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ABSTRACT In this paper, a new family of ultra-high step-up DC-DC converters based on a center-tapped
coupled inductor (CI) is proposed. These single-switch converters employ different inductive and capacitive
power transfer techniques by utilizing multi-winding CIs, intermediate capacitor links and simple switched-
capacitors to improve the transferred power rate, harvest magnetizing and leakage inductance energies, and
enhance power density. Achieving high voltage gain in low duty cycle values enables the proposed converters
to operate under wide output voltage ranges; meanwhile, distributing the output voltage on two or three
output ports alleviates the voltage stress on output terminal components. Low input current ripple, simple
pulse width modulation control, low switch voltage stress and operation without circulating current can be
listed as other features. In this paper, the proposed family is introduced, theoretically analyzed and compared
with other state-of-the-art researches. Finally, the accuracy of analyses are evaluated with some experimental

tests of a 1.25 kW experimental prototype.

INDEX TERMS DC-DC converter, high step-up power converter, center-tapped coupled inductor.

I. INTRODUCTION

In the massive energy harvesting technologies development
today, using different types of renewable energies, such as
photovoltaic and fuel cells, is inevitable due to the defi-
ciency in fossil fuels and alarming conditions of environmen-
tal issues [1], [2]. High performance high step-up DC-DC
converters are indispensable for such applications in which
the low output voltage (typically lower than 50 V') should be
boosted to a desired level [3]. Among different approaches
to achieve high voltage gain converters, interleaving and uti-
lizing coupled inductors (CI) and/or voltage multiplier cells
(VMCO)s obtain the merits of low duty cycle requirement
and high efficiency operation for reaching the desired high
gain ratio [4]-[7]. Furthermore, numerous features should be
considered during a high step-up DC-DC converter’s design,
among which, amount of power loss, control complexity,
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number of operational modes, converter’s size, imposed
inrush current on semiconductors, required CI turns, power
density and desired duty cycle range are the most crucial ones.
For example, as a practical consideration, the high voltage
gain converter presented in [8] suffers from high conduction
loss due to its high operation duty cycle range and high
number of components. In addition, using high number of
power switches increases the complexity in control system,
the problem that is also existed in the suggested converters
in [9]-[11].

Reduced input current ripple and continuous input current
are the vital specifications of the converters that are utilized in
renewable energy-based systems due to the harmful impacts
of large and pulsating input current on the energy interfaces.
The converters introduced in [12]-[16] suffer from large
input current ripple owing to their input-side CI. Adopting
interleaving technique and avoiding input CI are the effective
solutions for the input current ripple problem. The suggested
converter in [17] utilizes interleaving and CI techniques in
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addition to an active clamp circuit to achieve high output
voltage and low current stress values, simultaneously. How-
ever, high number of semiconductors and large output voltage
ripple limit its industrial applications. The interleaved con-
verters introduced in [18]-[20] focus on the inductor coupling
approach alongside with the VCMs to increase voltage gain
ratio. Nevertheless, their high number of components, espe-
cially the passive ones, causes high size and low reliability.
Scholars try to reduce the components’ current stress and
recycle the CI leakage energy in [21], [22], but the complex
control system restricts their chance in real life applications.
The converters presented in [23], [24] are suitable for high
voltage applications; however, their disability of recycling
leakage inductance energy and employing four inductors’
cores are their main drawbacks. In [25] and [26], two inter-
leaved DC-DC converters are proposed with passive and
active clamp circuits, respectively, in order to solve switch
voltage spikes. However, their need for high duty cycle values
to enhance output voltage gain is their main disadvantage.
The multi-stage high gain converter suggested in [27] uti-
lizes conventional interleaved boost converter in each stage.
Unfortunately, this method increases the power losses and
circulating current.

