) = n+1.

• If s ≥ 2,

∗ a = 1 and t1 = 0, then dH (C5) = 2,
∗ a = ps−1 and t1 = ps−2, then dH (C5) = ps.
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Case 4: When h1(x) 6= 0 and ps+t1
2 < a ≤ ps−1 then,

V = U = ps−a+t1. For C5 to be MDS we must have a =
2ps−3dH (C5)+2t1+3. Hence, follows the theorem.
Theorem 19: Let C5 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x)〉 be a γ -constacyclic codes of length ps over R of
Type 5 (as classified in Theorem 1), where h1(x) 6= 0 and
ps+t1
2 < a ≤ ps−1. Then, there is no MDS code.
Proof: When h1(x) 6= 0 and ps+t1

2 < a ≤ ps−1, then
V = ps−a+t1. If ps−pr+(n−1)r+1 ≤ ps−a+t1 ≤ ps−pr+
nr , i.e., t1+pr−nr ≤ a ≤ t1+pr−(n−1)r−1, where r =
ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C5) = (n+1)pk . We get MDS code
for a = 2ps−3dH (C5)+2t1+3.

Now,

a ≥ t1+ps−k−nps−k−1

= t1+ps−k−1(p−n)
≥ t1+(p−n)
×(equality when k = s−1, or s = 1)

≥ t1+1
×(equality when n = p−1)

= −3(n+1)pk+t1+1+3(n+1)pk

≥ −3(n+1)pk+t1+1+3(n+1)
×(equality when k = 0)

≥ −3(n+1)pk+t1+7
×(equality when n = 1)

= −3dH (C5)+t1+7.

Now, a ≥ 2ps−3dH (C5)+2t1+3 if and only if −2ps+4 ≥
t1, i.e., equality when t1 = −2ps+4. Thus, equality occurs
when n = 1, k = 0, s = 1, p = 2 and t1 = 0, i.e., a = 1,
which is a contradiction, since 1 = 21+0

2 < a. Thus, there is
no MDS code in this case.

Case 5:When h1(x) = 0, h2(x) 6= 0 and ps+t2
2 < a ≤ ps−1

then, V = ps−a+t2 and U = a. For C5 to be MDS we must
have a = 3dH (C5)−ps−t2−3. Hence, follows the theorem.
Theorem 20: Let C5 = 〈(x−γ0)a+u2(x−γ0)t2h2(x)〉 be

a γ -constacyclic codes of length ps over R of Type 5 (as
classified in Theorem 1), where h2(x) 6= 0 and ps+t2

2 < a ≤
ps−1. Then, there is no MDS code.

Proof: When h1(x) = 0, h2(x) 6= 0 and ps+t2
2 < a ≤

ps−1, then V = ps−a+t2. If ps−pr+(n−1)r+1 ≤ ps−a+
t2 ≤ ps−pr+nr , i.e., t2+pr−nr ≤ a ≤ t2+pr−(n−1)r−1,
where r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then
we have Hamming distance dH (C5) = (n+1)pk . We get MDS
code for a = 3dH (C5)−ps−t2−3.

Now,

a ≥ t2+ps−k−nps−k−1

= t2+ps−k−1(p−n)

≥ t2+1

= 3(n+1)pk+t2+1−3(n+1)pk

≥ 3(n+1)pk+t2+1−3ps

= 3dH (C5)+t2+1−3ps.

Now, a ≥ 3dH (C5)−ps−t2−3 if and only if t2 ≥ ps−2,
i.e., equality when t2 = ps−2, i.e., ps+ps−2

2 < a ≤ ps−1,
i.e., ps−1 < a ≤ ps−1, which is a contradiction. Thus, there
is no MDS code in this case.
Here, we consider the γ -constacyclic codes of Type 6 to

verify the MDS condition for these codes.
Theorem 21: Let C6 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u2(x−γ0)c〉 be a γ -constacyclic codes of length ps

overR of Type 6 (as classified in Theorem 1). Then, there is
no MDS code.

