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ABSTRACT Breast lesion is a malignant tumor that occurs in the epithelial tissue of the breast. The early
detection of breast lesions can make patients for treatment and improve survival rate. Thus, the accurate
and automatic segmentation of breast lesions from ultrasound images is a fundamental task. However,
the effectively segmentation of breast lesions is still faced with two challenges. One is the characteristics
of breast lesions’ multi-scale and the other one is blurred edges making segmentation difficult. To solve
these problems, we propose a deep learning architecture, named Multi-scale Fusion U-Net (MF U-Net),
which extracts the texture features and edge features of the image. It includes two novel modules and a
new focal loss: 1) the Fusion Module (WFM) which segmenting irregular and fuzzy breast lesions, 2) the
Multi-Scale Dilated Convolutions Module (MDCM) which overcoming the segmentation difficulties caused
by large-scale changes in breast lesions, and 3) focal-DSC loss is proposed to solve the class imbalance
problems in breast lesions segmentation. Moreover, there are some convolutional layers with different
receptive fields inMDCM, which improves the network’s ability to extract multi-scale features. Comparative
experiments reveal that the MF U-Net proposed in this paper outperforms other segmentation methods, and
the proposed MF U-Net achieves state-of-the-art breast lesions segmentation results with 0.9421 Recall,
0.9345 Precision, 0.0694 FPs/image, 0.9535 DSC and 0.9112 IOU on Benchmark for Breast Ultrasound
Image Segmentation (BUSIS) dataset.

INDEX TERMS Breast cancer, deep learning, image segmentation, multi-scale feature, wavelet transform.

I. INTRODUCTION
Breast lesion is a malignant tumor that occurs in the epithe-
lial tissue of the breast, and its incidence ranks the first
among Chinese women [1]. It has the highest mortality rate
compared to other types of cancer. By 2020, more than
1.9 million women will die from breast cancer each year.
Breast cancer is not only the most frequently diagnosed can-
cer in most countries, but also the leading cause of cancer
deaths in more than 100 countries [2]. Studies have shown
that early detection of breast lesions can prompt patients
to be treated and improve survival rates [3], [4]. However,
the detection of breast lesions requires an experienced and
well-trained radiologist. Even a trained specialist may have
a high inter-observer variation rate on detection of breast
lesions. Therefore, automatic detection or segmentation of
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breast lesion is very important. Currently, the methods used in
breast lesions screening include X-ray, Ultrasound, and Mag-
netic Resonance Imaging. In this paper, ultrasound images
are selected as the research object because of their versatility,
safety and high sensitivity [5].

Many traditional methods have been proposed to detect
breast lesions. Among them, Drukker et al. used Radial
Gradient Index (RGI) filtering to automatically detect breast
lesions and segmented it by maximizing an average radial
gradient [6]. Yap et al. first performed histogram equalization
on the image, and then used threshing segmentation and a
rule-based approach to detect breast lesions [7]. Shan et al.
proposed a combination of phase in max-energy orientation
and radial distance with a traditional intensity-and-texture
feature to distinguish breast lesions [8]. The Deform-able Part
Models method proposed by Felzenszwalb et al. defines the
low-resolution root filter template of the detection window
and a set of high-resolution partial filter templates to capture
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details [9]. Then the performance of the object was modeled
based on the directional gradient histogram. However, these
traditional methods are based on hand-crafted features, such
as texture and Gab-or filters, which are not robust to patho-
logical regions and are susceptible to image quality.

Since some methods based on Convolutional Neural
Network (CNN) have shown good performance in image
classification, scholars have begun to introduce deep learning
to breast lesions detection and segmentation. There are three
kinds of deep learning methods for breast lesions detection
and segmentation: Patch-based CNNs approaches [10], [11],
fully convolutional network based approaches [12] and trans-
fer learning approaches [13], [14]. Ciresan et al. mapped
each pixel-centered window to a neuron, and then extracted
features with increasing levels of abstraction by a series
of convolutional layers and maximum pooling layer [10].
Kooi et al. first applied the candidate detection pipeline to
determine the five CNN seed points [11]. Then the convolu-
tional layer and the maximum pooling layer were also used
to extract features, and finally the category of the region was
output. However, the patch-based CNNs method divides the
ultrasound image into multiple patches, which will destroy
the integrity of the spatial information of breast lesions.
To ensure that the integrity of the spatial information of
the lesion is not compromised, the U-Net was introduced
into the segmentation of breast lesions by Yap et al, which
is composed of a down-sampling path and an up-sampling
path [12], [15]. The down-sampling path gradually reduces
the size of the feature map and extracts low-resolution infor-
mation, which provides a basis for lesion identification. The
symmetrical up-sampling path gradually restores the smaller
features to the same size as the original image and obtains
high-resolution information, providing a basis for accurate
lesion segmentation. However, the local receptive field and
the efficiency of feature re-use are limited by the fixed con-
volution size and single down-sampling path in U-Net, which
may not be conducive to dealing with the problems of large
changes in breast lesion scale and blurred boundaries [16].
In addition, due to the scarcity of medical image data, trans-
fer learning has been applied to the field of medical image
processing by many scholars. The non-medical image data is
used for the pre-training of themodel, and then the pre-trained
model is applied to the medical image. However, this method
may cause the model to overlearn some data distributions that
are not related to the target dataset, resulting in a decrease in
model performance [13], [14].

