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ABSTRACT In this paper, a new third-order chaotic systemwhich has extremelymultistability is constructed
by introducing the boosted control of cosine function. In comparison with other chaotic systems of extremely
multistability, the proposed chaotic system can spontaneously generate the infinitely many coexisting
attractors towards two directions of the phase plane. It indicates the proposed system can output more chaotic
sequences of different amplitudes at the same time. This peculiar physical phenomena is very interesting
and worth studying. Relative to original chaotic system, the chaos characteristic of the proposed system
is obviously enhanced, the value of max Lyapunov exponent is increased significantly and the complexity
valuewas higher. In particular, many periodic windows of the original chaotic system become chaos. It means
the proposed chaotic system has better chaotic characteristics. If the new system is applied to the field of
cryptography, it would be a better systemmodel as a pseudo-random signal generator (PRSG). Then, the new
image encryption algorithm is designed based on the proposed discrete system, and its safety performance
is tested. The experimental results demonstrate the feasibility of its application in the field of cryptography.

INDEX TERMS Boosted control, extremely multistability, chaos enhancement, image encryption.

I. INTRODUCTION
Chaoic system has received a lot of attentions on account
of its bright application prospects in the field of nonlin-
ear engineering [1]–[6]. Generally speaking, extremely mul-
tistability shows that there are infinitely many numerical
solution in the differential equations of a dynamical sys-
tem with varying initial states [7], [8]. The original chaotic
system of infinitely many equilibrium points or switch-
able equilibrium point has the ability to generate infinitely
many coexisting attractors [9], [10]. Recently, another better
method for constructing the system with extremely multi-
stability was found, the initial-offset boosted attractors of
infinitely many coexistence can be obtained by introducing
the trigonometric functions to some specific linear terms
of chaotic system [11]–[13]. The chaotic system which has
infinitely many coexisting attractors depends extremely on
the initial state. Thus, in comparison with some single stable
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systems [14], [15], its dynamic behaviors are often more
complex.

The initial-offset boosted multistability can provide more
ergodicity and flexibility for some engineering applications
based on chaos theory [16]. In particular, it can be applied to
switch different dynamic states in the control of multistable
state if combined with several suitable algorithms of control
science [17]. Some recent studies show that a part of classic
chaotic systems have the ability to generate coexisting attrac-
tors by their standalone attractor basins [18]–[20]. Classical
3D Lorenz system can produce two symmetric attractors
from single attractor by adjusting the initial conditions [21].
Ye et al. found a new circuit system of extremely multistabil-
ity by introducing a meminductive model to the 4D Wien-
bridge oscillator [22]. In particular, some chaotic systems
can generate extremely multistability by the boosted con-
trol of trigonometric function. Lai et al. obtained infinitely
many coexisting attractors by introducing sine function to the
Sprott B system [23]. The discovery of extremely multistable
system was a leap from the finite to the infinite. Its potential
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industrial application value is worth further and deeply
exploring.

Third-order chaotic system is the lowest order continuous
system which can generate the chaos attractor [24], it is the
origin of research on continuous chaotic system. However,
due to the lack of multiple feedback of the nonlinear term, 3D
chaotic system is hard to spontaneously generate extremely
multistability. Thus, constructing the extremely multistability
based on 3D chaotic system is very crucial for chaotic basic
demonstration teaching. This paper successfully constructed
a new 3D chaotic system which can produce infinitely many
coexisting attractors by using the boosted control of cosine
function. Especially, due to the introduction of two cosine
functions, it can generate two directions infinitely many
coexisting attractors by changing different initial conditions.
That means the proposed system can simultaneously output
the pseudo-random signals of two directions in the phase
plane. It greatly increased the chaos range and enhanced
the pseudo-random performance of the chaos sequence. The
proposed chaotic system has better chaos characteristic and
higher sequence complexity, it provided a good model for the
field of cryptography.