Proof: Here, we have |C6| = pm(3p
s
−a−U−c). So, C6

is a MDS code if and only if |C6| = p3m(p
s
−dH (C6)+1),

i.e., pm(3p
s
−a−U−c)

= p3m(p
s
−dH (C6)+1), i.e., c = 3 dH (C6)−

U−a−3. We consider two cases as follows:
Case 1: If c = 0, then dH (C6) = 1. For C6 to be MDS we

must have, a = −U, which is contradiction, since 0 < U ≤ a.
Case 2: If ps−pr+(n−1)r+1 ≤ c ≤ ps−pr+nr , where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we
have Hamming distance dH (C6) = (n+1)pk . We have the
following subcases:
Subcase 2.1: When h1(x) = 0 or h1(x) 6= 0 and 0 < a ≤

ps+t1
2 , then U = a. So, C6 is a MDS code if and only if c =

3 dH (C6)−2a−3. Now,

c ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3 dH (C6)−2ps−1.

Now, c ≥ 3 dH (C6)−2a−3 if and only if a ≥ ps−1,
i.e., equality when a = ps−1. Thus, equality occurs when
n = p−1, k = s−1, a = ps−1, i.e., c = ps−1, which is a
contradiction, since c < a. Thus, there is no MDS code in
this case.
Subcase 2.2: When h1(x) 6= 0 and ps+t1

2 < a ≤ ps−1,
then U = ps−a+t1. So, C6 is a MDS code if and only if
c = 3 dH (C6)−ps−t1−3.
Now,

c ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3 dH (C6)−2ps−1.

Now, c ≥ 3 dH (C6)−ps−t1−3 if and only if t1 ≥ ps−2,
i.e., equality when t1 = ps−2, i.e., ps+ps−2

2 < a ≤ ps−1,

VOLUME 9, 2021 141071



H. Q. Dinh et al.: Hamming Distance of Constacyclic Codes of Length ps Over Fpm+uFpm+u2Fpm

i.e., ps−1 < a ≤ ps−1, which is a contradiction. Thus, there
is no MDS code in this case.

Now we examine the MDS condition for Type 7
γ -constacyclic codes. Here, we have |C7| = pm(3p

s
−a−b−W).

So, C7 is a MDS code if and only if |C7| = p3m(p
s
−dH (C7)+1),

i.e., pm(3p
s
−a−b−W)

= p3m(p
s
−dH (C7)+1), i.e., W = 3 dH (C7)−

b−a−3.
Theorem 22: Let C7 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x)〉 be a γ -constacyclic
codes of length ps over R of Type 7 (as classified in Theo-
rem 1). Then, there is no MDS code.

Proof: Case 1: If W = 0, then dH (C7) = 1. For C7 to be
MDS we must have, a = −b, which is contradiction, since
0 ≤ b < a. Thus, C7 is not MDS for W = 0.
Case 2: If ps−pr+(n−1)r+1 ≤ W ≤ ps−pr+nr, where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C7) = (n+1)pk .
Now,

W ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3dH (C7)−2ps−1.

Now, W ≥ 3 dH (C7)−b−a−3 if and only if a+b ≥ 2ps−2,
i.e., equality when a+b = 2ps−2. Thus, equality occurs when
n = p−1, k = s−1, a+b = 2ps−2, i.e., W = ps−1, which
is a contradiction, since W < ps−1. Thus, there is no MDS
code in this case.
Finally, we explore the MDS γ -constacyclic codes of

Type 8.
Theorem 23: Let C8 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−

γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x), u2(x−γ0)c〉 be a
γ -constacyclic codes of length ps over R of Type 8 (as
classified in Theorem 1). Then, there is no MDS code.

