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ABSTRACT For surface defect images that captured from a practical steel production line, different shape,
size, location and texture of defect object may cause inter-class similarity and intra-class difference of defect
images. Despite attractive results have been achieved in some surface methods for defect classification and
segmentation, it is still far from meeting the needs of real-world applications due to lack of adaptiveness
of these methods. Considering the surface defect image can be decomposed into defect foreground image
and defect-free background image, the paper develops a novel joint classification and segmentation (JCS)
approach to perform surface defects detection for steel sheet. It comprises of the classification method
based on a class-specific and shared discriminative dictionary learning (CASDDL) and the segmentation
method based on a double low-rank based matrix decomposition (DLMD), respectively. For the proposed
CASDDL method, we learn a shared sub-dictionary as well as several class-specific sub-dictionaries to
explicitly capture common information shared by all classes and class-specific information belonging
to corresponding class. We adopt a mutual incoherence constrain for each sub-dictionary, a Fisher-like
discriminative criterion and low-rank constrain on coding vector to improve the discriminative ability of
learned dictionary. For the proposed DLMD method, we formulate the segmentation task as a double low-
rank based matrix factorization problem, and the Laplacian and sparse regularization terms are introduced
into the matrix decomposition framework. Experimental results demonstrate that our proposed JCS method
achieve a comparable or better performance than the state-of- the-art methods in classifying and segmenting
surface defects of steel sheet.

INDEX TERMS Joint classification and segmentation for image, class-specific and shared dictionary
learning, double low-rank matrix decomposition, surface defects of steel sheet.

I. INTRODUCTION
Automated surface defect classification and segmentation
based on machine vision are two most essential and related
tasks in quality management of industrial products. For the
real-time surface defect detection system based on machine
vision, the classification task is used to classify normal
images and abnormal images, which is highly beneficial for
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improving the efficiency and accuracy of defect segmenta-
tion, whereas the segmentation task is used to detect the
locations and boundaries of defects, which highlighting the
critical defect regions for high-level image understanding [1].

As shown in Fig. 1, both classification and segmentation
tasks are challenging due to the following reasons: hetero-
geneous and scattered defect: the number and type of defect
are generally unknown in advance, and different surface
images often have different imaging qualities, i.e., low con-
trast between each defect and its surrounding surface tissue
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FIGURE 1. Examples of surface images of steel sheet: (a)-(b) Patch; (c)-(d) Scratch;
(e)-(f) Non-defective.

results in fuzzy defect boundaries; cluttered and complicated
background: non-defective background may also have great
differences in different images; different types of defectmight
be contained in a single defect image, and they often exhibit
substantial stochastic variability in terms of shape, size, gray,
texture and location; the inter-type surface defects may share
visual similarities, and the intra-type defects may have visual
differences. In the past two decades, many efforts have been
devoted for more efficient and accurate defect classification
and segmentationmethods [2], [3]. These approaches focused
on two aspects of feature extraction and classifier design,
which are basically customized for a predefined or specific
type of defect. Besides, the low computational speed of these
methods is a limitation for real-time detection. These factors
motivate researchers to develop some new methods for sur-
face defect classification and segmentation.

Most recently, convolutional neural networks (CNN) and
generative adversarial networks (GAN)-based deep learn-
ing methods have been achieving remarkable performance
in image classification and segmentation. Therefore, some
studies have attempted to adopt deep learning methods for
defect detection [4], [5]. As mentioned in [6] and [7], these
deep learning models are complex with many parameters,
and training them require a huge number of expert-labelled
training samples, complex optimization algorithm, consume
a significant amount of computing resources to keep running
as its complex network structure, which are the significant
challenging problem in industrial environments. Moreover,
defective samples are difficult to obtain because of the prob-
ability of defect occurrence is very low in industrial manu-
facturing. In particular, these deep learning models lack of
sufficient theoretical support and mostly rely on the human
experiences, which limit the practical use.

Lately, dictionary learning has been successfully applied
to many machine vision problems [8]–[10]. Sparse
representation-based classification (SRC) [11] used original
training data as a dictionary directly, and Aharon et al. [12]
proposed K-SVD method to learn an over-complete dic-
tionary from original training data. Ramirez et al. [13]
developed a structured incoherence regularization term for
dictionary learning (DLSI) to promote the independence
between different sub-dictionaries. Ling et al. [14] developed
a class-oriented discriminative dictionary learning (CODDL)
method to emphasis class discrimination of dictionary atoms
and representation coefficients. Fan et al. [15] exploited
discriminative Fisher embedding dictionary transfer learn-
ing (DFEDTL) to preserve the interclass differences and

intraclass similarities of training samples. As shown in Fig. 1,
defect object in the surface image can be regarded as local
anomaly against relatively homogeneous background. The
background texture is useful for reconstruction rather than
discrimination. For the aforementioned dictionary learning
methods, most of atoms are used to represent non-defective
background, causing only small part of atoms represent
class-specific defect. Therefore, the discrimination of class-
specific sub-dictionaries between different defect object will
diminish, greatly degrading the classification performance.
An intuitive way to capture and separate those shared compo-
nents from training samples. Recent researches have yielded
more promising results by using the idea of shared dictio-
nary, which different classes not only have class-particular
parts but also share commonality [16], [17]. Gao et al. [18]
constructed a joint dictionary learning algorithm to learned
some category-specific sub-dictionaries and a shared sub-
dictionary by imposing cross-incoherence constraint between
different sub-dictionaries and self-incoherence constraint
in each sub-dictionary. Wang and Kong [19] established a
category-specific and shared dictionary learning (COPAR) by
exploiting the information of particularity and commonality
across all classes. Lin et al. [20] constructed a class-
shared, class-specific and disturbance dictionary by introduc-
ing a robust, discriminative and comprehensive dictionary
learning (RDCDL). However, these methods overlook the
low-rank ability of sub-dictionaries or coding vector over
the shared sub-dictionary. Therefore, Jiang and Lai [21],
Rong et al. [22], Wen et al. [23] introduced a low-rank con-
straint on dictionary decomposition. Furthermore, Vu and
Monga [24] proposed a low-rank constraint on the shared
dictionary (LRSDL) to encourage its subspace to be of
low-dimensionality and its corresponding representations
to be similar. Du et al. [25] presented a low-rank graph
preserving discriminative dictionary learning (LRGPDDL)
by introducing a low-rank constraint on each sub-dictionary.
Chen et al. [26] introduced an adaptive dictionary learning
strategy combined with an adaptive low-rank representa-
tion (ALRR) method for classification. These methods show
that incorporating low-rank regularization term into dic-
tionary learning framework can enhance robustness of the
learned dictionary and achieved impressive classification
results.

Inspired by the idea of shared sub-dictionary and
low-rank constrain, we develop a class-specific and shared
discriminative dictionary learning (CASDDL) model for
surface defect classification of steel sheet. Based on
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different classes of defect image share similar back-
ground, CASDDL-based classification method constructs c
class-specific sub-dictionaries associated with corresponding
classes and one shared sub-dictionary for all the classes,
respectively. With these sub-dictionaries, exclusive features
and shared features of surface defect image can be explic-
itly separated. CASDDL specially introduces incoherence
promoting constraints on all the sub-dictionaries and low-
rank constraints on coding vector over shared sub-dictionary,
to make the learned dictionary more compact, discriminative
and robust. Also, a Fisher-like regularization term on cod-
ing vectors over class-specific sub-dictionaries ensures more
coherence for within-class coding vectors and more disparity
for between-class coding vectors.

When the surface image is classified as the defect image,
the defect object in defect image should be located and seg-
mented. Some studies based on robust principal component
analysis (RPCA) [27] have shown that matrix decomposition
techniques are excellent unsupervised method for separat-
ing and segmenting the region of interest (ROI) from the
image. RPCA assumes that an image can be represented
as a combination of a highly redundant part (i.e., back-
ground regions) and a sparse part (i.e., foreground object).
Mathematically, the feature matrix of input image can be
decomposed into a low-rank matrix corresponding to back-
ground and a sparse matrix corresponding to foreground
object. Some prior knowledge and regularization are incor-
porate into original RPCA model, which can improve seg-
mentation results in terms of speed and accuracy [28], [29].
Cen et al. [30], Li et al. [31] designed a model of low-rank
matrix reconstruction for defect inspection. Yan et al. [32]
performed a smooth-sparse decomposition (SSD) with regu-
larized high-dimensional regression to decompose a defect
image and separate anomalous regions. Cao et al. [33]
presented prior knowledge guided least squares regression
(PG-LSR) based on low-rank representation to detect diverse
defects. Huang et al. [34] applied a texture prior to con-
struct a novel weighted low-rank reconstruction (W-LRR),
which is only suitable for the defect images with regular
or near-regular texture. Wang et al. [35] studied the entity
sparsity pursuit (ESP) to identify surface defects. Thesemeth-
ods don’t consider the low-rank characteristic for the defect
foreground and defect-free background simultaneously, and
ignore the spatial and pattern relations of these regions, which
may influence the final segmentation performance.

