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ABSTRACT Morphing attack is an important security threat for automatic face recognition systems. High-
quality morphed images, i.e. images without significant visual artifacts such as ghosts, noise, and blurring,
exhibit higher chances of success, being able to fool both human examiners and commercial face verification
algorithms. Therefore, the availability of large sets of high-quality morphs is fundamental for training and
testing robust morphing attack detection algorithms. However, producing a high-quality morphed image is an
expensive and time-consuming task since manual post-processing is generally required to remove the typical
artifacts generated by landmark-based morphing techniques. This work describes an approach based on the
Conditional Generative Adversarial Network paradigm for automated morphing artifact retouching and the
use of Attention Maps to guide the generation process and limit the retouch to specific areas. In order to
work with high-resolution images, the framework is applied on different facial crops, which, once processed
and retouched, are accurately blended to reconstruct the whole morphed face. Specifically, we focus on four
different squared face regions, i.e. the right and left eyes, the nose, and the mouth, that are frequently affected
by artifacts. Several qualitative and quantitative experimental evaluations have been conducted to confirm
the effectiveness of the proposal in terms of, among the others, pixel-wise metrics, identity preservation, and
human observer analysis. Results confirm the feasibility and the accuracy of the proposed framework.

INDEX TERMS Automated artifact retouching, conditional generative adversarial networks, deep neural

networks, face morphing, single-image morphing attack detection.

I. INTRODUCTION

The results of public evaluation campaigns [1] confirm
that Face Recognition Systems (FRSs) are able to achieve
impressive levels of accuracy, especially when operating in
controlled scenarios. Unfortunately, several recent studies
also confirm that digital image manipulations can severely
affect FRS performance: this is especially true for the
so-called face morphing attack [2], where face images
of two individuals, usually referred to as criminal and
accomplice, are mixed to produce a new image (morphed
face) containing facial features that belong to both subjects.
In this way, the two subjects can share the same legal
document, e.g. the ID card or the passport, and, in particular,
the criminal can elude identity-based controls. Nowadays,
face morphing is considered one of the major security
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threats [3], particularly in the context of electronic identity
documents, such as the electronic Machine Readable Travel
Document (eMRTD), where it can be successfully exploited
for criminal intents, for instance, to fool Automated Border
Control (ABC) systems thus overcoming security checks at
the borders. Furthermore, the availability of a number of
free or commercial software for face morphing generation
makes the risk even more serious. For this reason, the research
community is devoting significant efforts to the development
of Morphing Attack Detection (MAD) algorithms [3], able to
discriminate between bona fide (not manipulated) images and
images generated by a morphing process.
Generally, the chances of success of a morphing attack
depend on two key elements [4]:
o Identity: A morphed image should be successfully
matched to both parent subjects;
o Quality: A morphed image should have a high quality,
i.e. it should be free from any visible and non-visible
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artifact typically generated by the morphing process that

could be spotted by a human observer, for instance,

a police officer, or a FRS.
Different morphing generation techniques can lead to differ-
ent results in terms of image quality. Most of the existing
algorithms are landmark-based: they perform a combination
of image warping and texture blending, with respect to some
reference points (e.g. eyes corner, nose, mouth, etc.) detected
in the two images. As an alternative, some approaches based
on Generative Adversarial Networks (GANSs) [5] have been
recently proposed [6], [7]. The advantage of landmark-
based algorithms is that the degree of similarity with the
two parent subjects can be easily controlled by modifying
the morphing factor, which quantifies the presence of the
two subjects in the morphing; on the other hand, the main
limitation of these techniques is that visible artifacts are
produced, in particular in the proximity of the main facial
features (eyes, nose, mouth) due to insufficient or imprecise
landmark positions detected. The generation of high-quality
morphed images requires a tedious and time-consuming
manual post-processing aimed at manually retouching the
images to remove any visible artifact. On the contrary, GAN-
based approaches usually overcome this limitation since
the generated images are not affected by the presence of
morphing artifacts, even though some specific GAN artifacts
could arise [8]; their main limitation is that generating high-
resolution images is quite complex, in terms of video memory
requirements and training stability. In addition, the similarity
with the parent subjects is more difficult to control and the
resulting image is likely to fool automatic FRSs but not
human experts [7].