Proof: Here, we have |C8| = pm(3p
s
−a−b−c). So, C8

is a MDS code if and only if |C8| = p3m(p
s
−dH (C8)+1),

i.e., pm(3p
s
−a−b−c)

= p3m(p
s
−dH (C8)+1), i.e., c = 3 dH (C8)−

b−a−3. We consider two cases as follows:
Case 1: If c = 0, then dH (C8) = 1. For C8 to be MDS we

must have a = −b, which is contradiction, since 0 ≤ b < a.
Thus, C8 is not MDS for c = 0.
Case 2: If ps−pr+(n−1)r+1 ≤ c ≤ ps−pr+nr, where

r = ps−k−1, 1 ≤ n ≤ p−1 and 0 ≤ k ≤ s−1. Then we have
Hamming distance dH (C8) = (n+1)pk . Now,

c ≥ ps−ps−k+(n−1)ps−k−1+1

= ps−k (3pk−1)−2ps+(n−1)ps−k−1+1

≥ p(3pk−1)−2ps+(n−1)+1

×(equality when k = s−1, or s = 1)

≥ (n+1)(3pk−1)−2ps+n

×(equality when n = p−1)

= 3(n+1)pk−2ps−1

= 3 dH (C8)−2ps−1.

Now, c ≥ 3 dH (C8)−b−a−3 if and only if a+b ≥ 2ps−2,
i.e., equality when a+b = 2ps−2. Thus, equality occurs when
n = p−1, k = s−1, a+b = 2ps−2, i.e., c = ps−1, which is
a contradiction, since c < ps−1. Thus, there is no MDS code
in this case.

Consequently, we have the list of all MDS γ -constacyclic
codes of length ps overR = Fpm+uFpm+u2Fpm .
Theorem 24: All MDS γ -constacyclic codes of length ps

overR are determined as follows:
• Type 1 (trivial ideals): C1 = 〈1〉 is the only MDS code
with dH (C1) = 1.

• Type 2: C2 = 〈u2(x−γ0)τ 〉, where 0 ≤ τ ≤ ps−1. No
MDS constacyclic codes can be obtained in this case.

• Type 3: C3 = 〈u(x−γ0)δ+u2(x−γ0)th(x)〉, where 0 ≤
δ ≤ ps−1, 0 ≤ t < δ, either h(x) is 0 or a unit in Rγ .
No MDS constacyclic code can be obtained in this case.

• Type 4: C4 = 〈u(x−γ0)δ+u2(x−γ0)th(x), u2(x−γ0)ω〉,
where 0 ≤ ω < δ ≤ ps−1, 0 ≤ t < ω, either h(x)
is 0 or a unit in Rγ . No MDS constacyclic code can be
obtained in this case.

• Type 5: C5 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−
γ0)t2h2(x)〉, where 1 ≤ a ≤ ps−1, 0 ≤ t1 < a,
0 ≤ t2 < a, either h1(x), h2(x) are 0 or are units inRγ .
- - When h1(x) = h2(x) = 0, then C5 is a MDS code if

and only if one of the following conditions holds:
∗ If s = 1, a = n for 1 ≤ n ≤ p−1, in such case,
dH (C5) = n+1.

∗ If s ≥ 2,
◦ a = 1 in such case, dH (C5) = 2,
◦ a = ps−1 in such case, dH (C5) = ps.

- - When h1(x) = 0, h2(x) 6= 0 and 1 ≤ a ≤ ps+t2
2 .

Then C5 is a MDS code if and only if one of the
following conditions holds:
∗ If s = 1, a = n, 1 ≤ n ≤ p−1 and max{2n−
p, 0} ≤ t2 < n, then dH (C5) = n+1.

∗ If s ≥ 2,
◦ a = 1 and t2 = 0, then dH (C5) = 2,
◦ a = ps−1 and t2 = ps−2, then dH (C5) = ps.

- - When h1(x) 6= 0 and 1 ≤ a ≤ ps+t1
2 . Then C5

is a MDS code if and only if one of the following
conditions holds:
∗ If s = 1, a = n, 1 ≤ n ≤ p−1 and max{2n−
p, 0} ≤ t1 < n, then dH (C5) = n+1.