In the breast lesion dataset, there was a significant dif-
ference in the size of the lesion area for breast cancer in
it. In addition, the irregularity of the breast lesion areas
and the blurred boundaries will bring severe challenges to
segmentation. The samples of breast ultrasound images and
ground truth images in the Benchmark for Breast Ultrasound
Image Segmentation (BUSIS) dataset are shown in Fig. 1.
However, none of the above methods specifically extract the
multi-scale features and edge features of breast lesions, which
will cause segmentation difficulties. In order to handle with

the above problems, Multi-scale Fusion U-Net (MF U-Net)
is proposed in this paper. On the basis of U-Net, the Wavelet
Fusion Module (WFM) and the Multi-Scale Dilated Con-
volutions Module (MDCM) are integrated into MF U-Net.
In WFM, the segmentation capability of U-Net for fuzzy
edges is enhanced by multi-dimensional information fusion.
In addition, the MDCM makes the network scale-invariant
by designing a convolutional layer with multiple receptive
fields, while keeping the model parameters constant. The
Focal-DSC loss is proposed to learn class distribution to alle-
viate the problem of unbalanced voxels. In summary, themain
contributions in the proposed method include:

1) In order to effectively segment breast lesions, we pro-
pose a fully automated method called Multi-scale
Fusion U-Net (MF U-Net). MF U-Net is an end-to-
end deep learning network, which extracts the texture
features and edge features of the image, and finally
assigns a category to each pixel.;

2) For improving the segmentation ability of irregular and
fuzzy breast lesions, Wavelet FusionModule (WFM) is
proposed. InWFM, the image is decomposed into some
detailed images which carry a lot of edge information.
Then outputs of WFM are fused with pooling layers of
U-Net, making the network more sensitive to the edge.

3) Moreover, to overcoming the segmentation diffi-
culties caused by large-scale changes in breast
lesions, a Multi-Scale Dilated Convolutions Mod-
ule (MDCM) is proposed. The MDCM makes the net-
work scale-invariant by designing a convolutional layer
with multiple receptive fields, while keeping the model
parameters constant.

4) Taking into account the class imbalance problems in
breast lesions segmentation, we propose a new mixed
loss function, Focal-DSC loss, which can effectively
improve the contribution of difficult-to-divide targets in
model optimization while suppressing the contribution
of easily-divided targets.

5) On the BUSIS dataset, we conducted ablation exper-
iments on the modules proposed in this paper, and
the experiments proved the effectiveness of the two
modules. Our MF U-Net achieves the best segmen-
tation performance. The experimental results show
that our MF U-Net is sensitive to edges and scale-
invariant, so it can effectively extract breast lesion
features and segment breast lesions accurately. At the
same time, we prove that this method is superior to
the current mainstream methods through comparative
experiments.

II. RELATED WORKS
A. EDGE FEATURE REPRESENTATION IN CONVOLUTIONAL
NEURAL NETWORK
It is difficult to segment some breast lesions due to their
blurred and irregular edges. At the same time, Texture fea-
tures in medical images are easily extracted by convolutional
neural networks(CNN), but edge features are also easily
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FIGURE 1. Samples of ultrasound breast images and ground truth images in the BUSIS dataset. Among them, both (a) and (b) are
representative images of patients with early stage breast cancer, while both (c) and (d) are representative images of patients with
advanced breast cancer.

ignored by them, which will lead to the poor segmentation
effect of the model. [17]. Leon et al. found that texture
features led to a substantial advance in image synthesis and
manipulation in computer vision using CNNs [18]. Their
work proved the dependence of CNN on texture features.
In addition, Brendel et al. proposed a variant of Res-Net,
which is based on the occurrences of small local image fea-
tures without taking into account their spatial ordering [19].
This experiment shows that texture features are more con-
cerned with CNN than edge features. Moreover, Gatys et al.
found that the linear classifier on the CNN texture representa-
tion does not have much classification performance loss com-
pared with the original network [20]. Besides, Hosseini et al.
designed experiments to verify that different CNNs achieve
similar accuracy on original images, but perform significantly
different on negative images [21]. This showed that CNN
prefers to classify objects based on the color rather than
the shape. To sum up, the above literature shows that CNN
is relatively inadequate in the recognition of edge features
compared to texture feature extraction.

Inspired by the above-mentioned articles that study feature
fusion [22], [23], we design aWavelet FusionModule (WFM)
to improve the segmentation ability of irregular and fuzzy
breast lesions. The original image is decomposed in WFM to
get detailed images which fuse with U-Net after convolution,
so that the network is more sensitive to the edge.

B. MULTI-SCALE FEATURE EXTRACTION
The large-scale changes and morphological problems of
breast lesions in medical images will cause great difficulties
in segmentation of breast lesions. Therefore, it is particu-
larly important to propose a semantic segmentation algorithm
with scale invariance. In order to achieve accurate detection
and segmentation of multi-scale targets, many solutions have
been proposed. Yang et al. make independent predictions

on different resolution layers to ensure that small objects
are trained on the high-resolution layer, while large objects
are trained on the low-resolution layer [24]. Lin et al. pro-
posed a top-down architecture with lateral connections for
building high-level semantic feature maps at all scales [25].
He et al. also used pyramid representation, combining shal-
low and deep features to detect targets of different sizes [26].
Zhao et al. proposed an image cascade network, which incor-
porates multi-resolution branches and introduces the cascade
feature fusion unit to quickly achieve high-quality segmen-
tation [27]. He et al. proposed a Dynamic Multi-scale Net-
work (DMNet) to adaptively capture multi-scale content to
predict segmentation [28]. DMNet is composed of multiple
parallel dynamic convolution modules, and context-aware
filters are used in each module to estimate the semantic
representation at a specific scale.

