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ABSTRACT Aiming at the shortcoming that the basic beetle antennae search algorithm fails to consider
differences between individuals and the dynamic information in the searching process, this paper proposed
a new beetle antennae search algorithm based on the elite selection mechanism and the neighbor mobility
strategy. The elite selectionmechanismwill be used to weaken beetles having bad performances and generate
new beetles to ensure diversities and abilities in the whole population. The neighbor mobility strategy will
guide the algorithm to open up a wider searching area to ensure that individuals having good positions own
a chance to infect individuals with poor performances. To verify the searching ability and the optimization
speed of the proposed algorithm in this paper, different testing functions were selected for numerical testing
experiments, and the iteration figures, box plots, and searching path figures were given. The experimental
results showed that the proposed algorithm in this paper was superior to the original algorithm in the solving
accuracy, the convergence speed, and the stability.

INDEX TERMS Beetle antennae search algorithm, numerical problems, global optimization.

I. INTRODUCTION
In practical engineering fields, many optimization problems
need to be solved under complex constraints and in a large
searching range. Traditional mathematical methods, such as
the steepest descent method and the variable scale method,
can only calculate simple and continuous functions [1]–[3].
Therefore, for nonlinear, multivariable, multi-constraint,
multi-dimension, and other complex optimization problems,
engineering fields need a strong computing power and a
high precision optimization strategy to solve the different
problems [4]–[6]. The swarm intelligence optimization is
inspired by the biology, which is proposed by bionics and
mathematicians on the swarm intelligence theory. Its central
idea draws and simulates the cluster phenomenon and the
behavior in natural creatures [7], [8]. The swarm intelligence
optimization algorithm is to achieve some complex tasks
by individuals in the biological population without the
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centralized control guidance and the simple cooperation.
Therefore, the swarm intelligence optimization algorithm
can solve complex optimization problems without the global
information. In recent years, due to the improvement of
practicabilities and fault tolerances, swarm intelligence
optimization algorithms have been widely used in different
fields [9]–[11]. In recent years, scholars have proposed
many advancedmetaheuristic algorithms, such as archimedes
optimization algorithm (AOA) [12], bald eagle search
algorithm (BES) [13], harris hawks optimizer (HHO) [14],
socio evolution and learning optimization (SELO) [15], sooty
tern optimization algorithm (STOA) [16], spotted hyena
optimizer (SHO) [17], teaching learning based optimization
(TLBO) [18].

Beetle Antennae Search Algorithm (BAS) is an efficient
swarm intelligence algorithm proposed by Xiangyuan Jiang
and Shuai Li in 2017 [19]. It is an evolutionary algorithm that
imitates the beetle evolution behavior, the foraging behavior,
and the courtship behavior. The beetle survival behavior
in nature can be modeled as the algorithm optimization
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process for the fitness function, and the searching target
can be modeled as the optimal solution in the fitness
function. The algorithm not only has a strong ability of the
individual identification and the environment identification,
but also does not need to know the function gradient
information. In addition, its program code is simple and
can quickly obtain the optimal solution under the condition
of a stable convergence [20]–[23]. At present, it has been
successfully applied to a variety of industrial engineering
optimization problems, and has a high potential research
value [24]–[29]. Ameer Tamoor Khan et al. proposed the
quantum beetle antennae search algorithm and applied it in
the constrain portfolio problem [30]. Literature [31] used
BAS for the UAV sensing and the avoidance of obstacles.
Aghila Rajagopal et al. proposed a new hybrid extreme
learning machine with beetle antennae search algorithm,
and used BAS to evaluate the optimal strategy in the low
earth orbit satellite communication networks [32]. Meijin
Lin et al. used BAS in the economic load distribution
problem of power systems [33]. Literature [34] devised
a new fallback BAS for the path planning. Jiang et al.
combined the BAS with non-trivial mechanisms to solve the
3-D path planning problem [35]. Shuo Xie et al. proposed
an improved Q-learning BAS to solve the model predictive
ship collision avoidance [36]. Shuzhi Gao et al. designed
a chaos BAS for neural network soft-sensor model of the
PVC Polymerization Process [37]. Vasilios N. Katsikis et al.
studied the time-varying minimum cost portfolio insurance
problem used the BAS [38]. Qing Wu et al. introduced
a neural network classifier based the BAS for the pattern
classification [39]. Jianhui Yang and Zhenrui Peng designed
the beetle-swarm evolution competitive algorithm for bridge
sensor optimal placements [40]. Lin Zhou used an improved
beetle swarm optimization algorithm for autonomous sailing
robots [41]. Xin Xu used lévy flights and adaptive strategythe
in the BAS [42]. Lei Wang drafted a new BAS for the
trajectory planning of robot manipulators [43]. Yaozong
Cheng proposed a motion planning of the redundant manip-
ulator based on the BAS [44]. Literature [45] introduced
a model free approach for the online optimization using
the BAS. Zongcheng Yue et al. presented a hardware
descriptive approach based the BAS [46]. Tamal Ghosh
and Kristian Martinsen proposed a collaborative the BAS
memory based on the adaptive Learning [47]. Ameer
Tamoor Khan et al. showed an improved BAS with Zeroing
Neural Network for the online solution of the constrained
optimization [48]. Literature [49] designed a BAS dynamical
attitude configuration with wearable wireless body sensor
networks. Literature [50] devised a support vector machine
for wind turbine rolling bearings fault diagnosis under the
BAS. Heng Zhang et al. invented a beetle colony optimization
algorithm [51]. Literature [52] displayed the trajectory
optimization used the BAS. Zhiqiang Liao et al. introduced
an automatic bearing fault feature extractionmethod based on
the BAS [53]. Jiandong Huang et al. proposed an accurately
predicting dynamic modulus of asphalt mixtures in low