In this article, we focus on a new chaotic system of
extremely multistability which can generate infinitely many
coexisting attractors. It is organized as follows. In section 2,
a new system model is proposed based on sprott system, and
the equilibrium points is calculated. In section 3, Lyapunov
exponents and Kaplan-Yorke dimension of the new system is
calculated, its 3D chaotic attractor is presented. In section 4,
the dynamic behavior of enhanced chaos in this proposed sys-
tem is analyzed, and the complexity is compared. In section 5,
the dynamic behavior of infinitely many coexisting attrac-
tors is analyzed. In section 6, the new encryption algorithm
is designed, and its safety performance is tested. Finally,
the proposed new system is successfully implemented by
DSP.

II. CHAOTIC SYSTEM MODEL
A. SYSTEM EQUATIONS
The proposed system is a third-dimensional chaotic system of
extremely multistability, and it originates from the restruction
for a 3D chaos system proposed by Ref. [24]. The mathemat-
ical model of Ref. [24] is:

ẋ = c(y− x),
ẏ = axz,
ż = b− xy,

(1)

where, x, y, z are state variables, and a, b, c are system param-
eter. This 3D system cannot generate coexisting attractors
by itself standalone attractor basins. Then, reconstructing the
system equation by introducing two boosted control of cosine
function for state variables x, z, the chaotic system can gener-
ate infinitely many coexisting attractors of two directions on
the phase plane. The mathematical equations of the proposed

system be expressed as:
ẋ = y− cos(2x),
ẏ = a cos(2x) cos(2z),
ż = b− cos(2x)y,

(2)

in which, x, y, z are all state variables, and a, b are the positive
constants. Parameter a can control the amplitude of chaotic
sequence and b as a parameter of the nonlinear feedback loop.
In order to reduce the period of cosine function, expand state
variables x, z as 2x, 2z. Its dynamic characteristics can be
analyzed based on this chaotic system equations.

B. ANALYSIS OF DISSIPATION
If system (2) is a dissipation system, its condition is:

∇V =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= 2 sin 2x < 0. (3)

Thus, when x ∈ (kπ + π /2, kπ + π ) (k = 0, ±1, ±2. . . .),
the new system is considered to be dissipative. It indicates the
running track of the systemwill compress to an empty set, and
the progressive motion will tends to be stable in a domain of
attraction.

C. EQUILIBRIUM POINTS SET
Let ẋ = ẏ = ż = 0, the equilibrium point of system (2) can
be calculated:

S = [(x, y, z)|x = kπ/4+ 0.5 arccos(
√
b), y = ±

√
b,

z = kπ/2+ π/4], (4)

in which, k = 0,±1,±2 . . . .., the Jacobian matrix at the
equilibrium point S is:

J =

 2 sin(2x) 1 0
−2a sin(2x) cos(2z) 0 −2a cos(2x) sin(2z)

2y sin(2x) − cos(2x) 0

.
(5)

The third-order characteristic polynomial can be obtained:

P(λ) = λ3 + k1λ2 + k2λ+ k3 = 0. (6)

Thus, we can calculate:

k1 = ±2
√
1− b, k2 = ±2ab, k3 = 0 or 8ab

√
1− b. (7)

According to 3D Routh-Hurwitz stability criterion,
we have the sufficient and necessary conditions for stability
of the proposed new chaotic system is:

k1 > 0, k2 > 0, k3 > 0, k1k2 > k3. (8)

Because the equilibrium points of the proposed chaotic
system are changed with the periodic change of the cosine
function. An infinite number of attractors may be generated
due to the extremely multistability of the chaos system.
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III. ANALYSIS OF DYNAMIC BEHAVIOR
A. LYAPUNOV EXPONENTS AND KAPLAN-YORKE
DIMENSION
The sensitivity to initial conditions is an important dynamical
characteristic of chaos. It can cause a larger separation of two
near orbits with varying initial state. These characteristics can
be described by Lyapunov exponents, the positive Lyapunov
exponent shows the instability of the phase orbitals, it indi-
cates the system is chaos. The negative Lyapunov exponent
shows the contraction of the running orbitals, it reflects the
unstable points or periodic points. The attractors are formed
from the repeated folding of chaotic orbits. The mathematical
formula of a continuous system of differential equations be
mathematically defined as:

