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ABSTRACT The appearance of deep neural networks for Side-Channel leads to strong power analysis
techniques for detecting secret information of physical cryptography implementations. Generally, deep
learning techniques do not suffer the difficulties of template attacks such as trace misalignment. However,
the generalization of a trained deep neural network that can accurately predict Side-Channel leakages largely
depends on its adjustable variables (parameters of a neural network). Although pre-training is no longer
mandatory, it is needed for parameter selection of a deep neural network to improve the success rate and
provide a better insight into the network’s inner functionality. In this paper, we propose a novel model via
Twin support vector with a deep kernel approach when targeting a hardware implementation of AES-128.
The proposed model is pre-trained with the Restricted Boltzmann Machine method in a layer-wise manner
and then fine-tuned via gradient descent. Further, we used the grid search technique for the selection of each
hyperparameter which is used to compute class probabilities of every test trace in our deep model based
side-channel attack. Based on our analysis and experiments, this model empirically shows its effectiveness
by outperforming some of its competitors in profiling attack methods such as convolutional neural networks
and multilayer perceptron models. We also evaluate our model on both masked and unmasked AES
implementation. The results indicate that the proposed approach has achieved a success rate of greater than
99% even with a single trace using Keras library with Tensorflow. We investigate the correct “‘key rank”
according to the number of traces; our model reaches the key rank < 10 when attacking the third AES SBox.

INDEX TERMS Hardware security, side-channel analysis, deep learning, machine learning, profiling

attacks, twin SVM, RBM, kernel function.

I. INTRODUCTION

In the field of security and cryptography, Side-Channel Anal-
ysis (SCA) is a powerful attack that benefits from any
leakage of a system such as power consumption and elec-
tromagnetic (EM) radiations, to retrieve the secret infor-
mation [1]. Power-based side-channel attacks, according to
how much they have access to the device under the attack
(victim device), are categorized into non-profiling [2] or
profiling attacks [3], [4]. Non-profiled side-channel attacks
include statistical calculations on the power consumption of
a device under the attack to retrieve the secret key. Profiled
side-channel attacks assume the attacker has complete control
on a copy version of the victim device to measure an infinite
number of side-channel traces. Then the attacker classifies
the leakages based on obtained data correlation and provides
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a predictive model to retrieve secret information of a new
device.

One popular subset of profiling attacks is template attack
(TAs) [5], in which an adversary is able to retrieve the secret
information even with few traces of data. The attack phase is
defined in two stages. The first stage creates a template for
the operation of a copy version of the victim device by an
infinite number of power traces and known different secret
keys and public data. The second stage retrieves the key of a
victim device using the template of the first stage with a small
number of traces from the victim device. In high dimensional
side-channel attacks, building a leakage model becomes dif-
ficult, hence, the points of interest are extracted from traces
in order to have more informative kinds of traces. Note that
each trace generally includes a large number of sample points
which make the attack very costly, hence points of interest
are selected which are samples with the most informative
leakage from the device. Another powerful subset of profiling
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attacks is a side-channel attack that uses Machine Learn-
ing (ML) approaches [3]. Exploring and studying machine
learning techniques in unmasked and masked side-channel
attacks implementation show that this approach enhances
attack accuracy and is more efficient when compared to
standard profiled attacks. However, the main drawback of this
technique is the need for human processing to find the most
informative data.

In order to extract the point of interest in machine learning
algorithms, several dimension reduction techniques including
Principal Component Analysis (PCA) can be employed and
Linear Discriminant Analysis (LDA). PCA is also a common
approach in SCA to reduce the amount of noise in the traces
by keeping high variance data. The PCA generally transforms
the dataset and fits with the training dataset.

With the emergence of big data, deep learning (DL) tech-
niques have been assumed to outperform other profiling
attack techniques as they learn patterns from the raw data
themselves and identify features automatically without exten-
sive statistical analysis. Cagli et al. [6] utilized deep neu-
ral networks to retrieve cryptographic secret information by
investigating convolutional neural networks (CNNs). They
attacked the AES masked with a jitter-based countermeasure
and tried to deal with the trace misalignment by consider-
ing data augmentation in their convolutional neural network.
Kim et al. [7] come up with a technique to overcome the
misalignment problem. They solved the problem by inserting
noise to the input traces or inserting random delays through
dummy operation.

Although these publications provide a good insight on
how to deal with side-channel attacks challenges using deep
learning models, none of them have investigated the relation
between initial parameters and the pre-training stage for gen-
eralization problems.

In most side-channel attacks when targeting AES-128,
an attacker targets a subkey (one byte) and not the whole
128-bit (16 bytes) key. After finding one subkey, the attacker
only needs to repeat his attack 15 more times to recover
the remaining 15 bytes. Usually, in security papers [8], [9],
authors only explained their methods and results on one
subkey; since the rest can be recovered in the same man-
ner/technique. Figure. 1 Show a diagram of a side-channel
attack on one of the rounds of AES-128 cryptosystem using a
neural network. AES encrypts 16 bytes of plaintext in several
steps. The first step is SubBytes, where each byte of plaintext
is replaced with a value from a lookup table, called SBox.
Then the replaced value is passed through the second step
named Shift Rows, in which each row is shifted except the
first row which remains unchanged. Next, the Mix Columns
step is applied to combine the four bytes in each column, and
then each byte is combined with a byte of the key in the Add
Round Key step.