Motivated by the above analysis, a double low-rank
decomposition (DLMD) model for surface defect segmen-
tation of steel sheet is exploited in the paper. Based on
the unified low-rank assumption to characterize defect fore-
ground and defect-free background, DLMD-based segmenta-
tion approach can be divided into two steps: firstly, the defect
foreground image and defect-free background image are sep-
arated from surface defect image; secondly, the optimization
strategy is further applied to improve the accuracy of the
defect foreground image, leading to a higher segmentation
performance.

To sum up, we propose a joint classification and seg-
mentation (JCS)-based defect detection approach to provide
explainable classification and segmentation results for steel
sheet. As illustrated in Fig. 2, the proposed JCS approach
first identifies the surface defect by a classification branch via
CASDDL model. It’s then feasible to discover the locations
and areas of surface defect by a segmentation branch via
DLMDmodel. With the explainable classification results and
corresponding defect segmentation, JCS largely simplifies
and accelerates the detection process for quality experts. This
paper is an extension of our previous works of [36] and [37].
Our main contributions are summarized as follows:
•We propose a CASDDL approach to train discriminative

dictionary for surface defect classification of steel sheet. It not
only encourages intra-class samples to deliver the similar fea-
ture representation, but alsominimizes the inter-class samples
correlations.
•We develop a DLMD approach to segment various types

of defects from surface defect images of steel sheet. It doesn’t
need training process by directly decomposing the surface
defect image into the defect foreground image and defect-free
background image.
• The feasibility and advantages of the proposed JCS

method combined CASDDL and DLMD is evaluated by
extensive experiments and comparisons with the other state-
of-the-art methods, which show that it clearly improves both
subjective and objective quality of surface defect detection
for steel sheet.

The remainder of the paper is organized as follows.
In Section 2, we briefly introduce some related works about
surface defects classification and segmentation, dictionary
learning, and RPCA, respectively. Section 3 presents our
proposed JCS detection approach, including CASDDL-based
defect classification model, and DLMD-based defect seg-
mentation model. In Section 4, we validate proposed JCS
approach in extensive experiments and compare it with the
other state-of-the-art methods. Some conclusions and future
works are finally provided in Section 5.

II. RELATED WORK
A. SURFACE DEFECT CLASSIFICATION AND
SEGMENTATION
For classifying surface defects, different customized feature
extraction methods for a variety of problems have been devel-
oped. The representative feature extraction methods mainly
include grayscale, shape, texture, morphological operator,
Fourier, Gabor and wavelet transform. Then, these features
are combined with powerful classifiers, such as artificial
neural networks, support vector machines. Borwankar and
Ludwig [38] used the discrete wavelet transform and rotated
wavelet transform for feature extraction, while a KNN clas-
sifier for classification. Luo et al. [39] exploited a general-
ized completed local binary patterns framework and simple
nearest-neighbor classifier for steel surface defect classifica-
tion. Ashour et al. [40] developed amethod combining the use
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FIGURE 2. Diagram of the proposed JCS approach for surface defect detection of steel sheet.

of discrete shearlet transform and gray-level co-occurrence
matrix to classify surface defects of hot-rolled steel strips.

Traditional segmentation methods of surface defect can be
mainly divided into three categories: statistical-based meth-
ods, filter-based methods and model-based methods. For the
statistical-based methods, such as statistical moments, math-
ematical morphology, maximum entropy, are used to evalu-
ate the spatial distribution characteristic of pixel intensities.
These methods are sensitive to lighting, noise or outliers.
In contrast, the filter-based methods, such as discrete Fourier
transform, discrete Gabor transform and discrete wavelet
transform, the energies of the filters response are utilized as
features to segment the defects. These methods require the
periodicity of texture structures, which may not suitable to
random texture. Furthermore, it’s not suitable for localizing
the defect regions in the spatial domain. The model-based
methods, such as level set, Markov random field, fractal
model, and partial differential equation, construct the specific
models with image feature distributions, which have a high
computational complexity.

B. DICTIONARY LEARNING
Mathematically, dictionary learning can be formulated as
follows:

min
D,x
‖y−Dx‖22+λθ (D, x) (1)

where, ‖·‖2 denotes l2 norm, y ∈ Rd denotes a given
d-dimensional feature vector of training sample, x ∈

RK denotes coding vector of y over dictionary D =(
d1, d2, . . . , d j, . . . , dK

)
∈ Rd×K , d j∈Rd denotes the k-th

atom ofD, θ (D, x) denotes a regularization term to constrain
D or x, λ is a positive parameter that balances the tradeoff
between reconstructive error ‖y−Dx‖22 and θ (D, x).
For the classification task, discriminative dictionary learn-

ing has demonstrated that a well-learned dictionary D will
greatly boost classification performance. The discrimination
could be developed from the dictionary, coding vectors,
or both. Several regularization terms, such as sparsity, low-
rank, neighborhood preservation of graph, entropy, incoher-
ence constraint on sub-dictionaries, have been introduced into
the learning process to promote the discriminative power of
learned dictionary.

Optimizing Eq. (1) can be carried out by an iterative
method composing two steps: (a) fixing D to update x;
(b) fixing x to update D, which can be solved efficiently
by lots of algorithms [41]. According to the learned dictio-
nary D, test sample ŷ is classified as class k∗ if it satisfies:
k∗ = argmin

k

∥∥ŷ−Dlk (x)∥∥22, where, x is coding vector, lk (x)
denotes a vector only keeping the entries of x associated with
the k-th class and changing others into zeros. As a result,
ŷ is assigned to the class k∗ corresponding to the minimum
reconstruction error

∥∥ŷ−Dlk∗ (x)∥∥22.
VOLUME 9, 2021 140119
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C. ROBUST PRINCIPAL COMPONENT ANALYSIS
RPCA shows the low-rank representation has a better per-
formance in discovering global structures of data, which
can reveal the relationships of the samples: the within-class
affinities are dense while the between-class affinities are all
zeros [42]. RPCA can be formulated as follows:

min
L,S

(rank (L)+λ ‖S‖0)

s.t. F = L+S (2)

where, F ∈ Rm×n is the input matrix, L ∈ Rm×n and S ∈
Rm×n are two decomposed matrices; rank (·) denotes the rank
of matrix; ‖·‖0 denotes l0 norm of matrix, which equals the
number of non-zero element of matrix; λ> 0 is a trades-off
parameter between L and S.

As Eq. (2) is NP-hard problem, rank (L) can be replaced by
nuclear norm ‖L‖∗, and ‖S‖0 can be replaced by l1 norm ‖S‖1
or l2,1 norm ‖S‖2,1, where, ‖·‖∗ equals the sum of singular
values of a matrix; ‖·‖1 equals the sum of the absolute values
of all entries in a matrix, ‖·‖2,1 equals the sum of l2 norms
of the columns of a matrix, ‖S‖2,1 =

∑n
j=1

∥∥sj∥∥2 with S =
(s1, s2, . . . ,sn) with sj∈Rm.
Several optimization algorithms have been proposed to

solve RPCA [43], such as alternating direction method of
multipliers, inexact augmented Lagrangian multipliers (inex-
act ALM) method. Supposing that L ∈ Rm×n is a matrix with
rank r , its singular value decomposition (SVD) operation is
denoted as svd (L) = U6V T , where, 6 = diag

(
{σi}1≤i≤r

)
is the diagonal matrix with σ1, σ2,. . . , σr on the diagonal and
zeros elsewhere, σi is the i-th singular value of L, U∈Rm×r

and V∈RN×r are left, right singular matrices, respectively.
For the traditional soft-thresholding shrinkage operator

9λ
{
6ij
}
=

{
6ij−λ 6ij > λ

0 6ij ≤ λ,

where,6ij stands for the (i, j)-th element of6. Each singular
value equally shrinks by subtracting the same constant λ,
whichmeans that all singular values have equal contributions.
Given the weights vector w ∈ Rr , the non-uniform singular
value thresholding operator can be defined as follows [44]:

9λw
{
6ij
}
=

{
6ij−λwi 6ij > λ

0 6ij ≤ λ,

where, wi =
∑r

j=1 σj

σi
. For the larger singular values which

quantify the principal information of image, they should be
reduced a little as much as possible, i.e., the larger the sin-
gular value is, the more contribution it makes to the major
information. Different singular values are treated differently
by assigning different weights and can adaptively shrink
according to the specific information of image. For the sur-
face defect image, matrix singular values have clear physical
meanings, larger singular values corresponding to major pro-
jection directions are supposed to be less shrunk to preserve
the major components, which can improve the accuracy of

low-rank reconstruction and enhance the adaptivity of defect
segmentation.