temperature regions based the BAS [54]. Compared with
other classical algorithms, BAS also owns a competitiveness.
For GA, BAS has a less complexity because of no-binary
coding. For PSO, BAS has a large jumping speed. For FA,
BAS has less initial parameters. For artificial bee colony
(ABC), BAS has a larger searching ability and a lower
complexity [55], [56].

Because BAS is a fixed-reduction step algorithm based on
the natural selection, its attenuation factor and initial step
are fixed, which helps to maintain the algorithm stability.
However, the changing of the exploration field and the
searching step are fixed in the algorithm implementation
process, and there is no significant differences in the early
and late searching stages, whichmakes the local searching not
thorough, and leads to a low precision searching result. The
initial step is selected according to the artificial experience.
A lot of experiments must be done before the artificial
experience selection whose process is complex, time-
consuming, and laborious. And in engineering applications,
the parameter selection process must consider working
environments, errors, interferences, and other factors, so the
optimal initialization parameters of the algorithm can not be
obtained by artificial experiences. Therefore, to fully improve
the algorithm performance, it is necessary to design an
enhanced way to meet the expectation field and step changes.
This paper proposed an improved algorithm based on the
elite selection mechanism and the neighbor mobility strategy
(ENBAS). In ENBAS, the exponential equation factor was
added to the basic BAS, and a new iteration updated
mechanism was added in the global searching and local
searching stages to increase the population diversity, which
can improve the algorithm convergence speed. Benchmark
functions were used for function experiments, and this paper
compared the proposed algorithm with other optimization
algorithms to verify the ENBAS performance.

II. BEETLE ANTENNAE SEARCH ALGORITHM
The BAS physiological principle is that two antennae of
the beetle will receive different intensities of food odor
pheromones when the beetle is in an unknown position. And
the beetle will determine its movement direction according
to the pheromone strength received by its antennae. When
the pheromone received by the left antennae is stronger than
that of the right, the beetle will move to the left, on the
contrary, it will move to the right. In BAS, the optimal value
of the fitness function to be found is regarded as the food
that the beetle seeks in nature, and the independent variable
of the fitness function is regarded as the beetle position in the
searching space. To explore the initial unknown environment,
it is assumed that the initial searching direction is any
direction in any dimension space. Therefore, the BAS random
searching direction can be standardized as follows:

Eb = b =
rnd(dim, 1)
‖rnd(dim, 1)‖

(1)
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In (1), rnd represents the random vector function and dim
represents the searching dimension. Because the beetle does
not know the exact food position in nature, the beetle uses two
antennae to detect the food pheromone and then judges the
next step direction. The position coordinates of two antennae
can be expressed as follows:

xr = x t + d t · b (2)

xl = x t − d t · b (3)

In equations (2) and (3), t is the number of iterations, xr
is the right antennae position, xl is the left antennae position,
x t is each beetle position in the searching space, and d t is the
detection distance of the beetle. If the left antennae receive
a stronger odor than that of the left antennae, it will move to
the left side, otherwise, it will move to the right side. BAS can
update the beetle position by judging the intensity difference
between two antennae. So the next beetle step is as follows:

x t+1 = x t + δt · b · sign (f (xr )− f (xl)) (4)

In equation (4), t is the number of iterations, δt is the
searching step. Sign is a sign function.

sign (f (xr )− f (xl)) =


1, f (xr )− f (xl) > 0
0, f (xr )− f (xl) = 0
−1, f (xr )− f (xl) < 0

(5)

The detection distance d t and searching step δt can be
updated by:

d t+1 = 0.95d t + 0.01 (6)

δt+1 = 0.95δt (7)

To explain BAS more clearly, the paper gives the BAS
pseudo code.

Algorithm 1 BAS
Input: Fitness function F(·). tmax, N beetles positions.
t = 1. All initial parameters. Searching range. Initial
optimum solution xbest . Initial optimum value gbest .
Output: xbest , gbest.