In this work, we propose a novel and powerful deep
learning model, “Deep Kernel learning Twin Support vec-
tor machine” (Deep K-TSVM) which is a great combi-
nation of deep neural network and Twin support vector
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FIGURE 1. Diagram of SCAs on AES-128 using neural networks.

0

machine (TSVM) classifier. We apply our 256-class deep
model against both masked and unmasked AES-128 imple-
mentations. Our proposed model successfully breaks the
cryptographic implementation using just one trace of the
target device. Further, we study how generalization affects
the performance of the attack. We pre-train a 256-class deep
model with a deep Restricted Boltzmann Machine (RBM) for
the initial weight of the neural network, In addition, we use
grid search technique for proper choice of hyperparameters
to prevent over or under-fitting problems.
In summary, our main contributions are as follows:

« We propose a novel deep learning model which provides
an efficient combination of deep neural networks and
TSVM. The learning stage of the model carries out in
two phases of pre-training with the RBM method and
fine-tuning with the help of gradient descent.

« The proposed model is able to effectively break the cryp-
tographic implementation even with a single trace. Our
results indicate that the proposed model outperforms
state-of-the-art techniques such as CNNs, NeuroSVM,
and Multilayer perceptron (MLP) based attacks.

« We evaluate the impact of the hyperparameter selec-
tion in the generalization of our deep model. We also
demonstrate how good is the effect of pre-training in the
performance of the model.

« We investigate the correct key candidate from sorted
probabilities of each possible value in the Identity (ID)
leakage model and discuss that these probabilities.
We also discuss how the information of these probabili-
ties can be considered as a valid metric to evaluate deep
model-based side-channel attacks.

The rest of the paper is organized as follows: Section 1I
describes the Preliminaries and related works to conduct pro-
filing side-channel attacks. Section III describes datasets that
have been used to examine our method. Section IV explains
the details of our proposed novel model “Deep K-TSVM™.
In Section V , we discuss numerical calculations and exper-
iments to examine the performance of the proposed model.
Finally, some concluding remarks are given in Section VI.

Il. PRELIMINARIES AND RELATED WORK
Since our work aims to improve the generalization of deep
neural network models based on side-channel attacks, in this
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section, we take a brief look at related publications on this
topic in the recent few years. We also review some recent
studies about supervised learning models including support
vector machine (SVM) based side-channel attacks.

A. PROFILED SCA APPROACHES

Deep learning based side-channel attack models is a group of
profiling attacks in which different factors easily affect their
accuracy. Hence, there are alternative metrics for evaluating
the success rate of the deep neural networks when attacking
the victim device. In Table 1, the table summary of related
works on SCAs using different learning methods, we provide
arelated survey on datasets, classifier, and kernel mapping of
each method.

1) DEEP LEARNING BASED PROFILING SCAs

In every deep neural network, there is a learning step that
requires a fixed-size training dataset for network training
(in side-channel analysis, this step is known as the profiling
phase) and fixed-size datasets for network testing (in side-
channel analysis, this step is called the attack phase). In this
paper, we use k-fold cross-validation method. In this method
the whole data split randomly in k (the number of folds)
disjunct subsets and iteratively use one of them as test set,
while the rest of the data are used as the training set. The
average error across all trails is the estimated generalization
error.

Assume 7; as a single side-channel trace (which is captured
using a random plaintext and a random secret key), and P; as
a vector of selected points of interest in the trace T; (selected
features). Then the class of each trace is defined based on the
chosen leakage model because each label L; of the input trace
T; is computed using a function (leakage model) of the secret
key and P;.

In profiled side-channel attack based deep learning, the
adversary first collects a number of traces from a device
which is a copy version of the device under the attack (on
the best scenario, he has full controls on the copied device).
He uses collected traces as the training set with known target
labels L;, to train his deep neural network. Then, in order to
complete the attack, the adversary starts the attacking stage
by applying the profiled model on a testing traces which have
been collected from a different device called the victim device
(device under the attack) with an unknown secret key value.

A demonstration of deep learning based profiled
side-channel attacks is shown in Figure. 2. The device with
the color gold in Figure. 2 is the copy version of the target
device which is unlocked and the attacker can use this to
measure an infinite number of traces for training his deep
mode. Then he will use the trained network to unlock the
device with the color gray in Figure. 2, as it is shown in the
picture that he uses a very few traces (here a single trace) of
the target device to retrieve the key.