Ẏ (t) = F[Y (t)], (9)

where, Y (t) is a function with varying time, Ẏ (t) is a deriva-
tive of Y (t), F[Y (t)] means some functional relationship
between two functions. Then, Eq. (9) can be treated by using
Euler discretization method, and we have:

Yi+1 = Yi + F(Yi)4t, (10)

in which, Yi = Y (t), Yi+1 = Y (t + 4t), 4t is a minute
time variable. Define Ap are the p-order compound matrices
of Jacobian matrix generated by Y (t), then we have:

Ãp(t) = K p[Y (t)]Ap(t), (11)

in the last formula, Ap(t) is a p-order compound matrices
on time variable. K p[Y (t)] is the limit value of the p-order
compound matrices of Jacobian matrix within the range of
time variable will approach to 0. Finally, we can get the com-
putational formula of Lyapunov exponent of the continuous
system:

λ = 1/t lim
t→∞

ln

∣∣∣∣ Sp(t)Sp−1(t)

∣∣∣∣ , (12)

where, Sp(t) is the trace of Ãp(t). The Lyapunov exponent
value of the continuous chaos system can be calculated and
obtained according to the above formula. Generally speaking,
for a chaos system of n dimensions, the number of Lyapunov
exponents are also n, the Lyapunov exponents λi (i= 1,2. . . .n)
need satisfy the conditions λ1 > λ2 > . . . . > λn. If it
satisfies:

λ1 + λ2 + . . . .+ λj > 0,

λ1 + λ2 + . . . .+ λj + λj + 1 < 0, (13)

where, j is the max value of iwhich can satisfy the conditions∑
λi > 0, then we can obtain the Kaplan-Yorke dimension

λL of Lyapunov exponent by the following formula:

λL = j−
j∑

i=1

λj/λj+1. (14)

Setting system parameter a = 15, b = 0.1, the initial
conditions of system. (2) (x0, y0, z0)=(0,1,0), The Lyapunov

FIGURE 1. Chaotic attractors of the proposed system. (a) 3D chaotic
attractors (b) The time sequence of length 300s∼600s.

exponent values of the proposed chaotic system can be cal-
culated by Eq. (9)-(12), they are Ly1 = 0.5045, Ly2 ≈ 0,
Ly3 = −1.7113. Then we have the Kaplan-Yorke dimension
of Lyapunov exponents λL = 2.2948, it means this system is
chaos under this conditions. In comparison with the original
system. (1), due to the new system is constructed by the
boosted control of cosine function, it may havemore complex
dynamics characteristic in terms of Kaplan-Yorke dimension

B. CHAOS ATTRACTORS
Setting system parameter a = 15, b = 0.1, the initial
conditions of system. (2) (x0, y0, z0)=(0,1,0). By using
ODE45 algorithm, the chaotic attractors can be obtained
by using numerical simulation. Fig. 1(a) shows the chaotic
attractor in the 3D phase spaces. Obviously, the system is
chaos in this case. To further explain the formation of attrac-
tors, the time sequences are analyzed and simulated. Let the
time step is 0.01s and select the length 300s∼600s as the
object of study. The result of numerical simulation is repre-
sented in Fig. 1(b), it shows the system is in a stable chaotic
orbits, and the attractors are formed by the superposition of
their chaotic oscillations.

IV. ENHANCED CHAOS OF BOOSTED CONTROL
A. ENHANCED CHAOS IN THE DYNAMIC BEHAVIOR
Setting the initial value of system (1) (x0, y0, z0)=(0,1,0)
and system parameter c = 1, b = 0.01. Parameter a is
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FIGURE 2. Enhanced chaos in the bifurcation diagram. (a) Bifurcation
diagram of system (1) (b) Bifurcation diagram of the proposed chaos
system.