While (t < tmax)
For i = 1: N
Define b
xr = x ti + d

t . b
xl = x ti − d

t . b
x t+1i = x ti + δ

tbsign(f (xr )− f (xl))
End For
For i = 1: N
If F(x t+1i ) is better than gbest
xbest = x t+1i
gbest = F(x t+1i )

End If
End For

d t+1 = 0.95 d t + 0.01
δt+1 = 0.95 δt

t = t + 1
End While

III. AN IMPROVED BEETLE ANTENNAE SEARCH
ALGORITHM
A. THE ELITE SELECTION MECHANISM
The elite selection mechanism is to find the elite individual
with the good convergence and the robustness in the whole
algorithm population, which can guide other individuals
to search for a better solution [42], [57]. After a certain
number of iterations, all individual positions in the whole
population are sorted according to function values calculated
by all individuals, and the best position x∗ is found. Then,
establish the R mathematical set to save all elite particles.
Because the R mathematical set is empty and x∗ has the
best fitness value, and the best individual position x∗ will be
directly added to the R mathematical set, then, the Euclidean
distance (g∗, g) between the individual fitness value g and
the optimal individual fitness value g∗ will be calculated, and
the threshold value E is set. If the Euclidean distance (g∗,
g) is less than E , the distribution and convergence of the
current particle can be regarded as the elite particle andwill be
entered into the elite set R. If the Euclidean distance (g∗, g) is
larger than E , it can be regarded as a non-elite individual, and
will be eliminated, then, a new individual will be randomly
generated to replace the non-elite. Figure 1 illustrates the elite
selection mechanism principle. The abscissa is the individual
position, and the ordinate is the fitness value in Figure 1.
It must be mentioned here that this paper takes the minimum
value in one-dimensional function searching process as an
example. Figure 1(a) shows the algorithm initial state when
the proposed algorithm does not operate the elite selection
mechanism. The red particle is the best position in the whole
population. In other words, the fitness value of the red particle
is the smallest. Then, the Euclidean distance (g∗, g) between
the fitness values of each blue particle and that of the red
particle will be calculated, and all distances that are less than
the threshold value E will be added to the elite set R in the
fitness descending order. In Figure 1(b), the elite particles
in the R set are all black particles under the red dotted line.
All the blue non-elite particles in Figure 1(b) are eliminated,
and finally, new individuals will be randomly generated to
replace all sifted-out non-elite particles. In Figure 1(c), green
particles are new individuals generated after eliminating non-
elite particles. It can be seen from Figure 1(c) that some
green particles are in the R set, which indicates that the elite
selection mechanism avoids the large-scale reproduction and
covering the whole population of bad individuals in the later
iteration stage.

B. THE NEIGHBOR MOBILITY STRATEGY
The neighbor mobility strategy is to exchange information
among individuals, to learn from other individuals experi-
ences to improve their movement direction diversities, and
achieve the information sharing purpose [57]. When the
algorithm is running, the neighboring individuals will form a
local small group to quickly find the global optimal solution.
Each small group generates a local optimum individual to
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FIGURE 1. The flow chart of the elite selection mechanism.

FIGURE 2. The flow chart of the neighbor mobility strategy.

guide other individuals in the group to search for the global
optimum solution in a better direction. The information
between different groups will be exchanged to achieve the
information sharing after the algorithm runs repeatedly,
which effectively avoids the premature convergence, and
enables all individuals in the algorithm to search for the
better solution in the correct direction. The neighbor mobility
strategy is that each individual finds and moves toM particles
which are closest to its Euclidean distance, to achieve the
evolution goal. The gait size formula is as follows:

c = xbest + xbest · rands · (t/tmax) (8)

where xbest is the optimum solution, and rands is randomly
selected in the range of [−1, 1]. At the beginning of the
searching process, the initial size is large. With the iteration
process, t increases, tmax remains unchanged, t/tmax gradually
increases, thus, the range of moving size gradually increases,
which ensures that the ENBAS can jump out of the local
extremum. Figure 2 is the schematic diagram of the neighbor
mobility strategy. The abscissa is the individual position,

and the ordinate is the fitness value in Figure 2. It must be
mentioned here that this paper takes the minimum value in
one-dimensional function searching process as an example.
Taking particle G as the example, this paper firstly finds the
four particles EFHI which are closest to G in the searching
space and then calculates fitness values of four particles.
Because it is a searching minimum problem, the function
value of the particle E is the smallest. Particle G moves to
particle E , and the arrow represents the particle G direction.
The neighbormobility strategy combines the global searching
with the local depth searching so that some particles having
excellent performances can be transferred between different
small groups.