In works [6], [7], some techniques have been proposed in
profiled side-channel attacks to overcome the trace misalign-
ment problems, they insert noise to input traces to solve this
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FIGURE 2. Deep learning based profiled SCA.

problem, however, this only helps some certain attacks by
making the attack more difficult such as Gaussian template
attack and does not affect deep learning based side-channel
attacks and make no difference to their improvement. In 2017,
Picek et al. studied the significance of how to improve the
selected model with proper parameter tuning using tenfold
cross-validation [19]. However, some of the classifiers in their
works performed worse after the parameters tuning, and their
proposed model, in the end, reaches an accuracy of 70%
(not a high accuracy for learning methods) even with low
noise in their traces. Also, different successful attacks against
masking countermeasures on AES have been proposed. For
example in 2014, Zeng et al. came up with an attack on the
hardware implementation of AES which was masked with
a Rotating SBox masking scheme which is a lightweight
countermeasure. They used a support vector machine as the
classifier of their model to find the secret mask. After that,
they attacked each SBox with computing and use the ham-
ming weight of the output byte of the mask SBox as the
label of the model to retrieve the secret key [15]. However,
the success rate in this model completely depends on the
number of sample points. When there are a few sample points,
the success rate is very low for this model.

2) PERFORMANCE METRICS
Accuracy and loss function are common metrics to evaluate
deep learning models. Accuracy is used to measure a specific
learning algorithm performance by computing the rate of
correct classifications. A loss function is usually applied to
optimize a particular learning algorithm and shows how good
the learning model is based on several iterations. However,
these metrics are highly dependent on the small changes in
parameters and hyperparameters which control the learning
process. In other words, parameters (e.g. weights and bias)
and hyperparameters (e.g. learning rate and layer-size) should
be tuned to obtain a good performance model during the net-
work training phase. Hence, training a deep neural network
with high performance and well generalization is challenging
for any new data. Generalization is a term used for this
challenge to describe a model’s ability to react to new data.
Generalization may lead to under-fitting or over-fitting
problems. In under-fitting, a model has a poor performance
on the training data and is unable to make accurate predic-
tions, even for the training data. Over-fitting occurs when the
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TABLE 1. Summary of related works on SCAs.

Datasets

REF./Year

Learning technique Kernel mapping

Unmasked AES without pre-training

[10] /2020, [11] /2020, [12] /2015,
[2]/2019, [13]/2015, [14]/2018

K-means, CNN, SVM, RF PCA, Pooling, RBF

Masked AES without pre-training

[111/2020, [15]/2014, [16]/2018,
[171/2019, [18]/2016, [10]/2020

SVM, MLP, CNN RBEF, Correlation, Pooling

Masked & Unmasked AES with pre-training and fine-tuning

Our work

TSVM

Deep RBM

learning model is highly accurate in fitting to training data,
however, it is unable in the prediction of unseen data. In the
profiled attack scenario, the over-fitting problem becomes
more acute since the adversary has an unlimited number
of traces from the copied version of the victim device in
the training phase with known key but he should make a
prediction with a very few numbers of real traces with an
unknown key from the victim device.

Fortunately, there are alternative metrics that can be used
in side-channel attack scenarios to overcome the generaliza-
tion problems. Key rank and guessing entropy are examples
of such alternative metrics which evaluate and analyze the
ability of a deep model in revealing the secret key [20].
Cagli et al. [6] also showed that the accuracy achieved by the
deep learning models cannot be a valuable alternative metric
for Key rank which is a common performance measurement
of side-channel attacks.

There are several publications that represent the perfor-
mance of machine learning and deep learning techniques
which have been applied for the purpose of side-channel
attacks. Maghrebi et al. [18] have shown the improved per-
formance of deep learning compared to the other side-channel
attacks techniques, however, they also showed that on
average, 200 traces are needed for recovering the key.
Hettwer et al. [5] directly used the secret key as a label of
the model; they also claimed that this would give more abil-
ity to the network to learn the most meaningful features of
the leakage which is needed for classification. Additionally,
there have been studies in supervised machine learning-based
profiling side-channel attacks such as [13]-[15], [21] which
use support vector machine, LS-SVM, KNN, and RF for the
classification problem. In most cases still, a large number
of traces is required to reach a stable key rank. In 2018,
Benadjila et al. [16] showed the role of points of interest
which is exactly the same as the features extraction module in
deep learning models which have a significant effect on the
performance of side-channel attacks. However, the selection
of feature extraction module and the size of points of inter-
est can be different depends on the victim device and deep
learning structures. An overview of the related works is given
in Table. 1.

Although all of these works give us a better view of the
side-channel attacks challenges and solutions, pre-training
the initial weights and proper choice of hyperparameter for
generalization problem of the learning model has left for
future works. Also, the deep structure of kernel mapping has
not been investigated in side-channel attacks. In this work
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for the first time, we propose a deep kernel mapping with
TSVM with pre-training of initial values and fine-tuning
stage. We target hardware implementation of masked and
unmasked AES-128, and we were able to retrieve the correct
secret key even with a single trace.

