

Received May 3, 2021, accepted May 19, 2021, date of publication October 4, 2021, date of current version October 21, 2021. *Digital Object Identifier* 10.1109/ACCESS.2021.3117658

Hamming Distance of Constacyclic Codes of Length p^s Over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$

HAI Q. DINH^{®1,2}, JAMAL LAAOUINE^{®3}, MOHAMMED E. CHARKANI^{®3}, AND WARATTAYA CHINNAKUM^{®4}

¹Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam ²Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

³Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, Fès-Atlas, Fes, Morocco

⁴Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Chiang Mai 52000, Thailand

Corresponding author: Jamal Laaouine (jamal.laaouine@usmba.ac.ma)

This work was supported in part by the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand, and in part by the Research Administration Centre, Chiang Mai University.

ABSTRACT Let *p* be any prime, *s* and *m* be positive integers. In this paper, we completely determine the Hamming distance of all constacyclic codes of length p^s over the finite commutative chain ring $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$ ($u^3 = 0$). As applications, we identify all maximum distance saparable codes (i.e., optimal codes with respect to the Singleton bound) among them.

INDEX TERMS Hamming distance, constacyclic codes, optimal codes, MDS codes.

I. INTRODUCTION

Constacyclic codes form one of the most important class of codes, due to their easiness in encoding and decoding via simple shift registers, and their many practical applications. This class of codes can be seen as a generalization of cyclic codes, that have been extensively studied since the late 1950s (cf. [25]–[29]).

Let \mathbb{F}_{p^m} be a finite field of p^m elements, where p is a prime, and let $\ell \geq 2$ be an integer. Then the ring $R = \mathbb{F}_{p^m}[u]/\langle u^\ell \rangle = \mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\ldots+u^{\ell-1}\mathbb{F}_{p^m}$ ($u^\ell = 0$) is a finite commutative chain ring. Many new and good codes have been constructed by using this type of commutative chain rings (see, for instance, ([18], [31], [32]). Finite commutative chain rings also have practical applications in connections between modular lattices and linear codes over $\mathbb{F}_p+u\mathbb{F}_p$ [3].

When $\ell = 2$, there are a lot of literatures on constacyclic codes over rings $\mathbb{F}_{p^m}[u]/\langle u^2 \rangle = \mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ for various prime *p* and positive integers *m* (see, e.g., [1], [2], [4], [8], [10]–[13], [16], [17], [19], [30].) In particular, structure of and Hamming distance distibution of all constacyclic codes of length p^s over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$ were completely determined in [8], [14], [21].

When $\ell = 3$, in 2015, [34] determined the structure of $(\delta + \alpha u^2)$ -constacyclic codes of length p^s over $\mathbb{F}_{p^m}[u]/\langle u^3 \rangle = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$. Recently, [22] obtained

The associate editor coordinating the review of this manuscript and approving it for publication was Xueqin Jiang¹⁰.

the structure of all constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ by classifying them into 8 types. [33] studies the structure of repeated-root constacyclic codes of any length over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$ and provided the Hamming distance of some of them. However, the complete Hamming distance distribution of all constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$ was still left open. That motivates us to complete that task in this paper. As an application, we use this Hamming distance distribution to identify all MDS codes among them. These MDS codes are optimal in the sense that among codes of the same length and dimension, they have the best error-correcting capacities.

II. SOME PRELIMINARIES

For a fintie ring *R*, consider the set R^n of *n*-tuples of elements from *R* as a module over *R* in the usual way. A subset $C \subseteq R^n$ is called a linear code of length *n* over *R* if *C* is an *R*-submodule of R^n .

For a unit λ of R, the λ -constacyclic (λ -twisted) shift τ_{λ} on R^n is the shif

$$\tau_{\lambda}((x_0, x_1, \ldots, x_{n-1})) = (\lambda x_{n-1}, x_0, x_1, \ldots, x_{n-2}),$$

and a code *C* is said to be λ -constacyclic if $\tau_{\lambda}(C) = C$, i.e., if *C* is closed under the λ -constacyclic shift τ_{λ} . In case $\lambda = 1$, those λ -constacyclic codes are called cyclic codes, and when

 $\lambda = -1$, such λ -constacyclic codes are called negacyclic codes.

Each codeword $c = (c_0, c_1, \ldots, c_{n-1}) \in C$ is customarily identified with its polynomial representation c(x) = $c_0+c_1x+\cdots+c_{n-1}x^{n-1}$, and the code C is in turn identified with the set of all polynomial representations of its codewords. Then in the ring $R[x]/\langle x^n - \lambda \rangle$, xc(x) corresponds to a λ -constacyclic shift of c(x). From that, the following fact is well known (cf. [20], [23]) and straightforward:

Proposition 1: A linear code C of length n is λ -constacyclic over R if and only if C is an ideal of $R[x]/\langle x^n-\lambda\rangle.$

For a codeword $\mathbf{x} = (x_0, x_1, \dots, x_{n-1}) \in \mathbb{R}^n$, the Hamming weight of x, denoted by $wt_H(x)$, is the number of nonzero components of x. The Hamming distance $d_H(x, y)$ of two words x and y equals the number of components in which they differ, which is the Hamming weight $wt_H(\mathbf{x}-\mathbf{y})$ of $\mathbf{x}-\mathbf{y}$. For a nonzero linear code C, the Hamming weight $wt_H(C)$ and the Hamming distance $d_H(C)$ are the same and defined as the smallest Hamming weight of nonzero codewords of C:

$$d_H(C) = \min\{wt_H(\mathbf{x}) \mid 0 \neq \mathbf{x} \in C\}.$$

The zero code is conventionally said to have Hamming distance 0.

In this paper, let \mathbb{F}_{p^m} be a finite field of p^m elements, where p is a prime number, and denote

$$\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}(u^3 = 0).$$

The ring \mathcal{R} can be expressed as $\mathcal{R} = \mathbb{F}_{p^m}[u]/\langle u^3 \rangle = \{a + a\}$ $bu+cu^2 \mid a, b, c \in \mathbb{F}_{p^m}$. It is easy to check that \mathcal{R} is a local ring with maximal ideal $\langle u \rangle = u \mathbb{F}_{p^m}$. Therefore, it is a chain ring. Every invertible element in \mathcal{R} is of the form: $a+bu+cu^2$ where $a, b, c \in \mathbb{F}_{p^m}$ and $a \neq 0$.

From now onwards, we shall focus our attention on γ -constacyclic codes of length p^s over \mathcal{R} , i.e., ideals of the ring

$$\mathcal{R}_{\gamma} = \mathcal{R}[x] / \langle x^{p^s} - \gamma \rangle,$$

where γ is a nonzero element of \mathbb{F}_{p^m} . By applying the Division Algorithm, there exist nonnegative integers γ_q , γ_r such that $s = \gamma_q m + \gamma_r$ with $0 \le \gamma_r \le m-1$. Let $\gamma_0 = \gamma^{p^{(\gamma_q+1)m-s}} = \gamma^{p^{m-\gamma_r}}$. Then $\gamma_0^{p^s} = \gamma^{p^{(\gamma_q+1)m}} = \gamma$.

In [22], Laaouine *et al.* classified all γ -constacyclic codes of length p^s over \mathcal{R} and their detailed structures are also established.

Theorem 1 (cf. [22]): The ring \mathcal{R}_{γ} is a local ring with maximal ideal $\langle u, x - \gamma_0 \rangle$, but it is not a chain ring. The γ constacyclic codes of length p^s over \mathcal{R} , i.e, ideals of the ring \mathcal{R}_{γ} , are

Type 1 (C_1) :

 $\langle 0 \rangle$, $\langle 1 \rangle$.

Type 2 (\mathcal{C}_2) :

$$C_2 = \langle u^2 (x - \gamma_0)^{\tau} \rangle$$
, where $0 \le \tau \le p^s - 1$.

$$\mathcal{C}_3 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x) \rangle,$$

where $0 \le L \le \delta \le p^s - 1$, $0 \le t < L$, either h(x) is 0 or h(x) is a unit in \mathcal{R}_{γ} of the form $\sum_{i=0}^{L-t-1} h_i (x-\gamma_0)^i$ with $h_i \in$ \mathbb{F}_{p^m} and $h_0 \neq 0$. Here L is the smallest integer satisfying

 $u^2(x-\gamma_0)^{\mathsf{L}} \in \mathcal{C}_3.$ Type 4 (\mathcal{C}_4) :

$$\mathcal{C}_4 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x), u^2(x-\gamma_0)^{\omega} \rangle,$$

where $0 \le \omega < L \le \delta \le p^s - 1, 0 \le t < \omega$, either h(x)is 0 or h(x) is a unit in \mathcal{R}_{γ} of the form $\sum_{i=0}^{\omega-t-1} h_i (x-\gamma_0)^i$ with $h_i \in \mathbb{F}_{p^m}, h_0 \neq 0$ and L is the smallest integer satisfying $u^2(x-\gamma_0)^{\mathsf{L}} \in \mathcal{C}_3.$

Type 5 (C_5) :

$$\mathcal{C}_5 = \langle (x - \gamma_0)^a + u(x - \gamma_0)^{t_1} h_1(x) + u^2 (x - \gamma_0)^{t_2} h_2(x) \rangle,$$

where $0 < V \le U \le a \le p^s - 1, 0 \le t_1 < U, 0 \le t_2 < V$, $h_1(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{i=0}^{U-t_1-1} a_j (x-\gamma_0)^j$ with $a_j \in \mathbb{F}_{p^m}$, $a_0 \neq 0$ and $h_2(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{i=0}^{V-t_2-1} b_j (x-\gamma_0)^j$ with $b_j \in \mathbb{F}_{p^m}$, $b_0 \neq 0$. Here

U is the smallest integer satisfying $u(x-\gamma_0)^{U}+u^2g(x) \in C_5$, for some $g(x) \in \mathcal{R}_{\gamma}$ and V is the smallest integer such that $u^2(x-\gamma_0)^{\mathsf{V}} \in \mathcal{C}_5.$ Type 6 (\mathcal{C}_6) :

$$\begin{aligned} \mathcal{C}_6 &= \langle (x - \gamma_0)^a + u(x - \gamma_0)^{t_1} h_1(x) \\ &+ u^2 (x - \gamma_0)^{t_2} h_2(x), \, u^2 (x - \gamma_0)^c \rangle, \end{aligned}$$

where $0 \le c < \mathsf{V} \le \mathsf{U} \le a \le p^s - 1, 0 \le t_1 < \mathsf{U}, 0 \le t_2 < c$, $h_1(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{j=0}^{\mathsf{U}-t_1-1} a_j (x-\gamma_0)^j$

with $a_j \in \mathbb{F}_{p^m}$, $a_0 \neq 0$, $h_2(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{j=0}^{c-t_2-1} b_j (x-\gamma_0)^j$ with $b_j \in \mathbb{F}_{p^m}$, $b_0 \neq 0$ and

U is the smallest integer satisfying $u(x-\gamma_0)^{U}+u^2g(x) \in C_5$, for some $g(x) \in \mathcal{R}_{\gamma}$, V is the smallest integer such that $u^2(x-\gamma_0)^{\mathsf{V}} \in \mathcal{C}_5.$ Type 7 (\mathcal{C}_7) :

$$C_7 = \langle (x - \gamma_0)^a + u(x - \gamma_0)^{t_1} h_1(x) + u^2 (x - \gamma_0)^{t_2} h_2(x), u(x - \gamma_0)^b + u^2 (x - \gamma_0)^{t_3} h_3(x) \rangle,$$

where $0 \le W \le b < U \le a \le p^{s} - 1, 0 \le t_{1} < b, 0 \le t_{1} <$ t₂ < W, $0 \le t_3$ < W, $h_1(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{i=0}^{b-t_1-1} a_i(x-\gamma_0)^i$ with $a_i \in \mathbb{F}_{p^m}$, $a_0 \ne 0$, $h_2(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{j=0}^{W-t_2-1} b_j (x-\gamma_0)^j$ with $b_j \in \mathbb{F}_{p^m}, b_0 \neq 0$ and $h_3(x)$ is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{j=0}^{W-t_3-1} c_j (x-\gamma_0)^j$ with $c_j \in \mathbb{F}_{p^m}, c_0 \neq 0$. Here W is

the smallest integer satisfying $u^2(x-\gamma_0)^W \in C_7$ and U is the smallest integer satisfying $u(x-\gamma_0)^U + u^2g(x) \in C_5$, for some $g(x) \in \mathcal{R}_{\gamma}$.

Type 8 (\mathcal{C}_8) :

$$C_8 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x), u^2(x-\gamma_0)^c \rangle,$$

where $0 \le c < W \le L_1 \le b < U \le a \le p^s - 1, 0 \le t_1 < b$, $0 \le t_2 < c, 0 \le t_3 < c, h_1(x)$ is either 0 or a unit in \mathcal{R}' of the form $\sum_{j=0}^{b-t_1-1} a_j(x-\gamma_0)^j$ with $a_j \in \mathbb{F}_{p^m}, a_0 \ne 0, h_2(x)$

is either 0 or a unit in \mathcal{R}_{γ} of the form $\sum_{j=0}^{c-t_2-1} b_j (x-\gamma_0)^i$ with

 $b_j \in \mathbb{F}_{p^m}, b_0 \neq 0 \text{ and } h_3(x) \text{ is either } 0 \text{ or a unit in } \mathcal{R}_{\gamma} \text{ of the form } \sum_{j=0}^{c-t_3-1} c_j (x-\gamma_0)^j \text{ with } c_j \in \mathbb{F}_{p^m}, c_0 \neq 0. \text{ Here } L_1$

is the smallest integer such that $u^2(x-\gamma_0)^{L_1} \in \langle u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x)\rangle$, U is the smallest integer satisfying $u(x-\gamma_0)^U + u^2g(x) \in C_5$, for some $g(x) \in \mathcal{R}_{\gamma}$ and W is the smallest integer such that $u^2(x-\gamma_0)^W \in C_7$.

Proposition 2 (cf. [22]): We have

$$L = \begin{cases} \delta, & \text{if } h(x) = 0, \\ \min\{\delta, p^s - \delta + t\}, & \text{if } h(x) \neq 0. \end{cases}$$

$$L_1 = \begin{cases} b, & \text{if } h_3(x) = 0, \\ \min\{b, p^s - b + t_3\}, & \text{if } h_3(x) \neq 0. \end{cases}$$

$$U = \begin{cases} a, & \text{if } h_1(x) = 0, \\ \min\{a, p^s - a + t_1\}, & \text{if } h_1(x) \neq 0. \end{cases}$$

$$V = \begin{cases} a, & \text{if } h_1(x) = h_2(x) = 0, \\ \min\{a, p^s - a + t_2\}, & \text{if } h_1(x) = 0 \text{ and } h_2(x) \neq 0, \\ \min\{a, p^s - a + t_1\}, & \text{if } h_1(x) \neq 0. \end{cases}$$

$$W = \begin{cases} b, & \text{if } h_1(x) = h_2(x) = h_3(x) = 0 \\ or & h_1(x) \neq 0 \text{ and } h_3(x) = 0, \\ \min\{b, p^s - a + t_2\}, & \text{if } h_1(x) = h_3(x) = 0, h_3(x) \neq 0, \\ \min\{b, p^s - a + t_2\}, & \text{if } h_1(x) = h_2(x) = 0, h_3(x) \neq 0, \\ \min\{b, p^s - a + t_2, p^s - b + t_3\}, & \text{if } h_1(x) = 0, h_3(x) \neq 0, \\ \min\{b, p^s - a + t_2, p^s - b + t_3\}, & \text{if } h_1(x) = 0, h_3(x) \neq 0. \end{cases}$$

Theorem 2 (cf. [22]): Let C be a γ -constacyclic codes of length p^s over \mathcal{R} . Then following the same notations as in Theorem 1, we have the following results:

• If $C = \langle 0 \rangle$, then |C| = 1.

• If
$$\mathcal{C} = \langle 1 \rangle$$
, then $|\mathcal{C}| = p^{3mp^s}$.