This work represents a first investigation towards the
definition of a morphing strategy able to combine the
advantages of the two aforementioned morphing categories.
Indeed, the underlying idea is to use a landmark-based
approach to generate the morphed images and to delegate
to a Conditional GAN (cGAN) [9] the subsequent post-
processing stage aimed at removing the morphing artifacts.
Then, the proposed method can exclude the need for human
manual intervention on morphed images and can simplify
the generation of large datasets of high-quality images to
train and/or test MAD algorithms, especially if deep learning-
based.

As visually summarized in Figure 1, the presented
framework receives as input the morphed image and a related
Attention Map, aimed at highlighting the image artifacts
and computed through a logical operation on the warped
images belonging to the accomplice and the criminal (see
Section III-B). The morphed image is then cropped; each
crop contains a portion of the face usually affected by
artifacts: in this work, we focus on the left and right eyes,
the nose, and the mouth areas. Then all the crops are
improved by the cGAN and are blended in the initial morphed
face, following the procedures analyzed in Section III-D,
obtaining an image with a reduced amount of artifacts,
in terms of ghosts, blurring, and texture inconsistency.
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FIGURE 1. Simple outline of our task. Given as input the whole face, four
different patches are cropped around the eyes, the nose and the mouth
and the attention map is computed. The framework outputs retouched
patches that are blended on the original input face.

A detailed overview of the proposed framework and opera-
tions is reported in Figure 2.

To validate our approach, we conduct extensive analysis on
the retouched morphed faces. Among the others, we exploit
pixel-wise metrics in order to define the best approach to
create the Attention Map and to quantify the overall quality
also against competitors, as reported in Section IV-B. Then,
in Section IV-C, we test the ability to preserve the identity of
the retouched patches, and we show that the final retouched
morphed faces are more realistic from the point of view of
MAD algorithms and humans. The last part of the paper
(Section V) draws some conclusions and highlights future
research directions.

Il. RELATED WORK

The treats to computer vision and biometric systems
given by the face morphing attack was first described by
Ferrara et al. [2], picturing a use case where a criminal wants
to fool ABC gates at the airports. Afterward, face morphing
has raised the attention of the research community [4], [10],
since morphing attack represents a severe threat for all
the applications that rely on automatic face verification
algorithms. The chances of success for a morphing attack
are also related to the image quality and the capability
of automatically producing realistic morphed images is a
desirable feature for any morphing pipeline since it will avoid
the slow and tedious manual retouching.

Face automatic retouching was recently explored by
Shafaei et al. [11] using GANs. Though the proposed method
showed good results on a variety of facial imperfections,
it was not developed to detect and correct the typical morph-
ing artifacts, making a direct comparison with our proposal
and [11] not trivial to pursue. Wang et al. [12] proposed a
method to automatically detect image manipulations (mainly
warping) inserted during the retouching of face photographs.
The proposed approach is also able to undo the warp and
reconstruct the original image without any modification.
While the method produced good reconstructions, it cannot
be used in our scenario, since the approach requires the
optical flow of the image transformation, and we do not have
access to such information.
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FIGURE 2. Overview of the proposed framework. In the blue rectangle, it is represented the morphing process that relies on the warping and blending
operations. The two warped images are then used to compute the attention map (orange, Section 111-B), while the landmarks detected on the accomplice
warped face are used to crop the patches and to compute the weighted mask (grey, Section 111-D) for the final blending. In the green rectangle, the core
of the proposed system is shown: each patch is processed with the related attention map through a conditional GAN to produce a retouched patch

(Section 111-C), and all the generated patches are finally blended.

Apart from retouching, detecting if an image was forged is
a complex problem per se. In recent years, many approaches
have been proposed in the field of image forensic to
recognize if an image was forged and to detect the forged
regions. Bondi et al. [13] proposed a model to detect spliced
images by looking at patches that come from different
camera models. Another possible approach is to directly
identify physical inconsistencies on different patches of the
image [14]. Popescu er al. [15] discovered that common
image forgery techniques may alter the underlining statistic
of images, even without leaving any visual clue in the results.
Their proposed method looks for these correlations in order
to detect traces of image falsification. Another approach
to identify forged images is based on the detection of
inconsistent reflections and geometric inconsistencies [16].
However, the operations performed by morphing algorithms
are often complex and could be difficult to model. Moreover,
the discussed approaches only detect image manipulations
but do not undo or correct them. Our approach, by contrast,
is an end-to-end model that expressly detects and retouches
the morphing artifacts.