III. OUR SURFACE DEFECT DETECTION APPROACH
Our JCS detection approach consists of an explainable clas-
sification branch to identify the defect and a segmentation
branch to discover the defect areas. The proposed CASDDL
classification model identifies whether the surface image is
defect or not, along with convincing visual explanations.
To provide complementary pixel-level prediction, the pro-
posed DLMD segmentation model recognizes fine-grained
defect areas in the surface defect image. By combining these
two models together for better performance, JCS provides
informative detection results for surface defect of steel sheet.

A. EXPLAINABLE CLASSIFICATION
The proposed CASDDL-based classification method mainly
comprises of two stages, including discriminative dictionary
learning, and defect classification.

1) DISCRIMINATIVE DICTIONARY LEARNING
a: FORMULATION OF CASDDL
Supposing Y = [Y1,Y2, . . . ,Yi, . . . ,Yc]∈Rd×N denotes
whole training samples of c classes, each column denotes
one sample, where, Yi∈Rd×ni denotes the i-th class train-
ing samples, d is dimension of one sample, ni denotes
number of sample from class i,

∑c
i=1 ni = N , where,

N is total number of training samples. Let D =[
D1,D2, . . . ,Dj, . . . ,Dc,Dc+1

]
= [Dclass,Dc+1] ∈ Rd×K

denotes learned dictionary of K atoms,
{
Dj
}
j=1,2,...,c ∈R

d×kj

denotes the j-th class-specific sub-dictionary that trained
from a corresponding training samples Yi, Dc+1 ∈ Rd×kc+1

denotes a shared sub-dictionary that trained from the whole
training samples Y , where, K =

∑c+1
j=1 kj, kj denotes

number of atoms from the j-th sub-dictionary. Let X =
[X1,X2, . . . ,Xi, . . . ,Xc] ∈ Rd×N denotes coding matrix
of Y over D, where, Xi ∈ RK×ni denotes coding matrix
of Yi over D. Furthermore, Xi can be written as Xi =[
X1
i ;X

2
i ; . . . ;X

j
i ; . . . ;X

c
i ;X

c+1
i

]
=

[
X classi ;X c+1i

]
, where,

X ji∈R
kj×ni denotes coding matrix of Yi over sub-dictionary

Dj, X classi ∈R(K−kc+1)×ni denotes coding matrix of Yi over
all class-specific sub-dictionaries, X c+1i ∈ Rkc+1×ni denotes
coding matrix of Yi over the shared sub-dictionary Dc+1.
To enhance the discriminative capability of dictionary, it’s
ideally desired that for each class, its samples have non-
zero coding vectors intensively locating at the correspond-
ing atoms, whereas the coding vectors at other atoms are
zero. As shown in Fig. 3, a sample is supposed to be
represented only by the corresponding class-specific sub-
dictionary, while can’t be represented by other class-specific
sub-dictionaries at the same time. It can enhance the discrim-
inative capability of learned dictionary by forcing that all
other discriminative sub-dictionaries have poor representa-
tive capability of non-corresponding samples. Different sub-
dictionaries should be low coherence, which can guide the
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learned dictionary to be discriminative.What’s more, in terms
of intra-class compactness and inter-class separability, the
coding vectors of same samples class should be similar,
while the coding vectors of different samples class should be
dissimilar. The coding vectors corresponding to the shared
dictionary should be similar, the corresponding codingmatrix
should be low-rank, which well addresses the redundant
information in the shared sub-dictionary and promotes coding
vectors more compact.

Based on above discussion, the proposed CASDDL can be
modelled as the following optimization problem:

min
D,x

Zreconstruction (Y ,D,X)+Zincoherence
(
Di,Dj

)
+Zexclusiveness

(
X classi

)
+Z lowrank

(
X c+1i

)
(3)

where, Z1 = Zreconstruction (Y ,D,X) denotes the recon-
struction error term; Z2 = Zincoherence

(
Di,Dj

)
denotes the

sub-dictionary incoherence term; Z3 = Zexclusiveness
(
X classi

)
denotes the discriminative promotion term for coding vec-
tors over all the class-specific sub-dictionaries; Z4 =

Z lowrank

(
X c+1i

)
denotes the low-rank preserving term for

coding vectors over the shared sub-dictionary.

(i) RECONSTRUCTION ERROR TERM Z1
To learn a representative and discriminative structured dic-
tionary D, each class-specific sub-dictionary should be sup-
posed to well represent samples from the i-th class, but not
other classes. The most important property of the shared
dictionary is to represent samples from all the classes.
According to Yi ≈ DXi = D1X1

i+D2X2
i +. . .+DjX

j
i+. . .+

DcX ci +Dc+1X
c+1
i = DclassX classi +Dc+1X

c+1
i , small value of∥∥Yi−DclassX classi

∥∥2
F ensures that the dictionary D can repre-

sent Yi well, where, ‖·‖F denotes Frobenius-norm. Besides,

small value of
∥∥∥Yi−DjX ji∥∥∥2F = ∥∥∥Yi−(DclassVj) (V T

j X
class
i

)∥∥∥2
F

(j = 1, 2, . . . ,c) makes sure that each class Yi has a
good representation over corresponding class-specific sub-
dictionary Dj, where, Vj∈RK×kj is the selection opera-
tor that selects the j-th class-specific sub-dictionary Dj
from D, each column of Vj has only one nonzero ele-
ment 1, which the location is column index of corre-
sponding class-specific sub-dictionary atom in D, V−j =[
V1,V2, . . . ,Vj−1,Vj+1, . . . ,Vc

]
∈ RK×(K−kc+1−kj). Mean-

while, the small value of
∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F
ensures that the

shared sub-dictionary Dc+1 make contribution to represent
Yi. Hence, the reconstruction error term Z1 can be defined
as follows:

Z1

=

∑c

i=1

[∥∥∥Yi−DclassX classi

∥∥∥2
F
+∥∥∥Yi−(DclassVi) (V T

i X
class
i

)∥∥∥2
F
+

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F

]
(4)

(ii) SUB-DICTIONARY INCOHERENCE TERM Z2
To exploit desirable discriminative capability of learned
dictionaryD, different sub-dictionaries should be as orthogo-
nal as possible, which ensures that each class-specific sub-
dictionary is exclusive to represent corresponding samples
well. Therefore, the value of structural incoherence constraint∥∥∥DTj D−j∥∥∥2F , ∥∥∥DTj Dj−Ikj∥∥∥2F are supposed to be small, where,

D−j ∈ RK×(K−kj) is the sub-matrix by removing Dj from
D, Ikj is an identity matrix. By adding these two terms, the
redundancy among sub-dictionaries would be reduced effec-
tively, which has a direct impact on the speed of computation.
Hence, the sub-dictionary incoherence term Z2 can be defined
as follows:

Z2 = α
∑c+1

j=1

[
nj

kj
(
K−kj

) ∥∥∥DTj D−j∥∥∥2F + nj
k2j

∥∥∥DTj Dj−Ikj∥∥∥2F
]
(5)

where, nc+1 = N , nj
kj(K−kj)

and nj
k2j

can alleviate the effect

of imbalance between the number of samples and atoms of
sub-dictionaries.

(iii) DISCRIMINATIVE PROMOTION TERM Z3
Based on Fisher’s linear discriminant, which maximizes the
ratio of between-class scatter matrix to within-class scat-
ter matrix, we can minimize the within-class scatter matrix
SW (X) and maximum the between-class scatter matrix
SB (X). Denote SW (X) =

∑c
i=1

∑ni
l=1

(
xli−ui

) (
xli−ui

)T
SB (X) =

∑c
i=1 ni (ui−u) (ui−u)

T , where, xli denotes the
coding vector of the l-th training sample over the i-th
class-specific sub-dictionary, ui = 1

ni

∑ni
l=1 x

l
i and u =

1
N

∑c
i=1

∑ni
l=1 x

l
i are mean vector of Xi and X , respectively.

By directly constraining coding vectors, the separability and
discriminability of coding vectors from different classes is
further enhanced. Thus, tr (SW ) =

∑c
i=1

∥∥X classi −Ui
∥∥2
F ,

tr (SB) =
∑c

i=1 ‖Ui−U‖
2
F , where, Ui ∈ RK×ni , each column

equals to ui, U ∈ RK×ni , each column equals u. Hence,
the discriminative coding vector term Z3 can be defined as
follows:

Z3 = β
∑c

i=1

(∥∥∥X classi −Ui
∥∥∥2
F
+ ‖Ui−U‖2F+

∥∥∥X classi

∥∥∥
1

)
(6)

(iv) LOW-RANK PRESERVING TERM Z4
As nuclear norm ‖·‖∗ is the convex relaxation of rank(·), the
low-rank preserving term Z4 can be defined as follows:

Z4 = γ
∑c

i=1

∥∥∥X c+1i

∥∥∥
∗

(7)

Taking all mentioned above into consideration, we have the
following CASDDL model:

min
D,X

c∑
i=1

[∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi) (V T
i X

class
i

)∥∥∥2
F
+

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F

]
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FIGURE 3. Ideal structure of dictionary D and coding matrix X in the proposed CASDDL method. The block-diagonal
constraints increase the discriminative capability of D and X.