However, in the above-mentioned methods, the multi-scale
features are extracted in layer-wisly, leading to a more com-
plex computational process. Li et al. introduced a Dilated-
inception Net (DIN) to extract and aggregate multi-scaigle
features for right ventricular segmentation [29]. In the bench-
mark database of right ventricular segmentation challenges,
DIN outperformedmost advancedmodels. Liu et al. designed
a deep neural network architecture called multi-scale deep
fusion network (MSDF-Net), which uses Atrous Spatial Pyra-
mid Pooling (ASPP) for feature extraction at different scales,
and adds a capsule for processing complex relative enti-
ties [30]. Qi et al. proposed a network model called X-Net.
X-Net used depthwise separable convolution instead of
U-Net convolution operations, considering the effectiveness
of it in reducing the parameters of the convolution kernel [31].
Inspired by these articles, we design a multi-scale feature
module named Multi-Scale Dilated Convolutions Module
(MDCM). The MDCM contains convolution kernels of dif-
ferent receptive fields, which can extract multi-scale features.
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C. CLASS IMBALANCE IN MEDICAL IMAGE
SEGMENTATION
Small object segmentation is always a challenge in semantic
segmentation [32]. From a learning point of view, the chal-
lenge is caused by unbalanced data distribution, because
image semantic segmentation requires pixel-by-pixel label-
ing, and small-volume organs contribute less to the loss.
In this case, careful selection of the loss function is cru-
cial. Havaei et al. used a sampling rule to make the fore-
ground or background pixels have equal probability in the
center of the patch, and used cross-entropy loss optimiza-
tion [33]. Recently, A introduced log-cosh Dice loss, and
compared 15 loss functions using the NBFS Skull-stripping
dataset(brain CT segmentation) [34], found that Focal Tver-
sky loss and Tversky loss are generally optimal [35].
Michael et al. experiment with seven different Dice-based
and cross entropy-based loss functions on the Kidney Tumour
Segmentation 2019 (KiTS19) dataset [36] and propose a
Mixed Focal loss function, which is robust to significant class
imbalance [37]. Zhang et al. state the Effective ExampleMin-
ing(EEM) problem and propose a regression version of focal
loss to make the regression process focus on high-quality
sample [38].

We summarize the knowledge provided by previous
research and propose a new mixed loss function, Focal-
DSC loss, which can control the contribution of positive and
negative targets. The DSC-part of Focal-DSC loss learning
class distribution alleviates the problem of unbalanced vox-
els, while the Focal-part forces the model to better learn
poorly classified voxels.

III. METHODS
To make the most of the characteristics of the experimental
dataset, we performed a pixel-level statistical analysis of the
size of the region of interest (ROI) of the lesions in the breast
lesion dataset and concluded that the shape and size of breast
lesions in different periods vary greatly. In order to reduce
the segmentation difficulties caused by the large variation in
lesion size, we propose the Multi-Scale Dilated Convolutions
Module (MDCM) to achieve multi-scale feature extraction
of breast lesions. Also, to better segment irregular edges and
blurred breast lesions, we propose the Wavelet Fusion Mod-
ule (WFM) to extract edge features. In addition, to alleviate
the class imbalance problem in lesion segmentation, we pro-
pose a new loss function (Focal-DSC loss). In the subsequent
sections, we will perform quantitative ablation experiments
and comparison experiments on the different modules.

A. MULTI-SCALE FUSION U-NET FOR THE SEGMENTATION
OF BREAST LESIONS
Inspired by U-Net [15] and X-Net [31], we design
an Encoder-Decoder network as the main body for our
MF U-Net. Different from the traditional structure of U-Net,
we propose a Multi-Scale Dilated Convolutions Mod-
ule (MDCM) to replace general convolution. On the breast

lesions dataset, the shape and size of breast lesions in dif-
ferent periods are different, so there is a large difference
between the segmentation target sizes. MDCM, which can
extract multi-scale features, is more suitable for addressing
these issues. Moreover, for better segmenting irregular edges
and blurry breast lesions, we propose the Wavelet Fusion
Module (WFM) to extract edge features.MDCM and WFM
will be introduced in detail in the next two sections.

In MF U-Net, the input image is fed into the main encoder
path with three MDCMs for multi-scale feature extraction.
MDCM contains many 3 × 3 convolutional layers and
1 × 1 convolutional layers to generate a series of encoder
feature maps to achieve multi-scale feature extraction and
fusion. After each convolutional layer, the Rectified Linear
Unit (ReLU) [39] is used as an activation function to improve
the non-linearity of the network. Subsequently, the maximum
pool layer is used to downsample in the encoder path, reduc-
ing the computation of the upper layers and the spatial com-
plexity of the model by eliminating non-maximum values.
At the same time, the input image is fed into the sub-encoder
path with threeWFMs for wavelet transform and convolution
operations. The generated feature maps will be fused with the
output feature maps of the main encoder paths to enhance
the edge features of the image, as shown on the left side of
Fig. 2. Correspondingly, the decoder path uses deconvolution
to sample the feature maps, aiming to gradually restore the
smaller size feature maps to a predicted map of the same size
as the original input image. Importantly, the feature maps
output by the same level of convolution and deconvolution
layers are concatenated by skip connections. This operation
enables the model to capture global features and local fea-
tures at the same time and alleviate the degradation of the
neural network, thus improving the accuracy of the model in
segmenting breast lesions [40]. The network structure of MF
U-Net is shown in Fig. 2.

B. WAVELET FUSION MODULE
In breast lesions segmentation tasks with fuzzy edges, it is
important for the model to capture edge information to
improve accuracy. In order to solve the problem that the breast
lesions edge is difficult to be accurately identified in the
segmentation, Wavelet Fusion Module (WFM) is proposed
in this paper.