One of the most similar works to our proposal was
proposed by Seibold er al. [17], in which a style transfer
approach, inspired by [18], is adopted for morph enhance-
ment. The authors noted that the morphed images are often
blurred and present fewer details than real face images
(especially pores, scars, nevi, etc.). In this case, a pretrained
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CNN is used to extract style and content features from the
contributing images and the morphing image respectively.
Following the typical style transfer algorithm [18], the con-
tent will be preserved (so the morphed image should not
change so much and the identities should be maintained)
but the style of the resulting image will be more similar to
a real image (sharper borders, enhanced texture, etc.). This
procedure has the advantage of not requiring any training
or fine-tuning on the particular dataset, making it a general
strategy for face image enhancement. However, the objective,
in this case, seems to be a more general improvement of the
image texture, rather than an explicit removal of morphing
artifacts. Moreover, the limited size of generated images and
the impossibility to control the retouched areas represent the
main limitations of this method, as described by the authors
in the experimental evaluation of this paper.

Recently, GANs have been explored to create morphed
images. In the work by Damer er al. [6] the two parent
subjects are merged in the latent space, using an encoder-
decoder architecture and a discriminator to enforce realism
in the results. Though the results do not present artifacts
due to the misalignment of landmarks, and the morphing
can be done directly using the two images without any
further pre-processing, the method in [6] produces images of
dimension 64 x 64, which do not meet ICAO standards [19].
An improvement was recently proposed by Zhang et al. [7],
using an architecture based on StarGAN [20]. As anticipated
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before, GAN-based methods do not produce the typical
artifacts of landmark-based morphing algorithms, since those
artifacts are the result of a misalignment or absence of facial
landmark or different face geometries. However, GAN-based
approaches also insert specific artifacts in the results [8].
Moreover, some parts of the face such as hairs or beards
are usually blurred and flattened in a way that is easily
recognizable by human observers. For these reasons, in our
approach, we mainly focus on the correction and retouching
of morph images produced by landmark-based algorithms.

Since morphed images represent a severe threat to security,
a lot of research effort has been devoted to the detection of
the Morphing Attack Detection (MAD) task. Generally, mor-
phing attack detection can be divided into two branches [3],
[21]: Differential Morphing Attack Detection (D-MAD) and
Single-image Morphing Attack Detection (S-MAD). In the
former method, the detection is based on two input images,
and it consists of deciding if the first image (probe) is
morphed or not, relying on the second image which is a
securely live-captured image of the subject. In the latter
methodology, only one image is available, so the morphing
detection should be based solely on image analysis and
statistics, assuming that the application of a morphing process
leaves traces and anomalous patterns in images.

In this work, we focus on image retouching to improve
the quality of morphed images, and the effectiveness of
the proposed approach can be assessed also observing the
effects on morphing attack detectors (MAD), for which the
retouched images should represent a more difficult test.
We concentrate on the S-MAD scenario since is more suitable
for our data and operations, and it is more similar to how
people, such as police officers, evaluate photographs during
the issue of identity documents. S-MAD was addressed using
afusion of several classical image features, such as Histogram
of Oriented Gradient (HOG) [22], Local Binary Patterns
(LBP) [23], Binarized Statistical Image Features (BSIF) [24]
and using a Support Vector Machine (SVM) [25] classifier
with an RBF kernel [26]. A similar approach with different
features and a fusion at the score level was proposed by
Scherhag et al. [27]. An SVM was also used as a classifier by
Zhang et al. [28], computing the Fourier spectrum of sensor
pattern noise as image features. Raghavendra et al. [29]
proposed to extract features using two different pretrained
deep neural networks. The authors claimed that, even if
the two networks were trained using the same dataset,
the features are different and complementary. Following the
feature extraction, the images are classified as morphed
or real by a Probabilistic Collaborative Representation
Classifier (P-CRC). In this work, we focus on two recent
works. The first one is described in [30], in which an
ensemble of features (HOG, LBP, BSIF) is extracted from
different scales and color spaces of the same input images.
The set of features is then classified through a Collaborative
Representative Classifier (CRC) [31], obtaining state-of-art
results in public evaluation benchmarks. The second one is
reported in [32] and it is based on a deep learning-based
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paradigm, i.e. a deep neural network is trained and exploited
in order to predict if a single input image is morphed or not.
In Section I'V-C we will use both methods to assess the quality
of the morphed images retouched by the proposed framework.