∗ If s ≥ 2,
◦ a = 1 and t1 = 0, then dH (C5) = 2,
◦ a = ps−1 and t1 = ps−2, then dH (C5) = ps.

- - When h1(x) 6= 0 and ps+t1
2 < a ≤ ps−1 (or when

h1(x) = 0, h2(x) 6= 0 and ps+t2
2 < a ≤ ps−1).

Then, there is no MDS code.
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• Type 6: C6 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−
γ0)t2h2(x), u2(x−γ0)c〉, where 0 ≤ c < a ≤ ps−1,
0 ≤ t1 < a, 0 ≤ t2 < c, either h1(x), h2(x) are 0 or are
units inRγ . No MDS constacyclic code can be obtained
in this case.

• Type 7: C7 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−
γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x)〉, where 0 ≤

b < a ≤ ps−1, 0 ≤ t1 < b, 0 ≤ t2 < b, 0 ≤
t3 < b, either h1(x), h2(x), h3(x) are 0 or are units in
Rγ . No MDS constacyclic code can be obtained in this
case.

• Type 8: C8 = 〈(x−γ0)a+u(x−γ0)t1h1(x)+u2(x−
γ0)t2h2(x), u(x−γ0)b+u2(x−γ0)t3h3(x), u2(x−γ0)c〉,
where 0 ≤ c < b < a ≤ ps−1, 0 ≤ t1 < b, 0 ≤ t2 < c,
0 ≤ t3 < c, either h1(x), h2(x), h3(x) are 0 or are units in
Rγ . No MDS constacyclic code can be obtained in this
case.

V. EXAMPLES
In this section, we present some examples of constacyclic
codes of length ps overR = Fpm+uFpm+u2Fpm (u3 = 0).
Example 1: γ -constacyclic codes of length 3 over the

chain ring R = F3+uF3+u2F3 are precisely the ideals of
R[x]/〈x3−γ 〉, where γ ∈ {1, 2}.

In the following, we list all distinct γ -constacyclic codes
of length 3 over the chain ring F3+uF3+u2F3. There are 82
distinct γ -constacyclic codes listed below. In all codes we
have h0, a0, b0, c0 ∈ {1, 2} and b1 ∈ {0, 1, 3}.
Using the results in Sections III and IV, we list all Ham-

ming distances dH of such codes and the number of code-
words |C| in each of those constacyclic codes. We also give
all MDS and non-MDS codes (Table 1).
Among these 82 codes, 31 of them are MDS codes.

∗ Type 1 (C1): 〈0〉, 〈1〉.
∗ Type 2 (C2):
→ τ = 0: 〈u2〉,
→ τ = 1: 〈u2(x−γ )〉,
→ τ = 2: 〈u2(x−γ )2〉.

∗ Type 3 (C3):
→ h(x) = 0 and δ = 0: 〈u〉,
→ h(x) = 0 and δ = 1: 〈u(x−γ )〉,
→ h(x) = 0 and δ = 2: 〈〈u(x−γ )2〉,
→ h(x) 6= 0, δ = 1 and t = 0: 〈u(x−γ )+h0u2〉,
→ h(x) 6= 0, δ = 2 and t = 0: 〈u(x−γ )2+h0u2〉,
→ h(x) 6= 0, δ = 2 and t = 1: 〈u(x−γ )2+h0u2(x−γ )〉.

∗ Type 4 (C4):
→ h(x) = 0, δ = 1 and ω = 0: 〈u(x−γ ), u2〉,
→ h(x) = 0, δ = 2 and ω = 0: 〈u(x−γ )2, u2〉,
→ h(x) = 0, δ = 2 and ω = 1: 〈u(x−γ )2, u2(x−γ )〉.