+α
∑c+1

j=1

[
nj

kj
(
K−kj

) ∥∥∥DTj D−j∥∥∥2F+ njk2j
∥∥∥DTj Dj−Ikj∥∥∥2F

]

+β
∑c

i=1

(∥∥∥X classi −Ui
∥∥∥2
F
+‖Ui−U‖2F+

∥∥∥X classi

∥∥∥
1

)
+γ

∑c

i=1

∥∥∥X c+1i

∥∥∥
∗

(8)

b: OPTIMIZATION OF CASDDL
Eq. (8) can be divided into two sub-problems: updating X
with fixedD; updatingDwith fixed X . In order to learn a dis-
criminative dictionary better, K -means algorithm is chosen
to initialize the dictionary at first: each class-specific sub-
dictionary is initialized as cluster centers of corresponding
training samples, a shared sub-dictionary is initialized as clus-
ter center of whole training samples. As dissimilarity between
different cluster centers is high, the initial atoms in class-
specific sub-dictionaries obtain approximately discriminative
ability. We summarize CASDDL in Algorithm 1.

Algorithm 1 Class-specific and Shared Discriminative Dic-
tionary Learning

Input: Training samples Y = {Yi}i=1,2,...,c; number
of atoms kj in class-specific dictionary {Di}i=1,2,...,c; num-
ber of atoms kc+1 in shared sub-dictionary Dc+1; parame-
ters α, β, and γ .

Initialize: The class-specific sub-dictionary
{Dj}j=1,2,...,c is initialized by K -means in Yi, the shared
sub-dictionary Dc+1 is initialized by K -means in Y .

While not converged do
step 1: Update X classi by Eq. (13);
step 2: Update X c+1i by Algorithm 2;
step 3: Update {Di}i=1,2,...,c by Eq. (29);
step 4: Update Dc+1 by Eq. (37).

End While
Output: The learned dictionary D =

{Dj}j=1,2,...,c,c+1.

(i) UPDATE CODING MATRIX X
When D is fixed, Eq. (8) becomes a coding problem of
computing X = [X1, X2, . . . , Xi, . . . , Xc]. When computing Xi,

all Xj (j 6= i), are fixed, Eq. (8) can be simplified as follows:

min
X

∑c

i=1

(∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi)(V T
i X

class
i

)∥∥∥2
F

)
+β

c∑
i=1

(∥∥∥X classi −Ui
∥∥∥2
F

+ ‖Ui−U‖2F+
∥∥∥X classi

∥∥∥
1

)
+

∑c

i=1

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F

+γ
∑c

i=1

∥∥∥X c+1i

∥∥∥
∗

(9)

¬ Update X classi
With fixedD and X c+1i , Eq. (9) can be rewritten as follows:

min
X classi

∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi) (V T
i X

class
i

)∥∥∥2
F
+β

(∥∥∥X classi −Ui
∥∥∥2
F

+

∑c

i=1
‖Ui−U‖2F

)
+β

∥∥∥X classi

∥∥∥
1

(10)

It can be rewritten as follows:

min
X classi

R
(
X classi

)
+2ω

∥∥∥X classi

∥∥∥
1

(11)

where,

R
(
X classi

)
=

∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi) (V T
i X

class
i

)∥∥∥2
F

+β

(∥∥∥X classi −Ui
∥∥∥2
F
+

∑c

i=1
‖Ui−U‖2F

)
,

ω =
β

2
.

According to [45], a two-step iterative shrinkage/ thresh-
olding (TwIST) algorithm can be adopted to solve Eq. (11).
After first derivative of R

(
X classi

)
with respect to X classi is

calculated (Appendix), we have

∇X classi
R
(
X classi

)
= 2DTclass

(
DclassX classi −Y i

)
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+2ViV T
i D

T
class

(
DclassViV T

i X
class
i −Yi

)
+2β

X classi OiOTi +X
class
i PiPTi −RP

T
i

+

∑c
j = 1
j 6= i

[
X classi Qji

(
Qji
)T
−Tj

(
Qji
)T] (12)

where, E ji =

 1 · · · 1
...
. . .

...

1 · · · 1


ni×nj

, Oi = Ini×ni−
E ii
ni
, Pi =

E ii
ni
−

E ii
N =

E ii
ni
−Qii, R =

∑c
j = 1
j 6= i

XjQij, Tj = Xj
E jj
nj
−
∑c
l = 1
l 6= i

XlQ
j
l .

Then, we have(
X classi

)(t+1)
= (1−ξ)

(
X classi

)(t−1)
+(ξ−ν)

(
X classi

)(t)
+ν9 τ

σ

[(
X classi

)(t)
−

1
2σ
∇X classi

F
(
X classi

)]
(13)

where,9 τ
σ
(6) denotes soft-thresholding shrinkage operator,

9 τ
σ
(6) =

6ij−
τ

σ
6ii ≥

τ

σ

0 6ii<
τ

σ
,

6ij stands for the (i, j)-th element of matrix6;
(
X classi

)(t−1)
is

the previous value of X classi ,
(
X classi

)(t)
is the current value of

X classi ,
(
X classi

)(t+1)
is the next value of X classi ; ξ > 0, ν > 0,

σ > 0.
 Update X c+1i
With fixed D and X classi , Eq. (9) is further reduced to:

min
X c+1i

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F
+γ

∥∥∥X c+1i

∥∥∥
∗

(14)

According to inexact ALM algorithm, introducing the aux-
iliary variable H = X c+1i , Eq. (14) can be defined as follows:

O
(
X c+1i ,H ,P, µ

)
= ‖Yi−Dc+1H‖2F+γ

∥∥∥X c+1i

∥∥∥
∗

+〈P,H−X c+1i 〉+
µ

2

∥∥∥H−X c+1i

∥∥∥2
F

(15)

where, 〈.,.〉 means the inner product operator for two matri-
ces; ‖·‖2F denotes the Frobenius norm, which equals the
sum of squares of each element of matrix; P is a Lagrange
multiplier; µ> 0 is a penalty parameter.

Furthermore, we have

O
(
X c+1i ,H ,P, µ

)
=

1
2

∥∥∥∥H+Pµ−X c+1i

∥∥∥∥2
F

+
1
µ
‖Yi−Dc+1H‖2F+

γ

µ

∥∥∥X c+1i

∥∥∥
∗

(16)

The detailed procedure of solving Eq. (16) is presented in
Algorithm 2.

¬ Update H

1
2

∥∥∥∥H+Pµ−X c+1i

∥∥∥∥2
F
+
1
µ
‖Yi−Dc+1H‖2F (17)

Differentiating it with respect to H , and let it to be zero:

H+
P
µ
−X c+1i +

2
µ
DTc+1 (Yi−Dc+1H) = 0 (18)

Then, we have

H (k+1)
=

(
I−

2
µ(k)

DTc+1Dc+1

)−1
×

[(
X c+1i

)(k)
−

2
µ(k)

DTc+1Yi−
P(k)

µ(k)

]
(19)

 Update X c+1i

1
2

∥∥∥∥H+Pµ−X c+1i

∥∥∥∥2
F
+
γ

µ

∥∥∥X c+1i

∥∥∥
∗

(20)

Then, we have(
X c+1i

)(k+1)
= U9 γ

µ
{6}V T (21)

where, (U , 6,V ) = svd
(
H (k+1)+P(k)

µ(k)

)
, svd (·) denotes

SVD operation, 6 = diag
(
{σi}1≤i≤r

)
is the diagonal matrix

with σ1, σ2,. . . , σr on the diagonal and zeros elsewhere, σi
is the i-th singular value of H (k+1)+P(k)

µ(k)
, U ∈ Rm×r and

V ∈ RN×r are left, right singular matrices, respectively.
® Update P

P(k+1) = P(k)+µ(k)
(
H (k+1)

−

(
X c+1i

)(k+1))
(22)

¯ Update µ

µ(k+1) = min
(
ρµ(k), µmax

)
(23)

where, ρ = 1.1, µmax = 105.