• If $C = \langle u^2 (x - \gamma_0)^{\tau} \rangle$ with $0 \le \tau \le p^s - 1$, then

$$|\mathcal{C}| = p^{m(p^s - \tau)}$$

• If $C = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x) \rangle$ is of the Type 3, then

$$\begin{aligned} |\mathcal{C}| &= p^{m(2p^s - \delta - \mathsf{L})} \\ &= \begin{cases} p^{2m(p^s - \delta)}, & \text{if } h(x) = 0 \text{ or } h(x) \neq 0, \\ & \text{and } 0 \leq \delta \leq \frac{p^s + t}{2}, \\ p^{m(p^s - t)}, & \text{if } h(x) \neq 0 \text{ and } \frac{p^s + t}{2} < \delta \leq p^s - 1. \end{cases} \end{aligned}$$

• If $C = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x), u^2(x-\gamma_0)^{\omega} \rangle$ is of the Type 4, then

$$|\mathcal{C}| = p^{m(2p^s - \delta - \omega)}$$

• If $C = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ is of the Type 5, then

$$\begin{aligned} |\mathcal{C}| &= p^{m(3p^{s}-a-\cup-\vee)} \\ &= p^{3m(p^{s}-a)}, \text{ if } h_{1}(x) = h_{2}(x) = 0 \\ &\text{ or } h_{1}(x) = 0, \ h_{2}(x) \neq 0 \text{ and } 0 < a \leq \frac{p^{s}+t_{2}}{2} \\ &\text{ or } h_{1}(x) \neq 0 \text{ and } 0 < a \leq \frac{p^{s}+t_{1}}{2}, \\ &p^{m(p^{s}+a-2t_{1})}, \text{ if } h_{1}(x) \neq 0, \\ &\text{ and } \frac{p^{s}+t_{1}}{2} < a \leq p^{s}-1, \\ &p^{m(2p^{s}-a-t_{2})}, \text{ if } h_{1}(x) = 0, \ h_{2}(x) \neq 0, \\ &\text{ and } \frac{p^{s}+t_{2}}{2} < a \leq p^{s}-1. \end{aligned}$$

• If $C = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u^2(x-\gamma_0)^c \rangle$ is of the Type 6, then

$$\begin{aligned} |\mathcal{C}| &= p^{m(3p^s - a - \mathbf{U} - c)} \\ &= \begin{cases} p^{m(3p^s - 2a - c)}, & \text{if } h_1(x) = 0 \text{ or } h_1(x) \neq 0 \\ & \text{and } 0 < a \leq \frac{p^s + t_1}{2}, \\ p^{m(2p^s - t_1 - c)}, & \text{if } h_1(x) \neq 0 \\ & \text{and } \frac{p^s + t_1}{2} < a \leq p^s - 1. \end{cases} \end{aligned}$$

• If $C = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x) \rangle$ is of the Type 7, then

$$|\mathcal{C}| = p^{m(3p^s - a - b - \mathsf{W})}$$

$$\begin{cases} p^{m(3p^{s}-a-2b)}, & \text{if } h_{1}(x) = h_{2}(x) = h_{3}(x) = 0, \\ \text{or } h_{1}(x) \neq 0 \text{ and } h_{3}(x) = 0, \\ \text{or } h_{1}(x) = h_{3}(x) = 0, \\ h_{2}(x) = 0, \\ h_{2}(x) \neq 0, \\ and & 0 \leq b \leq p^{s}-a+t_{2}, \\ \text{or } h_{1}(x) = h_{2}(x) = 0, \\ h_{3}(x) \neq 0, \\ and & 0 \leq b \leq \frac{p^{s}+t_{3}}{2}, \\ \text{or } h_{1}(x) \neq 0, \\ h_{3}(x) \neq 0 \text{ and } 0 \leq b \leq \frac{p^{s}+t_{3}}{2}, \\ \text{or } h_{1}(x) = 0, \\ h_{2}(x) \neq 0, \\ h_{3}(x) \neq 0, \\ h_{3}(x) \neq 0, \\ and & 0 \leq b \leq \min\{p^{s}-a+t_{2}, \frac{p^{s}+t_{3}}{2}\}, \\ p^{m(2p^{s}-b-t_{2})}, & \text{if } h_{1}(x) = h_{3}(x) = 0, \\ h_{2}(x) \neq 0, \\ and & p^{s}-a+t_{2} < b < p^{s}-1, \\ \text{or } h_{1}(x) = 0, \\ h_{2}(x) \neq 0, \\ h_{3}(x) \neq 0, \\ and & p^{s}-a+t_{2} < b \leq a+t_{3}-t_{2}, \\ p^{m(2p^{s}-a-t_{3})}, & \text{if } h_{1}(x) = h_{2}(x) = 0, \\ h_{3}(x) \neq 0, \\ and & \frac{p^{s}+t_{3}}{2} < b < p^{s}-1, \\ \text{or } h_{1}(x) \neq 0, \\ h_{3}(x) \neq 0, \\ p^{s}+t_{3} < b < p^{s}-1, \\ \text{or } h_{1}(x) = 0, \\ h_{2}(x) \neq 0, \\ h_{3}(x) \neq 0, \\ and & \max\{a+t_{3}-t_{2}, \frac{p^{s}+t_{3}}{2}\} < b < p^{s}-1. \end{cases}$$

• If $C = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x), u^2(x-\gamma_0)^c \rangle$ is of the Type 8, then

$$|\mathcal{C}| = p^{m(3p^s - a - b - c)}$$

III. HAMMING DISTANCE

In [7], [8] the algebraic structure and Hamming distances of γ -constacyclic codes of length p^s over \mathbb{F}_{p^m} were established and given by the following theorem.

Theorem 3 (cf. [7], [8]): Let C be a γ -constacyclic code of length p^s over \mathbb{F}_{p^m} . Then $C = \langle (x-\gamma_0)^i \rangle \subseteq \mathbb{F}_{p^m}[x]/\langle x^{p^s}-\gamma \rangle$, for $i \in \{0, 1, \dots, p^s\}$, and its Hamming distance $d_H(C)$ is completely determined by:

$$d_{H}(\mathcal{C}) = \begin{cases} \bullet \ 1, \ if \ i = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s} - pr + (n-1)r + 1 \le i \le p^{s} - pr + nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1, \\ \bullet \ 0, \ if \ i = p^{s}. \end{cases}$$

Note that \mathbb{F}_{p^m} is a subring of \mathcal{R} , for a code \mathcal{C} over \mathcal{R} , we denote $d_H(\mathcal{C}_{\mathbb{F}})$ as the Hamming distance of $\mathcal{C}|_{\mathbb{F}_{n^m}}$.

As we mentioned in Section II the γ -constacyclic codes of length p^s over \mathcal{R} are precisely the ideals of the ring \mathcal{R}_{γ} . In order to compute the Hamming distances of all γ -constacyclic codes of length p^s over \mathcal{R} , we count the Hamming distance of the ideals of the ring \mathcal{R}_{γ} as classified into 8 types in Theorem 1.

VOLUME 9, 2021

It is easy to see that $d_H(C_1) = 0$ when $C_1 = \{0\}$, and that $d_H(C_1) = 1$ when $C_1 = \{1\}$. For a code $C_2 = \langle u^2(x-\gamma_0)^{\tau} \rangle$ of **Type 2**, $0 \le \tau \le p^s - 1$, the codewords of C_2 are precisely the codewords of the γ -constacyclic codes $\langle (x-\gamma_0)^{\tau} \rangle$ in $\mathbb{F}_{p^m}[x]/\langle x^{p^s} - \gamma \rangle$ multiplied by u^2 . Therefore $d_H(C_2) = d_H(\langle (x-\gamma_0)^{\tau} \rangle_{\mathbb{F}})$, which are given in Theorem 3.

Theorem 4: Let $C_2 = \langle u^2(x-\gamma_0)^{\tau} \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 2 (as classified in Theorem 1), where $0 \le \tau \le p^s - 1$. Then the Hamming distance of C_2 is given by

$$d_{H}(\mathcal{C}_{2}) = d_{H}(\langle (x-\gamma_{0})^{\tau} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ \tau = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le \tau \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

In order to compute the Hamming distances of those codes for the rest cases (Type 3, 4, 5, 6, 7 and 8), we first observe that

$$wt_H(a(x)) \ge wt_H(ua(x)),$$
 (1)

where $a(x) \in \mathcal{R}_{\gamma}$.

Theorem 5: Let $C_3 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 3 (as classified in Theorem 1). Then the Hamming distance of C_3 is given by

$$d_{H}(\mathcal{C}_{3}) = d_{H}(\langle (x-\gamma_{0})^{\mathsf{L}} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ \mathsf{L} = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le \mathsf{L} \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

Proof: First of all, since $u^2(x-\gamma_0)^{\mathsf{L}} \in \mathcal{C}_3$, it follows that

$$d_H(\mathcal{C}_3) \le d_H(\langle u^2(x-\gamma_0)^{\mathsf{L}} \rangle) = d_H(\langle (x-\gamma_0)^{\mathsf{L}} \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_3$. Thus, by (1), we obtain that

$$wt_H(c(x)) \ge wt_H(uc(x))$$
$$\ge d_H(\langle u^2(x-\gamma_0)^\delta \rangle)$$
$$= d_H(\langle (x-\gamma_0)^\delta \rangle_{\mathbb{R}})$$

Since, $\langle (x-\gamma_0)^{\delta} \rangle \subseteq \langle (x-\gamma_0)^{\mathsf{L}} \rangle$, we have

$$d_H(\langle (x-\gamma_0)^{\delta}\rangle_{\mathbb{F}}) \ge d_H(\langle (x-\gamma_0)^{\mathsf{L}}\rangle_{\mathbb{F}}).$$

Hence, $d_H(\langle (x-\gamma_0)^{\mathsf{L}} \rangle_{\mathbb{F}}) \leq d_H(\mathcal{C}_3)$, forcing

$$d_H(\mathcal{C}_3) = d_H(\langle (x - \gamma_0)^{\mathsf{L}} \rangle_{\mathbb{F}}).$$

The rest of the proof follows from Theorem 3 and the discussion above.

Theorem 6: Let $C_4 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x), u^2(x-\gamma_0)^{\omega} \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 4

(as classified in Theorem 1). Then the Hamming distance of \mathcal{C}_4 is given by

$$d_{H}(C_{4}) = d_{H}(\langle (x-\gamma_{0})^{\omega} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ \omega = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le \omega \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

Proof: First of all, since $u^2(x-\gamma_0)^{\omega} \in C_4$, it follows that

$$d_H(\mathcal{C}_4) \le d_H(\langle u^2(x-\gamma_0)^{\omega} \rangle) = d_H(\langle (x-\gamma_0)^{\omega} \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_4 \setminus \langle u^2(x - \gamma_0)^{\omega} \rangle$. Thus, by (1), we obtain that

$$wt_H(c(x)) \ge wt_H(uc(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^\delta \rangle)$$

$$= d_H(\langle (x-\gamma_0)^\delta \rangle_{\mathbb{F}})$$

$$\ge d_H(\langle (x-\gamma_0)^\omega \rangle_{\mathbb{F}}).$$

Hence, $d_H(\langle (x-\gamma_0)^{\omega}\rangle_{\mathbb{F}}) \leq d_H(\mathcal{C}_4)$, forcing

$$d_H(\mathcal{C}_4) = d_H(\langle (x - \gamma_0)^{\omega} \rangle_{\mathbb{F}}).$$

The rest of the proof follows from Theorem 3 and the discussion above.

Theorem 7: Let $C_5 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1). Then the Hamming distance of C_5 is given by

$$d_H(\mathcal{C}_5) = d_H(\langle (x - \gamma_0)^{\mathsf{V}} \rangle_{\mathbb{F}})$$
$$= (n+1)p^k,$$

where $p^{s}-pr+(n-1)r+1 \le V \le p^{s}-pr+nr$, $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$.

Proof: First of all, since $u^2(x-\gamma_0)^{\mathsf{V}} \in \mathcal{C}_5$, it follows that

$$d_H(\mathcal{C}_5) \le d_H(\langle u^2(x-\gamma_0)^{\mathsf{V}} \rangle) = d_H(\langle (x-\gamma_0)^{\mathsf{V}} \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_5$. Thus, by (1), we obtain that

$$wt_H(c(x)) \ge wt_H(u^2c(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^a \rangle)$$

$$= d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}}).$$

Since, $\langle (x-\gamma_0)^a \rangle \subseteq \langle (x-\gamma_0)^{\mathsf{V}} \rangle$, we have

$$d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}}) \ge d_H(\langle (x-\gamma_0)^{\mathsf{V}} \rangle_{\mathbb{F}}).$$

Hence, $d_H(\langle (x-\gamma_0)^{\mathsf{V}}\rangle_{\mathbb{F}}) \leq d_H(\mathcal{C}_5)$, forcing

$$d_H(\mathcal{C}_5) = d_H(\langle (x - \gamma_0)^{\mathsf{V}} \rangle_{\mathbb{F}})$$

The rest of the proof follows from Theorem 3 and the discussion above.

Theorem 8: Let $C_6 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u^2(x-\gamma_0)^c \rangle$ be a γ -constacyclic codes of length

 p^s over \mathcal{R} of Type 6 (as classified in Theorem 1). Then the Hamming distance of \mathcal{C}_6 is given by

$$d_{H}(C_{6}) = d_{H}(\langle (x-\gamma_{0})^{c} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ c = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le c \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

Proof: First of all, since $u^2(x-\gamma_0)^c \in C_6$, it follows that

$$d_H(\mathcal{C}_6) \le d_H(\langle u^2(x-\gamma_0)^c \rangle) = d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_6 \setminus \langle u^2(x-\gamma_0)^c \rangle$. Thus, by (1), we obtain that

$$wt_H(c(x)) \ge wt_H(u^2c(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^a \rangle)$$

$$= d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}})$$

$$\ge d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}).$$

Hence, $d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}) \leq d_H(\mathcal{C}_6)$, forcing

$$d_H(\mathcal{C}_6) = d_H(\langle (x - \gamma_0)^c \rangle_{\mathbb{F}}).$$

The rest of the proof follows from Theorem 3 and the discussion above.

Theorem 9: Let $C_7 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 7 (as classified in Theorem 1). Then the Hamming distance of C_7 is given by

$$d_{H}(C_{7}) = d_{H}(\langle (x-\gamma_{0})^{\mathsf{W}} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ \mathsf{W} = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le \mathsf{W} \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

Proof: First of all, since $u^2(x-\gamma_0)^W \in C_7$, it follows that

$$d_H(\mathcal{C}_7) \le d_H(\langle u^2(x-\gamma_0)^{\mathsf{W}} \rangle) = d_H(\langle (x-\gamma_0)^{\mathsf{W}} \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_7$. We consider two cases.

* Case 1: $c(x) \in \langle u \rangle$. In this case, by (1). We have

w

$$t_H(c(x)) \ge wt_H(uc(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^b \rangle)$$

$$= d_H(\langle (x-\gamma_0)^b \rangle_{\mathbb{F}}).$$

* Case 2: $c(x) \notin \langle u \rangle$. In this case, by (1). We have

$$wt_H(c(x)) \ge wt_H(u^2c(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^a \rangle)$$

$$= d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}}).$$

Since, $\langle (x-\gamma_0)^a \rangle \subseteq \langle (x-\gamma_0)^b \rangle \subseteq \langle (x-\gamma_0)^W \rangle$, we have $d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}}) \ge d_H(\langle (x-\gamma_0)^b \rangle_{\mathbb{F}}) \ge d_H(\langle (x-\gamma_0)^W \rangle_{\mathbb{F}}).$ Hence, $d_H(\langle (x-\gamma_0)^W \rangle_{\mathbb{F}}) \le d_H(\mathcal{C}_7)$, forcing $d_H(\mathcal{C}_7) = d_H(\langle (x-\gamma_0)^W \rangle_{\mathbb{F}}).$

The rest of the proof follows from Theorem 3 and the discussion above.

Theorem 10: Let $C_8 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x), u^2(x-\gamma_0)^c \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 8 (as classified in Theorem 1). Then the Hamming distance of C_8 is given by

$$d_{H}(C_{8}) = d_{H}(\langle (x-\gamma_{0})^{c} \rangle_{\mathbb{F}})$$

$$= \begin{cases} \bullet \ 1, \ if \ c = 0, \\ \bullet \ (n+1)p^{k}, \ if \\ p^{s}-pr+(n-1)r+1 \le c \le p^{s}-pr+nr, \\ where \ r = p^{s-k-1}, \ 1 \le n \le p-1 \\ and \ 0 \le k \le s-1. \end{cases}$$

Proof: First of all, since $u^2(x-\gamma_0)^c \in C_8$, it follows that

$$d_H(\mathcal{C}_8) \le d_H(\langle u^2(x-\gamma_0)^c \rangle) = d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}).$$

Now, consider an arbitrary polynomial $c(x) \in C_8 \setminus \langle u^2(x - \gamma_0)^c \rangle$. We consider two cases.

* Case 1: $c(x) \in \langle u \rangle$. In this case, by (1). We have

$$wt_H(c(x)) \ge wt_H(uc(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^b \rangle)$$

$$= d_H(\langle (x-\gamma_0)^b \rangle_{\mathbb{F}})$$

$$\ge d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}).$$

* Case 2: $c(x) \notin \langle u \rangle$. In this case, by (1). We have

$$wt_H(c(x)) \ge wt_H(u^2c(x))$$

$$\ge d_H(\langle u^2(x-\gamma_0)^a \rangle)$$

$$= d_H(\langle (x-\gamma_0)^a \rangle_{\mathbb{F}})$$

$$\ge d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}).$$

Hence, $d_H(\langle (x-\gamma_0)^c \rangle_{\mathbb{F}}) \leq d_H(\mathcal{C}_8)$, forcing

$$d_H(\mathcal{C}_8) = d_H(\langle (x - \gamma_0)^c \rangle_{\mathbb{F}}).$$

The rest of the proof follows from Theorem 3 and the discussion above.