the variable parameter, and the varying range is [11, 15].
As shown in Fig. 2(a), the bifurcation diagram of system (1)
has a biggest periodic windows within a ∈ [12.735, 13.226].
Then, more periodic windows are generated as parameter a
changes. When a ∈ [13.833, 14.198], the system has another
larger window. The generation of these periodic windows
causes the system to produce intermittent chaotic oscillations.
It has a negative effect on the industrial application of chaotic
system. Let the initial state of the proposed system (x0, y0,
z0)=(0,1,0) and system parameter b = 0.01. Parameter a as
the variable parameter, and the varying range is also [11, 15].
(when system parameter of system (1) a = 1 and c = 0.01,
the chaotic system of system (1) is equivalent to the proposed
system without introducing two boosted control of cosine
function) Fig. 2(b) shows the bifurcation diagram of the
proposed chaotic system within the equivalent varying range
of system (1). From the simulation result, most of periodic
windows in Fig. 2(a) have become chaos due to the intro-
duction of boosted control of cosine function. In comparison
with system (1), the proposed chaotic system has almost no
periodicwindowswithin the test interval, and the chaotic state
fills the whole range. That is to say, the chaotic behavior
is enhanced. It greatly enhances the application of chaotic
pseudo-random signals.

In order to further study the effect of system parameters
on chaotic behavior. Keep the above parameters unchanged,
select two system parameters a and b as the variable parame-
ter, the varying range a ∈ [11, 15] and b ∈ [0, 1] respectively.
With a and b synchronously changed, the max Lyapunov
exponent of system (1) is shown in Fig. 3(a). When a ∈
[11, 15] and b ∈ [0.2, 0.4], system (1) has a bigger periodic
windows. In particular, when b ∈ [0.6, 1], the max Lyapunov
exponents of system (1) all go down to 0, it indicates the
system is in a periodic state, and the max value of the max
Lyapunov exponent in this test range is 0.332. Fig. 3(b) shows
the max Lyapunov exponent of the proposed chaos system.
For comparative analysis, select the same varying range a ∈
[11, 15] and b ∈ [0, 1] as the test range. In comparison with
system (1), the bigger periodic windows of a ∈ [11, 15] and
b ∈ [0.2, 0.4] has disappeared, the max Lyapunov exponent
value in this test range are within 0.5∼1. It shows the periodic

FIGURE 3. Enhanced chaos in Max Lyapunov exponents. (a) Max
Lyapunov exponents of system (1) (b) Max Lyapunov exponents of the
proposed chaos system.

windows in this range has become chaos state. The dynamic
behaviors of system (1) is periodic in the range b ∈ [0.6, 1].
However, by introducing two boosted control of cosine func-
tion to state variables x, z, the max Lyapunov exponent of
the proposed chaotic system has been improved significantly.
In this test interval, the max value of the max Lyapunov
exponent of the proposed chaotic system is 1.198. Relative to
system (1), the chaos interval of the proposed chaos system
has also been significantly increased, the chaotic property is
enhanced.

B. ENHANCED CHAOS IN THE COMPLEXITY
The enhancement of dynamic behavior makes chaotic behav-
ior transition from periodic state to chaotic state. In terms
of the application of chaotic system, the complexity charac-
teristic of chaotic sequences can more directly reflects the
usability of a chaos system. Spectral Entropy (SE) complex-
ity algorithm is a measure of a system based on Shannon
entropy, it can effectively shows the complexity characteristic
of chaotic system. The higher value of complexity reflects
the stronger chaotic behavior generated by the chaos sys-
tem. Spectral Entropy (SE) complexity algorithm can be
described:

x̃(n) = x(n)− 1/n
n∑
i=1

x(i), (15)

where, x(n) is the energy amplitude of system. The function of
Eq. (15) is to remove DC part of sequence. Then, do discrete
Fourier transform, we have:

X̃ (k) =
N−1∑
n=0

x̃(n)e−j
2π
N nk , (16)

in which, k = 0, 1, 2 . . . ,N − 1. Then, by using the Parseval
theorem, we can calculate the relative power spectrum:

p(k) =
1
N
| X (k) |2 . (17)

In Eq. (17), k = 0, 1, 2 . . . ,N/2−1, and we have the total
power:

p̃ =
1
N

N/2−1∑
k=0

| X (k) |2 . (18)
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Thus, the probability of power spectrum can be calculate,
and we have:

P̃k =
p(k)
p̃
=

1
N | X (k) |

2

1
N

∑N/2−1
k=0 | X (k) |2

, (19)

in which, N is the sequence length, X (k) is the sequence after
FFT. Combined with the above formula, we can obtain the
computational formula of SE:

SE = −ln(N/2)
N/2−1∑
k=0

Pk lnP̃k , (20)

Based on the above formula, the spectral Entropy (SE)
complexity of chaos sequence can be calculate, and the cor-
responding dynamic behavior can be analyzed.
C0 complexity algorithm is also a complexity algorithm

based on FFT. The proportion of irregular part between the
regular and the irregular parts is C0 complexity value. Its
specific calculation method can be defined as:

X̃ (k) =
N−1∑
n=0

x̃(n)e−j
2π
N nk , (21)

where, k = 0, 1, . . . ,N − 1, X̃ (k) is sequence the after FFT.
Then, remove the regular part of sequence, we have:

Ỹ (N ) =
1
N

N−1∑
k=0

| X̃ (k) |2, (22)

in which, YN is mean square value. Then, if we introduce
parameter r as a tolerance parameter, and reserve the mean
square value which more than r , and other parts are zero,
we have:

X̂ (k) =

{
X̃ (k), | X̃ (k) |2> rYN ,
0, | X̃ (k) |2< rYN .

(23)

Then, do the inverse FFT, we can get:

x̂(n) = 1/N
N−1∑
k=0

X̂ (k)e−j
2π
N nk . (24)

where, n = 0, 1, . . . ,N − 1. According to the above equa-
tions, C0 complexity can be obtain:

C0(r,N ) =
N−1∑
n=0

| x(n)− x̂(n) | . (25)

In order to compare and analyze the above simulation
results of bifurcation diagram and max Lyapunov expo-
nent, keeping other parameters unchanged, select parameter
a and b as the varying parameters, and the test ranges are
also a ∈ [11, 15] and b ∈ [0, 1]. Fig. 4(a) shows the SE
(Spectral Entropy complexity) of system (1), with parameter
a varying within [11, 15] and b varying within [0.2, 0.6],
SE complexity value is larger in all test range, the max value
is 0.513. However, with parameter b varying within [0.6, 1],
SE complexity value of system (1) falls instantaneously, even

FIGURE 4. Enhanced chaos in complexity. (a) SE complexity of system (1)
(b) C0 complexity of system (1) (c) SE complexity of the proposed system
(d) C0 complexity of the proposed system.

to 0. It means the dynamic behavior of the system change state
from a chaotic state to a periodic state. The corresponding
simulation result of C0 complexity is shown in Fig. 4(b). The
max value of C0 complexity is 0.075, and its varying trend
is basically the same to its varying trend of SE complexity.
SE and C0 complexity of the proposed system can be shown
in Fig. 4(c) and 4(d). From the simulation result, when param-
eter a varying within [11, 15] and b varying within [0.2, 0.6],
the corresponding complexity spectrum become uniform and
the complexity value has obviously gone up, the max value
of SE complexity has already reached 0.581 and the max
value of C0 complexity is 0.093. The number of the periodic
windows has been greatly reduced, and the complexity of
the sequence has been greatly enhanced. By introducing two
boosted control of cosine function, the periodic behavior has
gradually changed into chaos when parameter b ∈ [0.6, 1],
the primary lower complexity value has also change into the
higher complexity value. All of these have a positive impact
on its industrial application.

V. INFINITELY MANY COEXISTING ATTRACTORS
Different initial conditions can generate different chaotic
orbits after many periods of evolution. However, it is difficult
for attractors to overstep the constraints of the attractor basin
and form large changes in shape or phase. For a chaos system
of extremely multistability, the differential equations has an
infinite number of solutions. The shift of the equilibrium
point causes a shift in the phase of the attractor. Fixed system
parameters of the proposed system, select the initial con-
ditions is (x0,1,z0), x0 and z0 are variables. When a = 15,
b = 0.4, set the initial values are (0,1,0), (0,1,π),
(0,1,2π ). . . ..(3π ,1,3π ), many coexisting attractors of peri-
odic state are shown in Fig. 5(a). When a = 15, b = 0.1, and
the initial values are (0,1,0). . . ..(3π ,1,3π ), many coexisting
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FIGURE 5. Many coexisting attractors. (a) Many coexisting attractors of
periodic state (b) Many coexisting attractors of chaos state.

attractors of chaotic state are shown in Fig. 5(b). With two
initial condition x0 and z0 varying simultaneously, the pro-
posed system has extremely multistability. The phase posi-
tion of attractors shifts periodically towards two directions
of state variable x and z. It means this chaotic system can
output chaotic signal with different amplitude at the same
time. In comparison with system (1), the proposed chaos
system can provide more ergodicity and flexibility for some
engineering applications based on chaos theory.