(ii) UPDATE DICTIONARY D
When X is fixed, {Dj}j= 1,2,..., c,c+1 can be updated one by
one. Eq. (8) can be simplified as follows:

min
D

c∑
i=1

(∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi) (V T
i X

class
i

)∥∥∥2
F
+

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F

)
+α

c+1∑
j=1

[
nj

kj
(
K−kj

) ∥∥∥DTj D−j∥∥∥2F+ njk2j
∥∥∥DTj Dj−Ikj∥∥∥2F

]
(24)

¬ Update {Di}i= 1,2,..., c
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Algorithm 2 Solving Eq. (16) via Inexact ALM
Input: Training samples Yi, shared sub-dictionary

Dc+1, parameter γ> 0

Initialize: H (0) =

(
X c+1i

)(0)
= 0, P(0) = 0, µ(0) =

0.1, µmax = 105, ρ = 1.1, k = 0, kmax = 10
While not converged do

step 1: Update H (k+1) by Eq. (19);

step 2: Update
(
X c+1i

)(k+1)
by Eq. (21);

step 3: Update P(k+1) by Eq. (22);
step 4: Update µ(k+1) by Eq. (23);
step 5: Check the convergence condition

k < kmax;
step 6: Update k by k = k+1;

End While
Output: The optimal solution X c+1i .

With fixed X and other sub-dictionaries, Eq. (24) can be
rewritten as follows:

min
Di

c∑
i=1

(∥∥∥Yi−DclassX classi

∥∥∥2
F

+

∥∥∥Yi−(DclassVi) (V T
i X

class
i

)∥∥∥2
F

)
+

+α
ni

ki (K−ki)

∥∥∥DTi D−i∥∥∥2F+α nik2i
∥∥∥DTi Di−Iki∥∥∥2F (25)

We optimize {Di}i=1, 2,...,c class-by-class and meanwhile,
make all other Dj (j 6= i) fixed. Then, we have

min
Di

∥∥∥Y−Dclass (X class1 , . . . ,X classc

)∥∥∥2
F

+

∥∥∥Y−Dclass (V1V T
1 X

class
1 , . . . ,VcV T

c X
class
c

)∥∥∥2
F

+α
ni

ki (K−ki)

∥∥∥DTi D−i∥∥∥2F+α nik2i
∥∥∥DTi Di−Iki∥∥∥2F (26)

Denote C =
[
X class1 , . . . ,X classc ,V1V T

1 X
class
1 , . . . ,VcV T

c

X classc
]
∈ R(K−kc+1)×2N , A = [Y ,Y ] ∈ Rd×2N , we have

min
Di
‖A−DclassC‖2F

+α
ni

ki (K−ki)

∥∥∥DTi D−i∥∥∥2F+α nik2i
∥∥∥DTi Di−Iki∥∥∥2F (27)

Therefore

min
Di

∥∥∥∥∥∥∥A−
∑c

j = 1
j 6= i

DjC j
−DiC i

∥∥∥∥∥∥∥
2

F

+α
ni

ki (K−ki)

∥∥∥DTi D−i∥∥∥2F+α nik2i
∥∥∥DTi Di−Iki∥∥∥2F (28)

Denote Ã = A−
∑c
j = 1
j 6= i

DjC j
∈ Rd×2N , we have

min
Di

∥∥∥Ã−DiC i
∥∥∥2
F

+α
ni

ki (K−ki)

∥∥∥DTi D−i∥∥∥2F+α nik2i
∥∥∥DTi Di−Iki∥∥∥2F (29)

where, Bi ∈ Rki×2N .
Eq. (29) can be solved by a coherence regularized (CORE)

algorithm [46].
 Update Dc+1
With fixed X and all the class-specific sub-dictionaries,

Eq. (24) can be rewritten as follows:

min
Dc+1

c∑
i=1

∥∥∥Yi−Dc+1X c+1i

∥∥∥2
F

+α
nc+1

kc+1 (K−kc+1)

∥∥∥DTc+1D−(c+1)∥∥∥2F
+α

nc+1
k2c+1

∥∥∥DTc+1Dc+1−Ikc+1∥∥∥2F (30)

Denote X c+1 = [X c+11 ,X c+12 , . . . ,X c+1c ] ∈Rkc+1×N is the
coding matrix of Y over shared sub-dictionary Dc+1, then we
have

min
Dc+1

∥∥∥Y−Dc+1X c+1∥∥∥2
F
+α

nc+1
kc+1 (K−kc+1)

∥∥∥DTc+1Dclass∥∥∥2F
+α

nc+1
k2c+1

∥∥∥DTc+1Dc+1−Ikc+1∥∥∥2F (31)

Similar to Eq. (29), Eq. (31) can be solved by CORE
algorithm.

2) DEFECT CLASSIFICATION
The proposed CASDDL especially emphasizes class discrim-
ination of both dictionary atoms and coding vector, which
not only contributes for learning class-oriented discriminative
dictionary, but also results in discriminative coding vector.
Different from traditional classification method that treat the
coding vector just as input to sophisticated classifiers, we can
directly make full use of the discriminative capability of
coding vector for a simple and efficient classification scheme,
without adding any parameters to be learned.

For a test sample ŷ, we use the obtained dictionary D to
compute its coding vector x̂ = [x1; x2; . . . xi; . . . ; xc], where,
xi is the coding sub-vector associated with class-specific
sub-dictionary {Di}i=1, 2,...,c. Considering the discrimination
of x̂, if ŷ is from class i, xi will be large than other part.
Therefore, the class of ŷ is determined by argmin

i
‖xi‖22.

B. ACCURATE SEGMENTATION
The proposed DLMD-based segmentation method mainly
comprises of four stages, including superpixel over-
segmentation, feature extraction, feature matrix decomposi-
tion, and defect segmentation.

140124 VOLUME 9, 2021



S. Zhou et al.: JCS: Explainable Surface Defects Detection Method for Steel Sheet by JCS

FIGURE 4. Illustration of surface defect image decomposition with
double low-rank assumption: (a) original surface defect image I
by superpixel over-segmentation; (b) defect-free background image B by
superpixel over-segmentation; (c) defect foreground image E by
superpixel over-segmentation.

1) SUPERPIXEL OVER-SEGMENTATION
In order to capture structural information of defect, we adopt
the superpixel-algorithm of adaptive simple linear iterative
clustering (ASLIC) [47] to partition the surface defect image
into several non-overlap sub-regions. It can generate regular
shaped superpixels in both textured and non-textured regions
alike. Only the number of superpixel sub-regions K should
be specified. The bigger K should be chosen if the potential
defect object is small and morphological complex, which
can produce more deformable shape to enclose the region
containing potential defect object, vice versa. As the number
of superpixel sub-regions is far less than the pixel of image,
which can ease the computational burden and improve the
computation efficiency.

2) FEATURE EXTRACTION
The feature of gray-scale, Gabor filters with eight directions
on two different scales, steerable pyramid filters with four
directions on two different scales are computed and then
stacked vertically to construct a 25-dimensional feature vec-
tor for each pixel. For each superpixel sub-region, its feature
vector is calculated by taking mean of all the feature vectors
of pixels contained in it, which is robust to noise. All the fea-
ture vectors of sub-regions are normalized into unit column
vectors, and are stacked together to construct a feature matrix
D ∈ Rd×K , where, d is the dimension of feature vector, K is
the number of superpixels sub-regions.

3) FEATURE MATRIX DECOMPOSITION
a: FORMULATION OF DLMD
As shown in Fig. 4, we try to decompose surface defect
image I into defect-free background image B and defect
foreground image E . According to the ASLIC algorithm and
stack all feature vector of superpixel sub-regions together to
form feature matrix F constructed from the original defect
image I , feature matrix L represents a background image B,
and a feature matrix S represents a defect foreground image E
in a certain feature space, respectively. Therefore, F = L+S,
where, each column of these matrices stand for the feature

vector of individual superpixel sub-regions. Both the back-
ground image B and the defect foreground image E contain
multiple homogeneous and highly similar sub-regions. These
two feature matrices L and S have redundant information and
can be assumed to have low-rank due to the similarity among
different sub-regions, which form a low-dimensional feature
subspace. What’s more, in order to reduce the influence of
noises and improve the robustness to uneven illumination
simultaneously, we assume that the background has the sparse
property and lies in a sparse feature subspace.

Based on above analysis, the proposed DLMD can be
modelled as the following optimization problem:

min
L,S

(rank (L)+rank (S)+η2 (L, S)+τ ‖L‖0)

s.t. F = L+S (32)

where, 2(L, S) denotes the regularization term to enlarge
the margin and reduce the coherence between the feature
subspaces induced by L and S; η> 0, τ> 0 are regularization
parameters.

The local invariance assumption based Laplacian regular-
ization term 2(L, S) can be defined as follows:

2(L, S) =
1
2

∑K

i,j=1

∥∥si−sj∥∥22 wij = tr
(
SMST

)
(33)

where, M ∈ RK×K is a Laplacian matrix; tr (·) denotes the
trace of a matrix; si, sj denotes the i-th and j-th column of
S; wij of affinity matrix W ∈ RK×K denotes the weight
that represents the feature similarity between sub-regions Ri
and Rj.