The multi-input converter introduced in [28] utilizes a
modified VMC in order to increase voltage gain ratio, but it
cannot achieve such a high experimental output voltage ratio
due to its high loss VMC. The SEPIC-based high step-up
converter introduced in [29] uses CI and VMC to increase
voltage gain ratio, but it suffers from low efficiency and
high components count. In [30], authors tried to achieve high
voltage gain and reduced input current ripple by adopting
interleaving and switched-capacitor techniques, but the high
number of components, either passive or active components,
is its main drawback. Authors introduced a non-isolated high
gain DC-DC converter and tried to achieve soft-switching
performance in [31], but its high input current ripple and
the need for high duty cycle are its main disadvantages that
restrict its applications and increase conduction loss. In [32],
scholars proposed an ultra-high gain DC-DC converter and
used the interleaving technique to reduce the size of filter
components and switching loss. However, utilizing two three-
winding CIs, nine diodes, eight capacitors, and two switches
are its main drawbacks that increase its cost and volume.

In order to fulfill the desired factors and resolve the prob-
lems of the above-mentioned converters, a family of center-
tapped inductor based DC-DC converters are introduced in
this paper that are able to provide ultra-high voltage gain
ratio. Their low input current ripple makes them suitable
for renewable energy-based systems. Additionally, the ability
to optimize output voltage ripple is another feature of the
proposed single-switch converters. In this paper, the proposed
converters are introduced, analyzed and designed comprehen-
sively. Then, they are evaluated by the comparison of oper-
ational characteristics with other state-of-the-art researches.
Eventually, the theoretical analytics are validated through
some experimental results of a 1.25 kW prototype.
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Il. PROPOSED CONVERTERS

Fig. 1 indicates the circuit of the proposed single-switch
converters which are named as Prol ~ Pro4. The converter
Prol is the basic proposed topology and Pro2 ~ Pro4 are the
improved versions. Operation principle of all the proposed
converters are almost the same with some differences that
will be explained in the following. As shown in Fig. 1 (a)-(d),
all introduced converters consist of some similar components
such as: one two-, three- or four-winding center-tapped CI,
that is modeled with an ideal transformer in addition to a
parallel magnetizing inductor (L,,) and leakage inductances
(Ly1 and L,»), one input inductor (L), one intermediate link
capacitor (C1), one power switch (S), one switched capaci-
tor (C2), some diodes (D(;)) and output capacitors (Cy(;)). The
fourth topology (Pro4) is assumed as the main converter in
this paper; so the comprehensive analysis of Pro4 is provided
besides a brief analysis of other topologies.

Coupled ::
Indu[():to Y

(b

FIGURE 1. Classification of the DC-DC converters.

A. FIRST PROPOSED CONVERTER (PRO1)

Current flow paths of the Prol converter in its two operational
intervals of continuous conduction mode (CCM) are shown
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in Fig. 2. The operational modes of this converter are evalu-
ated as follows:

1) MODE 1 (0 <t < DTs) [FIG. 2(a)]

In this time interval, the switch S is turned ON; therefore,
the input and magnetizing inductors are charged with the
energy of the input source and Cj, respectively. Diodes D3
and D4 are forward and reverse biased, respectively, and Cp
is charged through the secondary winding of the CI, conse-
quently. Considering ny/ ny = N, and n3/ nj = N3, voltages
of L and L,, are calculated as

v = V,‘ (1)
vim = V1 2
Ve = NV 3)

2) MODE 2 (DTs < t < Ts) [FIG. 2(b)]
Finishing the switch ON-state leads to the forward bias of D

and D4. Hence, the current paths are changed according to
Fig. 2(b).

v = Vi— Ve “4)
Ver +Vea = Vo) (5)

Vim =

Ny +1

L D, n ny
O30506000000000
Lm

(®)
FIGURE 2. Equivalent circuits of Pro1 in; (a) Mode 1. (b) Mode 2.

B. FOURTH PROPOSED CONVERTER (PRO4)

Equivalent circuits of the proposed double-output port
Pro4 converter are demonstrated in Fig. 3, which result in the
key voltage and current waveforms of Fig. 4.