IV. MAXIMUM DISTANCE SEPARABLE CODES WITH RESPECT TO HAMMING DISTANCE

In [24], Norton *et al.* discussed the Singleton bound for finite chain ring \mathcal{R} with respect to the Hamming distance $d_H(C)$ and is given as $|C| \leq |\mathcal{R}|^{(n-d_H(C)+1)}$. Maximum Distance Separable (MDS) codes are classified as an important class of linear codes that meet the Singleton bound. They have high error correction capability as compared to non MDS codes.

Theorem 11 (Singleton Bound With Respect to Hamming Distance [24]): Let C be a linear code of length n over \mathcal{R} with

Hamming distance $d_H(C)$. Then, the Singleton bound with respect to the Hamming distance $d_H(C)$ is given by $|C| \le p^{3m(n-d_H(C)+1)}$.

Definition 1: Let *C* be a linear code of length *n* over \mathcal{R} . Then, *C* is said to be a maximum distance separable (MDS) code with respect to the Hamming distance if it attains the Singleton bound.

In this section, we identify the MDS codes for each type of γ -constacyclic codes one by one. First, we consider the γ -constacyclic codes of length p^s of Type 1.

Theorem 12: Let C_1 be a γ -constacyclic code of length p^s over \mathcal{R} of Type 1 (as classified in Theorem 1), then the only MDS code is $\langle 1 \rangle$.

Proof: Case 1: If $C_1 = \langle 0 \rangle$, then the Hamming distance is $d_H(C_1) = 0$. For C_1 to be MDS we must have, $|C_1| = p^{3m(p^s - d_H(C_1) + 1)}$, i.e., $1 = p^{3m(p^s + 1)}$, i.e., $p^s + 1 = 0$, which is not true for any p and s.

Case 2: If $C_1 = \langle 1 \rangle$, then $d_H(C_1) = 1$. For C_1 to be MDS we must have, $|C_1| = p^{3m(p^s - d_H(C_1) + 1)}$, i.e., $p^{3mp^s} = p^{3m(p^s - 1 + 1)}$, which is true for all p and s. Thus, the code C_1 is MDS in this case.

Now we examine the MDS condition for Type 2 γ -constacyclic codes.

Theorem 13: Let $C_2 = \langle u^2(x-\gamma_0)^{\tau} \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 2 (as classified in Theorem 1), where $0 \le \tau \le p^s - 1$. Then no MDS codes exist.

Proof: Here, we have $|\mathcal{C}_2| = p^{m(p^s - \tau)}$. So, \mathcal{C}_2 is a MDS code if and only if $|\mathcal{C}_2| = p^{3m(p^s - d_H(\mathcal{C}_2) + 1)}$, i.e., $p^{m(p^s - \tau)} = p^{3m(p^s - d_H(\mathcal{C}_2) + 1)}$, i.e., $\tau = 3 d_H(\mathcal{C}_2) - 2p^s - 3$. We consider two cases as follows:

Case 1: If $\tau = 0$, then $d_H(C_2) = 1$. For C_2 to be MDS we must have, $p^s = 0$, which is not true for any p and s. Thus, C_2 is not MDS for $\tau = 0$.

Case 2: If $p^s - pr + (n-1)r + 1 \le \tau \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(\mathcal{C}_2) = (n+1)p^k$.

Now,

$$\begin{aligned} \tau &\geq p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1 \\ &= p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1 \\ &\geq p(3p^{k}-1) - 2p^{s} + (n-1) + 1 \\ &\geq (n+1)(3p^{k}-1) - 2p^{s} + n \\ &= 3(n+1)p^{k} - 2p^{s} - 1 \\ &> 3(n+1)p^{k} - 2p^{s} - 3 \\ &= 3 d_{H}(\mathcal{C}_{2}) - 2p^{s} - 3. \end{aligned}$$

Since, $\tau > 3 d_H(C_2) - 2p^s - 3$, no MDS code exists in this case.

Here, we consider the γ -constacyclic codes of Type 3 to verify the MDS condition for these codes. Here, we have $|C_3| = p^{m(2p^s - \delta - L)}$. So, C_3 is a MDS code if and only if $|C_3| = p^{3m(p^s - d_H(C_3) + 1)}$, i.e., $p^{m(2p^s - \delta - L)} = p^{3m(p^s - d_H(C_3) + 1)}$, i.e., $L = 3 d_H(C_3) - p^s - \delta - 3$. Hence, follows the theorem.

Theorem 14: Let $C_3 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 3 (as classified in Theorem 1). Then, there is no MDS code.

Proof: We consider two cases as follows:

Case 1: If L = 0, then $d_H(C_3) = 1$. For C_3 to be MDS we must have, $\delta = -p^s$, which is not true for any p and s. Thus, C_3 is not MDS for L = 0.

Case 2: If $p^s - pr + (n-1)r + 1 \le L \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(\mathcal{C}_3) = (n+1)p^k$.

Now,

$$L \ge p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1$$

= $p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1$
 $\ge p(3p^{k}-1) - 2p^{s} + (n-1) + 1$
 $\times (equality when k = s-1, or s = 1)$
 $\ge (n+1)(3p^{k}-1) - 2p^{s} + n$
 $\times (equality when n = p-1)$
 $= 3(n+1)p^{k} - 2p^{s} - 1$
 $= 3 d\mu(C_{3}) - 2p^{s} - 1.$

Now, $L \ge 3 d_H(C_3)-p^s-\delta-3$ if and only if $\delta \ge p^s-2$, i.e., equality when $\delta = p^s-2$. Thus, equality occurs when $n = p-1, k = s-1, \delta = p^s-2$, i.e., $L = p^s-1$, which is a contradiction, since $L \le \delta$. Thus, there is no MDS code in this case.

Now we examine the MDS condition for Type 4 γ -constacyclic codes.

Theorem 15: Let $C_4 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x), u^2(x-\gamma_0)^{\omega} \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 4 (as classified in Theorem 1). Then, there is no MDS code.

Proof: Here, we have $|\mathcal{C}_4| = p^{m(2p^s - \delta - \omega)}$. So, \mathcal{C}_4 is a MDS code if and only if $|\mathcal{C}_4| = p^{3m(p^s - d_H(\mathcal{C}_4) + 1)}$, i.e., $p^{m(2p^s - \delta - \omega)} = p^{3m(p^s - d_H(\mathcal{C}_4) + 1)}$, i.e., $\omega = 3 d_H(\mathcal{C}_4) - p^s - 3 - \delta$. We consider two cases as follows:

Case 1: If $\omega = 0$, then $d_H(C_4) = 1$. For C_4 to be MDS we must have, $\delta = -p^s$, which is a contradiction, since $1 \le \delta \le p^s - 1$. Thus, C_4 is not MDS for $\omega = 0$.

Case 2: If $p^s - pr + (n-1)r + 1 \le \omega \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(C_4) = (n+1)p^k$. For C_4 to be MDS we must have $\omega = 3 d_H(C_4) - p^s - 3 - \delta$. Let $\delta = p^s - m$, where $1 \le m \le p^s - 1$. Thus, the condition for C_4 to be a MDS constacyclic code becomes $\omega = 3d_H(C_4) - 2p^s - 3 + m$.

Now,

$$\begin{split} \omega &\geq p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1 \\ &= p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1 \\ &\geq p(3p^{k}-1) - 2p^{s} + (n-1) + 1 \\ &\times (equality when \ k = s-1, \ or \ s = 1) \\ &\geq (n+1)(3p^{k}-1) - 2p^{s} + n \\ &\times (equality \ when \ n = p-1) \\ &= 3(n+1)p^{k} - 2p^{s} - 1 \\ &= 3 \ d_{H}(C_{4}) - 2p^{s} - 1. \end{split}$$

Now, $\omega \ge 3 d_H(\mathcal{C}_4) - 2p^s - 3 + m$ if and only if $2 \ge m$, i.e., equality when m = 2. Thus, equality occurs when

n = p-1, k = s-1, m = 2, i.e., $\delta = p^s-2$ and $\omega = p^s-1$, which is a contradiction, since $\omega < \delta$. Thus, there is no MDS code in this case.

Now we examine the MDS condition for Type 5 γ -constacyclic codes. Here, we have $|C_5| = p^{m(3p^s - a - U - V)}$. So, C_5 is a MDS code if and only if $|C_5| = p^{3m(p^s - d_H(C_5) + 1)}$, i.e., $p^{m(3p^s - a - U - V)} = p^{3m(p^s - d_H(C_5) + 1)}$, i.e., $V = 3d_H(C_5) - a - U - 3$. Thus, we get the following cases:

Case 1: When $h_1(x) = h_2(x) = 0$ then, V = U = a. For C_5 to be MDS we must have $a = d_H(C_5)-1$. Hence, the MDS codes for Type 5 ideals are similar to the MDS γ -constacyclic codes over \mathbb{F}_{p^m} [15, Corollary 13]. Hence, we have the following theorem:

Theorem 16: Let $C_5 = \langle (x-\gamma_0)^a \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1). Then C_5 is a MDS code if and only if one of the following conditions holds:

- If s = 1 then a = n for $1 \le n \le p-1$, in such case, $d_H(\mathcal{C}_5) = n+1$.
- If $s \ge 2$, then

* a = 1, in such case, $d_H(\mathcal{C}_5) = 2$, * $a = p^s - 1$, in such case, $d_H(\mathcal{C}_5) = p^s$.

Case 2: When $h_1(x) = 0$, $h_2(x) \neq 0$ and $1 \leq a \leq \frac{p^s + t_2}{2}$ then, V = U = a. For C_5 to be MDS we must have $a = d_H(C_5)-1$, which is similar to the result in case 1. But we have $1 \leq a \leq \frac{p^s + t_2}{2}$ and $0 \leq t_2 < a$, which implies that $\max\{2a-p^s, 0\} \leq t_2 < a$. Hence, we conclude the following theorem.

Theorem 17: Let $C_5 = \langle (x-\gamma_0)^a + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1), where $h_2(x) \neq 0$ and $1 \leq a \leq \frac{p^s + t_2}{2}$. Then C_5 is a MDS code if and only if one of the following conditions holds:

- If s = 1, a = n, $1 \le n \le p-1$ and $\max\{2n-p, 0\} \le t_2 < n$, then $d_H(C_5) = n+1$.
- If $s \ge 2$, * a = 1 and $t_2 = 0$, then $d_H(\mathcal{C}_5) = 2$,
 - * $a = p^{s} 1$ and $t_{2} = p^{s} 2$, then $d_{H}(C_{5}) = p^{s}$.

Case 3: When $h_1(x) \neq 0$ and $1 \leq a \leq \frac{p^s+t_1}{2}$ then, V = U = a. For C_5 to be MDS we must have $a = d_H(C_5)-1$, which is similar to the result in case 1. But we have $1 \leq a \leq \frac{p^s+t_1}{2}$ and $0 \leq t_1 < a$, which implies that $\max\{2a-p^s, 0\} \leq t_1 < a$. Hence, we conclude the following theorem.

Theorem 18: Let $C_5 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1), where $h_1(x) \neq 0$ and $1 \le a \le \frac{p^s + t_1}{2}$. Then C_5 is a MDS code if and only if one of the following conditions holds:

- If s = 1, a = n, $1 \le n \le p-1$ and $\max\{2n-p, 0\} \le t_1 < n$, then $d_H(\mathcal{C}_5) = n+1$.
- If $s \ge 2$,

*
$$a = 1$$
 and $t_1 = 0$, then $d_H(C_5) = 2$,
* $a = p^s - 1$ and $t_1 = p^s - 2$, then $d_H(C_5) = p^s$

Case 4: When $h_1(x) \neq 0$ and $\frac{p^{s}+t_1}{2} < a \leq p^s-1$ then, $\mathsf{V} = \mathsf{U} = p^s - a + t_1$. For \mathcal{C}_5 to be MDS we must have $a = 2p^s - 3d_H(\mathcal{C}_5) + 2t_1 + 3$. Hence, follows the theorem.

Theorem 19: Let $C_5 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1), where $h_1(x) \neq 0$ and $\frac{p^s+t_1}{2} < a \leq p^s - 1$. Then, there is no MDS code.

Proof: When $h_1(x) \neq 0$ and $\frac{p^s+t_1}{2} < a \leq p^s-1$, then $V = p^s - a + t_1$. If $p^s - pr + (n-1)r + 1 \leq p^s - a + t_1 \leq p^s - pr + nr$, i.e., $t_1 + pr - nr \leq a \leq t_1 + pr - (n-1)r - 1$, where $r = p^{s-k-1}$, $1 \leq n \leq p-1$ and $0 \leq k \leq s-1$. Then we have Hamming distance $d_H(\mathcal{C}_5) = (n+1)p^k$. We get MDS code for $a = 2p^s - 3d_H(\mathcal{C}_5) + 2t_1 + 3$.

Now,

$$a \ge t_1 + p^{s-k} - np^{s-k-1}$$

= $t_1 + p^{s-k-1}(p-n)$
 $\ge t_1 + (p-n)$
 $\times (equality when k = s-1, or s = 1)$
 $\ge t_1 + 1$
 $\times (equality when n = p-1)$
= $-3(n+1)p^k + t_1 + 1 + 3(n+1)p^k$
 $\ge -3(n+1)p^k + t_1 + 1 + 3(n+1)$
 $\times (equality when k = 0)$
 $\ge -3(n+1)p^k + t_1 + 7$
 $\times (equality when n = 1)$
= $-3d_H(C_5) + t_1 + 7$.

Now, $a \ge 2p^s - 3d_H(C_5) + 2t_1 + 3$ if and only if $-2p^s + 4 \ge t_1$, i.e., equality when $t_1 = -2p^s + 4$. Thus, equality occurs when n = 1, k = 0, s = 1, p = 2 and $t_1 = 0$, i.e., a = 1, which is a contradiction, since $1 = \frac{2^1 + 0}{2} < a$. Thus, there is no MDS code in this case.

Case 5: When $h_1(x) = 0$, $h_2(x) \neq 0$ and $\frac{p^s + t_2}{2} < a \leq p^s - 1$ then, $V = p^s - a + t_2$ and U = a. For C_5 to be MDS we must have $a = 3d_H(C_5) - p^s - t_2 - 3$. Hence, follows the theorem.

Theorem 20: Let $C_5 = \langle (x-\gamma_0)^a + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 5 (as classified in Theorem 1), where $h_2(x) \neq 0$ and $\frac{p^s+t_2}{2} < a \leq p^s - 1$. Then, there is no MDS code.

Proof: When $h_1(x) = 0$, $h_2(x) \neq 0$ and $\frac{p^s+t_2}{2} < a \leq p^s-1$, then $V = p^s-a+t_2$. If $p^s-pr+(n-1)r+1 \leq p^s-a+t_2 \leq p^s-pr+nr$, i.e., $t_2+pr-nr \leq a \leq t_2+pr-(n-1)r-1$, where $r = p^{s-k-1}$, $1 \leq n \leq p-1$ and $0 \leq k \leq s-1$. Then we have Hamming distance $d_H(\mathcal{C}_5) = (n+1)p^k$. We get MDS code for $a = 3d_H(\mathcal{C}_5)-p^s-t_2-3$.

Now,

$$a \ge t_2 + p^{s-k} - np^{s-k-1}$$

= $t_2 + p^{s-k-1}(p-n)$
 $\ge t_2 + 1$
= $3(n+1)p^k + t_2 + 1 - 3(n+1)p^k$
 $\ge 3(n+1)p^k + t_2 + 1 - 3p^s$
= $3d_H(\mathcal{C}_5) + t_2 + 1 - 3p^s$.

Now, $a \ge 3d_H(C_5)-p^s-t_2-3$ if and only if $t_2 \ge p^s-2$, i.e., equality when $t_2 = p^s-2$, i.e., $\frac{p^s+p^s-2}{2} < a \le p^s-1$, i.e., $p^s-1 < a \le p^s-1$, which is a contradiction. Thus, there is no MDS code in this case.

Here, we consider the γ -constacyclic codes of Type 6 to verify the MDS condition for these codes.

Theorem 21: Let $C_6 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u^2(x-\gamma_0)^c \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 6 (as classified in Theorem 1). Then, there is no MDS code.