Supposing that each sub-region of surface defect image is
represented by a node, the Laplacian matrixM is defined:

Mij =

{
−wi,j i 6= j∑

i6=j wi,j otherwise

where, W is an affinity matrix, when Ri and Rj are directly

adjacent, wij = exp
(
−
∥∥pi−pj∥∥22
2σ 2p

)
exp

(
−
∥∥f̄ i−f̄ j∥∥22
2σ 2f

)
, other-

wise, wij = 0; pi ∈ R2 and pj ∈ R2 denote the central
coordinate of Ri and Rj; f̄ i ∈ Rd and f̄ j ∈ Rd denote the

feature vector of Ri and Rj; exp
(
−
∥∥pi−pj∥∥22
2σ 2p

)
represents the

spatial contiguity between Ri and Rj; exp
(
−
∥∥f̄ i−f̄ j∥∥22
2σ 2f

)
gives

the feature similarity between Ri and Rj; σp and σf are two
scalars.

b: OPTIMIZATION OF DLMD
Eq. (32) can be converted into the following optimization
problem:

min
L,S

(
‖L‖∗+‖S‖∗+ηtr

(
SMST

)
+τ ‖L‖2,1

)
s.t. F = L+S (34)

where, l2,1 norm-based penalty term ‖L‖2,1 aims to charac-
terize the noise or illumination interference of surface defect
image.
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According to inexact ALM algorithm, introducing the aux-
iliary variables H = L, J = S, Eq. (34) can be defined as
follows:

O (L, S,H , J ,Y1,Y2,Y3, µ)
= ‖L‖∗+‖S‖∗+ηtr

(
JMJT

)
+τ ‖H‖2,1+〈P1,F−L−S〉

+
µ

2
‖D−L−S‖2F+〈P2, J−S〉+

µ

2
‖H−L‖2F

+〈P3, J−S〉+
µ

2
‖J−S‖2F (35)

where, P1, P2 and P3 are Lagrange multipliers; µ> 0 is a
penalty parameter.

The detailed procedure of solving Eq. (35) is presented in
Algorithm 3.

Algorithm 3 Solving Eq. (35) via Inexact ALM

Input: Feature matrix F ∈ Rd×K , parameters η> 0,
τ> 0, and ε> 0.

Initialize: H (0) = J (0) = L(0) = S(0) = 0, P(0)1 =

P(0)2 = P(0)3 = 0, µ(0) = 0.1, µmax = 105, ρ = 1.1, k = 0.
While not converged do

step 1: Update H (k+1) by Eq. (37);
step 2: Update J (k+1) by Eq. (40);
step 3: Update L(k+1) by Eq. (43);
step 4: Update S(k+1) by Eq. (46);
step 5: Update P(k+1)1 , P(k+1)2 , P(k+1)3 by

Eq. (47);
step 6: Update µ(k+1) by Eq. (48);
step 7: Check the convergence condition∥∥F−L(k+1)−S(k+1)∥∥F / ‖F‖F < 10−5;
step 8: k = k+1.

End While
Output: The optimal solution L ∈ Rd×K and

S ∈ Rd×K .

¬ Update H
In order to solve H , we can further simplify Eq. (35) as

follows:

min
H

(
1
2

∥∥∥∥L−P2µ −H
∥∥∥∥2
F
+
τ

µ
‖H‖2,1

)
(36)

The optimal solution can be obtained as follows:

H (k+1) (:, j)

=


∥∥Z (k) (:, j)∥∥2− τ

µ(k)∥∥Z (k) (:, j)∥∥2 Z (k) (:, j)
∥∥Z (k) (:, j)∥∥2 > τ

µ(k)

0 otherwise
(37)

where Z (k) = L(k)−
P(k)2
µ(k)

, Z (:, j) denotes the j-th column of
matrix Z .

 Update J
In order to solve J , the optimal solution can be obtained as

follows:

min
J

(
1
2

∥∥∥∥J−S+P3µ
∥∥∥∥2
F
+
η

µ
tr
(
JMJT

))
(38)

Differentiating it with respect to J , and let it to be zero:

J−S+
P3
µ
+
2η
µ
JM = 0 (39)

The close-form solution can be obtained as follows:

J (k+1) =

(
S(k)−

P(k)3

µ(k)

)(
I+

2η
µ(k)

M
)−1

(40)

® Update L
To solve L, Eq. (12) can be transformed to Eq. (22):

min
L

(
1
2

∥∥∥∥F−S+P1µ −L
∥∥∥∥2
F

+
1
2

∥∥∥∥H+P2µ −L
∥∥∥∥2
F
+
1
µ
‖L‖∗

)
(41)

It can be rewritten as follows:

min
L

(
1
2

∥∥∥∥12
(
F−S+H+

P1+P2
µ

)
−L

∥∥∥∥2
F
+

1
4µ
‖L‖∗

)
(42)

The optimal solution can be obtained by Eq. (21):

L(k+1) = U9 w
4µ(k)

(6)V T (43)

where, (U , 6,V ) = svd
[
1
2

(
F−S(k)+H (k+1)+

P(k)1 +P
(k)
2

µ(k)

)]
;

9 w
4µ
(·) denotes non-uniform singular value threshold-

ing operator, {σi}i=1,2,...,r is the singular value of

1
2

(
F−S(k)+H (k+1)+

P(k)1 +P
(k)
2

µ(k)

)
, wi =

r∑
j=1
σj

σi
.

¯ Update S
In order to solve S, Eq. (35) can be transformed as follows:

min
S

(
1
2

∥∥∥∥F−L+P1µ −S
∥∥∥∥2
F
+
1
2

∥∥∥∥J+P3µ −S
∥∥∥∥2
F
+
1
µ
‖S‖∗

)
(44)

It can be rewritten as follows:

min
S

(
1
2

∥∥∥∥12
(
F−L+J+

P1+P3
µ

)
−S

∥∥∥∥2
F
+

1
4µ
‖S‖∗

)
(45)

Its solution is

S(k+1) = U9 w
4µ
(6)V T (46)

where,

(U , 6,V ) = svd
[
1
2

(
F−L(k+1)+J (k+1)+

P(k)1 +P
(k)
3

µ(k)

)]
;
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{σi}i=1,2,...,r is the singular value of 1
2

(
F−L(k+1)+J (k+1)+

P(k)1 +P
(k)
3

µ(k)

)
, wi =

r∑
j=1
σj

σi
.

° Update P1, P2 and P3

P(k+1)1 = P(k)1 +µ
(k)
(
F−L(k+1)−S(k+1)

)
P(k+1)2 = P(k)2 +µ

(k)
(
H (k+1)

−L(k+1)
)

P(k+1)3 = P(k)3 +µ
(k)
(
J (k+1)−S(k+1)

)
(47)

± Update µ

µ(k+1) = min
(
ρµ(k), µmax

)
(48)

where, ρ = 1.1, µmax = 105.

4) DEFECT SEGMENTATION
Each column of L = (l1,l2, . . . , lK ) and S = (s1, s2, . . . , sK )
are the feature vector of corresponding superpixel sub-region
of decomposed background image B and defect foreground
image E , respectively. Then, we transfer L and S from feature
domain to spatial domain for visualizing. The gray-value of
each superpixel sub-region is maximum value of correspond-
ing feature vector, then allocating it to corresponding pixels to
visualize background image B and defect foreground image
E , as shown in Fig. 2.
To enhance the completeness of defect objects and sup-

press the background noise in defect foreground image E , the
regression optimization algorithm is adopted as follows:

min
Si

(∑K

i=1
wfi (si−1)

2
+

∑K

i=1
wbi s

2
i +
∑K

i,j=1
wij
(
si−sj

)2)
(49)

where, wfi and w
b
i denotes gray-value of sub-region in defect

foreground image E and background image B, respectively;
si ∈ s = (s1,s2, . . . ,sK )T denotes the enhanced gray-value of
i-th sub-region of defect foreground image E .

Following W b
= diag

[(
wb1,w

b
2, . . . ,w

b
K

)T ]
∈ RK×K ,

W f
= diag

[(
wf1,w

f
2, . . . ,w

f
K

)T]
∈ RK×K , Eq. (49) can be

reformulated as follows:

min
s

(
sTW bs+sTW f s−2W f s+W f 1+2sTMs

)
(50)

where, 1 ∈ RK×1 denotes the unit vector; M ∈ RK×K

denotes the same Laplacian matrix in Eq. (33).
Differentiating Eq. (50) with respect to s, and let it to be

zero, we have

2W bs+2W f s−2W f 1+4Ms = 0 (51)

Its solution is

s =
(
W f
+W b
+2M

)−1
W f 1 (52)

Through Eq. (49), the gray-value of defect sub-region in
defect foreground image E will become bigger, so the defect

object can be highlighted further. Finally, the shape, location
and size of surface defect can be easily localized and seg-
mented through a simple thresholding operation.

IV. EXPERIMENT
In this section, various experiments, such as parameters anal-
ysis, convergence analysis, robustness to noise, comparisons
between our method and some state-of-the-art methods, are
conducted to verify the proposed JCS method.