VI. THE APPLICATION OF THE PROPOSED SYSTEM IN
IMAGE ENCRYPTION
A. THE DISCRETE SYSTEM
Due to the chaos degradation problem caused by the finite
precision, the random signal of the continuous chaotic system
cannot be directly applied to digital encryption. Therefore,
in order to make the proposed chaotic system better suitable
for digital encryption applications, it can often be further
discretized. In which, by using Gaussian discrete algorithm,
the proposed continuous chaotic system can be effectively
discretized. The specific discrete systems equation are shown
as follows:

x(n+ 1) = x(n)+ h[y(n)− cos(2x(n))],
y(n+ 1) = y(n)+ h[acos(2x(n))cos(2x(n))],
x(n+ 1) = z(n)+ h[b− cos(2x(n))y(n)],

(26)

where, a and b are control parameters, the step size h is set to
0.01 and n is number of cycles. Due to the characteristic of
high pseudorandom, the chaos map is often used as a Pseudo
Random Number Generator to generate the pseudo-random
signal in engineering field.

B. CHAOTIC SECRET KEY
As shown in Fig. 6, a more than 300 bits-long secret key is
applied in the design encryption algorithm. The design secret
key is divided into 300 bits-long block S1 and the secret key
of initial value x(0), y(0), z(0). Where, we set secret keys
x(0) = π , y(0) = 1, z(0) = π . Then S1 is divided into
S11, S12, S13, S14, S15, each of them can be divided into
60 bits-long. Especially in comparison with the single stable
systems, the proposed new system of extremely multistability
can generate infinitely many secret keys of initial value. This
greatly increases the number of chaotic secret keys and thus
increases the security of the encryption algorithm.

FIGURE 6. The chaotic secret key.

C. THE DESIGN OF ENCRYPTION ALGORITHM
Based on the pseudo-random values generated by the pro-
posed discrete chaos system, the diffusion formula of adja-
cent pixels can be constructed. As Eq. (27) shown, each pixel
value of the design diffusion formula depends on the value of
two adjacent pixels and the proposed discrete chaos system.
Then, doing the xor diffusion operation between each pixel
value of the second design diffusion formula and the value
generated by the proposed discrete chaos system. Then, doing
the scrambling operation between three first pixels and three
last pixels.

E1(n+ 2)=mod[E1(n+ 1)+ floor(105 × a× (E1(n)
/255)×(1−E1(n)/255))+P(n)+floor(x × 1012), 256],
E2(n+1)=E2(n)⊕ E1(n)⊕ mod[floor(x × 1012), 256],
E2(1) = E2(end),E2(2) = E2(end − 1),
E2(3) = E2(end − 2),

(27)

in which, p(n) is the pixel of the plaintext, x(n) is the value
generated by the proposed discrete chaos system, E1(n) is the
pixel value of the first diffusion algorithm, and E2(n) is the
pixel value of xor diffusion algorithm, and a is the control
parameter of the proposed discrete chaos system. To fur-
ther improve the anti-deciphering ability of the algorithm,
the second diffusion algorithm is designed, and it can be
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described as:

EE(n+ 2)=mod[b× floor((EE(n+ 1)/255)× (1−
EE(n)/255))+ EE(n)+ E2(n)+ floor(y× 1012), 256],
c1 = mod[EE(1)+ m1 + floor(y× 1012), 256],
EE(1) = mod[c1 + m2 + floor(y× 1012), 256],
c2 = mod[EE(2)+ m3 + floor(y× 1012), 256],
EE(2) = mod[c2 + m4 + floor(y× 1012), 256],