Proof: Here, we have $|\mathcal{C}_6| = p^{m(3p^s - a - U - c)}$. So, \mathcal{C}_6 is a MDS code if and only if $|\mathcal{C}_6| = p^{3m(p^s - d_H(\mathcal{C}_6) + 1)}$, i.e., $p^{m(3p^s - a - U - c)} = p^{3m(p^s - d_H(\mathcal{C}_6) + 1)}$, i.e., $c = 3 d_H(\mathcal{C}_6) - U - a - 3$. We consider two cases as follows:

Case 1: If c = 0, then $d_H(C_6) = 1$. For C_6 to be MDS we must have, a = -U, which is contradiction, since $0 < U \le a$. *Case 2*: If $p^s - pr + (n-1)r + 1 \le c \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(C_6) = (n+1)p^k$. We have the following subcases:

Subcase 2.1: When $h_1(x) = 0$ or $h_1(x) \neq 0$ and $0 < a \le \frac{p^s + t_1}{2}$, then U = a. So, C_6 is a MDS code if and only if $c = 3 d_H(C_6) - 2a - 3$. Now,

$$c \ge p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1$$

= $p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1$
 $\ge p(3p^{k}-1) - 2p^{s} + (n-1) + 1$
 $\times (equality when k = s-1, or s = 1)$
 $\ge (n+1)(3p^{k}-1) - 2p^{s} + n$
 $\times (equality when n = p-1)$
 $= 3(n+1)p^{k} - 2p^{s} - 1$
 $= 3 d_{H}(C_{6}) - 2p^{s} - 1.$

Now, $c \ge 3 d_H(C_6)-2a-3$ if and only if $a \ge p^s-1$, i.e., equality when $a = p^s-1$. Thus, equality occurs when $n = p-1, k = s-1, a = p^s-1$, i.e., $c = p^s-1$, which is a contradiction, since c < a. Thus, there is no MDS code in this case.

Subcase 2.2: When $h_1(x) \neq 0$ and $\frac{p^s+t_1}{2} < a \leq p^s-1$, then $U = p^s - a + t_1$. So, C_6 is a MDS code if and only if $c = 3 d_H(C_6) - p^s - t_1 - 3$.

Now,

$$c \ge p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1$$

= $p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1$
 $\ge p(3p^{k}-1) - 2p^{s} + (n-1) + 1$
 $\times (equality when k = s-1, or s = 1)$
 $\ge (n+1)(3p^{k}-1) - 2p^{s} + n$
 $\times (equality when n = p-1)$
= $3(n+1)p^{k} - 2p^{s} - 1$
= $3 d_{H}(C_{6}) - 2p^{s} - 1$.

Now, $c \ge 3 d_H(C_6) - p^s - t_1 - 3$ if and only if $t_1 \ge p^s - 2$, i.e., equality when $t_1 = p^s - 2$, i.e., $\frac{p^s + p^s - 2}{2} < a \le p^s - 1$,

i.e., $p^s - 1 < a \le p^s - 1$, which is a contradiction. Thus, there is no MDS code in this case.

Now we examine the MDS condition for Type7 γ -constacyclic codes. Here, we have $|C_7| = p^{m(3p^s - a - b - W)}$. So, C_7 is a MDS code if and only if $|C_7| = p^{3m(p^s - d_H(C_7) + 1)}$, i.e., $p^{m(3p^s - a - b - W)} = p^{3m(p^s - d_H(C_7) + 1)}$, i.e., $W = 3 d_H(C_7) - b - a - 3$.

Theorem 22: Let $C_7 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x) \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 7 (as classified in Theorem 1). Then, there is no MDS code.

Proof: Case 1: If W = 0, then $d_H(C_7) = 1$. For C_7 to be MDS we must have, a = -b, which is contradiction, since $0 \le b < a$. Thus, C_7 is not MDS for W = 0.

Case 2: If $p^s - pr + (n-1)r + 1 \le W \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(C_7) = (n+1)p^k$.

Now,

$$W \ge p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1$$

= $p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1$
 $\ge p(3p^{k}-1) - 2p^{s} + (n-1) + 1$
 $\times (equality when k = s-1, or s = 1)$
 $\ge (n+1)(3p^{k}-1) - 2p^{s} + n$
 $\times (equality when n = p-1)$
 $= 3(n+1)p^{k} - 2p^{s} - 1$
 $= 3d_{H}(C_{7}) - 2p^{s} - 1.$

Now, $W \ge 3 d_H(C_7)-b-a-3$ if and only if $a+b \ge 2p^s-2$, i.e., equality when $a+b = 2p^s-2$. Thus, equality occurs when $n = p-1, k = s-1, a+b = 2p^s-2$, i.e., $W = p^s-1$, which is a contradiction, since $W < p^s-1$. Thus, there is no MDS code in this case.

Finally, we explore the MDS γ -constacyclic codes of Type 8.

Theorem 23: Let $C_8 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x), u^2(x-\gamma_0)^c \rangle$ be a γ -constacyclic codes of length p^s over \mathcal{R} of Type 8 (as classified in Theorem 1). Then, there is no MDS code.

Proof: Here, we have $|\mathcal{C}_8| = p^{m(3p^s - a - b - c)}$. So, \mathcal{C}_8 is a MDS code if and only if $|\mathcal{C}_8| = p^{3m(p^s - d_H(\mathcal{C}_8) + 1)}$, i.e., $p^{m(3p^s - a - b - c)} = p^{3m(p^s - d_H(\mathcal{C}_8) + 1)}$, i.e., $c = 3 d_H(\mathcal{C}_8) - b - a - 3$. We consider two cases as follows:

Case 1: If c = 0, then $d_H(C_8) = 1$. For C_8 to be MDS we must have a = -b, which is contradiction, since $0 \le b < a$. Thus, C_8 is not MDS for c = 0.

Case 2: If $p^s - pr + (n-1)r + 1 \le c \le p^s - pr + nr$, where $r = p^{s-k-1}$, $1 \le n \le p-1$ and $0 \le k \le s-1$. Then we have Hamming distance $d_H(\mathcal{C}_8) = (n+1)p^k$. Now,

$$c \ge p^{s} - p^{s-k} + (n-1)p^{s-k-1} + 1$$

= $p^{s-k}(3p^{k}-1) - 2p^{s} + (n-1)p^{s-k-1} + 1$
 $\ge p(3p^{k}-1) - 2p^{s} + (n-1) + 1$
 $\times (equality when k = s-1, or s = 1)$

$$\geq (n+1)(3p^{k}-1)-2p^{s}+n$$

$$\times (equality when n = p-1)$$

$$= 3(n+1)p^{k}-2p^{s}-1$$

$$= 3 d_{H}(\mathcal{C}_{8})-2p^{s}-1.$$

Now, $c \ge 3 d_H(C_8)-b-a-3$ if and only if $a+b \ge 2p^s-2$, i.e., equality when $a+b = 2p^s-2$. Thus, equality occurs when $n = p-1, k = s-1, a+b = 2p^s-2$, i.e., $c = p^s-1$, which is a contradiction, since $c < p^s-1$. Thus, there is no MDS code in this case.

Consequently, we have the list of all MDS γ -constacyclic codes of length p^s over $\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}$.

Theorem 24: All MDS γ -constacyclic codes of length p^s over \mathcal{R} are determined as follows:

- Type 1 (trivial ideals): C₁ = ⟨1⟩ is the only MDS code with d_H(C₁) = 1.
- Type 2: $C_2 = \langle u^2(x-\gamma_0)^{\tau} \rangle$, where $0 \le \tau \le p^s 1$. No MDS constacyclic codes can be obtained in this case.
- Type 3: $C_3 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x) \rangle$, where $0 \le \delta \le p^s 1$, $0 \le t < \delta$, either h(x) is 0 or a unit in \mathcal{R}_{γ} . No MDS constacyclic code can be obtained in this case.
- Type 4: $C_4 = \langle u(x-\gamma_0)^{\delta} + u^2(x-\gamma_0)^t h(x), u^2(x-\gamma_0)^{\omega} \rangle$, where $0 \le \omega < \delta \le p^s - 1, 0 \le t < \omega$, either h(x) is 0 or a unit in \mathcal{R}_{γ} . No MDS constacyclic code can be obtained in this case.
- Type 5: $C_5 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x) \rangle$, where $1 \le a \le p^s 1$, $0 \le t_1 < a$, $0 \le t_2 < a$, either $h_1(x), h_2(x)$ are 0 or are units in \mathcal{R}_{γ} .
 - -- When $h_1(x) = h_2(x) = 0$, then C_5 is a MDS code if and only if one of the following conditions holds:
 - * If s = 1, a = n for $1 \le n \le p-1$, in such case, $d_H(\mathcal{C}_5) = n+1$.
 - * If $s \ge 2$,
 - a = 1 in such case, $d_H(\mathcal{C}_5) = 2$,

•
$$a = p^s - 1$$
 in such case, $d_H(\mathcal{C}_5) = p^s$.

- -- When $h_1(x) = 0, h_2(x) \neq 0$ and $1 \leq a \leq \frac{p^s + t_2}{2}$. Then C_5 is a MDS code if and only if one of the following conditions holds:
 - * If s = 1, a = n, $1 \le n \le p-1$ and $\max\{2n p, 0\} \le t_2 < n$, then $d_H(\mathcal{C}_5) = n+1$.
 - * If $s \ge 2$,

•
$$a = 1$$
 and $t_2 = 0$, then $d_H(\mathcal{C}_5) = 2$,

•
$$a = p^{s} - 1$$
 and $t_{2} = p^{s} - 2$, then $d_{H}(C_{5}) = p$

- -- When $h_1(x) \neq 0$ and $1 \leq a \leq \frac{p^2 + t_1}{2}$. Then C_5 is a MDS code if and only if one of the following conditions holds:
 - * If s = 1, a = n, $1 \le n \le p-1$ and $\max\{2n p, 0\} \le t_1 < n$, then $d_H(\mathcal{C}_5) = n+1$.
 - * If $s \ge 2$,
 - a = 1 and $t_1 = 0$, then $d_H(C_5) = 2$,

•
$$a = p^{s} - 1$$
 and $t_{1} = p^{s} - 2$, then $d_{H}(C_{5}) = p^{s}$.

-- When $h_1(x) \neq 0$ and $\frac{p^{s}+t_1}{2} < a \leq p^s-1$ (or when $h_1(x) = 0, h_2(x) \neq 0$ and $\frac{p^s+t_2}{2} < a \leq p^s-1$). Then, there is no MDS code.

- Type 6: $C_6 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u^2(x-\gamma_0)^c \rangle$, where $0 \le c < a \le p^s 1$, $0 \le t_1 < a, 0 \le t_2 < c$, either $h_1(x), h_2(x)$ are 0 or are units in \mathcal{R}_{γ} . No MDS constacyclic code can be obtained in this case.
- Type 7: $C_7 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x) \rangle$, where $0 \le b < a \le p^s 1, 0 \le t_1 < b, 0 \le t_2 < b, 0 \le t_3 < b$, either $h_1(x), h_2(x), h_3(x)$ are 0 or are units in \mathcal{R}_{γ} . No MDS constacyclic code can be obtained in this case.
- Type 8: $C_8 = \langle (x-\gamma_0)^a + u(x-\gamma_0)^{t_1}h_1(x) + u^2(x-\gamma_0)^{t_2}h_2(x), \quad u(x-\gamma_0)^b + u^2(x-\gamma_0)^{t_3}h_3(x), \quad u^2(x-\gamma_0)^c \rangle,$ where $0 \le c < b < a \le p^s - 1, \quad 0 \le t_1 < b, \quad 0 \le t_2 < c,$ $0 \le t_3 < c$, either $h_1(x), \quad h_2(x), \quad h_3(x)$ are 0 or are units in \mathcal{R}_{γ} . No MDS constacyclic code can be obtained in this case.

V. EXAMPLES

In this section, we present some examples of constacyclic codes of length p^s over $\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + u^2\mathbb{F}_{p^m}(u^3 = 0)$.

Example 1: γ -constacyclic codes of length 3 over the chain ring $\mathcal{R} = \mathbb{F}_3 + u\mathbb{F}_3 + u^2\mathbb{F}_3$ are precisely the ideals of $\mathcal{R}[x]/\langle x^3 - \gamma \rangle$, where $\gamma \in \{1, 2\}$.

In the following, we list all distinct γ -constacyclic codes of length 3 over the chain ring $\mathbb{F}_3 + u\mathbb{F}_3 + u^2\mathbb{F}_3$. There are 82 distinct γ -constacyclic codes listed below. In all codes we have $h_0, a_0, b_0, c_0 \in \{1, 2\}$ and $b_1 \in \{0, 1, 3\}$.

Using the results in Sections III and IV, we list all Hamming distances d_H of such codes and the number of codewords |C| in each of those constacyclic codes. We also give all MDS and non-MDS codes (Table 1).

Among these 82 codes, 31 of them are MDS codes.

- * Type 1 (C_1): $\langle 0 \rangle$, $\langle 1 \rangle$. * Type 2 (C_2): $\rightarrow \tau = 0$: $\langle u^2 \rangle$, $\rightarrow \tau = 1$: $\langle u^2(x-\gamma) \rangle$, $\rightarrow \tau = 2$: $\langle u^2(x-\gamma)^2 \rangle$. * Type 3 (C_3):
- * Type 4 (C_4):
 - $\rightarrow h(x) = 0, \delta = 1 \text{ and } \omega = 0: \langle u(x-\gamma), u^2 \rangle,$
 - $\rightarrow h(x) = 0, \delta = 2 \text{ and } \omega = 0: \langle u(x-\gamma)^2, u^2 \rangle,$
 - $\rightarrow h(x) = 0, \delta = 2 \text{ and } \omega = 1: \langle u(x-\gamma)^2, u^2(x-\gamma) \rangle.$
- * Type 5 (\mathcal{C}_5):
 - $\rightarrow h_1(x) = h_2(x) = 0 \text{ and } a = 1: \langle (x \gamma) \rangle,$ $\rightarrow h_1(x) = h_2(x) = 0 \text{ and } a = 2: \langle (x - \gamma)^2 \rangle,$
 - → $h_1(x) = 0, h_2(x) \neq 0, a = 1 \text{ and } t_2 = 0: \langle (x \gamma) + b_0 u^2 \rangle$,

TABLE 1. γ -constacyclic codes of length 3 over the chain ring $\mathbb{F}_3 Cu\mathbb{F}_3 Cu^2\mathbb{F}_3$.

$\boxed{Ideal\left(\mathcal{C}\right)}$	d _H	$ \mathcal{C} $	MDS
$ \rightarrow Type1:$			
$ *\langle 0 \rangle$	0	1	No
*(1)	1	39	Yes
\rightarrow Type 2:			
$ *\langle u^2 \rangle$	1	3^{3}	No
$ * \langle u_{\perp}^2(x-\gamma) \rangle$	2	3^{2}	No
$ *\langle u^2(x-\gamma)^2\rangle$	3	3	No
\rightarrow Type 3 :			
$ *\langle u \rangle$	1	3^{6}	No
$ *\langle u(x-\gamma)\rangle$	2	3^{4}	No
$ * \langle u(x-\gamma)^2 \rangle$	3	3^{2}	No
$ * \langle u(x-\gamma) + h_0 u^2 \rangle$	2	3^{4}	No
$ *\langle u(x-\gamma)^2 + h_0 u^2 \rangle$	2	3^{3}	No
$ * \langle u(x-\gamma)^2 + h_0 u^2(x-\gamma) \rangle$	3	3^{2}	No
\rightarrow Type 4:			
$ * \langle u(x-\gamma), u^2 \rangle$	1	3^{5}	No
$ * \langle u(x-\gamma)^2, u^2 \rangle$	1	3^{4}	No
$ * \langle u(x-\gamma)^2, u^2(x-\gamma) \rangle$	2	3^{3}	No
\rightarrow Type 5 :			
$ *\langle (x-\gamma)\rangle$	2	3^{6}	Yes
$ \langle (x-\gamma)^2 \rangle$	3	3^{3}	Yes
$\left * \langle (x - \gamma) + b_0 u^2 \rangle \right $	2	3^{6}	Yes
$\left \frac{1}{\sqrt{(x-\gamma)^2 + b_0 u^2}} \right\rangle$	$\frac{1}{2}$	3^{4}	No
$ ((x - \gamma)^2 + b_0 u^2 (x - \gamma)) \rangle$	3	33	Yes
$\frac{1}{(x-y)} + \frac{1}{2} \frac{1}{(x-y)} + \frac{1}{2} \frac{1}{(x-y)}$	$\left \begin{array}{c} 2 \\ 2 \end{array} \right $	36	Ves
$\frac{\pi}{(x-y)^2 + a_0 u}$	$\frac{2}{2}$	35	No
$ \left \frac{\pi \langle (x-\gamma)^2 + a_0 u(x-\gamma) \rangle}{\pi \langle (x-\gamma)^2 + a_0 u(x-\gamma) \rangle} \right $	3	33	Yes
$\frac{x}{(x-\gamma)} + \frac{a_0u(x-\gamma)}{a_0u+b_0u^2}$	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	26	Vec
$\frac{x}{(x-y)^2 + a_0 u + b_0 u^2}{x/(x-y)^2 + a_0 u + b_0 u^2}$	$\frac{2}{2}$	25	No
$\frac{(x - \gamma)^{2} + a_{0}u + b_{0}u^{2}}{(x - \gamma)^{2} + a_{0}u(x - \gamma) + b_{0}u^{2} + b_{1}u^{2}(x - \gamma)}$	3	23	Vec
$\frac{1}{2} \frac{1}{2} \frac{1}$	3	23	Voc
$ = \frac{1}{\sqrt{2}} \frac{1}{\sqrt$	-	0	103
\neq Type 0. $*/(x - \alpha) u^2$	1	27	No
$\frac{(x - y)}{(x - y)^2} u^2$	1	25	No
$(x - y), u / (x - y)^2, u^2 (x - y))$	2	24	No
(x - y), $u(x - y)$	1	97	No
$(x - y) + a_0 a, u$	1	-0 -96	No
$ + \langle (x - \gamma) + a_0 u, u \rangle $	1	0 95	No
$ + \langle (x - \gamma) + a_0 u(x - \gamma), u \rangle $		0 94	No
$ *((x-\gamma)^{2} + a_{0}u(x-\gamma), u^{2}(x-\gamma)) $	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	3-	INO NI-
$\frac{ *\langle (x-\gamma)^2 + a_0 u(x-\gamma) + b_0 u^2, u^2(x-\gamma) \rangle}{1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + $	2	31	INO
\rightarrow Type 7:	1		NI-
$ *\langle (x-\gamma), u \rangle$		37	
$ *\langle (x-\gamma)^{-}, u \rangle$		3' 95	INO NL
$ *\langle (x-\gamma)^{2}, u(x-\gamma) \rangle$	$\left \frac{2}{2} \right $	30	
$ *\langle (x-\gamma)^2, u(x-\gamma)+c_0u^2 \rangle$	$ ^2$	37	
$ *\langle (x-\gamma)^2 + b_0 u^2, u(x-\gamma) \rangle$	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	30	INO
$\frac{ \langle (x-\gamma)^2 + b_0 u^2, u(x-\gamma) + c_0 u^2\rangle}{2}$	2	35	No
$ \rightarrow \text{lype 8:}$		of	
$ *\langle (x-\gamma)^2, u(x-\gamma), u^2 \rangle$	1	3°	No