B. SUPPORT VECTOR MACHINE & NEROSVM

Support vector machine is a supervised machine learning
method which performed for linear binary classification and
aims to provide a binary classifier with a high generalization
ability using a specific hyperplane. In other words, consider
the training set: {(x;,y;);i = 1,2,...,N}, where x; € R
is the input and y; € {1, —1} indicates the corresponding
label of the two classes. A linear soft margin support vector
machine model explores for a proper hyperplane (Wx + b)
which has the maximum margin from the two classes. This
hyperplane could be obtained by calculating the following
optimization problem:

N
. 1 2 2
“nw C .
min SIWIP + _X;&
=

st.yiWxi+b)y=1-4§, §=0,i=1,....N (D

where &1, ..., &y are the non-negative deviations from the
margin. The parameter C is called the penalty factor which
controls the trade-off between the amount of margin increase
and the number of misclassified sample points. The matrix of
weight represented by W and the vector of bias is shown by b.

We can show the equation (1) as the following uncon-
strained problem:

I S ?
min ~[|W|* + ; [max(l Yi(Wxi + b), 0)} @)
Since most of the real-world problems are kind of nonlinear
ones, and it is not possible to be separated by a linear classifi-
cation hyperplane, the kernel function (kernel trick) is applied
to support vector machine. Kernel function maps data into
a higher dimensional space where the data can be separated
linearly. The process of selecting an appropriate kernel func-
tion has a profound impact on the performance of a support
vector machine since this function changes the dimensional
space of the data to where the linear classification module
is possible [22]. In the concept of side-channel attack, it is
most common to use linear kernel function or the radial basis
function [23]. There are some common approaches to extend
SVM for multi-class classification problems, including one-
versus-all and one-versus-one methods [24].
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It is shown in [25] that support vector machine attack
performs better than the template attack especially when the
captured traces are noisy. In work [26], authors distinguished
power traces of an unmasked AES implementation using
Least Square support vector machine (LS-SVM) as a variant
of SVM, and the number of classes is defined by computing
the hamming weight of the output of the SBox. TSVM [27],
as an extension of support vector machine, is learned by solv-
ing two smaller quadratic programming problems, therefore
it is approximately four times faster than the classical support
vector machine [28]. The two optimization problems for each
hyperplane of TSVM are as follows:

1
min [|Wy + e1bi]|? +crel g

st. —(Wp+eb))+E>e, £€>0 3)
1

min || Ws + e2ba|* + cae] 7

st.(Wa+eb))+n=e, n=0, )

where e; and e; are the column vectors of ones with a length
equal to the row number of matrix A and B. The error vectors
are shown by & and n [28].

According to the optimization problems of the TSVM
model, it predicts new samples using perpendicular distance.
Consider the new sample point x, it will be assigned to a
specific class that has the minimum distance from its hyper-
plane. In other words, if we show the perpendicular distance
of sample x from the each hyperplanes of TSVM with d;,
the new sample point x will be assign to the class i which
has the minimum d; = |xTw; + bI/,/wiTwi fori=1,2.

Although TSVM is one of the strong classification mod-
els in machine learning techniques, its performance is very
sensitive to the selection of the appropriate kernel func-
tion. However, choosing an appropriate kernel function for
a problem is not an easy task. Saeedi and Kong [29]
investigated the influence of kernel on the accuracy of the
support vector machine-based side-channel attacks using
RBF kernel function. Several approaches have been pro-
posed to learn a suitable kernel function for support vector
machine. For example, Cho and Saul [30] calculate the inner
product of a mapping function ® and propose a multilayer
structure of the kernel function as follows: k(e)(xi,xj) =

(P(D(. .. (P(x1)))), P(D(....(P(x}))))).

¢ times £ times . L.
However, their method came up with a limitation where

the multi-layer kernel is limited to a single type of mapping
function. Another model called Neural network support vec-
tor machine (NEROSVM), introduced by Ghanty et al. [31]
proposed for selection of appropriate kernel function. This
model consists of two distinct but related modules called the
feature extraction module (SFM) and classification module.
Figure. 3 represents the NEROSVM model which has m
different trained MLPs labeled as (MLPy, ..., MLP,,). The
output layer and its associated connections from each of the
MLPs are removed after the networks are trained. Note that
the combination of the two first layers is considered a feature
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FIGURE 3. A graphical representation of the NEROSVM classifier [31].

extraction module. Feature extraction module of NEROSVM
consists of several submodules (SFMy, ..., SFM,,), each of
them takes the same p dimensional data X = (x, ..., xp)T as
input, and transfer it to a n dimensional hidden vector. Indeed,
each submodule of the feature extraction module is obtained
from a MLP network including just one hidden layer [31].
The classification module is driven from the collected outputs
of the m submodules.

To the best of our knowledge, there are only a few
works have considered combining neural network and
machine learning techniques which are supervised learning
approaches. Therefore, rather than combining MLPs and
SVMs, we develop a deep structure of RBM with TSVM
as a strong learning model to provide a template particularly
suitable for application in SCA.