(28)

where b is the control parameter, EE(n + 2) depends on
two adjacent pixels, E2(n) and the proposed discrete chaos
system, c1 and c2 are the parameter which depend on the
values of interference parameters m1, m2, m3, m4. Then,
do the third diffusion and scrambling operation:

EEE(n+ 1) = EEE(n)⊕ EE(n)⊕ mod[floor
(z× 1012), 256],
c3 = mod[EEE(3)+ m1 + floor(z× 1012), 256],
EEE(3) = mod[c3 + m2 + floor(z× 1012), 256],
c4 = mod[EEE(4)+ m3 + floor(z× 1012), 256],
EEE(4) = mod[c4 + m4 + floor(z× 1012), 256],

(29)

where EEE(n + 1) depends on the adjacent pixel EEE(n),
the pixel of last diffusion EE(n) and the proposed discrete
chaos system. Similarly, c3, c4 depend on the parameter m1,
m2, m3, m4 and the value generated by the chaotic system.
The images can be encrypted based on the design encryption
formula, and the decryption algorithm is the inverse process
of encryption algorithm.

D. THE ENCRYPTION AND DECRYPTION OF IMAGE
As Fig. 7 shown, based on the above proposed encryption
algorithm, the plaintext image can be successfully encrypted
and decrypted. In particular, the ciphertext image can effec-
tively hide the core information of the original image. How-
ever, we cannot judge the performance of encryption only
from the effect of ciphertext. The specific performance can
be shown through the safety tests such as sensitivity of the
secret key, histogram, information entropy and NPCR.

E. SENSITIVITY ANALYSIS OF THE SECRET KEY
Because the chaotic system is extremely sensitive to the
initial state, extremely tiny variation of the initial secret key
will generate a big difference after several iterations of the
key sequence generator, and then the encryption effect can
produce a big difference. It is because of this high sensitivity
to initial values that chaotic systems are widely used in digital
image encryption. In the design secret key, it is made up
of 300 bits-long block S1 and the secret key of initial values
x(0), y(0), z(0) and then we will do the sensitivity tests on
them. Leave the other parameters unchanged, Fig. 8(a)-(c)
show two ciphered Hill image only by changing the secret
key of initial value x(0) from π to π + 10−14. Fig. 8(d)-(f)
show two ciphered Hill image only by changing the secret key

FIGURE 7. The images of encryption and decryption. (a) Lena image of
plaintext (b) Lena image of ciphertext (c) Lena image of decryption
(d) Elaine image of plaintext (e) Elaine image of ciphertext (f) Elaine
image of decryption (g) Hill image of plaintext (h) Hill image of ciphertext
(i) Hill image of decryption.

of initial value y(0) from 1 to 1+10−14. Fig. 8(g)-(i) show two
ciphered Hill image only by changing the secret key of initial
value z(0) from π to π + 10−14. The experimental results
show the good security of the encryption algorithm based on
the design chaos secret key.

F. THE ANALYSIS OF HISTOGRAM AND CORRELATION
Histogram is widely used in many applications of the com-
puter vision. It can detect changes in a video by marking
significant edge and color statistical changes between frames.
Image histogram is a histogram used to represent the bright-
ness distribution in a digital image, it plots the number of
pixels of each brightness value in the image. The histogram
is a statistical collection of data and distributes the statistical
results into a set of predefined bins. From the experimental
results of Fig. 9, the histograms of the plain images con-
tain the key information, and the histograms of the ciphered
images using the design algorithm is fairly flat distributed,
it can effectively hide the key information of the image.

The correlation shows the strength between two adjacent
pixels on the direction of horizontal, vertical and diago-
nal. It is one of most vital evaluation techniques in image
encryption algorithm. The correlation coefficients test of
Lena plain images and the ciphered images by using the
proposed encryption algorithm are shown in Fig. 10. From the
test result, the correlation of adjacent pixels in the plaintext
image are higher, the concentration of the key information is
high. However, the correlation of the ciphered image on the
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FIGURE 8. The sensitivity of the secret key. (a) Plaintext Hill (b) Original
x(0) (c) Changed x(0) (d) Plaintext Hill (e) Original y (0) (f) Changed y (0)
(g) Plaintext Hill (h) Original z(0) (i) Changed z(0).