Our WFM is implemented based onWavelet Packet Trans-
form (WPT) and the modulus maximum edge detection
method, which decomposes an image into a sequence of
wavelet coefficients of the same size. The edge information
of an image is represented in the image as a discontinuity of
the signal, corresponding to the high frequency part of the
image. According to the renowned scholar Mallat et al. [41],
the local modulus maximum of the wavelet transform cor-
responds to the abrupt change points of the signal, i.e. the
edge information of the image. Haar wavelet is selected in
this paper, because it is enough to depict different-frequency
breast lesions information. In 2D Haar wavelet, four filters
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FIGURE 2. Illustration of our MF U-Net: The structure of MF U-Net is an Encoder-Decoder network, in which we use a Multi-Scale
Dilated Convolutions Module instead of a general convolution block. The input image is processed by the Wavelet Fusion Module
and concatenated with the pooling layer of each stage.

are defined as follows:

fLL =
[
1 1
1 1

]
fLH =

[
−1 −1
1 1

]
(1)

fHL =
[
−1 1
−1 1

]
fHH =

[
1 −1
−1 1

]
(2)

Suppose I (x, y) is the pixel of the ultrasound image at (i, j),
the value of approximation image after 2D Haar transform
can be calculated as:

ILL(i, j) = I (2i− 1, 2j− 1)+ I (2i− 1, 2j)

+ I (2i, 2j− 1)+ I (2i, 2j) (3)

Analogously, ILH (i, j), IHL(i, j), IHH (i, j) can be calculated.
After completing the wavelet transform, the modulus and
magnitude of each pixel in the image will be calculated by
the following equations (3) and (4) respectively:

Mf (x, y) =
√
|W x f (x, y)|2 + |W yf (x, y)|2 (4)

Af (x, y) = arctg
[
W x f (x, y)
W yf (x, y)

]
(5)

where W x f (x, y) and W yf (x, y) denote the components of
the 2D wavelet transform functions ψx(x, y) and ψy(x, y),
respectively, which are defined as follows:{

W x f (x, y) = f ∗ ψx
s (x, y)

W yf (x, y) = f ∗ ψy
s (x, y)

(6)

where s is the scale factor and in this paper we take
s = 2j,j ∈ Z .Correspondingly, the 2D wavelet transform
functions ψx(x, y) and ψy(x, y) are obtained by taking the

partial derivatives of the smoothing function θ (x, y) in the x
and y directions, calculated as follows:

ψx
=
∂θ (x, y)
∂x

ψy
=
∂θ (x, y)
∂y

(7)

where the smoothing function θ (x, y) should satisfy the fol-
lowing conditions:∫∫

R

θ (x, y) dxdy = 1 (8)

For visualization purposes, we normalize the wavelet coef-
ficients of each sub-image to the range of [0, 255] and the
results of edge detection are shown in Fig. 3. In Fig. 3,
the approximation image is the low-frequency information
of the entire pathology map, including the rough texture of
the breast. ILL(i, j), IHL(i, j) and IHH (i, j) are detailed images,
which contain high-frequency mammary gland information
after orthogonal decomposition. This high frequency infor-
mation represents exactly the edge features of the image,
which is very important for CNN that loses accurate edge
information.

In WFM, we hope that the feature map with the edge
information and it generated by U-Net will be fused. There
are usually two ways to fuse convolutional features: 1) con-
catenate the convolutional features of multiple inputs along
the channel dimension, and then fuse the merged features
with the next convolutional layer, 2) fuse convolutional fea-
tures of multiple inputs directly by element fusion rules.
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FIGURE 3. Wavelet decomposition results.

FIGURE 4. The structure of WFMs and their fusion with MF U-Net.

The skip structure of U-Net belongs to the former. In WFM,
since the sharp features (maximum values) are expected to be
preserved, we modify the maximum fusion rule for the fusion
of the output feature map and the pooling layer of U-Net. The
output fusion feature can be expressed as:

Z = h
(
W T [BWFM ,BCNN ]+ b

)
(9)

where h() represents the ReLU activation function, and W T

represents the connection weight. B is the characteristic dia-
gram of different modules, and b is the offset value.
In WFM, the convolution operation of CNN is used to

compute the detailed image with edge information produced
by the wavelet transform, which is described as follows. The
pixels in feature images are obtained by convolving detailed
images with a kernel size of 3×3. In order to increase the
nonlinearity of WFM, ReLU is used as an activation function
after convolution. The output size ofWFM is half of the input,

and its dimensions are the same as the pooling layer of each
stage. Finally, the outputs fuse with the feature map generated
by U-Net to help the network extract more edge features. The
structure of the WFMs and the process of their integration
with the MF U-Net are shown in Fig. 4.
WFMs are integrated into the endcoding path of MF

U-Net, which has the following properties: 1) avoiding the
large growth of parameters by using only one convolu-
tional layer in WFM; 2) decomposing the image to get
high-frequency features to make the network more sensitive
to edges; 3) supplementing the information lost by using the
maximum pooling layer in down-sampling.

C. MULTI-SCALE DILATED CONVOLUTIONS MODULE
Large scale variation across breast lesions, especially the
early breast lesions (very small targets) is an important factor
that makes detection difficult. On the newly collected dataset,
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the median scale of breast lesions instances relative to the
image is 0.012. Tomakematters worse, the scale of the small-
est and largest 10% of breast lesions instances is 0.026 and
0.465 (resulting in scale variations of almost 18 times). The
relationship between the fraction of RoIs (regions of interest)
and the scale of RoIs is shown in Fig. 5.

FIGURE 5. Fraction of RoIs vs scale of RoIs.

To address the problem of large scale variation in breast
lesions, smaller and larger dilation rates can be used to cap-
ture information such as the texture of small and large targets
respectively. Last but not least, the input features of the model
are enhanced by fusing multiple feature maps at different
scales to efficiently extract context information at different
scales [42].