IIl. LEAKAGE CLASSIFICATION

In deep learning based side-channel, attacks according to the
selected leakage model, accuracy only computes the number
of classes a deep neural network could correctly predict
divide by the total number of predictions that have been
made. Hence it is necessary to take into account an alternative
metric to accuracy such as key rank that we talked about
some of the associated publications with this method in II-A2.
We also describe how to calculate this metric in the following
subsection III-A

A. CLASS PROBABILITY

Deep learning models have great potential in side-channel
attacks to map the problem into a supervised classification
instead of computing the Gaussian probability density func-
tion used in regular template attacks.

An accuracy is a common approach in deep learning mod-
els to identify the rate of correct classification and just con-
sider labels with great reliability. This approach is related to
the side-channel analysis evaluation metric. In fact, neurons
in the output layer show the number of classes in the deep
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FIGURE 4. Captured original power traces from ASCAD dataset.

learning model. Probabilities of each neuron in the output
layer could be obtained using the Softmax activation function,
which is equal to the class probabilities for each trace of the
leakage model. As we know accuracy is considered as an
evaluation metric in side-channel analysis to distinguish class
probabilities for every trace and its associated secret key in
the selected model. However, any small changes in the struc-
ture of a deep model have an impact on these probabilities.
Therefore alternative metric such as key rank is computed for
each correct key candidate.

The number of classes based on the selection of the leakage
model could be different. If we consider K is the number of
classes and we indicate the number of traces that have been
captured from the victim device with T, the output of the deep
neural network is a k x T matrix. Then the log-likelihood
for each key candidate is computed to distinguish classes.
We computed the probabilities of each class of two different
datasets and we were able to attack successfully on both
masked and unmasked implementations.

B. DATASETS

For evaluating the performance of our model, we exam-
ined it on the public ASCAD dataset provided by
Benadjila et al. [16] which has 50000 profiling traces, and
10000 attack traces. The traces are recovered from an 8-bit
AVR microcontroller from a masked implementation of AES-
128. The database consists of raw traces that contain the mea-
surements from the entire encryption, however, the authors
have preselected a window in the raw traces that corre-
spond to the SBox operation and consists of 700 features.
We consider the masked ASCAD with the leakage function
of SBox(p @ k) and we describe the unmasked ASCAD with
the leakage function of SBox(p @ k)®M, where M is the
mask [32]. Figure. 4 shows the corresponding data trace for
ASCAD which comprises 700 sample points.

Also, we use an open TeSCASE dataset to evaluate our
model. This dataset has 1,400,000 power traces, and every
trace includes 3125 samples [33]. The traces are captured
from the Virtex-5 FPGA embedded on a SASEBO-GII board
of masked and unmasked implementation of AES-128 and
can be accessed on the TeSCASE website. Figure. 5 shows
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FIGURE 5. Captured original power traces from TeSCASE dataset.

the corresponding data trace for TeSCASE which comprise
3000 sample points.

For profiling and attacking phases in our proposed model,
we apply 10-Folds Cross-Validation to split the data into
10 different folds. We consider 9 folds to train our model
and keep the last fold as test data, we then average the model
against each of the folds.

IV. PROPOSED DEEP LEARNING BASED SCAs

We propose a new deep learning architecture for profiled
side-channel attacks which consist of two main modules. The
first module is feature extraction module that maps the input
data into a feature space to make the problem a linear separa-
ble classification (selection of point of interests). The second
one is the classification module which identify label for each
input trace.

For the first module to learn the pattern of inputs we use
a deep architecture of RBM which is a stochastic neural
network and learn a probability distribution from the raw
input data. RBMs are shallow, two-layer undirected neural
networks. The first layer in RBM is called the visible layer,
and the second one is the hidden layer. Each layer of deep
RBM can extract features in order to feed them as the input
of the subsequent layer.

For the second module, we use the TSVM classifier which
is an extension of the support vector machine and is fed by the
last layer of the feature extraction module. The performance
of TSVM mainly depends on the choice of its Kernel function
which plays exactly the same role as the feature extraction
module in the proposed model. This classifier follows the grid
search optimization algorithm to select values of ¢ and ¢ for
the two optimization problems in equations (3) and (4). The
proposed model is trained in two steps, first, we pre-train the
parameters with RBM, and then in the second step, we fine-
tune all parameters using gradient descent.

A. DEEP K-TSVM

Our deep kernel learning TSVM consists of I/O and several
hidden layers, in which the output of the last hidden layer
is considered as the input layer of the TSVM to find two
decision boundaries. It is assumed the adversary classified
the leakages based on the label that is achieved by calculating
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FIGURE 6. An architecture of deep K-TSVM.

the Hamming Weight(HW) of the output of the SBox values
at the first round (9 classes) or achieved based on the iden-
tity (ID) leakage model (256 classes) of the AES-128.