1) MODE 1 (0 < t < DTs) [FIG. 3(a)]

At first, the power switch S is turned ON, so the diodes D
and D, are revere and forward biased, respectively, and L
is magnetized with V;, consequently. In this condition, the
capacitor C is discharged to the L,, and the capacitor C; is
charged with the transferred power of the CI in its secondary
winding.

v =V (6)
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vim = Ve (7N
Ve = NaViw = N2 Ve (8)

2) MODE 2 (DTs < t < Ts) [FIG. 3(b)]

Att = DT, the power switch duty cycle is completed and the
diodes D1 and D5 start conducting; hence, the stored energies
of L, L, and C, are transferred to the C;, C,; and C,p,
respectively. The main equations of this mode are listed as

vi = Vi—Vc1 ©)]
1

= V Voo =V, 10

VLm Ny 11 [Ver+ Ve — Verl (10)

Vo1 = =N3Viu (11)

(b)

FIGURE 3. Equivalent circuits of Pro4 in; (a) Mode 1. (b) Mode 2.

4 DT, (1-D)T, DT (1-D)T.
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FIGURE 4. Typical voltage and current waveforms of Pro4 in CCM
operation.

L

Ill. STEADY-STATE PERFORMANCE ANALYSIS OF THE
PROPOSED CONVERTERS

A. VOLTAGE GAIN CALCULATION

Voltage gain of the Pro4 converter is calculated by
volt-second balance law and the resulted equations of
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the previous section as

DVi+(1—-—D)V;—Vc1) =0 (12)

Ver +Ver =V,
Dwn+a—Dxi17:%;—£)=o (13)

Using (12), the voltage of C; can be expressed as follows:

Vi
Ver = —— 14
ca=1"p (14)
By substituting (14) into (8), the voltage of capacitor C» is
obtained as

Ny Vi
Voo = 15
2=1"p (15)
Then, substituting (14) and (15) into (13) leads to
N2+ 1)V;
= 16

Regarding to Mode 2, and (11) and (14)-(16), the voltage
across C, is calculated as
N3DV;

Vo= ——L

a7
Due to the attained output capacitors’ voltages, the voltage
gain of the Pro4 converter in CCM operation is concluded as

Vo1 + Vo2 _ 14+ N> + N3D
V; (1 -=D)?

Mpros = (1 8)

Voltage gain of the Prol, Pro2, and Pro3 converters are
calculated with the same procedure and the results are given
in Table. 1 and Fig. 5. It is worth to mention that volt-second
balancing law should be applied on L, as well as L and L,
to obtain voltage gain of the Pro2 converter.

TABLE 1. Voltage gain of pro1~Pro3.

Converter Voltage Gain
Prol Prol = &tg;z
Pro2 M, ,= (; t g;z + ?If‘g
Pro3 M, .= N+ Ny ngzizg)?g

FIGURE 5. Voltage gain. (a) Prol. (b) Pro4.
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TABLE 2. Voltage stress analysis of Pro1~Pro3.

Vol Prol Pro2 Pro3
stress
1
—V,
Vs (1-Dy '
1
v —V
D1 1-D i
D
v —V,
D2 (lfD)z i
v 2DN,
m 4N, , | (-DF N,
1*D 270 1*D 20
Vou (1-D) 2N, v (1-D)
1-D
Vps - 1+N,
Ve - (1-Dy* '

B. VOLTAGE AND CURRENT STRESS ANALYSES

The equivalent circuit of the Pro4 converter during switch
OFF-state (Mode 2) should be analyzed to obtain switch
voltage stress. According to (15), (16) and Fig. 4(b),
the switch voltage stress can be calculated as

1
Vs = ——=Vi 19
S (1 _ D)2 L ( )
Similarly, voltage stress of the diodes are given as
1
Vor = —pVi (20)
Vpr = b V, (21)
N3
Vs = ——=V; 22
I+N;
Vps = Vps = 23
p4=Vos= g5V (23)

In addition, voltage stress of the semiconductors in
Prol~Pro3 are tabulated in Table. 2, and their normalized
values are plotted in Fig. 6. In order to calculate current stress
of the semiconductors, the current paths during their on-state
should be analyzed. Hence, according to Fig. 4, average
current of the switch and diodes of the Pro4 converter are
obtained as