The receptive fields of ordinary convolution kernels are
fixed, so they are not scale-invariant for features. When con-
volving the same morphological features at different scales,
the similarity between the two features cannot be under-
stood by the convolution kernel. In order for the network to
segment targets of different scales in a network that is not
scale-invariant, it is necessary to collect images of objects
at different scales. But it is a difficult challenge for medical
images, for which data is very scarce. At the same time,
it is also very important to reduce model parameters in the
training of small datasets to prevent over-fitting. To solve
these problems, this paper proposes a convolutional mod-
ule, called the Multi-Scale Diluted Convolutions Module
(MDCM), which can still achieve multi-scale feature extrac-
tion without increasing the model parameters. The structure
of MDCM is shown in Fig. 6.
After the feature map enters the MDCM, it is first con-

volved by the Compound Dilated Convolution Layer. The
number of convolution kernels in the CompoundDilated Con-
volutional Layer is, and the convolution kernels are divided
into four groups according to different convolution kernel
forms. The first group is composed of convolution kernels
with a size of 1×1, and the second to fourth groups are
composed of 3×3 kernels at different dilation rates. The
dilated convolution kernel is a special kind of convolution
kernel, which can maintain relatively low parameters and
calculations under the condition of large receptive field [43].
Besides, the size of the receptive field is controlled by differ-
ent dilation rate, for a 3×3 convolution kernel, the calculation

formula for its receptive field is as follows:

F =
(
2i+1 − 1

)
×

(
2i+1 − 1

)
(10)

where i + 1 is the dilation rate. If the dilation rate is 1,
the dilated convolution is the same as the ordinary convo-
lution. The dilation rates of the second to fourth groups in
MDCM are set to 1, 2, and 3 respectively in this paper.

Four feature maps of the same size are generated after the
Compound Dilated Convolution Layer. Due to the convolu-
tion of kernels with different receptive fields, features of dif-
ferent scales are retained in different feature maps, and they
are converted into a feature map through the concatenation in
the channel dimension. ReLU is used as the activation func-
tion of this layer. Then, the feature map through the activation
function is convolved with convolution kernels with a size
of 3×3, thereby fusing features of different scales. Finally,
ReLU is used again to output the feature map of MDCM.

D. FOCAL-DSC LOSS FUNCTION
Firstly, both Dice and IOU are the most commonly used

evaluation indicators in segmentation networks. The Sørense-
Dice index is known as the Dice similarity coefficient (DSC).
We can use True Positives (TP), False Positives (FP) and False
Negatives (FN) to define DSC and IOU:

IOU =
TP

TP+ FN + FP
(11)

DSC =
2TP

2TP+ FN + FP
(12)

Combining the above two formulas, we can get:

IOU =
DSC

2− DSC
(13)

The Dice loss of segmentation can be written as follows:

LDSC = 1− DSC (14)

Focal loss is a variant of the cross entropy loss func-
tion [44]. By controlling the weight of positive and negative
samples and the weight of easy-classify and difficult-classify
samples, it solves the problem of class imbalance. In order to
obtain the focal loss function, we first abbreviate the binary
cross entropy (BCE) used for binary classification as:

CE(p, y) =

{
−log(p), if y = 1
−log(1− p), if otherwise

(15)

We can simplify the BCE loss using the following formula.

pt =

{
p if y = 1
1− p if otherwise

(16)

Now, BCE loss is defined as follows:

LBCE(p,y) = CE(pt ) = −log(pt ) (17)

To reduce the influence of negative samples, you can add
a coefficient named α before the conventional loss function.
Similar to Pt, when y=1, αt = α; when y=otherwise,
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FIGURE 6. The structure of Multi-Scale Dilated Convolutions Module.

αt = 1 − α, and the range of α is also 0 to 1. At this
point, we can control the contribution of positive and negative
samples to loss by setting α. When γ = 0, the Focal loss
simplifies the BCE loss.

LFocal = αt (1− Pt )γ · LBCE(p,y) (18)

Inspired by the Focal-EIoU loss [38] and the Enhanced
mixing loss [45], we propose a new mixed loss function
consisting of contributions from both Dice loss and Focal
loss. To enable the Dice loss focus on high-quality examples,
we use the value of IOU and LDSC to replace αt and LBCE(p,y)
in Eq.(8). The Focal-DSC loss can be formulated as:

LFocal−DSC = IOUγ
· LDSC (19)

where IOU and γ are a parameter to control the degree of
inhibition of outliers. Using the Eq.(3) to replace IOU, we can
define Focal-DSC loss as:

LFocal−DSC = (
DSC

2− DSC
)γ · LDSC (20)

We also try different forms of reweighting process, like
using DSC to replace IOU in Eq.(14). Now Focal-DSC* loss
can be defined as:

LFocal−DSC∗ = (DSC)γ · LDSC (21)

As shown in Fig. 7, we test different γ and forms of the
Focal-DSC loss. We find that Eq.(15) with γ = 0.5 has the
best performance.

IV. EVALUATION METRICS
In this section, we will describe the process of our exper-
iments in detail and conduct an analysis according to the
experiment results.

In the traditional methods, the seed point which is the loca-
tion of breast lesions is detected first and then they perform
segmentation accordingly. The detection accuracy of seed
points is used to measure the quality of the algorithm. For the
convenience of comparison, we also use the detection of seed
points as the evaluation standard. Since our model is end-to-
end, we define the segmented breast lesions center as the seed
point. If a seed point is within the bounding box, it is called
True Positive (TP); otherwise it is False Positive (FP). At the
same time, if a seed point is not detected, then we call it False
Negative (FN).

FIGURE 7. The Focal-DSC and Focal-DSC* loss with different γ .

To evaluate the performance of the algorithm, we use
Recall, Precision, FPs/image (false positives per image), DSC
(dice similariy coefficient) and IOU (intersection over union)
to evaluate the performance of the network. We will use TP,
FP and FN to calculate the above performance evaluation
metrics, which are defined as follows:

Recall =
TP

TP+ FN
(22)

Precision =
TP

TP+ FP
(23)

FPs/image =
number of FPs

number of images
(24)

The sensitivity of the algorithm to seed points is measured
by Recall. If all seed points can be detected, then Recall will
be close to 1. And FPs/image measures the possibility of
algorithm detection errors. Precision is used to measure the
proportion of pixels that are actually positive out of those
predicted to be positive. However, some algorithms that can
detect multiple seed points will get a higher Recall, but
the FPs/image also is higher. To better exploit the realistic
significance of Recall and FPs/image, we will use the most
commonly used performance evaluation metrics in segmen-
tation networks - DSC and IOU. DSC and IOU both measure
the similarity between two sets, and they are used to measure
the similarity between network segmentation results and the
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gold standard mask, which is calculated as follows:

DSC =
2× TP

(2× TP)+ FP+ FN
(25)

IOU =
DSC

2− DSC
(26)

The DSC and IOU are pixel-level and they take values
between 0 and 1, with values closer to one indicating better
performance of the model.