∗ Type 5 (C5):
→ h1(x) = h2(x) = 0 and a = 1: 〈(x−γ )〉,
→ h1(x) = h2(x) = 0 and a = 2: 〈(x−γ )2〉,
→ h1(x) = 0, h2(x) 6= 0, a = 1 and t2 = 0: 〈(x−γ )+

b0u2〉,

TABLE 1. γ -constacyclic codes of length 3 over the chain ring
F3CuF3Cu2F3.

→ h1(x) = 0, h2(x) 6= 0, a = 2 and t2 = 0: 〈(x−γ )2+
b0u2〉,

→ h1(x) = 0, h2(x) 6= 0, a = 2 and t2 = 1: 〈(x−γ )2+
b0u2(x−γ )〉,

→ h1(x) 6= 0, h2(x) = 0, a = 1 and t1 = 0: 〈(x−γ )+
a0u〉,

→ h1(x) 6= 0, h2(x) = 0, a = 2 and t1 = 0: 〈(x−γ )2+
a0u〉,

→ h1(x) 6= 0, h2(x) = 0, a = 2 and t1 = 1: 〈(x−γ )2+
a0u(x−γ )〉,

→ h1(x) 6= 0, h2(x) 6= 0, a = 1 and t1 = t2 = 0:
〈(x−γ )+a0u+b0u2〉,
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→ h1(x) 6= 0, h2(x) 6= 0, a = 2 and t1 = t2 = 0:
〈(x−γ )2+a0u+b0u2〉,

→ h1(x) 6= 0, h2(x) 6= 0, a = 2, t1 = 1 and t2 = 0:
〈(x−γ )2+a0u(x−γ )+b0u2+b1u2(x−γ )〉,

→ h1(x) 6= 0, h2(x) 6= 0, a = 2 and t1 = t2 = 1:
〈(x−γ )2+a0u(x−γ )+b0u2(x−γ )〉.

∗ Type 6 (C6):
→ h1(x) = h2(x) = 0, a = 1 and c = 0: 〈(x−γ ), u2〉,
→ h1(x) = h2(x) = 0, a = 2 and c = 0: 〈(x−γ )2, u2〉,
→ h1(x) = h2(x) = 0, a = 2 and c = 1: 〈(x−

γ )2, u2(x−γ )〉,
→ h1(x) 6= 0, h2(x) = 0, a = 1, t1 = 0 and c = 0:
〈(x−γ )+a0u, u2〉,

→ h1(x) 6= 0, h2(x) = 0, a = 2, t1 = 0 and c = 0:
〈(x−γ )2+a0u, u2〉,

→ h1(x) 6= 0, h2(x) = 0, a = 2, t1 = 1 and c = 0:
〈(x−γ )2+a0u(x−γ ), u2〉,

→ h1(x) 6= 0, h2(x) = 0, a = 2, t1 = 1 and c = 1:
〈(x−γ )2+a0u(x−γ ), u2(x−γ )〉,

→ h1(x) 6= 0, h2(x) 6= 0, a = 2, t1 = 1, c = 1 and
t2 = 0: 〈(x−γ )2+a0u(x−γ )+b0u2, u2(x−γ )〉.

∗ Type 7 (C7):
→ h1(x) = h2(x) = h3(x) = 0, a = 1 and b = 0:
〈(x−γ ), u〉,

→ h1(x) = h2(x) = h3(x) = 0, a = 2 and b = 0:
〈(x−γ )2, u〉,

→ h1(x) = h2(x) = h3(x) = 0, a = 2 and b = 1:
〈(x−γ )2, u(x−γ )〉,

→ h1(x) = h2(x) = 0, h3(x) 6= 0, a = 2, b = 1 and
t3 = 0: 〈(x−γ )2, u(x−γ )+c0u2〉,

→ h1(x) = 0, h2(x) 6= 0, h3(x) = 0, a = 2, b = 1 and
t2 = 0: 〈(x−γ )2+b0u2, u(x−γ )〉,

→ h1(x) = 0, h2(x) 6= 0, h3(x) 6= 0, a = 2, b = 1,
t2 = 0 and t3 = 0: 〈(x−γ )2+b0u2, u(x−γ )+c0u2〉.