The architecture of our proposed model is shown
in Figure. 6 which has r different trained RBMs labeled as
(RBM1, ..., RBMr). Hidden units of each RBM pass their
values to visible units of the next layer. In other words,
the hidden units of each layer can be considered as the visible
units in the next layer. Note that the input layer sy and the
hidden layers (A, ..., h,) are considered as feature extrac-
tion module of deep K-TSVM model which maps raw data
to a proper feature space. The classification module obtained
by dividing the output of the r + 17 layer into two vectors,
and consider each vector as input of one of the hyperplanes
of the TSVM classifier.

For each sample x; and the relevance of hidden layers
consider the following calculations:

hly = xi; yi = +1
Wo=o(WiH_+b) 1<j<r, ®)
d(x;) = hi;y = +1

wherei =1,...,n,0(x) = H% is the sigmoid activation
function and A denotes the i neuron in the j” hidden layer.
The optimization problems for deep K-TSVM can be written

as follows:

-1 1 1,2 T 2
min Z|lp@W; ! + et P+ Gy Y g

. . jyi=—1
Wi, b,g 1<j<r+1,1<i<n’

—WH e+ =1-&, &=0 y=—1 (6)

and

1
m1n§||¢(B)W2’+1+ezb§+1||2+CzelT 3o
i,yi=+1
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Wi, b,om, 1<j<r+1,1<i<n

Wit oe) +b5TY > 1—m, 0,20, yi=+1 (1)

where i = ¢(A) for y; = +1 and .. = ¢(B) for y; = —1.
Line search would be a simple solution to the quadratic
programming problems of above optimization problems to
learn characteristics of the deep K-TSVM.

The initial value of the parameters W; and b;, are obtained
using contrastive divergence (CD) learning [34]. This learn-
ing is a training algorithm that is commonly used when the
direct evaluation of a function is not possible and needs to be
approximated. In other words, a CD is a training algorithm
that is applied to approximate the gradient of the model.
RBM is considered as a probabilistic learning model which
optimizes the log-likelihood values for its parameter selection
by running a Markov chain on its dataset.

The unconstrained optimization problems of (6) and (7)
can be written as the following quadratic programming
problems:

1
Lp, =min E||¢(A)W{+1 +eb 2
W, b, 1<j<r+1,1<i<n
2
+Cred Z [max(l-I—(W{qu(x,-)—i—bq“),o)]
i,)‘,‘:—l
)
1
Lp, =min §||¢(B)W2’+l + eabh

W/, b, 1<j<r+1,1<i<n

2
+Cel Y [max (1 — (WS () + by, o)]
i,yi=+1

&)

Algorithm. 1 describes the learning process of Deep
K-TSVM with respect to the weights of equations (8) and (9).

Algorithm 1 Learning Deep K-TSVM

Input: Datasets={(x, y'); i = 1, ..., n}, maxepoch
Output: Parameters=6 : {wﬂ(, bﬁ(; A<j<r+1,k=
1,2)

Pre-training Stage:
initialize wﬁc ~ 0, bﬁc ~ 0;
learning W), b, withCD;

Fine-tuning Stage:

initialize {w} ™' ~ 0, b} ~ 0;k = 1,2}

1: for epoch=1:maxepoch do

<j<r k=12

2: fori=1:ndo

3: Update weights of (8) & (9) by Gradient descent
4: end for

5: end for

We apply the one-versus-all method which consists of
multiple separate binary classifiers, one binary classifier for
each possible outcome [24]. This method extends the binary
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TABLE 2. Results of grid search hyperparameter optimization.

Model Hyperparameter
Epochs: [10,30,50]

Optimizers: [SGD, RMSprop, Adam, Nadam]

MLP with 2 hidden layer

Activation: [ReLU, sigmoid, Softmax]
Epochs: [10,30,50]

Optimizers: [SGD, RMSprop, Adam, Nadam]
Learning rate: [0.01,0.001, 0.0001]

P Dropout: [0.01,0.1,0.2]

NeuroSVM

Activation: [ReLU, sigmoid, Softmax]
Epochs: [10,30,50]

Optimizers: [SGD, RMSprop, Adam, Nadam]
Learning rate: [0.01,0.001, 0.0001]

ConvNet

Activation: [ReLU, sigmoid, Softmax]
Epochs: [10,30,50]

Optimizers: [SGD, RMSprop, Adam, Nadam]
Learning rate: [0.01,0.001, 0.0001]

Deep K-TSVM

Activation: [ReLU, sigmoid, Softmax]

classification algorithm of TSVM to a multi-class classifica-
tion algorithm where there are 256 binary classifiers. In this
classification, the data from class i is considered as positive
and data of all the other classes are considered as negative,
where i = 0, ..., 255. All models predict a class by showing
a score value, and the maximum of each prediction’s scores
is computed to unify the class label.