1
Is =i+ 1101+ —Up1 — ) 24)
N,
Ipy = Ipy =1; (25)
1
Ipz = ]731”,, (26)
1
Ips = — U1 — Iw) 27
N,
Ips = I (28)

where, I7,1 and Ir,, are the average values of leakage and
magnetizing inductance currents, respectively. The same pro-
cedure can be followed to obtain current stress of active
components of Prol~Pro3.
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FIGURE 6. Normalized switch voltage stress. (a) Pro1. (b) Pro2. (c) Pro3.
(d) Proa.

C. DISCONTINUOUS CONDUCTION MODE (DCM)
BOUNDARY
In the DCM-CCM boundary of the proposed converters, their
average input current in the boundary conduction mode (/;5)
is equal to
Air
T2
According to the proposed converters’ voltage gain, output
load and the current path during switch ON-state, output

current and load resistance in the boundary conduction mode
(I1,p) is obtained as

Iip (29)

DV
Ip= —— 30
2fsLM?
Rp = 31
B D 3D

Normalized form of the boundary conduction mode output
current and load resistance of the proposed converters are
plotted in Fig. 7 with respect to the duty cycle and the CI turns
ratio to identify the CCM and DCM operation regions. As can
be seen, the larger the duty cycle and the turns ratio, the wider
the solution area in CCM for normalized load resistance and
output current, respectively.

IV. DESIGN CONSIDERATIONS
According to the CCM performance of the Pro4 converter,
and the desired voltage and current ripple values of passive
components, they can be designed as
_ DV;
fsAiL
_ DV;
" fsAipw(1 = D)

(32)

(33)
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FIGURE 7. Normalized boundary conduction mode output current with
respect to: (a) duty cycle in Ny = N3 = N = 3, and (b) turns ratio in

D = 0.6. Normalized load resistance with respect to (c) duty cycle in
N, = N3 = N =3, and (b) turns ratio in D = 0.6.

DIy
Ci=— (34)
fsAVcy
(1= D)
C=—" (35)
fsAVea
C D, (36)
| = —
7 f5AVe,
C _Dl (37)
2 =
"7 5sAVen

Continuous input current with low ripple is a feature of the
proposed converters that makes them suitable for renewable
application. In order to achieve minimum input current ripple,
the effects of different parameters such as turns ratio and
duty cycle should be analyzed. According to Fig. 3, the input
current ripple of the Pro4 converter is obtained as

Dv,

Aip = 38
iL FoLM (33)
Substituting (18) into (38) leads to
Vo D(1—D)>?
Ay = Yo _P1=D) (39)

~ AL1+N, +NsD

Fig. 8 illustrates the variation of the input current ripple
with respect to CI turns ratio and duty cycle in different
B = V,/fsL values, where B is utilize to normalize the
calculated input current ripple with respect to the converters’
output voltage, switching frequency and input inductor. This
helps to compare the converters in the same operation and
design conditions. It is clear in Fig. 8 that (i) Ai; reduces
by the turns ratio rise, and (ii) Ai; reaches to its maximum
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value in a particular duty cycle. Fig. 9 shows the duty cycle
values which belong to the Ai; maximum points with respect
to the turns ratios. Due to this figure, the duty cycle values
that lead to maximum Ay are less than 0.302; therefore,
it does not restrict the operational duty cycle range of the
proposed converters. In other words, it is mostly preferred to
utilize the high step-up converters in D > 0.4 to reach high
voltage gain which does not coincide with the maximum input
current ripple area. This makes the proposed converter an
appropriate candidate for renewable energy applications such
as photovoltaics and fuel cells. Fig. 10 presents the desired
operation region for duty cycle and turns ratio to achieve spe-
cific normalized input current ripple (AizfsL/RI; = D/M?).
According to this figure, high N and D values, which are
preferred in high step-up converters, are located in the desired
operation area.