Ill. PROPOSED METHOD
An overview of the proposed method is reported in Figure 2.
As depicted, the goal of the whole framework is to output
a retouched morphed image, i.e. an image without artifacts
such as shadows, ghosts, double edges, blurring, and similar.
The input of the core of the framework is represented by
a morphed image and the related attention map. These two
images are cropped relying on the landmark positions, they
are divided into four patches (the right and left eyes, the nose,
and the mouth) and used as input for each conditional
GAN. The attention map generation procedure relies on
the warped images of the accomplice and the criminal
used during the morphing process and consists of a color
space conversion followed by a bit-wise logical operation.
Finally, the generated patches are merged through a weighted
blending procedure into the original morphed face in order to
obtain the final retouched morphed face.

Thus, from a formal point of view, the core of the proposed
method consists in learning a function defined as:

\IJ: R3XWX}'I® RnXWXh — R?}XWX}'I (1)

where function W takes as input an image with shape
(3 +n) x w x h, resulting from the concatenation along the
channel dimension between an RGB image (3 channels) and
an Attention Map (n channels), and outputs an intensity image
in the RGB domain (3 channels). In this formulation, w and
h represent the width and the height of both intensity images
and Attention Maps.

A. PATCH PREPARATION

We empirically defined four main regions in which manual
intervention is usually required to correct artifacts. These
areas include the left and right eyes, the nose, and the
mouth. The morphing process generally produces ghost
artifacts also in the face surrounding region (i.e. hairs), but
most morphing algorithms usually adopt automatic post-
processing able to remove such defects by simply substituting
the hair and background area with that of one of the parent
images. For this reason, we will focus here only on the
internal face region. The cropping procedure is based on
landmarks extracted through the DLib library [33]. Therefore,
the indexes of landmarks follow the convention proposed
in [34]. Left and right eyes are cropped relying on a bounding
box with top-left origin (xp, yp) and width wp and height hp
computed as follows:

wg, hp = (x27 — x23) x 1.2

X44 + X45  WB
Xp= —— — —

2 2

Ya4 +y4s  hp
= )

2 2
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The bounding box for the nose patch, instead, is defined
as:

wg, hp = (x36 — x32) X 1.6

wa
Xg = X30 — —
B 30 )
X31 — X29
YB = X30 = 5 3

Finally, in order to produce a square crop and to avoid
the presence of facial details already included in the other
patches, the mouth is cropped including a large portion of the
chin:

wg, hp = (xs55 — x49) X 1.2
X51+X53  wgp

XBp =
2 2
X51 +X53 X520 — X34
= — 4
VB > 3 4

An example of resulting patches can be observed in Fig-
ure 1.

B. ATTENTION MAPS

The Attention Map is introduced to drive the retouch
performed by the network and to focus its attention on the
image regions affected by morphing artifacts. Conveying the
modifications produced by the network to very small areas
is fundamental to preserve the identity associated with the
morphed image and to obtain high-quality results.

The map is built from data made available during the
morphing algorithm described in [35], available from the
Biometric System Laboratory website! and briefly recalled
here. Given two images [y and /1, the related facial landmarks
Py and Pj, and the morphing factor« € R, 0 < o < 1
representing the weight associated to image /1, morphing can
be defined as:

Iy =0 —a) -wpyp,o) +a-wp,p, 1) (5)

Indeed, the morphing pipeline can be viewed as a
combination of two operations:

o image warping, represented by the function wp,_p,,
needed to geometrically align the landmarks of the two
input images to an intermediate position, according to
the morphing factor «;

« texture blending, obtained as a weighted average of the
pixels’ intensity of the two warped images.

Given the two input images, properly aligned by warping,
the artifacts are usually generated by the blending process,
especially in those regions where the texture of the two
images is noticeably different: this is common, for instance,
in the pupil region or the eyelids, which are usually not
perfectly aligned.