- → $h_1(x) = 0, h_2(x) \neq 0, a = 2$ and $t_2 = 0$: $\langle (x \gamma)^2 + b_0 u^2 \rangle$,
- $\rightarrow h_1(x) = 0, h_2(x) \neq 0, a = 2 \text{ and } t_2 = 1: \langle (x-\gamma)^2 + b_0 u^2 (x-\gamma) \rangle,$
- $\rightarrow h_1(x) \neq 0, h_2(x) = 0, a = 1 \text{ and } t_1 = 0: \langle (x-\gamma) + a_0 u \rangle,$
- → $h_1(x) \neq 0, h_2(x) = 0, a = 2$ and $t_1 = 0$: $\langle (x \gamma)^2 + a_0 u \rangle$,
- → $h_1(x) \neq 0, h_2(x) = 0, a = 2 \text{ and } t_1 = 1: \langle (x-\gamma)^2 + a_0 u(x-\gamma) \rangle,$
- → $h_1(x) \neq 0, h_2(x) \neq 0, a = 1 \text{ and } t_1 = t_2 = 0:$ $\langle (x-\gamma) + a_0 u + b_0 u^2 \rangle,$

- → $h_1(x) \neq 0, h_2(x) \neq 0, a = 2$ and $t_1 = t_2 = 0$: $\langle (x-\gamma)^2 + a_0 u + b_0 u^2 \rangle$,
- $\rightarrow h_1(x) \neq 0, h_2(x) \neq 0, a = 2, t_1 = 1 \text{ and } t_2 = 0: \\ \langle (x-\gamma)^2 + a_0 u(x-\gamma) + b_0 u^2 + b_1 u^2 (x-\gamma) \rangle,$
- → $h_1(x) \neq 0, h_2(x) \neq 0, a = 2$ and $t_1 = t_2 = 1$: $\langle (x-\gamma)^2 + a_0 u(x-\gamma) + b_0 u^2(x-\gamma) \rangle.$
- * Type 6 (C_6):
 - $\rightarrow h_1(x) = h_2(x) = 0, a = 1 \text{ and } c = 0: \langle (x \gamma), u^2 \rangle,$
 - → $h_1(x) = h_2(x) = 0$, a = 2 and c = 0: $\langle (x \gamma)^2, u^2 \rangle$, → $h_1(x) = h_2(x) = 0$, a = 2 and c = 1: $\langle (x - \gamma)^2, u^2 \rangle$
 - $(\gamma)^2, u^2(x-\gamma)\rangle,$ $\rightarrow h_1(x) \neq 0, h_2(x) = 0, a = 1, t_1 = 0 \text{ and } c = 0:$
 - $\langle (x-\gamma)+a_0u, u^2 \rangle$, $\rightarrow h_1(x) \neq 0, h_2(x) = 0, a = 2, t_1 = 0 \text{ and } c = 0$:
 - $\rightarrow n_1(x) \neq 0, n_2(x) = 0, a = 2, t_1 = 0 \text{ and } c = 0;$ $\langle (x-\gamma)^2 + a_0 u, u^2 \rangle,$
 - → $h_1(x) \neq 0, h_2(x) = 0, a = 2, t_1 = 1 \text{ and } c = 0:$ $\langle (x-\gamma)^2 + a_0 u(x-\gamma), u^2 \rangle,$
 - → $h_1(x) \neq 0, h_2(x) = 0, a = 2, t_1 = 1 \text{ and } c = 1:$ $\langle (x-\gamma)^2 + a_0 u(x-\gamma), u^2(x-\gamma) \rangle,$
 - $\rightarrow h_1(x) \neq 0, h_2(x) \neq 0, a = 2, t_1 = 1, c = 1 \text{ and} \\ t_2 = 0: \langle (x-\gamma)^2 + a_0 u(x-\gamma) + b_0 u^2, u^2(x-\gamma) \rangle.$
- * Type 7 (\mathcal{C}_7):
 - → $h_1(x) = h_2(x) = h_3(x) = 0, a = 1 \text{ and } b = 0:$ $\langle (x-\gamma), u \rangle,$
 - → $h_1(x) = h_2(x) = h_3(x) = 0, a = 2 \text{ and } b = 0:$ $\langle (x-\gamma)^2, u \rangle,$
 - → $h_1(x) = h_2(x) = h_3(x) = 0, a = 2 \text{ and } b = 1:$ $\langle (x-\gamma)^2, u(x-\gamma) \rangle,$
 - → $h_1(x) = h_2(x) = 0, h_3(x) \neq 0, a = 2, b = 1$ and $t_3 = 0: \langle (x - \gamma)^2, u(x - \gamma) + c_0 u^2 \rangle,$
 - → $h_1(x) = 0, h_2(x) \neq 0, h_3(x) = 0, a = 2, b = 1$ and $t_2 = 0: \langle (x - \gamma)^2 + b_0 u^2, u(x - \gamma) \rangle,$
 - $\rightarrow h_1(x) = 0, h_2(x) \neq 0, h_3(x) \neq 0, a = 2, b = 1,$ $t_2 = 0 \text{ and } t_3 = 0: \langle (x-\gamma)^2 + b_0 u^2, u(x-\gamma) + c_0 u^2 \rangle.$
- * Type 8 (C_8):
 - → $h_1(x) = h_2(x) = h_3(x) = 0, a = 2, b = 1$ and c = 0: $\langle (x \gamma)^2, u(x \gamma), u^2 \rangle$.

Example 2: We obtain cyclic codes corresponding to the unit $\gamma = 1$. cyclic codes of length 8 over the chain ring $\mathcal{R} = \mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ are precisely the ideals of $\mathcal{R}[x]/\langle x^8-1\rangle$.

The following Tables 2, 3, 4, 5, 6 and 7 shows the representation of all cyclic codes C of length 8 over the chain ring $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$ of Type 1, 2 and 3 (of Type 4, of Type 5 $\{h_1(x) = h_2(x) = 0, h_1(x) = 0 \text{ and } h_2(x) \neq 0\}$, of Type 5 $\{h_1(x) \neq 0 \text{ and } h_2(x) = 0, h_1(x) \neq 0 \text{ and } h_2(x) \neq 0\}$, of Type 6 $\{h_1(x) = h_2(x) = 0\}$, of Type 7 $\{h_1(x) = h_2(x) = h_3(x) = 0\}$, and of Type 8 $\{h_1(x) = h_2(x) = h_3(x) = 0\}$ respectively), together with the Hamming distances d_H of such codes and the number of codewords |C| in each of those cyclic codes. We also give all MDS and non-MDS codes. In all codes we have $h_i, a_i, b_i \in \{0, 1\}$ and $b_0 = 1$.

Example 3: γ -constacyclic codes of length 49 over the chain ring $\mathcal{R} = \mathbb{F}_7 + u\mathbb{F}_7 + u^2\mathbb{F}_7$ are precisely the ideals of $\mathcal{R}[x]/\langle x^{49}-\gamma\rangle$, where $\gamma \in \{1, 2, 3, 4, 5, 6\}$. Different

TABLE 2.	Cyclic codes of	length 8 over	the chain	ring $\mathbb{F}_2 + \mathbb{F}_2$	uℝ2+u2	F2 (of
Type 1, 2 a	nd 3.						

$Ideal(\mathcal{C})$	d_H	$ \mathcal{C} $	MDS
\rightarrow Type 1 :			
$ *\langle 0\rangle$	0	$\frac{1}{2^{24}}$	No
	1	244	Yes
\rightarrow Type 2:	1	<u>98</u>	No
$ \begin{array}{c} *\langle u^{-} \rangle \\ +\langle u^{2}(m-1) \rangle \end{array} $	1	2^{-}	No
$\frac{*(u (x - 1))}{*(u^2(x - 1)^2)}$	$\frac{2}{2}$	$\frac{2}{26}$	No
$\binom{*(u (u - 1))}{*(u^2(x - 1)^3)}$	$\frac{2}{2}$	$\frac{2}{2^5}$	No
$\binom{\pi}{4} \binom{u}{(x-1)} \binom{u}{(x-1)^4}$	$\frac{2}{2}$	$\frac{2}{2^4}$	No
$\left \frac{1}{4} \left(\frac{u^2}{(x-1)^5} \right) \right $	4	$\frac{1}{2^{3}}$	No
$\left \frac{1}{\sqrt{2}} \left(\frac{2}{x-1} \right)^{6} \right\rangle$	4	2^{2}	No
$ * \langle u^2 \langle x - 1 \rangle^7 \rangle$	8	2	No
\rightarrow Type 3:			
$ *\langle u \rangle$	1	2^{16}	No
$ * \langle u(x-1) \rangle$	2	2^{14}	No
$ * \langle u(x-1)^2 \rangle$	2	2^{12}	No
$ * \langle u(x-1)^3 \rangle$	2	2^{10}	No
$ * \langle u(x-1)^4 \rangle$	2	2^{8}	No
$ * \langle u(x-1)^{5} \rangle$	4	2^{6}	No
$ * \langle u(x-1)^{0} \rangle$	4	2^{4}	No
$ * \langle u(x-1)' \rangle$	8	2^{2}	No
$ * \langle u(x-1) + u^2 \rangle$	2	2^{11}	NO
$ * \langle u(x-1)^2 + u^2 + h_1 u^2 (x-1) \rangle$	2	212	INO N.
$ *(u(x-1)^{-} + u^{-}(x-1)) $ $ +(u(x-1)^{3} + u^{2} + h^{-}u^{2}(x-1) + h^{-}u^{2}(x-1)^{2}) $	2	$2^{}$	No
$ = \frac{(u(x-1)^{2} + u^{2} + n_{1}u^{2}(x-1) + n_{2}u^{2}(x-1)^{2})}{(x-1)^{3} + u^{2}(x-1) + h_{2}u^{2}(x-1)^{2}} $	$\frac{2}{2}$	$2^{}$ 210	No
$ \begin{array}{c} * \langle u(x-1) \rangle + u \langle x-1 \rangle + n_1 u \langle x-1 \rangle \\ * \langle u(x-1)^3 + u^2 \langle x-1 \rangle^2 \rangle \end{array} $	$\frac{2}{2}$	$\frac{2}{2}10$	No
$ \frac{\pi (u(x-1)) + u(x-1)}{\pi (u(x-1))^4 + u^2 + h_1 u^2 (x-1) + h_2 u^2 (x-1)^3 } $	$\frac{2}{2}$	$\frac{2}{98}$	No
$ * (u(x-1)^{4} + u^{2}(x-1) + h_{1}u^{2}(x-1) + h_{3}u^{2}(x-1)^{2} + h_{2}u^{2}(x-1)^{2} + h_{3}u^{2}(x-1)^{2} + h_{3}u^{2}(x-1)^$	$\frac{2}{2}$	$\frac{2}{2^8}$	No
$ \begin{array}{c} 1 \\ 1 \\ 3 \\ \end{array} $	-	-	
$\dot{(u(x-1)^4 + u^2(x-1)^2 + h_1 u^2(x-1)^3)}$	2	2^{8}	No
$ *\langle u(x-1)^4 + u^2(x-1)^3 \rangle$	2	2^{8}	No
$ * \langle u(x-1)^5 + u^2 + h_1 u^2 (x-1) + h_2 u^2 (x-1)^2 \rangle$	2	2^{8}	No
$ *\langle u(x-1)^5+u^2(x-1)+h_1u^2(x-1)^2+h_2u^2$	2	2^{7}	No
$ 1\rangle^{3}\rangle$		0	
$ *\langle u(x-1)^{5}+u^{2}(x-1)^{2}+h_{1}u^{2}(x-1)^{3}+h_{2}u^{2}+h_{2}u^$	4	2°	No
$1)^{2}$ $\pi/\mu(m-1)^{5} + \mu^{2}(m-1)^{3} + h_{2}\mu^{2}(m-1)^{4}$	4	9 6	No
$ \begin{array}{c} * (u(x-1)) + u(x-1) + n_1 u(x-1) \\ * (u(x-1)^5 + u^2(x-1)^4) \end{array} $	4	$\frac{2}{26}$	No
$ \frac{(u(x-1))^{6} + u(x-1)}{(u(x-1))^{6} + u^{2} + h_{1}u^{2}(x-1)} $	2	$\frac{2}{2^8}$	No
$ \frac{(u(x-1))^{6} + u^{2}(x-1)}{(x-1)^{6} + u^{2}(x-1) + h_{1}u^{2}(x-1)^{2} } $	$\frac{2}{2}$	$\frac{2}{2^{7}}$	No
$(u(x-1)^6 + u^2(x-1)^2 + h_1u^2(x-1)^3)$	$\overline{2}$	2^{6}	No
$ *\langle u(x-1)^6 + u^2(x-1)^3 + h_1 u^2(x-1)^4 \rangle$	4	2^{5}	No
$ * \langle u(x-1)^{6} + u^{2}(x-1)^{4} + h_{1}u^{2}(x-1)^{5} \rangle$	4	2^4	No
$ * \langle u(x-1)^6 + u^2(x-1)^5 \rangle$	4	2^4	No
$ * \langle u(x-1)^7 + u^2 \rangle$	2	2^{8}	No
$ * \langle u(x-1)^7 + u^2(x-1) \rangle$	2	2^{7}	No
$ * \langle u(x-1)^7 + u^2(x-1)^2 \rangle$	2	$2^{6}_{$	No
$ * \langle u(x-1)^7 + u^2_2(x-1)^3 \rangle$	2	2^{5}	No
$ * \langle u(x-1)^7 + u^2(x-1)^4 \rangle$	4	2^{4}_{2}	No
$ * \langle u(x-1) / + u^2 (x-1) \rangle^{5} \rangle$	4	2^{3}	No
$ *(u(x-1)) + u^2(x-1)^{\circ}\rangle$	8	2^{2}	∣ No

generators of the constacyclic codes and their corresponding conditions to be MDS codes are given as follows:

- Type 1 (C₁): (0), (1). For these codes the condition for MDS code are given by 3 = d_H(C₁) and 1 = d_H(C₁). As mentioned in Section IV, the only MDS constacyclic codes in this case is (1).
- Type 2: $C_2 = \langle u^2(x-\gamma)^{\tau} \rangle$, where $0 \le \tau \le 48$. The condition for MDS code is given by $\tau = 3d_H(C_2)-101$. MDS constacyclic codes are non-existent in this case.

TABLE 3. Cyclic codes of length 8 over the chain ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ of Type 4.