In our training procedure, we define 2" classes for our
model, where n is the number of bits in the ID leakage model.
The value of learning rate, number of hidden neurons, and
dropout, which have a serious impact on the accuracy and
performance of the model, is set before the learning process
begins by the grid-search method. Table. 2 is a summary of
different values applied for different models in this work.
Values that yield a model with the lowest key rank and
high accuracy are selected for the attack model. Bold values
in Table. 2 denote the selected values of each model. Note that
for the CNN model, in addition to the CNN with Softmax acti-
vation function, we provide the CNN-SVM model, which has
the same network parameters and details to ConvNet, except
that the output of its final convolution layer which is a rep-
resentation of the original data as the input for an SVM clas-
sifier. For NeuroSVM, as we mentioned in subsection II-B,
we use trained MLPs that have similar network parameters
and details to 2layer-MLP in the following table.

B. ATTACK SCENARIO

The proposed Deep K-TSVM based side-channel attacks are
detailed in the Algorithm. 2. First, it captures the input power
traces and the corresponding plaintexts from a copy version
of the target device to create a template for attacking the target
device. Finally, the model predicts the rank of the correct
candidate key. The main idea of its algorithm is defined in
two-step; The first step is to learn the deep K-TSVM with
Algorithm. 1 and make predictions for each new attack trace.
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In the second step, we collect all probabilities of each possible
value in the ID classification model as a list of outputs and
sort the order of elements in the output list. The key rank
is the index of the targeted key byte inside the list. We also
define a certain threshold of N* < 10 for all key guesses in
computing key rank, such that the number of traces n and the
size of hyperparameters 6 are minimum:
min{n, 0 : N* < 10} where n, 6 > 1.

Algorithm 2 Deep K-TSVM SCA Attack
Input: PI: Plaintext, key: 16-byte Key, tr: traces
Output: keyRank: Average “key rank” of one byte

1: Initialize maxepoch, SOP

2: for epoch= 1: maxepoch do

3: Split tr and Pl into profile (#r, and Pl,) and attack
(tr, and Pl,) subsets

4: train Deep K-TSVM with Algorithm1
5: for num=0: size(Pl,) do

6: makes prediction for tr,[num]

7: for k=0: 255 do

8: L=SBox(Pl,[num] & k),

9: add probability prediction of class L to

SOP[k]

10: store the key rank
11: end for

12: end for
13: compute average key rank of all epochs.

In Algorithm. 2, the SOP represents the sum of probabil-
ities. The symbol & denotes xor. According to this, we try
to recover the third byte of the AES key. However, the other
remaining bytes can be attacked in the same way to retrieve
16 bytes of the key. We show in the experimental result
(section V) that our model outperforms other state-of-the-
art techniques with a key rate of > 99%. The accuracy for the
testing set is nearly similar to that of the training set, > 99%
which proves no over-fitting in our model.

V. EXPERIMENTAL RESULTS

In the following, we present results from Deep K-TSVM
against masked and unmasked hardware implementation of
AES-128. We also test the effect of pre-training on the per-
formance of the proposed model using RBM. We examine
the architecture of our proposed model with different hyper-
parameters. However, the activation function, optimizer, and
the number of epochs in the proposed model structure are
obtained using the grid search optimization algorithm. Our
model outperforms recent works mentioned in section II such
as [17] which require 15,000 profiling traces in their MLP
model and 20,000 profiling traces in their CNN model to
reach a key rank lower than 20. We also compare our pro-
posed model with four different models. The first model is
an MLP with and without PCA, and the second model is a
5-layer convolutional neural network, NeuroSVM is the third
model, and the fourth model is CNN-SVM. Table. 3 is giving
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TABLE 3. Network settings.

TABLE 4. Accuracy (%) of our deep K-TSVM and its competitors on two

With pre-training 8 Without pre-training
100

75
50
25

0

ASCAD-Unmasked ASCAD-Masked Ches2014-Unmasked Ches2014-Masked

FIGURE 7. Effect of pre-training on the deep K-TSVM performance.

details of each network in our experiment. All models are
trained and evaluated using two different datasets, the first
one is ASCAD dataset traces, and the send one is TeSCASE
dataset.