Furthermore, in order to be accurate to the extent that
each pixel is correctly classified and each class is correctly
segmented. PA(pixel accuracy), MPA(mean pixel accuracy),
and MIOU(mean intersection over union) were used to eval-
uate the ratio of those to total pixels, the ratio of correctly
classified pixels in each class, and the average IOU of each
class, respectively. The calculation methods of PA, MPA and
MIOU are as follows:

PA =

∑k
i=0 pii∑k

i=0
∑k

j=0 pij
(27)

MPA =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

(28)

MIOU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(29)

where Pij represents the pixel point in the i-th row and the j-th
column of the image.

V. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT AND
IMPLEMENTATION DETAILS
The environment configuration in this paper is Ubuntu
16.04 operating system, 32GB DDR4 RAM and GeForce
GTX 1080Ti graphics card. The programming language used
for the algorithm is Python. training and testing were imple-
mented on TensorFlow version 1.14.

In the training of the proposed model, we set the batchsize
to 5, the epoch to 100, and the weight decay factor to 0.001.
We also set the learning rate at 10-5. The loss function used is
the Focal-DSC loss function, and stochastic gradient descent
is used as an optimization algorithm during training.

B. DATASET AND DATA AUGMENTATION
The data used in this paper were collected from publicly avail-
able online datasets, ADEChallengeData 2016 and Bench-
mark for Breast Ultrasound Image Segmentation (BUSIS)
respectively. Radiologists with extensive experience in breast
ultrasound examined the collected data using an ACUSON
S2000 (SIEMENS, Germany) system with a high transducer
frequency (12-15MHz). All our dataset is certified for pathol-
ogy testing, which ensures accurate labelling.

The dataset contains over 1000 ultrasound images with an
average image size of 495 × 412 pixels. In this paper it will
be resized to 448 × 448. We perform data enhancement to
increase the diversity of data available for training the model

and to alleviate storage requirements. The data enhancement
includes image rotation, brightness enhancement and contrast
enhancement. After data enhancement, the number of images
in the dataset grew to four times the original size. The dataset
was then randomly divided into a training set and a test set in
the ratio of 8:2.

C. ABLATION EXPERIMENT
In this section, we will conduct ablation experiments on the
proposed wavelet fusion module (WFM), multi-scale dilu-
tion convolution module (MDCM) and loss function (Focal-
DSC). The purpose of the experiment is to respectively prove
the effectiveness of WFM, MDCM and Focal-DSC and the
effectiveness of the combination of these three. Table 1 shows
in detail the improvement effect after adding each function
module in U-Net [15].

On the recently collected breast lesion dataset, the cross-
entropy loss function is used to train U-Net. Subsequently,
it was tested on the BUSIS dataset, and the segmentation per-
formance of Recall (0.8913) andDSC (0.9304) were obtained
respectively. In view of the good segmentation performance
of U-Net, we use it as the baseline model for ablation
experiments.

To demonstrate the effectiveness of the Focal-DSC loss
function, it is used to train U-Net instead of the cross-entropy
loss function. As expected, the model trained with the
Focal-DSC loss function achieved better evaluation results
on the test set, achieving Recall (0.9037) and DSC (0.9386),
respectively. Compared to the baseline model (U-Net), Recall
and DSC showed an improvement of 0.0124 and 0.0082
respectively, which would be attributed to the DSC penalty
factor in the Focal-DSC loss function that enables the model
to better measure the similarity between the predicted output
and the mask.

In addition, in order to verify the effectiveness of WFM,
WFM is embedded in U-Net to perform low-frequency
and high-frequency filter decomposition and maximum edge
detection on the image. As can be clearly seen in Table 1,
the U-Net with WFM has significantly improved the Recall,
Precision, DSC and IOU metrics obtained on the BUSIS
dataset, which shows that WFM can help the model to obtain
better segmentation performance. Because WFM can make
the model decompose more high-frequency information and
detailed information that helps extract the edge features of the
image, and improve the sensitivity of the model to the edge
of the lesion.

In order to validate the effectiveness of MDCM, MDCM
was added to U-Net for multi-scale feature extraction.
By using different dilation rates to increase the receptive field
of the model, MDCM incorporates multiple feature maps of
different scales to enhance the multi-scale feature extraction
capability of the model. Compared with the baseline model,
the U-Net with MDCM showed significant improvement in
several evaluation metrics, achieving high scores of Recall
(0.9216) and DSC (0.9467) respectively.
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TABLE 1. Ablation experiments for quantitative analysis of the proposed WFM, MDCM and Focal-DSC.

TABLE 2. Performance comparisons of the different methods on the BUSIS collected dataset.

Furthermore, we apply WFM and MDCM to U-Net at the
same time to form the MF U-Net network structure proposed
in this paper. The segmentation performance of MF U-Net in
the test data has been further improved, and the performance
of Recall (0.9374) and DSC (0.9526) have been obtained
respectively. Last but not least, we use themost recommended
combination in this article to experiment-use the Focal-DSC
loss function instead of the cross-entropy loss function to
train MF U-Net. It can be clearly seen from Table 1 that
the segmentation performance of the MF U-Net trained with
the Focal-DSC loss function on the test data has been further
improved, and the performance of Recall (0. 9421) and DSC
(0. 9535) have been achieved respectively. Comparedwith the
baseline model, its Recall and DSC accuracy are improved by
0.0508 and 0.0231 respectively.