$Ideal\left(\mathcal{C}\right)$	d _H	$ \mathcal{C} $	MDS
\rightarrow Type 4 :			
$ *\langle u(x-1), u^2 \rangle$	1	2^{15}	No
$*\langle u(x-1)^2, u^2 \rangle$	1	2^{14}	No
$ *\langle u(x-1)^2, u^2(x-1)\rangle$	2	2^{13}	No
$ *\langle u(x-1)^3, u^2 \rangle$	1	2^{13}	No
$ *\langle u(x-1)^3, u^2(x-1)\rangle $	2	2^{12}	No
$*\langle u(x-1)^{3}, u^{2}(x-1)^{2} \rangle$	2	2^{11}	No
$*\langle u(x-1)^4, u^2 \rangle$	1	2^{12}	No
$*\langle u(x-1)^4, u^2(x-1)\rangle$	2	2^{11}_{10}	No
$ *\langle u(x-1)^4, u^2(x-1)^2 \rangle$	2	2^{10}_{0}	No
$ *\langle u(x-1)^4, u^2(x-1)^3 \rangle$	2	2^{9}	No
$ *\langle u(x-1)^{3}, u^{2}\rangle$	1	2^{11}	No
$ *\langle u(x-1)^{3}, u^{2}(x-1)\rangle$	2	2^{10}	No
$ *\langle u(x-1)^{3}, u^{2}(x-1)^{2} \rangle$	2	2^{s}	No
$ *\langle u(x-1)^{5}, u^{2}(x-1)^{5}\rangle$	2	2°	No
$ *\langle u(x-1)^{6}, u^{2}(x-1)^{4}\rangle$	2	2'	No
$(x - 1)^{6}, u^{2}$	1	210	NO NI-
$ *\langle u(x-1)^{\circ}, u^{2}(x-1)\rangle $	2	$\frac{2^{\circ}}{08}$	NO NI-
$(x - 1)^{6}, u^{2}(x - 1)^{7}$	2	2°	No No
$(x - 1)^{6}, u^{2}(x - 1)^{6}$	2	2	No
$(u(x-1)^{-}, u^{-}(x-1)^{-})$		2-	No
$*(u(x-1)^{-}, u^{-}(x-1)^{-})$	4	2^{-}	No
$*\langle u(x-1), u \rangle$ $*\langle u(x-1)^7, u^2(x-1) \rangle$	2	$\frac{2}{98}$	No
(u(x-1)), u(x-1)/	$\frac{2}{2}$	27	No
$\frac{x}{u(x-1)}, \frac{u(x-1)}{u^2(x-1)^3}$	$\frac{2}{2}$	$\frac{2}{26}$	No
$*\langle u(x-1)^7, u(x-1)^7 \rangle$ $*\langle u(x-1)^7, u^2(x-1)^4 \rangle$	$\frac{2}{2}$	$\frac{2}{2^{5}}$	No
$\frac{1}{2} \frac{1}{2} \frac{1}$	4	$\frac{2}{2^4}$	No
$*\langle u(x-1)^7, u(x-1)^7 \rangle$ $*\langle u(x-1)^7, u^2(x-1)^6 \rangle$	4	$\frac{2}{2^{3}}$	No
$(u(x-1)^2, u(x-1)^7)$ * $(u(x-1)^2 + u^2 u^2(x-1))$	2	$\bar{2}^{13}$	No
$(u(x-1)^3 + u^2, u^2(x-1))$	$\overline{2}$	2^{12}	No
$ *\langle u(x-1)^3 + u^2 + h_1 u^2(x-1), u^2(x-1)^2 \rangle$	$\overline{2}$	2^{11}	No
$ *\langle u(x-1)^3 + u^2(x-1), u^2(x-1)^2 \rangle$	2	2^{11}	No
$ * \langle u(x-1)^4 + u^2, u^2(x-1) \rangle$	2	2^{11}	No
$*\langle u(x-1)^4 + u^2 + h_1 u^2 (x-1), u^2 (x-1)^2 \rangle$	2	2^{10}	No
$*\langle u(x-1)^4 + u^2(x-1), u^2(x-1)^2 \rangle$	2	2^{10}	No
$ + \langle u(x-1)^4 + u^2 + h_1 u^2(x-1) + h_2 u^2(x-1) + h_2 u^2(x-1) \rangle $	2	2^{9}	No
$\frac{1}{2}, u(x-1)^{4} + u^{2}(x-1) + h_{1}u^{2}(x-1)^{2} u^{2}(x-1)^{3}$	2	2^{9}	No
$ \frac{\pi}{(u(x-1)^{4}+u^{2}(x-1)^{2}+u^{2}(x-1)^{3})} $	$\frac{2}{2}$	$\frac{2}{2^9}$	No
$*\langle u(x-1)^5 + u^2 u^2(x-1) \rangle$	$\frac{2}{2}$	2^{10}	No
$(u(x-1)^5 + u^2, u^2(x-1)^2)$	$\frac{1}{2}$	$\frac{1}{2^{9}}$	No
$(u(x-1)^5 + u^2(x-1), u^2(x-1)^2)$	2	$\frac{1}{2^{9}}$	No
$(u(x-1)^5 + u^2(x-1) + u^2h_1(x-1)^2, u^2(x-1)^3)$	$\frac{1}{2}$	$\frac{-}{2^8}$	No
$*\langle u(x-1)^5 + u^2(x-1)^2, u^2(x-1)^3 \rangle$	2	2^{8}	No
$ * \langle u(x-1)^{5} + u^{2}(x-1)^{2} + u^{2}h_{1}(x-1)^{3}, u^{2}(x-1)^{4} \rangle$	2	2^{7}	No
$ *\langle u(x-1)^5 + u^2(x-1)^3, u^2(x-1)^4 \rangle$	2	2^{7}	No
$ *\langle u(x-1)^6 + u^2, u^2(x-1) \rangle$	2	2^{9}	No
$ * \langle u(x-1)^6 + u^2(x-1), u^2(x-1)^2 \rangle$	2	2^{8}	No
$ * \langle u(x-1)^6 + u^2(x-1)^2, u^2(x-1)^3 \rangle$	2	2^{7}	No
$ *\langle u(x-1)^6 + u^2(x-1)^3, u^2(x-1)^4 \rangle$	2	2^{6}	No
$ *\langle u(x-1)^6 + u^2(x-1)^4, u^2(x-1)^5 \rangle$	4	2^{5}	No

- Type 3: $C_3 = \langle u(x-\gamma)^{\delta} + u^2(x-\gamma)^t h(x) \rangle$, where $0 \leq 1$ $\delta \leq 48, 0 \leq t < \delta$, either h(x) is 0 or a unit in \mathcal{R}_{γ} . The condition for MDS code is given by $L = 3d_H(C_3)$ - δ -52. No MDS constacyclic code can be obtained in this case.
- Type 4: $C_4 = \langle u(x-\gamma)^{\delta} + u^2(x-\gamma)^t h(x), u^2(x-\gamma)^{\omega} \rangle$, where $0 \le \omega < \delta \le 48, 0 \le t < \omega$, either h(x) is 0 or a unit in \mathcal{R}_{γ} . The condition for MDS code is given by $\omega = 3d_H(\mathcal{C}_4) - \delta - 52$. No MDS constacyclic code can be obtained in this case.

TABLE 4. Cyclic codes of length 8 over the chain ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ of Type 5 $\{h_1(x) = h_2(x) = 0, h_1(x) = 0 \text{ and } h_2(x) \neq 0\}.$

$Ideal\left(\mathcal{C}\right)$	d _H	$ \mathcal{C} $	MDS
\rightarrow Type5 { $h_1(x) = h_2(x) = 0, h_1(x) = 0$ and			
$h_2(x) \neq 0$ }:			
$ *\langle (x-1)\rangle$	2	2^{21}	Yes
$ *\langle (x-1)^2 \rangle$	2	2^{18}	No
$ *\langle (x-1)^3 \rangle$	2	2^{15}	No
$ *\langle (x-1)^4 \rangle$	2	2^{12}	No
$ *\langle (x-1)^{\circ}\rangle$	4	2^{9}	No
$ *\langle (x-1)^{\circ}\rangle$	4	20	No
$ *\langle (x-1)^{\prime}\rangle$	8	2^{3}	Yes
$ *\langle (x-1)+u^2 \rangle$	2	2^{21}	Yes
$ *\langle (x-1)^2 + u^2 + b_1 u^2 (x-1) \rangle$	2	2^{18}	No
$ *\langle (x-1)^2 + u^2(x-1) \rangle$	2	2^{18}	No
$ *\langle (x-1)^3 + u^2 + b_1 u^2 (x-1) + b_2 u^2 (x-1)^2 \rangle$	2	2^{15}	No
$ *\langle (x-1)^3 + u^2(x-1) + b_1 u^2(x-1)^2 \rangle$	2	2^{15}	No
$ *\langle (x-1)^{3} + u^{2}(x-1)^{2} \rangle$	2	2^{15}	No
$*\langle (x-1)^4 + u^2 + b_1 u^2 (x-1) + b_2 u^2 (x-1)^2 + b_1 u^2 (x-1)^3 \rangle$	2	2^{12}	No
$\begin{vmatrix} b_3 u^- (x-1)^2 \\ * ((x-1)^4 + u^2 (x-1) + b_1 u^2 (x-1)^2 + b_2 u^2 (x-1)^2 \\ & = b_2 u^2 (x-1)^2 + b_2 u^2 (x-1)^2 + b_2 u^2 (x-1)^2 + b_2 u^2 (x-1)^2 + b_2 u^2 \\ & = b_2 u^2 (x-1)^2 +$	2	2^{12}	No
$ 1)^{3}\rangle$	2	2	110
$*\langle (x-1)^4 + u^2(x-1)^2 + b_1 u^2(x-1)^3 \rangle$	2	2^{12}	No
$*\langle (x-1)^4 + u^2(x-1)^3 \rangle$	2	2^{12}	No
$ * \langle (x-1)^5 + u^2 + b_1 u^2 (x-1) + b_2 u^2 (x-1)^2 \rangle$	2	2^{11}	No
$ * \langle (x-1)^5 + u^2(x-1) + b_1 u^2(x-1)^2 + b_2 u^2(x-1)$	2	2^{10}	No
$ 1\rangle^{3}\rangle$		09	N
$ * \langle (x-1)^{\circ} + u^{2} (x-1)^{2} + b_{1} u^{2} (x-1)^{\circ} + b_{2} u^{2} (x-1)^{\circ} + b_{2} u^{2} (x-1)^{\circ} + b_{3} u^{2} (x-1$	4	20	NO
$ ^{1}/ ^{7} * \langle (x-1)^{5} + u^{2}(x-1)^{3} + b_{1}u^{2}(x-1)^{4} \rangle$	4	2^{9}	No
$(x-1)^{5} + u^{2}(x-1)^{4}$	4	2^{9}	No
$ *\langle (x-1)^6 + u^2 + b_1 u^2 (x-1) \rangle$	2	2^{10}	No
$*\langle (x-1)^6 + u^2(x-1) + b_1 u^2(x-1)^2 \rangle$	2	2^{9}	No
$ *\langle (x-1)^6 + u^2(x-1)^2 + b_1 u^2(x-1)^3 \rangle$	2	2^{8}	No
$ *\langle (x-1)^6 + u^2(x-1)^3 + b_1u^2(x-1)^4 \rangle$	4	2^{7}	No
$ *\langle (x-1)^6 + u^2(x-1)^4 + b_1 u^2(x-1)^5 \rangle$	4	2^{6}	No
$*\langle (x-1)^6 + u^2(x-1)^5 \rangle$	4	2^{6}	No
$*\langle (x-1)^7 + u^2 \rangle$	2	2^{9}	No
$ *\langle (x-1)^7 + u^2(x-1) \rangle$	2	2^{8}	No
$ *\langle (x-1)^7 + u^2(x-1)^2 \rangle$	2	2^{7}	No
$ *\langle (x-1)^7 + u^2(x-1)^3 \rangle$	2	2^{6}	No
$ *\langle (x-1)^7 + u^2(x-1)^4 \rangle$	4	2^{5}	No
$ *\langle (x-1)^7 + u^2(x-1)^5 \rangle$	4	2^4	No
$ *\langle (x-1)^7 + u^2(x-1)^6 \rangle$	8	2^3	Yes

- Type 5: $C_5 = \langle (x-\gamma)^a + u(x-\gamma)^{t_1}h_1(x) + u^2(x-\gamma)^{t_2}h_1(x) u^2(x-\gamma)^{t_2}h_1$ $\gamma^{t_2} h_2(x)$, where $1 \le a \le 48, 0 \le t_1 < a, 0 \le t_2 < a$, either $h_1(x)$, $h_2(x)$ are 0 or are units in \mathcal{R}_{γ} . The condition for MDS code is given by V = $3d_H(C_5)-a-U-3$ and all the distinct MDS codes are given by:
 - $\circ \langle (x-\gamma) \rangle$ $\circ \langle (x-\gamma)^{48} \rangle$ $\circ \langle (x-\gamma)+b_0u^2\rangle,$ $\circ \langle (x-\gamma)^{48} + b_0 u^2 (x-\gamma)^{47} \rangle$ $\circ \langle (x-\gamma)+a_0u\rangle,$ $\circ \langle (x-\gamma)+a_0u+b_0u^2\rangle,$ $\circ \langle (x-\gamma)^{48} + a_0 u (x-\gamma)^{47} \rangle,$ • $\langle (x-\gamma)^{48} + a_0 u (x-\gamma)^{47} + u^2 (x-\gamma)^{t_2} \sum_{i=0}^{47-t_2} b_i (x-\gamma)^i \rangle$,

where $0 \leq t_2 \leq 47, a_0, b_0 \in \{1, ..., 6\}$ and $b_i \in \{0, 1, \ldots, 6\}.$

We present γ -constacyclic codes of Type 5 { $h_1(x) =$ $h_2(x) = 0$ in Table 8, together with the Hamming

TABLE 5.	Cyclic codes of length 8 over the chain ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ of
Туре5 { h	$h_1(x) \neq 0$ and $h_2(x) = 0$, $h_1(x) \neq 0$ and $h_2(x) \neq 0$ }.