C. THE PROPOSED ALGORITHM
There are two strategies in ENBAS, including the elite selec-
tion mechanism and the neighbor mobility strategy. Through
the two strategies, ENBAS can find a better solution. The elite
selection mechanism can eliminate poor performances of
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particles and generate new particles in each iteration, which
can ensure the diversity and the adaptability in the whole
population. The neighbor mobility strategy can effectively
guide the algorithm to search the better direction according
to the local optimal information, and ensure that some
individuals with excellent performances in the population
having a greater chance to infect other individuals with
poor performances. In ENBAS first runs the elite selection
mechanism to eliminate and update some individuals with
poor performances, and the updated individuals will return
to their group for the next iteration. After running the elite
selection mechanism, ENBAS will divide all beetles into
several parallel groups, and allow particles in each group to
search and evolve, and to complete the updated operation
of the population position, and make each beetle is closer
to the searching target. ENBAS can effectively open up a
new searching area, thus improving the global searching
ability to jump out of the local area. In ENBAS, to make all
individuals are closer to the global optimal solution and avoid
the inaccuracy of artificial selection, two updating formulas
of beetle antennal positions will be changed to:

xrnew = x t + d t · u1 (9)

xlnew = x t − d t · u2 (10)

where u1 and u2 are random numbers with normal Gaussian
distribution.

The new location update formula is

x t+1new = xbest − xbest · u3 · b

· sign (f (xrnew)− f (xlnew)) d t · u2 (11)

where u3 is random numbers with normal Gaussian dis-
tribution. In this way, the left-right antennae will not
blindly seek the optimal solution in the searching space,
and gradually move along the direction of the optimal
solution. The normal Gaussian distribution is used in ENBAS
to replace the detection distance and the searching step,
which reduces the running time and provides the running
efficiency. After updated strategies, new individuals will
have a better searching ability, which improves the whole
algorithm performance. To explain ENBAS more clearly,
the paper gives the ENBAS pseudo code.

The ENBAS implementation steps as follows:
Step 1: Randomly generate N beetle positions. Set t = 1

and themaximum iteration tmax . The initial detection distance
is set to the upper limit of the searching range. The fitness
function is determined and the beetle movement direction
is set according to the optimization purpose of the fitness
function. All beetle positions are brought to the fitness
function for the selection experiment. After testing, the initial
optimum solution is selected and defined as the initial global
optimum solution, and saved for the next generation.

Step 2: Update the random searching direction using
the formula (1) in D-dimension searching space. Use
formulas (9) and (10) to update beetle antennae positions

Algorithm 2 ENBAS
Input: Fitness function F(·). tmax, N beetles positions. t =
1. All initial parameters. Searching range. Initial optimum
solution xbest . Initial optimum value gbest .
Output: xbest , gbest.

While (t < tmax)
For i = 1: N
Define b
xrnew = x ti + d

t
· u1

xlnew = x ti − d
t
· u2

x t+1newi = xbest − xbestu3·b sign(f (xrnew)− f (xlnew))
If F(x t+1newi) is better than F(xbest )

xbest = x
t+1
newi

gbest = F(x t+1newi)
End If

End For
Elite selection mechanism
Neighbor mobility strategy
c = xbest + xbest rands · (t/tmax)

t = t + 1
End While

in this iteration. Finally, the position coordinates of the left-
right antennae are brought into the function to calculate the
fitness value, and the difference between the two antennae is
calculated.

Step 3: Update all beetle positions using the formula (11).
Step 4: Executive the elite selection mechanism and the

neighbor mobility strategy.
Step 5: Calculate and compare all fitness values to

determine the current optimum fitness value and solution.
Select and update the global optimum fitness value and
solution.

Step 6: Set t = t + 1, and judge whether the iteration
number meets the iteration termination condition t = tmax .
If t does not satisfy the termination condition, return to
Step 2 and start the next iteration cycle until t = tmax .

D. THE COMPUTATIONAL COMPLEXITY
The algorithm complexity can be divided into the time com-
plexity and the space complexity. The space complexity refers
to the memory space needed to execute the algorithm. The
algorithm time complexity is a function, which qualitatively
displays the algorithm running time. The time complexity
is usually expressed by large O symbol, excluding the low
order term and the first term coefficient in the function. In this
way, the time complexity can be said to be asymptotic when
the input value approaches infinity. Initialization of ENBAS
population needs O(N × D) time where N indicates the
number of iterations to generate random population in a test
function. In the next step, the function fitness of each agent
requires O (Tmax ×N ×D) time where Tmax is the maximum
iteration number. It requires O (Tmax × N ) time to define the
group of ENBAS.
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TABLE 1. Basic information of benchmark functions.

IV. FUNCTION EXPERIMENTS
A. EXPERIMENT PARAMETERS AND ENVIRONMENTS
The benchmark function experiment is a common method
to measure the algorithm performance. To reflect the per-
formance of ENBAS more accurately and comprehensively,
this chapter selects eight benchmark functions that are
widely used in mathematics fields to test the proposed
algorithm. Therefore, the experimental results obtained by
different benchmark functions can reflect the optimization
ability of the proposed algorithm more objectively and
comprehensively. These functions are divided into low
dimension functions and high dimension functions, and all
details of these functions are given in Table 1. In Table 1,
D is the searching dimension and Aim is the ideal searching
value. Generally, there is only one optimal solution in
the low dimension function. The high dimension function
has many locally optimal solutions because of the uneven
distribution of local extreme points, the strong oscillation,
and non-convexity, which enhances the problem-solving
deception. In the original BAS literature, the author does not
compare BAS with other algorithms. So to verify the ENBAS
performance, this paper compares ENBAS with the bat
algorithm (BA) [58], the cuckoo search algorithm (CS) [59],
the simulated annealing algorithm (SA) [60], and the original
BAS. BA, CS, and SA are the most classical optimization
algorithms and are the hot-pot researches in engineering
fields. They all use the iteration searching mechanism to find
the optimal solution. All algorithm parameters were selected
from the original algorithm literatures.