In summary, the WFM, MDCM, and Focal-DSC proposed
in this article all utilize model performance improvements.
It should be pointed out that the combination of WFM,
MDCM and Focal-DSC will bring a better improvement to
the accuracy of the model.

D. COMPARATIVE EXPERIMENT
To verify the effectiveness of our method, we compare our
MF U-Net with the several state-of-the-art breast lesions
segmentation approaches: Radial Gradient Index (RGI) [6],
Multifractal [7], Rule-Based Region Ranking (RBRR) [8],
Deformable Part Models (DPM) [9], LeNet [46], Fully Con-
volutional Networks (FCN [47]), LinkNet [48], PSPNet [49],
SegNet [50], DeepLabv3+ [51] and U-Shape Convolutional
Network (U-Net) [28]. The comparison results of our method
with other state-of-the-art are shown in Table 2.

As can be seen from Table 2, RGI, which uses an RGI
filtering technique to filter lesions, achieves 0.7528 Recall,
0.7324 Precision, 1.5027 FPs/image and 0.4842 DSC. The

FPs/image is higher than other methods because RGI pro-
duces more seed points. Multi fractal and RBRR perform
poorly, because the manual features they extract are unsuit-
able for the dataset. DPM performed well, achieving high
Recall and DSC. Neural networks can extract image features
automatically and powerfully. LeNet achieves 0.8458 Recall,
0.8621 Precision, 0.1348 FPs/image and 0.8334 DSC. Deep
learning can segment images correctly by learning abstract
features of objects. In FCN, LinkNet, PSPNet, U-Net, SegNet
and DeepLabv3+, the convolution layer and the deconvo-
lution layer are connected through skip connection, so that
global and local features can be captured at the same time.
They all outperform traditional segmentation methods in
terms of segmentation performance on the BUSIS dataset.
Our MW-Net takes into account the scale and morphologi-
cal issues of breast lesions, so that MW-Net can effectively
segment breast lesions. MW-Net achieves 0.9421 Recall,
0.9421 Precision, 0.0694 FPs/image and 0.9535 DSC, sur-
passing all other methods.

Fig. 8 shows visual examples of the segmentation results
of different algorithms. The first two rows show some easy-
to-detect lesions, which have obvious features and are very
different from the background, so all methods can correctly
segment breast lesions. The third row shows a small breast
lesion. Only RBRR and neural network can effectively detect
lesions. The last row shows a challenging case for breast
lesions segmentation, where the image is blurred and the
texture and edges of the lesion are not obvious. For this case,
none of the methods can segment the lesion correctly.

Fig. 9 shows the segmentation results of MF U-Net
and other six segmentation algorithms for breast lesions.
From top to bottom, the lesion area of the breast gradu-
ally becomes larger, and the scale varies widely. In addi-
tion, the boundary pixels of the breast lesion area are very
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FIGURE 8. Comparison of MF U-Net results for breast lesions with the other six segmentation algorithms. In each
image, the green border represents the breast lesion and the yellow dots represent the seed points.

FIGURE 9. Comparison of segmentation results of MF U-Net and other segmentation algorithms for breast lesions. Each pixel in the label is assigned as
either a background pixel or a lesion pixel. The lesion pixel is marked as 1 and the background pixel is marked as 0. Among them, (a) is the original
image and (i) is the corresponding ground truth label. In addition, (b), (c), (d), (e), (f), (g) and (h) represent the segmentation results for FCN, LinkNet,
PSPNet, U-Net, SegNet, DeepLabv3+ and MF U-Net, respectively.

blurred. These will cause difficulties for segmentation. From
Fig.9(b), (c), (d), (e), (f), (g) and (h), it can be concluded that
FCN and LinkNet are seriously insufficient in segmentation
of the lesion, which is caused by insufficient up-sampling.
In addition, due to the different scales of breast lesions,
U-Net and SegNet cannot achieve accurate segmentation of
large and small targets; on the contrary, thanks to MDCM,
our method (MF U-Net) can accurately segment the lesions
despite the different scales of the lesions. Although PSPNet

andDeepLabv3+ can segment targets of different scales, they
cannot achieve accurate segmentation due to their insufficient
recognition of the edge of the lesion. Correspondingly, thanks
to WFM, MF U-Net can accurately identify the edge infor-
mation of the lesion and achieve precise segmentation. More
importantly, in the method shown, only MF U-Net is able to
efficiently learn the edge information of the lesion to achieve
accurate segmentation of breast lesions, while the others
are not.
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FIGURE 10. Comparison of segmentation performance curves for FCN, LinkNet, U-Net and MF U-Net on the BUSIS dataset. Among
them, (a), (b), (c), (d), (e) and (f) represent the IOU curve, MIOU curve, PA curve, MPA curve, DSC curve and Loss curve of the four
segmentation algorithms respectively.

In order to compare the performance of the four segmenta-
tion algorithms more intuitively, the IOU curve, MIOU curve
and DSC curve are used to measure the similarity between
sets. In addition, PA and MPA are used to evaluate the ratio
of correctly classified pixels to the total pixels, and the ratio of
those in each category, which allows us to understandwhether
each pixel is correctly classified. Importantly, the Loss curve

allows us to know more clearly when the model converges,
which is beneficial to the training of the model. Therefore,
the above curve is drawn to intuitively compare the segmen-
tation performance between different algorithms.