Ai (A)

2 25
—B=12.5
—B=25 2

Ai, (A)

1.5

1

0% &

0
0.1 0.2 0.3 04 05 06 0.7 0.8 01 2 3 4 5 6 7 8
D N
(@ (b)

FIGURE 8. Variation of input current ripple in Pro4 with respect to B and:
(a) duty cycle in Ny = N3 = N = 3. (b) turns ratio in D = 0.5.

FIGURE 9. Maximum input current ripple realization in Pro4 with respect
to duty cycle and CI turns ratios.

V. EFFICEINT INDUCTIVE OPERATION

In order to enhance the performance of the proposed con-
verters, the stored energies in all capacitive and inductive
circuit components are recycled and transferred to the output
capacitors due to the performance of semiconductors during
operational modes. Power flow paths of the Pro4 converter
are depicted in Fig. 11, where (i) the stored energy in L is
transferred to C; in (1-D)Ty (blue path), (ii) the energy of
C is discharged to C, via ny and ny in DT (purple path),
(iii) the energy of Lry is recycled to C,y in (1-D)T; (green
path), (iv) the magnetizing energy is guided to C,; via nj
and n3 in (1-D)T; (red path), and (v) the energy of Lr; is
transferred to C, in (1-D)T; (yellow path).
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FIGURE 10. Desired operation region of normalized input current ripple
(Aiy fsL/RI;) with respect to duty cycle and turn ration in Pro4.

FIGURE 11. Power flow paths in Pro4 converter.

Vi. COMPARISON

In real industrial applications, introducing a flawless con-
verter is not possible due to the existence of numerous evalu-
ation parameters and desired factors. However, in this study,
it is tried to achieve a family of converters with acceptable
parameters and valuable features that make them suitable for
different industrial applications.

In this section, a fair comparison is performed between the
proposed converters and recently introduced ones to clarify
their pros and cons. For this purpose, the converters are
classified into three categories based on the count of utilized
windings in their coupled inductors, and the results are pre-
sented in Table 3 and Figs. 12 and 13. Quantities of active
and passive components are considered as the first factor
in Table 3 since it affects the volume, cost, efficiency, and
power density of the converters. From this point of view:
(1) [12], [29], [40], [43], [44] and the proposed converters
have the least number of power switches and gate drivers,
(i1) although the number of semiconductors in [12], [38]
and [44] is the lowest, they present low voltage gain. There-
fore, by considering the realized voltage gain of the con-
verters, the number of utilized semiconductors is not high in
the proposed converters, (iii) [9], [17], [23], [25] and [34]
have the highest number of magnetic cores, and (iv) [11],
[12], [17], [23], [25], [31], [34]-[38], [40], [42], [44] and
Prol have the least number of capacitors. Hence, the proposed
converters employ acceptably low number of components.

Input current ripple is another significant parameter that
specifies whether the converter is suitable for some applica-
tion such as renewable sources or not. Therefore, low input
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TABLE 3. Comparison of proposed converter with other state-of-the-art researches.