FIGURE 9. Histograms of images. (a) Histogram of Lena (b) Histogram of
Elaine (c) Histogram of Hill (d) Histogram of ciphertext Lena
(e) Histogram of ciphertext Elaine (f) Histogram of ciphertext Hill.

TABLE 1. Correlation coefficients of images.

direction of horizontal, vertical and diagonal are all relatively
low, even they are relevant. And the specific data of correla-
tion coefficients test are shown in Tab. 1.

FIGURE 10. Correlation analysis of Lena image. (a) Horizontal correlation
of the plaint Lena image (b) Vertical correlation of the plaint Lena image
(c) Diagonal correlation of the plaint Lena image (d) Horizontal
correlation of the ciphered Lena image (e) Vertical correlation of the
ciphered Lena image (f) Diagonal correlation of the ciphered Lena image.

G. ROBUSTNESS ANALYSIS
The ability to resist differential attack is often an important
criterion to evaluate an algorithm. In general, tiny changes
between adjacent pixels can cause major changes in image
properties, NPCR (number of pixels change rate) and UACI
(unified average changing intensity) are often used as a test-
ing tool to measure this variation. The specific algorithm is
described by:NPCR =

∑
i,jD(i, j)

L
× 100%

UACI =
1
L

∑
i,j

|k1(i, j)− k2(i, j)|
255

× 100%.
(30)

where k1, k2 are two encrypted images generated by two plain
images with a pixel difference and its size is L. Generally,
the ideal value of NPCR is 0.9961 and the ideal value of UACI
is 0.3346. The closer the values of NPCR and UACI obtained
from the design encryption algorithm are to the ideal values,
the higher the safety performance. That is to say, the proposed
algorithm has have enough abilities to resist the differential
attack. From the test results of NPCR and UACI in Tab. 2,
the ability to resist differential attack of the design encryption
algorithm is better.

The information entropy of image represents a chaotic
degree of pixels, it represents the randomness and uncertainty
of image information. It is also an important evaluation stan-
dard of the safety performance of encryption algorithm. The

TABLE 2. The test of UACI and NPCR.
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TABLE 3. Information entropy of the images.

FIGURE 11. DSP implementation flowchart.

FIGURE 12. Chaotic attractor of DSP implementation.

specific formula can be described as:

H (k) =
2N−i∑
i=0

p(ki)log2
1

p(ki)
, (31)

in which, p(ki) is the probability of ki. The ideal value of
information entropy is 8, the closer the value of information
entropy obtained from the design encryption algorithm are
to the ideal value, the better the safety performance. The
information entropy of the proposed encryption algorithm is
shown in Tab. 3. From the comparison result, the pixels have
higher chaotic degree and anti-deciphering ability.

VII. DSP IMPLEMENTATION
To make the chaotic signal better suitable for digital chaos
applications, the proposed system based on the boosted con-
trol of cosine function can be implemented by Digital Signal

Processing (DSP) technology. Select parameters a = 15,
b = 0.1, and the starting condition (0,1,0). According to the
implementation flow as shown in Fig. 11, the chaotic attrac-
tors on x-z plane can be digital implemented in Fig. 12. The
experimental result of digital implement is basically the same
to the analysis result of the numerical simulation, it shows the
feasibility of theoretical analysis.

VIII. CONCLUSION
A new 3D chaotic system which can produce extremely
multistability is reconstructed by the boosted control of
cosine function. Base on its mathematical model, the Lya-
punov exponents, Kaplan-Yorke dimension, bifurcation dia-
gram and complexity can be simulated. In comparison with
the original system, the proposed chaos system has better
chaotic characteristic and higher complexity. Most of the
cycle windows in the original chaos system became chaotic
state, its chaos behavior was enhanced. Especially, the pro-
posed system can generate infinitely many coexisting attrac-
tors due to the boosted control of cosine function. It means
the proposed system can output more chaotic sequences of
different amplitudes at the same time. These good perfor-
mances have brought positive effects for its application in the
industrial field. Next, we will continue to study the industrial
applications based on this proposed chaotic system.
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