$Ideal\left(\mathcal{C}\right)$	d _H	$ \mathcal{C} $	MDS
\rightarrow Type 5 { $h_1(x) \neq 0$ and $h_2(x) = 0, h_1(x) \neq 0$			
and $h_2(x) \neq 0$ }: */(x - 1) + y	2	2^{21}	Vec
((x-1)+u) $((x-1)^2+u+a_1u(x-1))$	$\frac{2}{2}$	$\frac{2}{2^{18}}$	No
$*\langle (x-1)^2 + u(x-1) \rangle$	$\frac{1}{2}$	$\bar{2}^{18}$	No
$\langle (x-1)^3 + u + a_1 u (x-1) + a_2 u (x-1)^2 \rangle$	2	2^{15}	No
$*\langle (x-1)^3 + u(x-1) + a_1u(x-1)^2 \rangle$	2	2^{15}	No
$*\langle (x-1)^3 + u(x-1)^2 \rangle$	2	2^{15}	No
$*\langle (x-1)^4 + u + a_1u(x-1) + a_2u(x-1)^2 + u + a_1u(x-1) + a_2u(x-1) +$	2	2^{12}	No
$a_3u(x-1)^{\circ}$ $u/(x-1)^4 + u(x-1) + a_2u(x-1)^2 + a_2u(x-1)^3$	r	2^{12}	No
$(x-1)^{4} + u(x-1)^{2} + a_{1}u(x-1)^{4} + u(x-1)^{2}$	$\frac{2}{2}$	$\frac{2}{2^{12}}$	No
$*\langle (x-1)^4 + u(x-1)^3 \rangle$	$\frac{2}{2}$	2^{12}	No
$\langle (x-1)^5 + u + a_1 u (x-1) + a_2 u (x-1)^2 \rangle$	2	2^{13}	No
$*\langle (x-1)^5 + u(x-1) + a_1 u(x-1)^2 + a_2 u(x-1)^3 \rangle$	2	2^{11}	No
$*\langle (x-1)^5 + u(x-1)^2 + a_1 u(x-1)^3 + a_2 u(x-1)^4 \rangle$	2	2^{9}_{0}	No
$*\langle (x-1)^{5} + u(x-1)^{3} + a_{1}u(x-1)^{4} \rangle$	4	2^9	No
$((x-1)^{3} + u(x-1)^{4})$	4	2^9	No
$*\langle (x-1)^{\circ} + u + a_1 u(x-1) \rangle$ $*/(x-1)^{6} + u(x-1) + a_2 u(x-1)^{2}$	2	$\frac{2^{11}}{2^{12}}$	No
$*\langle (x-1)^{2} + u(x-1) + a_{1}u(x-1) \rangle$ $*\langle (x-1)^{6} + u(x-1)^{2} + a_{1}u(x-1)^{3} \rangle$	$\frac{2}{2}$	$\frac{2}{2^{10}}$	No
$(x - 1)^{6} + u(x - 1)^{3} + a_{1}u(x - 1)^{4}$	4	$\frac{2}{2^8}$	No
$*\langle (x-1)^6 + u(x-1)^4 + a_1u(x-1)^5 \rangle$	4	2^{6}	No
$*\langle (x-1)^6 + u(x-1)^5 \rangle$	4	2^6	No
$*\langle (x-1)^7+u \rangle$	2	2^{15}	No
$*\langle (x-1)^{7}_{7} + u(x-1) \rangle$	2	2^{13}_{11}	No
$*\langle (x-1)^7 + u(x-1)^2 \rangle$	2	2^{11}	No
$((x-1)^{7} + u(x-1)^{3})$	2	2^{s} 2^{7}	No
$*((x-1)^{7} + u(x-1)^{7})$ $*/(x-1)^{7} + u(x-1)^{5}$	4	$\frac{2}{95}$	No
$(x-1)^7 + u(x-1)^7$ $*((x-1)^7 + u(x-1)^6)$	8	$\frac{2}{2^{3}}$	Yes
	2	2^{21}	Yes
$*\langle (x-1)^2 + u + a_1u(x-1) + B_1 \rangle$	2	2^{18}	No
$*\langle (x-1)^2 + u(x-1) + B_1 \rangle$	2	2^{18}	No
$*\langle (x-1)^3 + u + a_1u(x-1) + a_2u(x-1)^2 + B_2 \rangle$	2	2^{15}	No
$*\langle (x-1)^3 + u(x-1) + a_1u(x-1)^2 + B_2 \rangle$	2	2^{15}	No
$*\langle (x-1)^3 + u(x-1)^2 + B_2 \rangle$	2	2^{10} 2^{12}	No
$((x-1) + u + a_1u(x-1) + a_2u(x-1) + a_3u(x-1)) + a_3u(x-1)^3 + B_2$	2	2	NO
$*((x-1)^4 + u(x-1) + a_1u(x-1)^2 + a_2u(x-1)^4)$	2	2^{12}	No
$1)^{3} + B_{3}$			
$*\langle (x-1)^4 + u(x-1)^2 + a_1u(x-1)^3 + B_3 \rangle$	2	2^{12}_{12}	No
$*\langle (x-1)^4 + u(x-1)^3 + B_3 \rangle$	2	2^{12}	No
$((x-1)^{5} + u + a_{1}u(x-1) + a_{2}u(x-1)^{2} + B_{2})$	2	2^{10} 511	No
$((x-1) + u(x-1) + a_1u(x-1) + a_2u(x-1))^3 + B_2$	2	2	NO
$*\langle (x-1)^5 + u(x-1)^2 + a_1u(x-1)^3 + a_2u(x-1)^3 + a_2u$	4	2^{9}	No
$1)^{4} + B_{4}\rangle$			
$*\langle (x-1)^5 + u(x-1)^3 + a_1u(x-1)^4 + B_4 \rangle$	4	2^{9}	No
$((x-1)^{5} + u(x-1)^{4} + B_{4})$	4	2^9	
$*\langle (x-1)^{6} + u + a_{1}u(x-1) + B_{1} \rangle$	2	2^{14} 2^{12}	No
* $((x-1)^{\circ} + u(x-1) + a_1u(x-1)^{\circ} + B_2)$ * $((x-1)^{\circ} + u(x-1)^{2} + a_1u(x-1)^{3} + B_2)$	2	$2^{}$ 2^{10}	No
$*\langle (x-1)^6 + u(x-1)^3 + a_1u(x-1)^4 + B_4 \rangle$	4	$\frac{2}{2^8}$	No
$*\langle (x-1)^6 + u(x-1)^4 + a_1u(x-1)^5 + B_5 \rangle$	4	2^{6}	No
$*\langle (x-1)^6 + u(x-1)^5 + B_5 \rangle$	4	2^6	No
$*\langle (x-1)^7 + u + u^2 \rangle$	2	2^{15}	No
$*\langle (x-1)^7 + u(x-1) + B_1 \rangle$	2	2^{13}	No
$*\langle (x-1)' + u(x-1)^2 + B_2 \rangle$	2	2^{11}	No
$*((x-1)^{2} + u(x-1)^{2} + B_{3})$ $*/(x-1)^{7} + u(x-1)^{4} + B_{3}$	2	$\frac{2^{\circ}}{27}$	NO No
* $((x - 1) + u(x - 1) + D4)$ * $((x - 1)^7 + u(x - 1)^5 + B_{r})$	4 4	$\frac{2}{2^5}$	No
$*\langle (x-1)^7 + u(x-1)^6 + B_6 \rangle$	8	2^{3}	Yes
$\frac{i-t_2}{i-t_2} = \frac{i-t_2}{i-t_2}$	~	-	
where $B_i = u^2 (x-1)^{t_2} \sum_{j=0} b_j (x-1)^j$			
and $0 \leq t_0 \leq i$			
and $0 \ge \ell_2 \ge \ell$.			1

TABLE 6.	Cyclic codes of length 8 over the chain ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ of
Type 6 and	d 7.

$Ideal\left(\mathcal{C} ight)$	d _H	$ \mathcal{C} $	MDS
\rightarrow Type 6 { $h_1(x) = h_2(x) = 0$ }:			
$*\langle (x-1), u^2 \rangle$	1	2^{22}	No
$*\langle (x-1)^2, u^2 \rangle$	1	2^{20}	No
$ *\langle (x-1)^2, u^2(x-1)\rangle$	2	2^{19}_{10}	No
$*\langle (x-1)^3, u^2 \rangle$	1	2^{18}	No
$*\langle (x-1)^3, u^2(x-1) \rangle$	2	2^{17}	No
$(x-1)^{3}, u^{2}(x-1)^{2}$	2	2^{10}	No
$((x-1)^{*}, u^{2})$	1	210 015	INO N
$(x-1)^{2}, u^{-}(x-1)$ $(x-1)^{4}, u^{2}(x-1)^{2}$	2	2^{-5} 2^{14}	No
$(x-1)^{4}, u(x-1)^{7}$ $(x-1)^{4}, u^{2}(x-1)^{3}$	$\frac{2}{2}$	$\frac{2}{2^{13}}$	No
$(x - 1)^5, u^2$	1	2^{14}	No
$((x-1)^5, u^2(x-1))$	$\frac{1}{2}$	$\bar{2}^{13}$	No
$((x-1)^5, u^2(x-1)^2)$	2	2^{12}	No
$\ast\langle (x-1)^5, u^2(x-1)^3 \rangle$	2	2^{11}	No
$(x-1)^{5}, u^{2}(x-1)^{4}$	2	2^{10}	No
$*\langle (x-1)^6, u^2 \rangle$	1	2^{12}	No
$*\langle (x-1)^6, u^2(x-1) \rangle$	2	2^{11}	No
$ *\langle (x-1)^6, u^2(x-1)^2 \rangle$	2	2^{10}	No
$*\langle (x-1)^6, u^2(x-1)^3 \rangle$	2	2^{9}_{2}	No
$*\langle (x-1)^{6}, u^{2}(x-1)^{4} \rangle$	2	2°	No
$(x-1)^{6}, u^{2}(x-1)^{5}$	4	$\frac{2}{210}$	No
$\ast \langle (x-1)^{\prime}, u^{2} \rangle$	1	2^{10}	No
$ * \langle (x-1)^{\prime}, u^{2}(x-1) \rangle $	2	20	INO N.
$((x-1)^{2}, u^{-}(x-1)^{-})$ $u^{-}((x-1)^{2}, u^{2}(x-1)^{3})$	2	$\frac{2^{\circ}}{27}$	No
((x-1)), u(x-1)) $/(x-1)^7, u^2(x-1)^4$	$\frac{2}{2}$	$\frac{2}{26}$	No
$(x-1)^{7}, u^{2}(x-1)^{7}$	2 4	$\frac{2}{2^5}$	No
$(x-1)^7, u^2(x-1)^6$	4	2^{4}	No
\rightarrow Type 7 { $h_1(x) = h_2(x) = h_3(x) = 0$ }:		-	
$ *\langle (x-1), u \rangle$	1	2^{23}	No
$*\langle (x-1)^2, u \rangle$	1	2^{22}	No
$ *\langle (x-1)^2, u(x-1) \rangle$	2	2^{20}	No
$ *\langle (x-1)^3, u angle$	1	2^{21}	No
$\left * \langle (x-1)^3, u(x-1) \rangle \right $	2	2^{19}_{17}	No
$ *\langle (x-1)^3, u(x-1)^2 \rangle$	2	2^{17}	No
$\ast \langle (x-1)^4, u \rangle$	1	2^{20}	No
$(x-1)^4, u(x-1)$	2	2^{10}	No
$(x-1)^{2}, u(x-1)^{2}$	2	2^{10}	No No
$((x-1)^{-}, u(x-1)^{-})$	2 1	$2^{}$ 219	No
(x-1), u/ $(x-1)^5, u(x-1)$	$\frac{1}{2}$	$\frac{2}{2^{17}}$	No
$(x-1)^{5}, u(x-1)^{7}$	$\frac{2}{2}$	2^{15}	No
$((x-1)^5, u(x-1)^7)$	$\frac{1}{2}$	2^{13}	No
$*\langle (x-1)^5, u(x-1)^4 \rangle$	2	2^{11}	No
$\ast \langle (x-1)^6, u \rangle$	1	2^{18}	No
$*\langle (x-1)^6, u(x-1) \rangle$	2	2^{16}	No
$*\langle (x-1)^6, u(x-1)^2 \rangle$	2	2^{14}	No
$ *\langle (x-1)^6, u(x-1)^3 \rangle$	2	2^{12}_{10}	No
$ *\langle (x-1)^{6}, u(x-1)^{4} \rangle$	2	2^{10}	No
$ *\langle (x-1)^{0}, u(x-1)^{3} \rangle$	4	2°	No
$ *\langle (x-1)', u\rangle$	1	2^{17}	No
$ *\langle (x-1)', u(x-1)\rangle $	2	2^{10} 0^{13}	No No
$ *((x-1)^{-}, u(x-1)^{-}) $ $ */(x-1)^{7}, u(x-1)^{3}\rangle$	$\frac{2}{2}$	2^{10} 511	No No
$ *((x-1)^{2}, u(x-1)^{2}) $ $ */(x-1)^{7}, u(x-1)^{4}\rangle$	$\frac{2}{2}$	$\frac{2^{11}}{29}$	No
$\frac{1}{2} \left(\frac{x-1}{x} \right)^{7} u(x-1)^{7} u(x-1)^{5} $	$\frac{2}{4}$	$\frac{2}{27}$	No
$ *\langle (x-1)^7, u(x-1)^6 \rangle$	4	$\tilde{2}^5$	No

distances d_H of such codes and the number of codewords $|\mathcal{C}|$ in each of those constacyclic codes. We also give all MDS and non-MDS codes.

• Type 6: $C_6 = \langle (x-\gamma)^a + u(x-\gamma)^{t_1}h_1(x) + u^2(x-\gamma)^{t_2}h_2(x), u^2(x-\gamma)^c \rangle$, where $0 \le c < a \le 48, 0 \le t_1 < a, 0 \le t_2 < c$, either $h_1(x), h_2(x)$ are 0 or are

TABLE 7. Cyclic codes of length 8 over the chain ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ of Type 8 $\{h_1(x) = h_2(x) = h_3(x) = 0\}$.

$Ideal\left(\mathcal{C}\right)$	dН	$ \mathcal{C} $	MDS
\rightarrow Type8 { $h_1(x) = h_2(x) = h_3(x) = 0$ }:			
$*\langle (x-1)^2, u(x-1), u^2 \rangle$	1	2^{21}	No
$(x-1)^3, u(x-1), u^2$	1	2^{20}	No
$((x-1)^3, u(x-1)^2, u^2)$	1	2^{19}	No
$\frac{1}{2} \frac{1}{2} \frac{1}$	2	$\bar{2}^{18}$	No
$\frac{\pi}{(x-1)}, \frac{\pi}{(x-1)}, \frac{\pi}{(x-1)}, \frac{\pi}{(x-1)}, \frac{\pi}{(x-1)}$	1	$\frac{2}{519}$	No
$*((x-1)^{2}, u(x-1), u^{2})$	1	2 018	NU NI
$*\langle (x-1)^2, u(x-1)^2, u^2 \rangle$	1	2^{10}	INO
$*\langle (x-1)^4, u(x-1)^2, u^2(x-1) \rangle$	2	2^{17}	INO
$*\langle (x-1)^4, u(x-1)^3, u^2 \rangle$	1	2^{17}	No
$*\langle (x-1)^4, u(x-1)^3, u^2(x-1) \rangle$	2	2^{10}_{15}	No
$*\langle (x-1)^4, u(x-1)^3, u^2(x-1)^2 \rangle$	2	2^{15}	No
$*\langle (x-1)^{5}, u(x-1), u^{2} \rangle$	1	2^{18}	No
$*\langle (x-1)^5, u(x-1)^2, u^2 \rangle$	1	2^{17}	No
$*\langle (x-1)^5, u(x-1)^2, u^2(x-1) \rangle$	2	2^{16}	No
$*\langle (x-1)^5, u(x-1)^3, u^2 \rangle$	1	2^{16}	No
$*\langle (x-1)^5, u(x-1)^3, u^2(x-1) \rangle$	2	2^{15}	No
$(x-1)^{5}, u(x-1)^{3}, u^{2}(x-1)^{2}$	2	2^{14}	No
$*\langle (x-1)^5, u(x-1)^4, u^2 \rangle$	1	2^{15}	No
$*\langle (x-1)^5, u(x-1)^4, u^2(x-1) \rangle$	2	$\frac{-}{2^{14}}$	No
$(x - 1)^5, u(x - 1)^4, u^2(x - 1)^2)$	$\frac{2}{2}$	$\frac{2}{2^{13}}$	No
$\pi((x - 1), u(x - 1), u(x - 1))$	2	$\frac{2}{2}12$	No
*((x-1)), u(x-1)), u(x-1))	1	$\frac{2}{217}$	No.
$*((x-1)^{\circ}, u(x-1), u^{-})$	1	2	
$*\langle (x-1)^{5}, u(x-1)^{2}, u^{2} \rangle$	1	2^{10}	NO N
$*\langle (x-1)^{6}, u(x-1)^{2}, u^{2}(x-1) \rangle$	2	2^{10}	No
$*\langle (x-1)^{6}, u(x-1)^{3}, u^{2} \rangle$	1	2^{15}	No
$*\langle (x-1)^{6}, u(x-1)^{3}, u^{2}(x-1) \rangle$	2	2^{14}	No
$*\langle (x-1)^6, u(x-1)^3, u^2(x-1)^2 \rangle$	2	2^{13}	No
$*\langle (x-1)^6, u(x-1)^4, u^2 \rangle$	1	2^{14}	No
$*\langle (x-1)^6, u(x-1)^4, u^2(x-1) \rangle$	2	2^{13}	No
$(x-1)^{6}, u(x-1)^{4}, u^{2}(x-1)^{2}$	2	2^{12}	No
$(x-1)^{6}, u(x-1)^{4}, u^{2}(x-1)^{3}$	2	2^{11}	No
$*\langle (x-1)^{6}, u(x-1)^{5}, u^{2} \rangle$	1	2^{13}	No
$*\langle (x-1)^6, u(x-1)^5, u^2(x-1) \rangle$	2	2^{12}	No
$((x-1)^6, u(x-1)^5, u^2(x-1)^2)$	2	2^{11}	No
$\frac{1}{2} \frac{1}{2} \frac{1}$	2	$\frac{1}{2}$	No
$\frac{1}{2} \frac{1}{2} \frac{1}$	2	29	No
*(x-1), u(x-1), u(x-1), u(x-1) / (x-1) / (x-	1	$\frac{2}{216}$	No
*((x-1), u(x-1), u)	1	4 915	No No
$*((x-1)^{-}, u(x-1)^{-}, u^{-})$	1	014	INO N.
$(x-1)^{-}, u(x-1)^{-}, u^{-}(x-1)$	2	2	INO N
$*\langle (x-1)^{2}, u(x-1)^{3}, u^{2} \rangle$	1	2^{14}	NO
$*\langle (x-1)^{\prime}, u(x-1)^{\circ}, u^{2}(x-1) \rangle$	2	2^{13}	No
$*\langle (x-1)^{2}, u(x-1)^{3}, u^{2}(x-1)^{2} \rangle$	2	2^{12}_{12}	No
$*\langle (x-1)^{7}, u(x-1)^{4}, u^{2} \rangle$	1	2^{13}_{10}	No
$*\langle (x-1)^{7}, u(x-1)^{4}, u^{2}(x-1) \rangle$	2	2^{12}	No
$*\langle (x-1)^7, u(x-1)^4, u^2(x-1)^2 \rangle$	2	2^{11}	No
$*\langle (x-1)^7, u(x-1)^4, u^2(x-1)^3 \rangle$	2	2^{10}	No
$*\langle (x-1)^7, u(x-1)^5, u^2 \rangle$	1	2^{12}	No
$*\langle (x-1)^7, u(x-1)^5, u^2(x-1) \rangle$	2	2^{11}	No
$((x-1)^7, u(x-1)^5, u^2(x-1)^2)$	2	2^{10}	No
$(x-1)^{7}, u(x-1)^{5}, u^{2}(x-1)^{3}$	2	2^{9}	No
$((x-1)^7, u(x-1)^5, u^2(x-1)^4)$	$\overline{2}$	2^{8}	No
$*((r-1)^7, u(r-1)^6, u^2)$	1	$\frac{-}{2^{11}}$	No
$\frac{1}{2}, \frac{1}{2}, \frac$	$\frac{1}{2}$	$\frac{2}{2}10$	No
$\pi_{1}(x-1)$, $u(x-1)$, $u(x-1)/(x-1)/(x-1)/(x-1)^{2}$	2	29 29	No
$(x - 1), u(x - 1), u(x - 1)^{-}$	4	⊿ 28	No
* $((x-1)^{\circ}, u(x-1)^{\circ}, u^{\circ}(x-1)^{\circ})$ + $((x-1)^{\circ}, u(x-1)^{\circ}, u^{\circ}(x-1)^{\circ})$	2	$\frac{2^{-2}}{27}$	No
$*((x-1)^{*}, u(x-1)^{\circ}, u^{2}(x-1)^{*})$	2	2'	
$((x-1)), u(x-1)), u^2(x-1)\rangle$	4	2°	No

units in \mathcal{R}_{γ} . The condition for MDS code is given by $c = 3d_H(\mathcal{C}_6) - a - U - 3$. No MDS constacyclic code can be obtained in this case.