∗ Type 8 (C8):
→ h1(x) = h2(x) = h3(x) = 0, a = 2, b = 1 and

c = 0: 〈(x−γ )2, u(x−γ ), u2〉.

Example 2: We obtain cyclic codes corresponding to the
unit γ = 1. cyclic codes of length 8 over the chain ring R =
F2+uF2+u2F2 are precisely the ideals ofR[x]/〈x8−1〉.
The following Tables 2, 3, 4, 5, 6 and 7 shows the rep-

resentation of all cyclic codes C of length 8 over the chain
ring F2+uF2+u2F2 of Type 1,2 and 3 (of Type 4, of Type 5
{h1(x) = h2(x) = 0, h1(x) = 0 and h2(x) 6= 0}, of Type 5
{h1(x) 6= 0 and h2(x) = 0, h1(x) 6= 0 and h2(x) 6= 0},
ofType 6 {h1(x) = h2(x) = 0}, ofType 7 {h1(x) = h2(x) =
h3(x) = 0}, and of Type 8 {h1(x) = h2(x) = h3(x) = 0}
respectively), together with the Hamming distances dH of
such codes and the number of codewords |C| in each of those
cyclic codes. We also give all MDS and non-MDS codes.
In all codes we have hi, ai, bi ∈ {0, 1} and b0 = 1.
Example 3: γ -constacyclic codes of length 49 over the

chain ring R = F7+uF7+u2F7 are precisely the ideals
of R[x]/〈x49−γ 〉, where γ ∈ {1, 2, 3, 4, 5, 6}. Different

TABLE 2. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 1, 2 and 3.

generators of the constacyclic codes and their corresponding
conditions to be MDS codes are given as follows:

• Type 1 (C1): 〈0〉, 〈1〉. For these codes the condition for
MDS code are given by 3 = dH (C1) and 1 = dH (C1).
As mentioned in Section IV, the only MDS constacyclic
codes in this case is 〈1〉.

• Type 2: C2 = 〈u2(x−γ )τ 〉, where 0 ≤ τ ≤ 48. The
condition for MDS code is given by τ = 3dH (C2)−101.
MDS constacyclic codes are non-existent in this case.

141074 VOLUME 9, 2021



H. Q. Dinh et al.: Hamming Distance of Constacyclic Codes of Length ps Over Fpm+uFpm+u2Fpm

TABLE 3. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 4.

• Type 3: C3 = 〈u(x−γ )δ+u2(x−γ )th(x)〉, where 0 ≤
δ ≤ 48, 0 ≤ t < δ, either h(x) is 0 or a unit in Rγ .
The condition for MDS code is given by L = 3dH (C3)−
δ−52. NoMDS constacyclic code can be obtained in this
case.

• Type 4: C4 = 〈u(x−γ )δ+u2(x−γ )th(x), u2(x−γ )ω〉,
where 0 ≤ ω < δ ≤ 48, 0 ≤ t < ω, either h(x) is 0
or a unit inRγ . The condition for MDS code is given by
ω = 3dH (C4)−δ−52. NoMDS constacyclic code can be
obtained in this case.

TABLE 4. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 5 {h1(x) = h2(x) = 0, h1(x) = 0 and h2(x) 6= 0}.

• Type 5: C5 = 〈(x−γ )a+u(x−γ )t1h1(x)+u2(x−
γ )t2h2(x)〉, where 1 ≤ a ≤ 48, 0 ≤ t1 < a, 0 ≤ t2 < a,
either h1(x), h2(x) are 0 or are units inRγ . The condition
for MDS code is given by V = 3dH (C5)−a−U−3 and
all the distinct MDS codes are given by:

◦ 〈(x−γ )〉
◦ 〈(x−γ )48〉,
◦ 〈(x−γ )+b0u2〉,
◦ 〈(x−γ )48+b0u2(x−γ )47〉,
◦ 〈(x−γ )+a0u〉,
◦ 〈(x−γ )+a0u+b0u2〉,
◦ 〈(x−γ )48+a0u(x−γ )47〉,