BA is a swarm intelligence optimization algorithm pro-
posed by Xin-She Yang in 2010. The algorithm searches
for the best solution by simulating the bat echolocation
behavior. Because bats constantly adjust the searching
frequency in the searching process, it speeds up the algorithm
convergence speed. At the same time, bats adjust the
pulse frequency and the echo loudness frequency of sound
waves, which expands the exploration ability. For BA, the

loudness coefficient was equal to 9, the rate coefficient was
equal to 0. 9.

CS was proposed by Xin-She Yang. Cuckoos breed their
eggs in other bird nests and use the mechanism of removing
host eggs to increase the probability of their eggs hatched
by the host. CS has advantages of a simple code, fewer
parameters, easy to control and so on. In this chapter, the CS
discovery probability was set as 0.25, and the step was set as
0.25.

SA comes from the physical annealing process in the
metal, which is a local searching algorithm proposed in
the early 1980s. SA is to heat the solid metal to a large
temperature, so that atoms in the metal will be in a random
state, and then slowly cool according to specific conditions.
SA has two initial parameters, including initial temperature
and attenuation factor. In this chapter, the parameter T0 was
equal to 100 and the parameter k was equal to 0.95. For
ENBAS, the number of neighbors was three.

The population size and the maximum number of iterations
were 20 and 1000, respectively. Record the best value, the
worst value, the average value, and the variance. To obtain
a fair comparison result and eliminate the randomness
influence, each algorithm independently ran in MATLAB
(R2014b) 10 times. The experimental environment was the
Windows 7 operating system, Intel (R) Core (TM) i5-4210u
CPU, 4GB. All programs, data, and charts were completed in
MATLAB (R2014b).

B. NUMERICAL CALCULATION DISCUSSIONS
To verify the optimization effect of different algorithms, four
indexes were selected to comprehensively evaluate searching
results. Four indexes include Best, Worst, Mean, and Var.
Best and Worst represent the best value and the worst value
obtained by the algorithm in 10 independent runs. Mean
represents the average value after 10 independent runs. When
a group of data changed significantly, the average value
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TABLE 2. Comparison of results for two dimension functions.

can be used to explain the centralized trend of the data.
Var is the variance that is used to measure the deviation
between a random variable and its mathematical expectation.
In other words, the variance is the square value average of
the difference between each sample value and the average of
whole sample values. Variance can reflect the data dispersion
degree and the robustness. The statistical results of algorithms
on benchmark functions are shown in Table 2 to Table 4.
It can be seen from the results that ENBAS can get the
minimum value in different testing functions. Compared with
BA, CS, and SA, the optimal value of each function is closer
to Aim. For two dimension function, ENBAS can reach the
ideal values in benchmark functions f1(D=2), f2(D=2), f3(D=2),
f5(D=2), f6(D=2), f7(D=2), f8(D=2). For 50 dimension functions,
ENBAS can reach the ideal values in benchmark functions
f1(D=50), f2(D=50), f3(D=50), f5(D=50), f6(D=50), f7(D=50). For
100 dimensional function, ENBAS can reach the ideal
value in benchmark functions f1(D=100), f2(D=100), f3(D=100),
f5(D=100), f6(D=100), f7(D=100). In the function calculation
results, the four indexes calculated by ENBAS are better than
those of other algorithms. Function calculation results fully
demonstrate the stability and the robustness of ENBAS, and

show that the proposed algorithm in this paper is effective in
solving low dimension and high dimension space problems.

C. THE WILCOXON RANK SUM TEST DISCUSSIONS
The rank sum test is a non-parametric statistical test used
to define whether the results are statistically significant.
The non-parametric statistical test is to use some parameters
to describe the population characteristic and make some
hypothesis tests on population properties. Compared with
the parametric test, the non-parametric statistical test has
no special requirements on the distribution of a group data
and is often used to test the algorithm performance. The
rank sum test arranges all the data in order from small to
large. Because there is no special form of discrete data or
known distribution, it has strong practicability. However,
the rank sum test ignores the absolute value difference in
the data testing, which not only makes the testing results
approximate, but also causes the test information lossing.
Wilcoxon improves the basic rank sum test by considering
different directions and data sizes to check data differences
and provides more effective performances than the basic rank
sum test. The calculated result of the Wilcoxon rank sum test
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TABLE 3. Comparison of results for 50 dimension functions.

is called P-value. If P-value is less than 0.05, it is showed
that there is a significant difference between two data groups
at the level of 0.05. Due to the randomness of the swarm
intelligence algorithm, statistical experiments must be carried
out to ensure data validity [61], [62]. To further compare the
performance of the proposed algorithms in this paper, the
Wilcoxon rank sum test was computed. Table 5 shows the
Wilcoxon rank sum test results. For ENBAS, all P values are
less than or equal to 0.05, which further verifies the superior
performance of ENBAS. The Wilcoxon rank sum test results
show that the proposed algorithm has a strong searching
efficiency and the maximum searching mechanism around
the best solution, which further shows that the proposed
algorithm has a good searching performance.