• Type 7: $C_7 = \langle (x-\gamma)^a + u(x-\gamma)^{t_1}h_1(x) + u^2(x-\gamma)^{t_2}h_2(x), u(x-\gamma)^b + u^2(x-\gamma)^{t_3}h_3(x) \rangle$, where $0 \le b < a \le 48, 0 \le t_1 < b, 0 \le t_2 < b, 0 \le t_3 < b$, either $h_1(x), h_2(x), h_3(x)$ are 0 or are units in \mathcal{R}_{γ} . The

TABLE 8.	γ -constacyclic codes of length 49 over the chain ring
$\mathbb{F}_7 + u\mathbb{F}_7 + u$	$\mu^2 \mathbb{F}_7$ of Type 5 { $h_1(x) = h_2(x) = 0$ }.

$Ideal\left(\mathcal{C}\right)$	d _H	$ \mathcal{C} $	MDS
\rightarrow Type 5 { $h_1(x) = h_2(x) = 0$ }:			
$ *\langle (x-\gamma)\rangle$	2	7^{144}	Yes
$*\langle (x-\gamma)^2 \rangle$	2	7^{141}	No
$*\langle (x-\gamma)^3 \rangle$	2	7^{138}	No
$\ast \langle (x-\gamma)^4 \rangle$	2	7^{135}	No
$\ast \langle (x-\gamma)^5 \rangle$	2	7^{132}	No
$\ast \langle (x-\gamma)^6 \rangle$	2	7^{129}	No
$*\langle (x-\gamma)^7 \rangle$	2	7^{126}	No
$\ast \langle (x-\gamma)^8 \rangle$	3	7^{123}	No
$\ast \langle (x-\gamma)^9 \rangle$	3	7^{120}	No
$\ast \langle (x-\gamma)^{10} \rangle$	3	7^{117}	No
$*\langle (x-\gamma)^{11} \rangle$	3	7^{114}	No
$*\langle (x-\gamma)^{12} \rangle$	3	7^{111}	No
$\ast \langle (x-\gamma)^{13} \rangle$	3	7^{108}	No
$*\langle (x-\gamma)^{14} \rangle$	3	7^{105}	No
$\ast \langle (x-\gamma)^{15} \rangle$	4	7^{102}	No
$\ast \langle (x-\gamma)^{16} \rangle$	4	7^{99}	No
$\left \left \left(\left(x - \gamma \right)^{17} \right) \right\rangle \right $	4	7^{96}	No
$\ast \langle (x-\gamma)^{18} \rangle$	4	7^{93}	No
$\ast \langle (x-\gamma)^{19} \rangle$	4	7^{90}	No
$\left \left\langle \left(x - \gamma \right)^{20} \right\rangle \right\rangle$	4	7^{87}	No
$\left \left\langle \left(x - \gamma \right)^{21} \right\rangle \right\rangle$	4	7^{84}	No
$\left \left \left\langle \left(x - \gamma \right)^{22} \right\rangle \right\rangle \right $	5	7^{81}	No
$\ast \langle (x-\gamma)^{23} \rangle$	5	7^{78}	No
$\left \left\langle \left(x - \gamma \right)^{24} \right\rangle \right\rangle$	5	7^{75}	No
$\left \left\langle \left(x - \gamma \right)^{25} \right\rangle \right\rangle$	5	7^{72}	No
$\left \left\langle \left(x - \gamma \right)^{26} \right\rangle \right $	5	7^{69}	No
$\left \left\langle \left(x - \gamma \right)^{27} \right\rangle \right\rangle$	5	7^{66}	No
$\left \left \left(\left(x - \gamma \right)^{28} \right) \right\rangle \right $	5	7^{63}	No
$\left \ast \langle (x - \gamma)^{29} \rangle \right $	6	7^{60}	No
$\left \ast \langle (x - \gamma)^{30} \rangle \right $	6	7^{57}	No
$\ast \langle (x-\gamma)^{31} \rangle$	6	7^{54}	No
$\ast \langle (x-\gamma)^{32} \rangle$	6	7^{51}	No
$\ast \langle (x-\gamma)^{33} \rangle$	6	7^{48}	No
$\ast \langle (x-\gamma)^{34} \rangle$	6	7^{45}	No
$*\langle (x-\gamma)^{35} \rangle$	6	7^{42}	No
$\ast \langle (x-\gamma)^{36} \rangle$	7	7^{39}	No
$\left \left\langle \left(x - \gamma \right)^{37} \right\rangle \right\rangle$	7	7^{36}	No
$\left \left\langle \left(x - \gamma \right)^{38} \right\rangle \right\rangle$	7	7^{33}	No
$\left \left\langle \left(x - \gamma \right)^{39} \right\rangle \right\rangle$	7	7^{30}	No
$*\langle (x-\gamma)^{40} \rangle$	7	7^{27}	No
$\ast \langle (x-\gamma)^{41} \rangle$	7	7^{24}	No
$\left \left\langle \left(x - \gamma \right)^{42} \right\rangle \right\rangle$	7	7^{21}	No
$ * \langle (x - \gamma)^{43} \rangle$	14	7^{18}	No
$ * \langle (x - \gamma)^{44} \rangle$	21	7^{15}	No
$ \langle (x-\gamma)^{45} \rangle$	28	7^{12}	No
$ \langle (x-\gamma)^{46} \rangle$	35	7^{9}	No
$ \dot{x}\langle x - \gamma \rangle^{47} \rangle$	42	7^{6}	No
$\left * \langle (x - \gamma)^{48} \rangle \right $	49	7^{3}	Yes

condition for MDS code is given by $W = 3d_H(C_7)-b-a-3$. No MDS constacyclic code can be obtained in this case.

• Type 8: $C_8 = \langle (x-\gamma)^a + u(x-\gamma)^{t_1}h_1(x) + u^2(x-\gamma)^{t_2}h_2(x), u(x-\gamma)^b + u^2(x-\gamma)^{t_3}h_3(x), u^2(x-\gamma)^c \rangle$, where $0 \le c < b < a \le 48, 0 \le t_1 < b, 0 \le t_2 < c, 0 \le t_3 < c$, either $h_1(x), h_2(x), h_3(x)$ are 0 or are units in \mathcal{R}_{γ} . The condition for MDS code is given by $c = 3d_H(\mathcal{C}_8) - b - a - 3$. No MDS constacyclic code can be obtained in this case.

VI. CONCLUSION AND FUTURE WORK

Let *p* be a prime, *s*, *m* be positive integers, and let $\mathcal{R} = \mathbb{F}_{p^m}[u]/\langle u^3 \rangle$ be the finite commutative chain ring with unity.

Let γ be an any nonzero element of the finite field \mathbb{F}_{p^m} . It is well known that the γ -constacyclic codes of length p^s over \mathcal{R} are ideals of the ring $\mathcal{R}[x]/\langle x^{p^s} - \gamma \rangle$ which is a local ring with the maximal ideal $\langle u, x - \gamma_0 \rangle$, but it is not a chain ring.

Determining the Hamming distances of constacyclic codes and obtaining MDS constacyclic codes are very important in coding theory. Motivated by this, in this research article, we completed the problem of determining the Hamming distances of all γ -constacyclic codes by study their classifications of 8 types. Using these distances, we then obtain all MDS codes among such codes. We also give some examples in which we discuss the parameters of some MDS constacyclic codes for different values of p and sin Tables 1, 2, 3, 4, 5, 6, 7 and 8.

For future work, it would be interesting to determine the symbol-pair distances of γ -constacyclic codes of length of length p^s over \mathcal{R} , and to determine MDS symbol-pair γ -constacyclic codes of length p^s over \mathcal{R} .

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the editor for their helpful comments and valuable suggestions, which have greatly improved the presentation of this article.

REFERENCES

- T. Abualrub and I. Siap, "Constacyclic codes over F₂+ uF₂," J. Franklin Inst., vol. 346, no. 5, pp. 520–529, Jun. 2009.
- [2] M. C. V. Amerra and F. R. Nemenzo, "On (1-u)-cyclic codes over \mathbb{F}_{p^k} + $u\mathbb{F}_{p^k}$," *Appl. Math. Lett.*, vol. 21, no. 11, pp. 1129–1133, Nov. 2008.
- [3] C. Bachoc, "Applications of coding theory to the construction of modular lattices," J. Combinat. Theory A, vol. 78, no. 1, pp. 92–119, Apr. 1997.
- [4] Y. Cao, Y. Cao, H. Q. Dinh, F.-W. Fu, J. Gao, and S. Sriboonchitta, "Constacyclic codes of length np^s over F_{p^m} + uF_{p^m}," Adv. Math. Commun., vol. 12, no. 2, pp. 231–262, May 2018.
- [5] Y. Cao and Y. Gao, "Repeated-root cyclic F_q-linear codes over F_ql," *Finite Fields Appl.*, vol. 31, pp. 202–227, Jan. 2015.
- [6] Y. Cao, Y. Cao, H. Q. Dinh, F.-W. Fu, J. Gao, and S. Sriboonchitta, "A class of repeated-root constacyclic codes over F_{p^m}[u]/ ⟨u^ε⟩ of type 2," *Finite Fields Their Appl.*, vol. 55, pp. 238–267, Jan. 2019.
- [7] H. Q. Dinh, "On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions," *Finite Fields Appl.*, vol. 14, pp. 22–40, Jan. 2008.
- [8] H. Q. Dinh, "Constacyclic codes of length p^s over \mathbb{F}_{p^m} + $u\mathbb{F}_p$ m," J. Algebra, vol. 324, pp. 940–950, Sep. 2010.
- [9] H. Q. Dinh, S. Dhompongsa, and S. Sriboonchitta, "Repeated-root constacyclic codes of prime power length over *F*_p^m[u]/⟨u^a⟩ and their duals," *Discrete Math.*, vol. 339, no. 6, pp. 1706–1715, Jun. 2016.
- [10] H. Q. Dinh, "Constacyclic codes of length 2^s over Galois extension rings of F₂+ uF₂," *IEEE Trans. Inf. Theory*, vol. 55, no. 4, pp. 1730–1740, Apr. 2009.
- [11] H. Q. Dinh, L. Wang, and S. Zhu, "Negacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$," *Finite Fields Appl.*, vol. 31, pp. 178–201, Jan. 2015.

- [12] H. Q. Dinh, S. Dhompongsa, and S. Sriboonchitta, "On constacyclic codes of length 4p^s over F_{p^m} + uF_{p^m}," *Discrete Math.*, vol. 340, no. 4, pp. 832–849, Apr. 2017.
- [13] H. Q. Dinh and S. R. López-Permouth, "Cyclic and negacyclic codes over finite chain rings," *IEEE Trans. Inf. Theory*, vol. 50, no. 8, pp. 1728–1744, Aug. 2004.
- [14] H. Q. Dinh, B. T. Nguyen, A. K. Singh, and S. Sriboonchitta, "Hamming and symbol-pair distances of repeated-root constacyclic codes of prime power lengths over 𝑘_pm+ u𝑘_pm," *IEEE Commun. Lett.*, vol. 22, no. 12, pp. 2400–2403, Dec. 2018.
- [15] H. Q. Dinh, X. Wang, H. Liu, and S. Sriboonchitta, "On theb-distance of repeated-root constacyclic codes of prime power lengths," *Discrete Math.*, vol. 343, no. 4, Apr. 2020, Art. no. 111780.
- [16] S. T. Dougherty, P. Gaborit, M. Harada, and P. Solé, "Type II codes over F₂+ uF₂," *IEEE Trans. Inf. Theory*, vol. 45, no. 1, pp. 32–45, Jan. 1999.
- [17] S. T. Dougherty, J.-L. Kim, H. Kulosman, and H. Liu, "Self-dual codes over commutative Frobenius rings," *Finite Fields Their Appl.*, vol. 16, no. 1, pp. 14–26, Jan. 2010.
- [18] T. A. Gulliver and M. Harada, "Codes over F₃+ uF₃ and improvements to the bounds on ternary linear codes," *Des. Codes Cryptogr.*, vol. 22, pp. 89–96, Jan. 2001.
- [19] W. C. Huffman, "On the decomposition of self-dual codes over F₂+ uF₂ with an automorphism of odd prime number," *Finite Fields Appl.*, vol. 13, no. 3, pp. 682–712, Jul. 2007.
- [20] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes. Cambridge, U.K.: Cambridge Univ. Press, 2003.
- [21] J. Laaouine, "On the Hamming and symbol-pair distance of constacyclic codes of length p^s over F_{p^m} + uF_{p^m}," in *Proc. Int. Conf. Adv. Commun. Syst. Inf. Secur.*, Cham, Switzerland: Springer, 2019, pp. 137–154.
- [22] J. Laaouine, M. E. Charkani, and L. Wang, "Complete classification of repeated-root σ-constacyclic codes of prime power length over F_{p^m}[u]/ (u³)," Discrete Math., vol. 344, no. 6, Jun. 2021, Art. no. 112325.
- [23] F. J. MacWilliams and N. J. A. Sloane, *The Theory Error-Correcting Codes*. Amsterdam, The Netherlands: Elsevier, 1977.
- [24] G. H. Norton and A. Salagean, "On the Hamming distance of linear codes over a finite chain ring," *IEEE Trans. Inf. Theory*, vol. 46, no. 3, pp. 1060–1067, May 2000.
- [25] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, document TN-57-103, Sep. 1957.
- [26] E. Prange, Some Cyclic Error-Correcting Codes With Simple Decoding Algorithms, document TN-58-156, Apr. 1958.
- [27] E. Prange, The Use of Coset Equivalence in the Analysis and Decoding of Group Codes, document TN-59-164, 1959.
- [28] E. Prange, An Algorithm for Factoring xⁿ-1 Over a Finite Field, document TN-59-175, Oct. 1959.
- [29] E. Prange, The Use of Information Sets in Decoding Cyclic Coes, document IRE Trans. IT-8, S5-S9, 1962.
- [30] J. F. Qian, L. N. Zhang, and S. Zhu, "(1+u)-constacyclic and cyclic codes over F₂+ uF₂," *Appl. Math. Lett.*, vol. 19, no. 8, pp. 820–823, Aug. 2006.
- [31] I. Siap and D. K. Ray-Chaudhuri, "New linear codes over F₃ and F₅ and improvements on bounds," *Des. Codes Cryptogr.*, vol. 21, pp. 223–233, Oct. 2000.
- [32] I. Siap and D. K. Ray-Chaudhuri, "New linear codes over F₅ obtained by tripling method and improvements on bounds," *IEEE Trans. Inf. Theory*, vol. 48, no. 10, pp. 2764–2768, Oct. 2002.
- [33] T. Sidana and A. Sharma, "Repeated-root constacyclic codes over the chain ring $\mathbb{F}_{p^m}[\mathbf{u}]/\langle u^3 \rangle$," *IEEE Access*, vol. 8, pp. 101320–101337, 2020.
- [34] R. Sobhani, "Complete classification of (δ+αu²)-constacyclic codes of length p^k over F_{p^m} + uF_{p^m} + u²F_{p^m}," *Finite Fields Appl.*, vol. 34, pp. 123–138, Jul. 2015.

. . .