Refs. S/D/C/CIHL | LICR | NOM Voltage Gain (M) Voltage Stress of Switch(s) Voltage Stress of Diodes
EVs) ZVp)
1 4-2D
1 4/0/2/12+ N 2 — Vv
] oo ? (1-Dy’ 1-D  ° 0
(2] | 1221>+0 | No 5 N+l v, 1Xan,
1-D 1+ N
7] | 4431242 | Yes 8 N+l 4, 4,
1-D 1+ N
Ol 23] | 245312 | No | 4 —2_ND A S AN3ND,,,
2 1-D 2+ ND— ND 2 2M
=
Sl o) | 141 | Yes | s N+D+2 _ _AE2N
g 1-D 2+N+D 2+ N+D
g
=l B1 | 2261740 | No 10 N+l 27, 2N 4,
g 1-D 1+ N 1+ N
8| 331 | 224141 | Yes | 6 N 2, 2,
5 1-D N
= 2N -1
& [34] | 405312 | No 5 L\ St 2, 0
gl B4 (N-1)(1-D)
35] | 4031240 | No 5 N+l 243N —2ND 0
1-D 1+N
[36] | 40310 | No | 5 N2 2, 0
1-D
1+ N. v, 3+2N.
Prol | 1/4312%+1 | Y 2 T S _2*2N
1O 14/3/ es a-Dy a-Dy’M,,, (-DyM,,,
O] | 4/692™+2 | No 1 2AN+D 2V, 3+4N,,
1-D 1+ N 1+ N
2
[25] | 2431742 | Yes 10 N+2 Y, AT Ny,
1-D 24+ N 2+N
o - _2+ND+N, 1
| B7] | 4131750 | No 8 TN D) 2+ pr [
:'8 2 2
.8 1+D
=l 38] | 302170 | No 7 1+D(n+n,) 0
3 1-D
E 39] | 424170 | No 9 +N+D _Y, _2N
= 1-D 1+N+D 1+N +D
E
2| [40] | 133130 No 4 2+N,D+N, v, _ 3N
‘B 1-D 2+N +ND 2+N +ND
(=)
21 41 | 234130 No 9 Dn, +n, +2 oo 2HAND 2N
] 1-D 2+ N+ ND 2+N +ND
1+ N, + N. v, 3+2N, +2N.
3W. 2 3 o 2 3
Pro3 1/6/5/1°V+1 Yes 2 7(1 Dy (-D)*M,,, a- D)iszm o
1+ N, + N,D v, 3+2N,+N.
3w. 2 3 o 2 3
Pro4 1/5/4/1°"+1 Yes 2 7(1 —Dy A-DyM,,, 7(1 “DyM,,, °
4/0/3/14+0 No 4 21 +nD) Q+NY, 0
1-D 1+ ND
1+2n)(1+D)+2 2V, 8+ 6N
1 14+ ( o __ 8+6N
PIBITH0 No > 1-D (1+2N)A+D)+2 A+2N)Y1+D)+2 °
1+(1+2n)D Vv 2+2N
1/2/3/1%+0 N 4 HUlran)l V. 242N
© 1-D 1+(+2n)D 1+(+2n)D °
2N 1.5 N -1 3N -2
26/61%+0 | N 6 AN N1 B3N -2
° (N —D(1-D) 2N —15 ° 2N —15 °
1+N, 2N,D 1% 342N, +2N, +2DN.
16/4/1%+1 | Y 2 AL TN 2AE S S— 2+ 2N, sy
s a-Dy 1-D (1-Dy’M,,, (1-Dy'M,,,

* Note: In the CI count, a® indicates “a” coupled inductor coils with “b” windings.

current ripple (LICR) is considered as the second evaluation
parameter. For this purpose, the converters with discontinu-
ous input current, voltage fed input port and coupled input

inductor are considered as the converters with higher input
current ripple. On the other hand, the converters with a single-
winding inductor or single-winding interleaved inductors in

VOLUME 9, 2021 136379



IEEE Access

H. Tarzamni et al.: Ultra-High Step-Up DC-DC Converters Based on Center-Tapped Inductors

100 N=3 100 D=0.7
Pro1 Pro1
- = =[] == =[11]
[12], (171, [12], [17],
80 [31], [35] 80 [31], [35]
— 23] —[23]
—[29] —[29]
{gi} [33]
60 60 134]
c [36] —[36]
©
©)

100 N=3 100 D=0.7
Pro3
Pro4
[9]
— Pro3
80 ¢ - _g?} 80 Pro4
[9]
[38]
- - -9 oo
60 | — 401 [41] 60 [38]
£ £ == =039
8 8 —[40], [41]
4

Gain

02 04 06 08 1 2 3 4 5 6
D N

(e) ®
FIGURE 12. Comparison of converters’ voltage gain with:

(a, b) a two-winding coupled inductor. (c, d) a three-winding coupled
inductor. (e, f) a four-winding coupled inductor.