A. EXPERIMENTAL SETUP
Two typical surface defects images (Patch, Scratch) and
defect-free image are selected in the following experiments.
There are 300 grayscale images (200×200 pixels) per class,
and the pixel-level ground truth of defect image is manu-
ally marked by using white to denote defective pixels and
black to denote defect-free pixels.We evaluated classification
results using classification accuracy NR/N , where, NR is the
number of test samples that are correctly classified, N is
the total number of test samples. All the surface images
are normalized and resized to 40×40 pixels, then randomly
divide into training samples and test samples in 1:1 ratio.
We repeated each experiment ten times, and the average
values and standard deviations of the classification results
are given. We evaluated segmentation results using quali-
tative and quantitative metrics: the qualitative metrics refer
to human subjective feeling for segmentation performance
(i.e., boundary of defect object is clear, contrast between
defect and background is obvious); the quantitative metrics
refer to precision-recall (P-R) curve, receiver operating char-
acteristic (ROC) curve, average F-Measure (Fβ ) curve, area
under ROC curve (AUC) and mean square error (MAE).
Supposing that the pixel belonging to defect is defined as a
positive example, and the pixel belonging to background is
defined as a negative example. The symbols TP (True Posi-
tive), TN (True Negative), FP (False Positive), and FN (False
Negative) correspond to the number of defect pixel correctly
recognized as defect object, the number of background pixel
correctly recognized as background, the number of back-
ground pixel mistakenly recognized as defect object, and the
number of defect pixel mistakenly recognized as background,
respectively. Then, Precision, Recall, TPR (True Positive
Rate), FPR (False Positive Rate), F1, and MAE are computed
as follows: Precision = TP

TP+FP , Recall = TP
TP+FN , TPR =

TP
TP+FN , FPR =

FP
FP+TN , F1 =

2
N

∑N
i=1

Precision×Recall
Precision+Recall ,

MAE =
∑H

i=1
∑W

j=1|BW (i,j)−G(i,j)|
H×W , where, N , H andW denotes

the number, height and width of surface defect image.

B. CLASSIFICATION RESULTS ANALYSIS
1) PARAMETERS ANALYSIS
The tuning three regularization parameters α, β, γ in Eq. (8)
are chosen by 5-fold cross validation. α controls mutual
incoherence between each sub-dictionary, β controls dis-
crimination of coding vectors over all the class-specific sub-
dictionaries, γ controls the low-rank ability of coding vector
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TABLE 1. Classification accuracy of CASDDL with different parameters α,
β, and γ , fix α = 0.1 to tune β and γ .

over the shared sub-dictionary. Following the work in [18],
we set α = 0.1, then search for their best values in a small set
{0, 0.6, 0.8, 1.0}, {0, 0.5, 0.7, 0.9}, respectively.

Let kc, ks denotes number of atoms of class-specific sub-
dictionary and shared sub-dictionary, respectively. We vary
kc from 10 to 45 with five interval, ks from 2 to 30 with four
interval. For each parameter combination, we compute the
classification accuracy of all the sub-dictionary combinations
in terms of mean value, and illustrate the classification accu-
racy in Table 1. The bottom row of Table 1 denotes the mean
value of classification accuracy with one β corresponding to
different γ , the right column of Table 1 denotes the mean
value of classification accuracy with one γ corresponding to
different β. As shown in Table 1, classification accuracy rises
as the increase of β at first, but a further increase of β over
a proper value will decrease the classification performance.
The classification accuracy will degrade with a small value
of β, which shows that the discriminative coding vector term
is useful in learning class-oriented dictionary. Comparably,
a larger value of γ will capture the inter-class similarity, and
the shared sub-dictionary is more readily to capture the com-
monality features. However, too large value of γ will decrease
the representation ability of shared sub-dictionary, the classi-
fication performance will be degraded. For γ , we empirically
observe that a value lying in the range [0.5, 0.9] can always
achieve an acceptable result. Furthermore, the classification
accuracy with γ = 0 are lower than that with γ = 0.7, which
illustrates the importance of low-rank term.

From Table 1, the highest classification accuracy is
achieved when α = 0.1, β = 0.8, and γ = 0.7, and
this parameter combination will be adopted in the follow-
ing experiments. Besides, we observe that the classification
accuracy is robust to different parameter combinations being
greater than 89% in most cases.

2) CONVERGENCE ANALYSIS
Although Eq. (8) is non-convex, the optimization algorithm
actually adopts an alternatively updating fashion, and the
convergence of each sub-problem can be guaranteed. On the
one hand, for updating X with D fixed, the optimal solution
is gained by TwIST and ALM algorithms. On the other

TABLE 2. Classification accuracy of CASDDL with different noise level.

hand, in the process of updating D with X fixed, each atom
is optimally renewed for the sub-problem, and the optimal
solution is gained by CORE algorithm. As a consequence, the
objective function is non-increasing during the whole process
of alternatively updating X and D. In addition, we provide
the empirical evidence to illustrate the good convergence
behavior of CASDDL in Fig. 5. With the increase of iteration
numbers, the curve of error gradually decreases and even-
tually becomes stable, and the curve of accuracy increases
for different combination of sub-dictionaries. It shows the
proposed CASDDL enjoys a good convergence performance.

3) COMPUTATIONAL COMPLEXITY
The drawback of CASDDL is that it is computationally more
complex. Although dictionary learning can be done in parallel
and off-line, it is still important to see how long the dictio-
nary learning process would take. A number of experimental
parameters can affect the run time of CASDDL, including
the number of classes, number of training samples, dictionary
size and dimension of feature vectors.

4) ROBUSTNESS TO NOISE
We evaluate the robustness of the proposed CASDDL by
corrupting original surface images with additive Gaussian
noise in different signal to noise ratio (SNR), including 24dB,
20dB, and 16dB. As shown in Table 2, the classification accu-
racy is decreased slower when the noise level is increased;
CASDDL can achieve 80.81% classification accuracy even
at 20 dB noise, which is considered as less sensitive to noise.

5) NUMBER OF ATOMS IN SUB-DICTIONARY
Supposing kc, ks denotes number of atoms of class-
specific sub-dictionary and shared sub-dictionary, respec-
tively. As shown in Table 3, we can observe that increasing
kc will lead to a higher classification performance. The pos-
sible reason is that more discriminative information can be
captured by a larger class-specific sub-dictionary. When ks is
fixed, the classification accuracy is dropped as the increase of
kc. The possible reason is that smaller shared sub-dictionary
is enough to capture the shared features of defect images, and
larger shared sub-dictionary tends to absorb class-specific
features into the shared sub-dictionary, causing some dis-
criminative information lost. The proposed CASDDL always
achieves higher classification accuracy despite different num-
ber of atoms, which indicates that it has a better ability to
reconstruct defect images, even if learned dictionary has a
small size. In fact, larger size of dictionary may have stronger
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FIGURE 5. Convergence ability of CASDDL.

FIGURE 6. Visualization of coding vectors of CASDDL in training and
testing process.

representative ability and achieve better classification per-
formance at the expense of increasing computational load.
Therefore, we should make a tradeoff between classification
performance and computational efficiency. When kc = 30,
the classification accuracy gain is merely promoted very
little (∼1%) as the increase of kc. When ks = 2 and kc =
30, CASDDL can still have higher classification accuracy
94.89%, and this parameter combination will be used in the
following experiments.

6) VISUALIZATION OF CODING VECTORS
The proposed CASDDL aims to get highly-discriminative
coding vectors, through the learned discriminative dictionary,
to achieve surface defect classification. Fig. 6 illustrates the
coding vectors of training and testing samples are approxi-
mately block-diagonal, which further shows the class-label
discriminative information in coding vectors.

7) CLASSIFICATION RESULTS COMPARISON
We compare the proposed CASDDL with other well-known
dictionary learning methods, including SRC [11], DLSI [13],
CODDL [14], DFEDTL [15], COPAR [19], RDCDL [20],
LRSDL [24], LRGPDDL [25], ALRR [26].

As shown in Fig. 7 and Table 4, CASDDL achieves
94.07% classification accuracy, compared to 91.89% for
COPAR, 90.42% for DLSI, 89.90% for CODDL and 81.72

FIGURE 7. Visualization of classification accuracy between CASDDL and
other approaches.

for DFEDTL. Compared to SRC, which is the baseline
method in the experiment, CASDDL improves the classifica-
tion accuracy with a margin of more than 24%. Among above
approaches, ALRR performs the best, which is superior to
ours by 0.11% for accuracy, and is inferior ours by stabil-
ity. Besides, CASDDL outdoes LRGPDDL by a significant
improvement of above 2.5%.