D. ITERATION DISCUSSIONS
The iteration is a series of feedback running processes,
the iteration aim is to approach the desired result, and the
result calculated by the algorithm after each iteration will
be the initial value of the next iteration. This paper gave the
average iteration curve of all algorithms after 10 independent
operations as shown in Figure 3 to Figure 5. From iteration

results, it can be concluded that ENBAS can achieve a
certain optimization accuracy for most testing functions,
which shows that the proposed algorithm has a strong
global searching ability. Compared with other algorithms,
the proposed algorithm has the fastest iteration speed in all
iteration curves, which shows that ENBAS can approach the
optimal solutionmore quickly in a shorter time. Because there
are many local extremum points in high dimension functions,
an algorithm often needs to traverse the whole searching
space, which will cause the searching explosion phenomenon
due to the too large local searching space, which will lead
to the failure of completing the searching task within the
specified time. For the high dimension function, the basic
BAS performance is reduced very quickly, and ENBAS can
keep the good searching accuracy and stability. From the high
dimension iteration graph, it can be seen that the ENBAS
iteration curve can converge to the optimal value at the
iteration beginning. With the increasing of iteration times,
comparison algorithms quickly trap in the local optimization
area and the searching stagnation. Because of the increasing
of population diversities, ENBAS can keep the optimal
searching performance. Algorithm iteration curves show that
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TABLE 4. Comparison of results for 100 dimension functions.

ENBAS has a strong ability to explore the feasible region and
escape the local solution in the searching range, and can avoid
the searching extreme point effectively.

E. BOX PLOT DISCUSSIONS
The box plot is used to show a set of discrete data.
In the algorithm analysis, it is mainly used to reflect the
symmetry and distribution of data. The typical box plot has
six parameters including the maximum value, the minimum
value, the median value, the upper quartile, the lower quartile,
and the abnormal value. A set of data can be evaluated by
these parameters. The upper and lower boxes in the box plot
are the upper quartile and the lower quartile, and the middle
horizontal line of the box is the data median. Two horizontal
lines in the box plot are the upper and lower edges of a
group data, and the discrete points in the figure are data
abnormal values. Figure 6 to Figure 8 show all box plots of
different algorithms after 10 independent operations. Because

there are a lot of local solutions in high dimension functions,
so the solution aggregation degree is an important index to
evaluate the algorithm performance. All ENBAS box plots
are narrower than those of BAS. The box plot results show
that the ENBAS not only has a good searching accuracy,
an excellent robustness, and the stability, but also can avoid
the local extremum in high dimension functions. In the single
peak function or the low dimension function with a long
peak distance, ENBAS also can obtain the optimal individual
information to enhance the searching effectiveness. In the
multiple local peak high-dimension optimization functions,
the elite selection mechanism in ENBAS can search for a
better position and get a new searching space by selecting the
optimal location information in the population.

F. SEARCH PATH DISCUSSIONS
The searching path can test whether the algorithm falls
into the local solution areas. To further prove the powerful
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TABLE 5. Comparison of the wilcoxon rank sum test.

searching ability of the proposed algorithm in this chapter,
the optimal ENBAS searching path and the optimal BAS
searching path refracted to the two dimension plane and
the contour map on the two dimension plane is shown
in Figure 9. The yellow spot in the figure is the theoretical
optimal position. It can be seen from Figure 9 that the
optimal ENBAS searching path is much smaller than the BAS
searching path, and there is a large number of short-repeat
paths and occasional invalid-long paths in the BAS searching
path. Searching paths show that the ENBAS searching range
compared with the basic BAS is wider and less affected
by the number of iterations. Therefore, ENBAS has a
better optimization ability and can consider the searching
speed and accuracy. And ENBAS can not only provide a
satisfactory solution to the problem as far as possible under
the condition of meeting variable demand but also solve the
extremum of nonlinear multimodal function more quickly.
The proposed algorithm can save a lot of computing time,
and only need a few iterations to get a better path without
too much calculation, which also shows that ENBAS has a
high positioning accuracy, can strengthen the early searching
ability of the original algorithm, prevent excessive attenuation
and the premature phenomenon.