Although accuracy is not a common method for evaluating
the performance of deep learning based side-channel attack
techniques, in addition to the key rank average, we have
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different datasets.
Model Network details Datasets Accuracy
. Model Unmasked | Masked
o Input layer: the number of samples in the processed trace
o First hidden layer: 100 neurons MLP with PCA 0.0045 0.0037
MLP o Second hidden layer: 50 neurons
o Output layer: 256 neurons ASCAD dataset 5-Layer CNN 0.7136 0.5491
MLP without PCA 0.0050 0.0061
o Input layer: the number of samples in the processed trace NeuroSVM 0.0047 0.0046
o Convolution layer:
# number of filters = 8 CNN-SVM 0.6703 0.6741
* filter length = 32 Deep K-TSVM 0.9938 0.9914
e Max Pooling layer with a Pooling size: 2 -
. Dropout MLP with PCA 0.0034 0.0030
+ Convolution layer: 5-layer CNN 0.9126 0.8994
* number of filters= 8
* filter length = 16 TeSCASE dataset "\ p without PCA |  0.0041 0.0037
e Max Pooling layer with a Pooling size: 2 NeuroSVM 0.0048 0.0057
e Dropout
« Convolution layer CNN-SVM 0.7215 0.7094
ConvNet * number of filters= 8 Deep K-TSVM 0.9983 0.9966
* filter length = 8
e Max Pooling layer with a Pooling size: 2 . . . .
« Dropout examined this criterion for the proposed model to evalu-
o Convolution layer ate the robustness of the deep model with some previous
. It}l‘llmblef Of}f‘heng:S work. Table. 4 reports the attack accuracy of our proposed
i( th = . . .
o enen=s o method and its competitors, multilayer perceptron [18] and
e Max Pooling layer with a Pooling size: 2 .
« Dropout 5-layer CNN [35], NeuroSVM and CNN-SVM based side-
o Convolution layer channel attacks. The bold values show that our proposed
:: ‘:i‘l’tmble‘ "fhﬁ“e;: 8 model performs better than MLP, 5-layer CNN, NeuroSVM,
€r len =
. Dot and CNN-SVM.
o Input Dense layer: 512 neurons From Table. 4, we can notice the following:
+ Output Dense layer: 256 neurons o Our model outperforms its competitors when applied on
both datasets, however, the accuracy for 5-layer convolu-
o Input layer: the the number of samples in the processed trace tional neural network on masked TeSCASE dataset has
e DKTSVM-1: 100 neurons . . . .
Deep o DKTSVM-2: 64 ncurons reached a high value of (91.26%) which is still less than
K-TSVM| o Output layer: 256 neurons the accuracy of our Deep K-TSVM (99.83%).
« MLP with PCA on masked TeSCASE dataset has the

lowest accuracy among the other models.

We also investigated the effect of pre-training on the accu-
racy of our model, which is shown in Figure. 7. It can be con-
cluded that the proposed model performs better when applied
to two datasets using the pre-training method provided by
RBM.

A. PERFORMANCE ANALYSIS OF UNMASKED AES-128
Figure. 8 shows the correct key rank according to the number
of traces for unmasked TeSCASE and ASCAD datasets when
attacking the third byte of the key with five different models.
From these results, we can conclude the following:

o The Deep K-TSVM even with a single trace outperforms
the four other models since it has the lowest key rank
(better performance). The 5-layer CNN performs better
than the other ones except for our proposed model.
5-layer CNN requires about 200 power traces to reach
a stable key guess while the CNN-SVM requires at least
400 attack traces to reach a stable key guess, however,
it has a better performance than MLP with the PCA
model and the NeuroSVM.
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FIGURE 8. “Average key rank” for the third key byte of unmasked AES.
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FIGURE 9. “Average key rank” for the third key byte of masked AES.

o The MLP with PCA performs worse compared to MLP
without model on both datasets. This is because the
PCA may remove some data components which are
informative for linear classification representation, and
negatively impact the accuracy of the non-linear profil-
ing model of the MLP network.

B. PERFORMANCE ANALYSIS OF MASKED

AES-128 DATASETS

We have also evaluated our model over protected hard-
ware implementation, and apply the proposed model to the
AES-128 dataset with masking countermeasures. The mask
schemes for ASCAD and TeSCASE datasets are described
in [16] and [36] respectively. Figure. 9 shows the average
key rank for our proposed model and its four other competi-
tors, multi-layer perceptron [18] and 5-layer CNN [35], Neu-
roSVM, and CNN-SVM based side-channel attacks accord-
ing to the number of traces.

From Figure. 9(a), it can be concluded that our model
performs better than other neural networks. The5-layer CNN
performs worse at attacking protected datasets than attacking
unmasked AES-128, which means the masking techniques
make it hard to retrieve the key.

Figure. 9(b) shows the result of attacking to masked AES
implementation on ASCAD dataset [16]. According to the
results presented in this section, it is obviously illustrated
that our Deep K-TSVM performs much better than its four
different competitors.

VI. CONCLUSION
We proposed a new deep architecture for profiled
side-channel attacks which includes two main modules,

VOLUME 9, 2021

Number of attack traces

(b) Key guess for masked ASCAD dataset

feature extraction, and classification modules. Our proposed
Deep k-TSVM uses a deep architecture of RBM to map
datasets (power traces) and learn the pattern of inputs, and
it uses TSVM as the classifier. We trained our deep neural
network in two different steps. First, we pre-trained the
parameters with RBM by the captured power traces from
the copy version of the victim device, and in the second
step, we fine-tuned all parameters using gradient descent. Our
Deep K-TSVM is a better attack compared to the state-of-the-
art profiling attacks such as MLP and convolutional neural
network-based side-channel attacks. Finally, we showed that
our model with a single power trace of the AES-128 is able
to recover the secret key with a success rate of > 99% and
a key rank of < 10 on two different datasets, ASCAD, and
TeSCASE.
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