the input port are considered as the LICR converters. Accord-
ing to Table 3, [17], [25], [29], [33] and the proposed convert-
ers operate with the lowest input current ripple. The number
of operational modes (NOM) is the next parameter evaluated
in Table 3, which affects on the converter control complexity
and duty cycle range. The last columns of Table 3 are dedi-
cated to the voltage gain ratio, accumulative switch(s) voltage
stress, and accumulative diodes voltage stress, respectively.
According to Table 3, the comparison of the above-mentioned
parameters clarify the superiority of the proposed convert-
ers with less active and passive components, and low input
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current ripple and NOM. In addition, voltage gain and nor-
malized accumulative switch voltage stress of the converters
are plotted in Fig. 12 and Fig. 13 with respect to the duty
cycle and turns ratio. As can be seen, the proposed converters
achieve the highest voltage gain and the lowest normalized
accumulative switch voltage stress in both conditions.

(a) (b)

FIGURE 13. Normalized switch voltage stress comparison of converters’
with a three-winding coupled inductor with respect to: (a) duty cycle.
(b) coupled inductor turns ratio.
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FIGURE 14. Experimental prototype of Pro4. (The switch and diodes are
implemented under the board.)

VII. EXPERIMENTAL RESULTS

In order to validate the performance and theoretical analytics
of the proposed converters, the Pro4 topology is selected
for experimental prototyping, where the experimental circuit
and the obtained results are shown in Fig. 14 and Fig. 15,
respectively. This circuit is designed for the nominal power
of P, = 1.25 kW and the experimental results are obtained in
the test point of P, = 1014 W. The switching frequency is
equal to 50 kHz, and N, = N3 = 2. The passive components
are designed as L = 122uH, ny = 12, i, = n3 = 24,
C; = C, =470 uF, C,; =330 uF and C,p = 150 uF
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Furthermore, the specifications of semiconductors are listed
as follows: UJ4C075018K3S for S, VS-60EPU06-N3 for D;
and D, MUR1560 for D3 and DSEP30-12AR for D4 and Ds.

Fig. 15(a) shows the input voltage and voltage across C
with V; =30V and V1 =73.9 V, which verifies (14). Input
current (/; = I;,) with the approximate 10% peak-peak ripple
value is depicted in Fig. 15(b). In order to evaluate the switch
performance, its drain-source voltage and current are illus-
trated in Fig. 15(c). As expected, its voltage stress is approxi-
mate 185 V that confirms (19). Voltage and current of diodes
are shown in Figs. 15(d)-(i). As can be seen, the applied
voltage stress across the diodes match with the results
in (20)-(23). One of the significant features of this experiment
is the absence of the high-voltage spikes during the switching
transitions. Current profile of the leakage inductance is also
demonstrated in Fig. 15(j). Using (15)-(17), V2, Vo1, and
Vo are calculated as 150 V, 225 V, and 562 V, respectively.
As shown in Fig. 15(k)-(1), the experimental voltage across
C1,C,,and C,p are measured as 145.5V,220V,and 556 V,
respectively. Eventually, the efficiency of the Pro4 converter
is measured in different output power values which is shown
in Fig. 16. According to this figure, the maximum efficiency
of this converter is equal to 95.94%.

VIIl. CONCLUSION

A new family of high step-up DC-DC converters was pro-
posed in this paper, which employs a center-tapped coupled
inductor. Wide output voltage gain, low input current ripple,
low normalized voltage stress across switching components,
recycling all inductive and capacitive energies, no circulating
current, simple control, low switching voltage spikes and
operation of the coupled inductor with high power density
are the main features of the proposed converters. Specifi-
cally, the main operational characteristic of these converters
is employing different capacitive and inductive approaches
to harvest the stored energies in capacitors and inductors
such as leakage and magnetizing inductances, and trans-
fer them toward output load. In this paper, comprehen-
sive theoretical analytics, design considerations, comparison
study and experimental results were provided to validate the
performance and applicability of the proposed converters.
The experimental results showed the approximate efficiency
range of 89.18% to 95.94% from light to nominal test points.
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