V. CEC TEST SUITS EXPERIMENTS
A. EXPERIMENT PARAMETERS AND ENVIRONMENTS
To show the proposed algorithm testing performance, this
paper compared ENBAS with recent optimization algorithms
that were proposed in the last 10 years and surely highly-cited
ones. Testing functions selected testing suits in 2018 IEEE
congress on Evolutionary Computation (CEC) conference.
CEC testing suits are widely attracted many researchers
for testing their developed algorithms [63]. In CEC test-
ing suits, there are unimodal functions and multimodal
functions. Unimodal functions include Bent Cigar func-
tion and Zakharov Function. Multimodal functions include
Rosenbrock Function, Rastrigin Function, Expanded Scaf-
fer’s F6 Function, Levy Function, and Schwefel’s Function.
To further show the proposed algorithm comprehensively,
this paper selected basic unimodal testing functions in f9
to f15. All function dimensions were 30, and the scope
selected in the range of [−1, 1]. Compared algorithms in this
paper selected butterfly optimization algorithm (BOA) [64],
grey wolf optimizer (GWO) [65], the lévy-flight salp swarm
algorithm (LSSA) [66], sine cosine algorithm (SCA) [67],
salp swarm algorithm (SSA) [68], improved SSA based on
weight factor and adaptive mutation (WASSA) [69], whale

VOLUME 9, 2021 137533



X. Shao, Y. Fan: Improved BAS Algorithm Based on ENBAS for Global Optimization Problems

FIGURE 3. Average convergence curves of 2 dimension functions.

FIGURE 4. Average convergence curves of 50 dimension functions.
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FIGURE 5. Average convergence curves of 100 dimension functions.

FIGURE 6. Box-plot charts of 2 dimension functions.

VOLUME 9, 2021 137535



X. Shao, Y. Fan: Improved BAS Algorithm Based on ENBAS for Global Optimization Problems

FIGURE 7. Box-plot charts of 50 dimension functions.

FIGURE 8. Box-plot charts of 100 dimension functions.
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FIGURE 9. Algorithm searching paths.

optimization algorithm (WOA) [70]. BOA was proposed
by Arora and Singh, modular modality c selected 0.01 and
power exponent a selected from 0.1 to 0.3. The switch
probability p selected 0.8. GWO inspired by grey wolve
living habits was proposed in 2014. For GWO, r1 and r2
selects in the range of [0, 1]. LSSA was proposed by Zhikai
Xing and Heming Jia in 2019. The power-law exponent β
selected 1.5. P selected 0.5. SCA was proposed by Seyedali
Mirjalili in 2016. For SCA, a = 2, r2 = 2π , r3 and
r4 selected in the range of [0, 1]. SSA was proposed by
Seyedali Mirjalili in 2017. The parameter c2 and c3 were in
the range of [0, 1]. Probability selected 0.5. WASSA was
proposed by Jun Wu in 2019. Parameters wmax selected 1,
wmin selected 0. WOA was proposed by Seyedali Mirjalili
and Andrew Lewis in 2016. For WOA, r and p selected
in the range of [0, 1], l selects in the range of [−1, 1],
b selected 2. In this paper, all initial parameter values of
all algorithms were selected according to original algorithm
literature, and all algorithm procedures and details could be
found in the original algorithm literatures. The population
size and the maximum number of iterations were 20 and
1000, respectively. Each algorithm independently ran in
MATLAB (R2014b) 10 times. The experimental environment
was theWindows 7 operating system, Intel (R) Core (TM) i5-
4210u CPU, 4GB. All programs, data, and charts were com-
pleted in MATLAB (R2014b). Testing results were showed
in Table 6.

B. NUMERICAL CALCULATION DISCUSSIONS
Although ENBAS can effectively solve the extremum in some
testing functions, it is not always able to find the theoretical
optimal solution. And when the optimization functions
are multi-dimensional functions, the solution accuracy is
significantly reduced, and the optimal solution is unstable and
the fluctuation range is large. For basic multimodal functions,
ENBAS can reach the ideal optimal values in f9, f12, f13,
f15. In f11, ENBAS gives a poor result, and results of LSSA,
SCA, SSA, WASSA, are better than those of ENBAS. In f14,
results of LSSA, SCA, SSA, WASSA, WOA are better than
those of ENBAS. In general, the calculation results of the
proposed algorithm in this paper is better than those of other
algorithms, which fully shows the stability and the robustness
of ENBAS, and displays that the proposed algorithm in this
paper is effective in solving numerical calculation problems.

C. FRIEDMAN TEST AND NEMENYI TEST
A full statistical analysis of the comparison was presented
based on significance non-parametric tests in this paper. This
paper used the Friedman test and the Nemenyi test to compare
algorithm performances. Friedman test, was proposed by
M. Friedman in 1973, is a statistical test for the homogeneity
of multiple samples, and is usually used to compare whether
there are significant differences among different levels of
multiple factors. Friedman test does not require samples
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TABLE 6. Comparison of results for CEC functions.

TABLE 7. Comparison of the Friedman test.