◦ 〈(x−γ )48+a0u(x−γ )47+u2(x−γ )t2
47−t2∑
j=0

bj(x−γ )j〉,

where 0 ≤ t2 ≤ 47, a0, b0 ∈ {1, . . . , 6} and
bj ∈ {0, 1, . . . , 6}.
We present γ -constacyclic codes of Type 5 {h1(x) =
h2(x) = 0} in Table 8, together with the Hamming
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TABLE 5. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 5 {h1(x) 6= 0 and h2(x) = 0, h1(x) 6= 0 and h2(x) 6= 0 }.

TABLE 6. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 6 and 7.

distances dH of such codes and the number of codewords
|C| in each of those constacyclic codes. We also give all
MDS and non-MDS codes.

• Type 6: C6 = 〈(x−γ )a+u(x−γ )t1h1(x)+u2(x−
γ )t2h2(x), u2(x−γ )c〉, where 0 ≤ c < a ≤ 48, 0 ≤
t1 < a, 0 ≤ t2 < c, either h1(x), h2(x) are 0 or are
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TABLE 7. Cyclic codes of length 8 over the chain ring F2+uF2+u2F2 of
Type 8 {h1(x) = h2(x) = h3(x) = 0}.

units in Rγ . The condition for MDS code is given by
c = 3dH (C6)−a−U−3. No MDS constacyclic code can
be obtained in this case.

• Type 7: C7 = 〈(x−γ )a+u(x−γ )t1h1(x)+u2(x−
γ )t2h2(x), u(x−γ )b+u2(x−γ )t3h3(x)〉, where 0 ≤ b <
a ≤ 48, 0 ≤ t1 < b, 0 ≤ t2 < b, 0 ≤ t3 < b,
either h1(x), h2(x), h3(x) are 0 or are units in Rγ . The

TABLE 8. γ -constacyclic codes of length 49 over the chain ring
F7+uF7+u2F7 of Type 5 {h1(x) = h2(x) = 0}.

condition for MDS code is given by W = 3dH (C7)−b−
a−3. No MDS constacyclic code can be obtained in this
case.

• Type 8: C8 = 〈(x−γ )a+u(x−γ )t1h1(x)+u2(x−
γ )t2h2(x), u(x−γ )b+u2(x−γ )t3h3(x), u2(x−γ )c〉, where
0 ≤ c < b < a ≤ 48, 0 ≤ t1 < b, 0 ≤ t2 < c,
0 ≤ t3 < c, either h1(x), h2(x), h3(x) are 0 or are
units in Rγ . The condition for MDS code is given by
c = 3dH (C8)−b−a−3. No MDS constacyclic code can
be obtained in this case.

VI. CONCLUSION AND FUTURE WORK
Let p be a prime, s,m be positive integers, and let R =

Fpm [u]/〈u3〉 be the finite commutative chain ring with unity.
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Let γ be an any nonzero element of the finite field Fpm . It is
well known that the γ -constacyclic codes of length ps overR
are ideals of the ringR[x]/〈xp

s
−γ 〉which is a local ring with

the maximal ideal 〈u, x−γ0〉, but it is not a chain ring.
Determining the Hamming distances of constacyclic codes
and obtaining MDS constacyclic codes are very important
in coding theory. Motivated by this, in this research arti-
cle, we completed the problem of determining the Ham-
ming distances of all γ -constacyclic codes by study their
classifications of 8 types. Using these distances, we then
obtain all MDS codes among such codes. We also give
some examples in which we discuss the parameters of some
MDS constacyclic codes for different values of p and s
in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

For future work, it would be interesting to determine
the symbol-pair distances of γ -constacyclic codes of length
of length ps over R, and to determine MDS symbol-pair
γ -constacyclic codes of length ps overR.
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