C. SEGMENTATION RESULTS ANALYSIS
1) PARAMETERS ANALYSIS
The tuning two regularization parameters η, τ in Eq. (34)
are chosen by 5-fold cross validation, and the experimental
results measured by AUC metric are shown in Table 5. Its
show that when the values of η and τ are set properly, the pro-
posed DLMD can achieve better segmentation performance.
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TABLE 3. Classification accuracy of CASDDL with different number of atoms kc and ks.

TABLE 4. Performance comparison between CASDDL and other
approaches.

When η is small, the performance is very sensitive to the
changes of τ ; while η is big, τ is insensitivity. Especially,
it would be better to set the values of η much larger than
that of τ in order to penalize the feature matrix of defect-
free background image to be sparse. The segmentation per-
formance reaches a high level when η = 1.25 and τ = 0.25,
and this parameter combination will be used in the following
experiments.

2) CONVERGENCE ANALYSIS
We evaluate the convergence of the proposed DLMD to
empirically show the convergence through experiments in
different iterations, which is calculated via the relative error

FIGURE 8. Convergence curve of DLMD.

‖D−L−S‖F / ‖D‖F . As shown in Fig. 8, the error converges
very fast, usually within 20 iterations.

3) ROBUSTNESS TO NOISE
We evaluate the robustness of the proposed DLMD by cor-
rupting original surface images with additive Gaussian noise
in different SNR, including 24dB, 20dB, 16dB and 12dB.
As shown in Table 6, when SNR decreases gradually, the
AUC and MAE can remain a relative high level, especially
when SNR = 16dB, AUC still remain around 0.8. In general,
the proposed DLMDmethod is considered as robust to noise.

4) SEGMENTATION RESULTS COMPARISON
The proposed DLMD is compared with five representa-
tive segmentation methods quantitatively and qualitatively,
including RPCA [27], SSD [32], PG-LSR [33], W-LRR [34],
and ESP [35].

a: QUALITATIVE COMPARISON
The qualitative comparison results between the proposed
DLMD and other methods are shown in Fig. 9. It’s shown
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TABLE 5. Experimental results of DLMD with different parameters η and τ .

FIGURE 9. Qualitative comparison: (a) input image; (b) manual-labeled ground-truth image; (c) RPCA; (d) SSD; (e) PG-LSR; (f) W-LRR (g) ESP;
(h) DLMD.

TABLE 6. Experimental results of DLMD with different noise level.

that most of methods can handle simple defect images with
relatively homogeneous background (i.e., column 5, and 10).
For some complex defect images that containing multiple

objects (i.e., column 6, 11 and 12), or having visually indis-
tinguishable background (i.e., column 3, and 4), some parts of
background being falsely classified as the defect. By contrast,
the proposed DLMD separates the defect objects from the
image background successfully and locates defects precisely,
which has achieved the goal of ‘‘highlight the foreground and
suppressing the background’’.

b: QUANTITATIVE COMPARISON
The six methods are evaluated by P-R curves, ROC curves,
AUC values, F-measure curves and MAE values are illus-
trated in Fig. 10 and Table 7, respectively. They show that
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FIGURE 10. Quantitative comparison results with P-R curves, ROC curves and F-measure curves.

TABLE 7. Comparison of AUC and MAE of the proposed DLMD with other methods.

the proposed DLMD significantly outperforms the other five
methods. Especially, Precision can remain above 90% within
a large threshold range, which reflects a better segmenta-
tion performance. Most of AUC is higher than 70%, and
DLMD achieves 84.53%, which is competitive with 9.53%
improvement to 75.00% achieved by ESP. MAE of DLMD
is typically the lowest among all the methods. Compared
with ESP, it’s increased by 9.53% and 3.44% in AUC and
MAE, respectively. These experimental results illustrate the
proposed DLMD is effective for segmenting a variety of
defects from surface defect image, even if types and number
of defects are unknown and exhibit diverse visual features of
shapes, scales, directions and locations. Besides, double low-
rank constrain of DLMD contributes to the good segmenta-
tion performance.

V. CONCLUSION
In this paper, we develop the JCSmethod including CASDDL
and DLMD models to perform surface defects detection
for steel sheet. Based on the anomaly characteristics of
defect in the surface defect image of steel sheet, we pro-
pose a CASDDL method to learn a discriminative dictio-
nary that consists of several class-specific sub-dictionaries
associated with corresponding classes and a shared sub-
dictionary shared by all the classes, in which class-specific
sub-dictionaries are responsible for exploiting class-specific
information, and the shared sub-dictionary is used for captur-
ing and separating the common information. By introducing
low-rank, mutual incoherence and Fisher-like discriminative

constraints, it can effectively reduce redundancy in training
samples. Moreover, we formulate a double low-rank decom-
position model to obtain high-quality defect foreground
image directly, which provides a robust way to segment the
surface defect. Experimental results verify the effectiveness
and robustness of JCS for detecting surface defects of steel
sheet.

APPENDIX
Computing ∇X classi

[(∥∥X classi −Ui
∥∥2
F+
∑c

i=1 ‖Ui−U‖
2
F

)]
in

Eq. (12):

DenotingE ji =

 1 · · · 1
...
. . .

...

1 · · · 1


ni×nj

, Ini×ni =

 1 · · · 0
...
. . .

...

0 · · · 1


ni×ni

,

Oi = Ini×ni−
E ii
ni
, then, we have

∥∥∥X classi −Ui
∥∥∥2
F
=

∥∥∥∥∥∥∥∥∥∥∥
X classi

 1 · · · 0
...

. . .
...

0 · · · 1


ni×ni

−X classi


1
ni

· · ·
1
ni

...
. . .

...

1
ni
· · ·

1
ni


ni×ni

∥∥∥∥∥∥∥∥∥∥∥

2

F
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=

∥∥∥∥∥X classi Ini×ni−X
class
i

E ii
ni

∥∥∥∥∥
2

F

=

∥∥∥X classi Oi
∥∥∥2
F

Denoting Qji =
E ji
N , Pi =

E ii
ni
−
E ii
N =

E ii
ni
−Qii, R =∑c

j = 1
j 6= i

X classj Qij, then, we have

c∑
i=1

‖Ui−U‖2F

=

∥∥∥∥∥∥∥∥∥∥∥
X classi

E ii
ni
−

X classi
E ii
N
+

c∑
j = 1
j 6= i

X classj

E ij
N



∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥∥
X classi

(
E ii
ni
−Qii

)
−

c∑
j = 1
j 6= i

X classj Qij

∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥∥
X classi Pi−

c∑
j = 1
j 6= i

X classj Qij

∥∥∥∥∥∥∥∥∥∥∥

2

F

For the i-th class, we have

∥∥∥∥∥∥∥∥X
class
i Pi−

∑c
j = 1
j 6= i

X classj Qij

∥∥∥∥∥∥∥∥
2

F

,

for the non i-th class, we have

∑c
j = 1
j 6= i

∥∥∥∥∥∥∥X classj Pj−
∑c

l = 1
l 6= j

X classl Qjl

∥∥∥∥∥∥∥
2

F

.

Choosing the j-th part of the i-th class, we have

∥∥∥∥∥∥∥X classj Pj−
∑c

l = 1
l 6= j

X classl Qjl

∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥∥∥∥∥
X classj

E jj
nj
−

X classj Qjj+
c∑

l = 1
l 6= j

X classl Qjl



∥∥∥∥∥∥∥∥∥∥∥

2

F

Separating X classi , we have∥∥∥∥∥∥∥∥∥∥∥
X classj

E jj
nj
−

X classi Qji+
c∑

l = 1
l 6= i

X classl Qjl



∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥∥∥∥
X classj

E jj
nj
−

c∑
l = 1
l 6= i

X classl Qjl−X
class
i Qji

∥∥∥∥∥∥∥∥∥∥∥

2

F

=

∥∥∥Tj−X classi Qji

∥∥∥2
F

Expanding the anyone non i-th class,∑c
j = 1
j 6= i

∥∥∥Tj−X classi Qji

∥∥∥2
F
,

then, we have∥∥∥X classi −Ui
∥∥∥2
F
+

c∑
i=1

‖Ui−U‖2F

=

∥∥∥X classi Oi
∥∥∥2
F
−

∥∥∥X classi Pi−R
∥∥∥2
F
−

c∑
j = 1
j 6= i

∥∥∥Tj−X classi Qji

∥∥∥2
F

Calculating the first derivative of R
(
X classi

)
with respect to

X classi , we have

∂
∥∥X classi Oi

∥∥2
F

∂XClassi

= 2X classi OiOTi

∂
∥∥X classi Pi−R

∥∥2
F

∂XClassi

= 2
(
X classi PiPTi −RP

T
i

)
∂
∑c
j = 1
j 6= i

∥∥∥Tj−X classi Qji

∥∥∥2
F

∂X classi

= 2
∑c

j = 1
j 6= i

×

[
X classi Qji

(
Qji
)T
−Tj

(
Qji
)T]
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