Fig. 10 shows the comparison of the IOU curve, MIOU
curve, PA curve, MPA curve, DSC curve and Loss curve
of FCN, LinkNet, PSPNet, U-Net, SegNet, DeepLabv3+
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and our proposed MF U-Net on the BUSIS dataset. From
Fig. 10(a), (b) and (e), it can be concluded that the
seven algorithms quickly achieved large values in about
20 iterations, and stabilized after about 100 iterations.
Among them, MF U-Net achieved the maximum values
in Fig.10(a), (b) and (e), with IOU, MIOU and DSC taking
values of 0.9112, 0.9112, and 0.9535 respectively. It can be
seen from Fig. 10(c) and (d) that compared with the other
three algorithms, MF U-Net has achieved almost the best PA
(0.9927) and MPA (0.9631) respectively, and its performance
is stable. On the contrary, the PA and MPA indicators of
the other three algorithms fluctuate widely. It can be seen
from Fig. 10(f) that the loss value of the four algorithms
decreases rapidly in the first 20 iterations, and stabilizes after
90 iterations, and the loss value of MF U-Net is the smallest.

Based on the above results, it can be concluded that MF
U-Net performs better than the other six segmentation algo-
rithms in terms of IOU, MIOU, PA, MPA, DSC and Loss,
followed closely by DeepLabv3+, SegNet, U-Net. PSPNet
and LinkNet respectively. FCN has the worst segmentation
performance.

VI. DISCUSSION
In clinical diagnosis and treatment, the segmentation
technology of medical images affects the reliability of diag-
nosis results to a great extent. Excellent segmentation algo-
rithms can provide a reliable basis for clinical diagnosis
and pathological research, and assist doctors make accurate
diagnoses, thereby improving diagnosis efficiency [52]. Real-
time ultrasound examinations mainly depend on the diag-
nostic experience of sonographers in most hospitals, which
results in subjective interpretation and inter-observer vari-
ability. In addition, the large number of repetitive real-time
ultrasound examinations would place a heavy workload on
hospitals and doctors. In order to reduce the workload of
doctors and improve the efficiency of breast ultrasound exam-
inations, a sea of traditional segmentation algorithms have
been proposed one after another.

However, most conventional segmentation algorithms are
based on semi-automatic implementations that require inter-
action with the user to complete the segmentation of the
lesion. Such methods usually require the setting of opti-
mal ROIs/seeds for the image to improve the segmenta-
tion performance of the algorithm, which is an extremely
tedious process. As shown in Table 2, traditional segmenta-
tion algorithms such as RGI [6] cannot accurately segment
breast lesion images, and achieve poor results in FPs/image
and DSC. Because this kind of algorithm will be affected
by people’s subjective willingness when interacting with
users, resulting in the model not being able to adaptively
segment the lesion accurately. In contrast, fully automatic
segmentation methods have many good properties such as
operator-independence and reproducibility. For this reason,
this paper advocates the development of a fully automated
segmentation algorithm which is based on a deep learning
implementation.

There are currently a lot of networks in deep learn-
ing, and Fully Convolutional Networks (FCN) has become
the mainstream segmentation network, because it integrates
information from different layers and supplements spatial
information. However, although it can be compensated by
transmitting high-resolution information from the encoding
side to the decoding side of the network, multi-scale fea-
tures still cannot be extracted well by FCN. This is because
segmentation of different scales requires different receiving
fields, and the receptive field of the convolution kernel is sin-
gle in FCN. In MF U-Net, we propose a Multi-ScaleDilated
Convolutions Module (MDCM) to segment multi-scale tar-
gets. The 1×1 convolution kernel is responsible for extracting
small target features, while some 3×3 convolution kernels at
large dilation rates extract large target features. The ablation
experiment of MDCM can verify the effectiveness of this
module.

In addition, due to the characteristics of CNNs, ordinary
deep learning networks always ignore edge information when
learning features. In order to compensate for the disadvantage
that neural networks do not learn edge information ade-
quately, we propose the Wavelet Fusion Module (WFM) to
improve the network’s ability to segment breast lesions with
irregular and blurred pixel boundaries. In WFM, the input
image is decomposed into a number of detailes images after
wavelet transform, which carries a large amount of edge
information. The output of WFM is then fused with pool-
ing layers of U-Net to make the network more sensitive
to edges, thus improving the segmentation accuracy of the
network.

Our fully automatic segmentation network can eliminate
the dependence of the operator and the burden of the radi-
ologist. Moreover, segmentation of the breast lesions could
provide a priori information to improve ultrasound imaging
in modes other than pulse echo by correction of aberrations
in different tissues.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present a deep learning framework for
solving the problem of multi-scale variation in breast lesions
and boundary pixel blurring, namedMFU-Net, for fully auto-
mated segmentation of breast lesion regions. Wavelet Fusion
Module (WFM) is proposed to decompose images to obtain
detailed images that carry edge information, which improve
the ability of the network to extract edge features. In addition,
FM) is proposed. Multi-ScaleDilated Convolutions Mod-
ule (MDCM) is proposed, where convolution kernels with
different receptive fields are designed to simultaneously
detect breast lesions of different scales.We also introduce a
new com-pound loss function, Focal-DSC loss, which learn
class distribution alleviates the problem of unbalanced vox-
els and forces the model to learn poorly segmented voxels
better. The experimental results show that the proposed MF
U-Net outperforms other segmentation methods, achieving
the highest Recall(0.9421), DSC (0.9535), IOU (0.9112)
and lowest FPs/image (0.0694) on the Breast Ultrasound
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Image Segmentation Benchmark (BUSIS) dataset, which
demonstrates that the proposed method achieves the state-of-
the-art performance in breast lesion segmentation.

Our network has achieved success in ultrasound images,
but for images of different modes (such as X-ray images), its
segmentation effect will be reduced. In future work, we will
try to make better improvements to MF U-Net to improve the
spatial complexity, robustness and segmentation accuracy of
the model. You can start from the following three aspects: in
the first place, use the convolutional layer to compress the
feature map with edge information after wavelet transforma-
tion to reduce the space complexity of the model; there is one
more point, I should touch on, that seek to use two MF U-Net
pairs of different Modal medical image feature extraction
and multi-modal feature fusion, so that the model maintains
good robustness under multi-modality; the last but not the
least, design a bidirectional constraint top-level loss function
for model loss calculation to improve model segmentation
accuracy.
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