TABLE 8. Comparison of the Nemenyi test.

to obey the normal distribution, only uses the rank in
different arrays, so it is necessary to convert the original
data into the rank and calculate the average rank. Nemenyi
test is a common method of the rank-sum test for multiple
comparisons among multiple samples, and is suitable for
comparing the performance of two algorithms. The calculated

result of the Friedman test and Nemenyi test is called P-value.
P-value means that there is a significant difference between
two data groups at the level of P. Table 7 gives the Friedman
test results in different algorithms. Table 8 gives the Nemenyi
test results for different algorithms. From Table 7 we can
find that all Friedman test results is less than 0.05, it can be
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FIGURE 10. Average convergence curves of 30 dimension functions.

FIGURE 11. Box-plot charts of 30 dimension functions.
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TABLE 9. Comparison of results for HS-ES.

seen that performances of different algorithms is obviously
different. In other words, there is a significant difference at a
level of 0.05. From Table 8 we can find that all Nemenyi test
results of GWO andWASSA is larger than 0.05, which shows
that the significant differencewas small in GWOandWASSA
under the Nemenyi test. Except for function f9, Nemenyi
test results of SCA is larger than 0.05. But all Nemenyi
test result is less than 1, which shows that there are some
significant differences, in other words, there are still some
differences between the proposed algorithm and compared
algorithms.

D. ITERATION DISCUSSIONS
This paper gives average iteration curves of each algorithm
after 10 independent runs, as shown in Figure 10. For the
functions f9, f10, f12, f13, f15, the ENBAS iteration speed is
obviously faster than other comparison algorithms. ENBAS
can search the left and right sides of the optimal value
through the initial large searching step, and can skip a certain
range of obstacles in the process of tightening to the middle.
The improved algorithm can keep the good convergence
and optimization accuracy in the whole iteration process,
mainly because ENBAS can enhance the randomness of
the original algorithm, and can ensure the diversity of the
population to make it jump out of the local optimum as far
as possible. It can be seen that in the optimization process,
the improved algorithm is always close to the optimal value
quickly, and then the normal iteration is performed, which
makes the proposed algorithm avoid the local premature in
the optimization process.

E. BOX PLOT DISCUSSIONS
Figure 11 shows all box plots of different algorithms after 10
independent runs. ENBAS has the narrowest block diagram,
the least outliers, the lowest median and upper and lower
quartiles in functions f9, f10, f12, f13, f15. The ENBAS box
plot on functions f9, f12, f13, f15 is a straight line, that is to
say that the algorithm has achieved the theoretical optimal
value after 10 independent runs, and the optimal solution has
a little influence, and experimental results have no significant
difference.

F. RANKING DISCUSSIONS
In CEC 2018 competition, the winner was the hybrid
sampling-evolution strategy (HS-ES) that combined the

covariance matrix adaptation evolution strategy (CMA-
ES) and the univariate sampling strategy, and HS-ES was
proposed Geng Zhang and Yuhui Shi [71]. To further
more show the proposed algorithm testing performance,
this paper tested other CEC 2018 composition functions
in f16 to f25 corresponding f21 to f30 in CEC 2018. And
this paper also compared the proposed method with the
winner of the CEC2018 competition. The population size
and the maximum number of iterations were 50 and 20000,
respectively. The scope was in the range of [−50, 50].
The searching dimension was equal to 10. The results of
algorithms were shown in Table 9. It can be seen from
Table 9 that ENBAS can get the equal results with HS-ES
in f17 and f20. ENBAS can get a better result than HS-ES
in f22. Other calculation results in ENBAS are worse than
those of HS-ES. HS-ES is 2018 competition winner, it
has the best performance in all competition algorithms.
Although most testing results of HS-ES is better than the
proposed method, there is no single algorithm that can
solve all problems. Each algorithm has its advantages and
disadvantages. Table 9 shows that the proposed algorithm has
some competitive powers in some testing functions.

VI. CONCLUSION
Because the basic BAS does not consider the individual
difference and the dynamic information in the searching
process, this paper proposed a new algorithm based on the
elite selection mechanism and the neighbor mobility strategy.
Firstly, the Euclidean distance between the individual fitness
value and the optimal individual fitness value is calculated
to determine whether it is lower than the pre-determined
threshold value. If the Euclidean distance is lower than
the threshold, the individual position will be replaced to
dynamically increase the population diversity, and elite
individuals having the good convergence and the robustness
will be selected in the whole population to guide other
individuals to explore better positions. In the individual
movement, the neighbormobility strategy is used to exchange
the information between neighboring individuals, which
can make the individual deviate from the original moving
orbit, and avoid the individual falling into the local area.
Through different operations, the population diversity can
be kept within a certain threshold, so that the proposed
algorithm has a strong searching ability in each iteration.
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The author thinks that the following aspects should be further
discussed. The research on the discrete BAS algorithm is
still few, but some optimization problems to be solved in
the actual industry are discrete. The discrete optimization
problem refers to that variables must be limited to integer
in algorithm optimization. Most popular methods to solve
discrete optimization problems are suitable for the integer-
linear programming, and the discrete optimization problem
has a great dependence on application fields. Therefore, it is
very important to use the discrete BAS algorithm with a
high searching precision to solve optimization problems in
industrial fields.
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