Under this assumption, the proposed Attention Map is
derived by determining the texture details present in one of
the two images and not in the other, by means of a pixel-level

1 https://biolab.csr.unibo.it/research.asp?organize=Activities&select=
&selObj=220
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(a) M

(b) Mo

(c) M3

FIGURE 3. Samples of attention maps computed using the procedures
described in Section III-B. As depicted, each attention map focuses on
different facial details and therefore leads to different final results,

as reported in Table 2.

bit-wise logical exclusive-or operation (XOR, here referred
with v symbol). The XOR operation is applied on a specific
channel of the warped images converted to a given color
space. Let’s define wo = wp,— p,(lo) and w1 = wp,p,(I1)
the two parent images properly warped according to the
morphing factor «. The initial attention map is obtained as
follows:

Xe(wo, wi) = c(wo) V c(wr) (6)

where ¢ denotes the color space transformation and the
selection of the channel of interest. The values too low (<1t})
or too high (>1,) are discarded since they are usually related
to negligible texture differences and lightning variations
respectively. We will refer to the results of the thresholding
operation as X .(wg, wy). In our experiments, we empirically
fixed the two thresholds as follows: 7; = 50, 7, = 200.

With regard to the channel used for XOR computation,
several alternatives have been evaluated and the most
promising results have been observed for: i) RGB image
converted to grayscale (average of the three channels); ii) X
channel (related to red sensitivity) of the image converted to
XYZ color space.

Also for the final attention map, two alternatives are
proposed: i) grayscale map coinciding with X; ii) RGB
map, obtained by a pixel-wise multiplication between X', and
the difference between the two warped images |wg — wi],
computed in the RGB color space and clipped to the proper
range.

Three different combinations of color channels and
gray/color output are evaluated in this work:

« Attention Map M:
My = XRGB—Gray(Wo, w1) @)

« Attention Map M5:
My = XRGB—GrayWo, w) © lwo — w1l (8)

o Attention Map M3:
M3 = Xxyz—x(wo, wi) © [wo — wi| ©)
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FIGURE 4. Overview of the conditional GAN paradigm exploited in the proposed framework. The input of the system is a concatenation (at channel level)
between an RGB patch (here with the eye) and an attention map (see Section I11-B). The generator network (in red) outputs the retouched image, while
the discriminator network (in green) tries to classify whether the input image is generated (fake) or not (real).

In Equations 8 and 9, |wg — wq| denotes the absolute
difference of the warped images. As shown in Figure 3,
the three maps provide different information to the network;
while M7 only highlights the areas where morphing artifacts
are more likely to appear (see Figure 3a), M> and M3
provide additional color information that might be exploited
by the network for artifact retouching (Figure 3b and 3c).
A comparison between M, and M3 can be interesting since
M, is constructed by giving equal importance to all color
components, while M3 emphasizes the contribution of the red
color, particularly relevant for some face parts (e.g. nose or
mouth). The experimental results will provide a comparative
evaluation of the three maps.

C. CONDITIONAL GAN

The core of the proposed framework is based on a Conditional
GAN [36], i.e. a GAN in which the generation is conditioned
through a given input image, as depicted in Figure 4. Taking
inspiration from the work of Isola et al. [9], the architecture
is based on a Generator network (here referred to as G) and
a Discriminator network (referred to as D). In this way, G
corresponds to the function W (see Eq. 1) that estimates an
image without visual artifacts, while D represents a function
able to distinguish if an input image is “fake” (generated) or
“real” (ground truth).

1) ARCHITECTURES

Network G is designed following the U-Net [37] architecture,
i.e. a fully convolutional deep neural network with skip
connections between the layer i and n;, where n is the
amount of total convolutional layers. The first part of the
Generator acts as an encoder, mapping the input data in
a 1024-dimensional embedding. Four convolutional layers
with 128, 256, 512 and 1024 feature maps and kernel size
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of 5 (stride s = 2) are used. The Leaky ReLU [38] with
a negative slope of 0.2 is used as activation functions and
batch normalization is used to reduce the internal co-variance
shift [39]. The latter part of the network is a decoder, able
to generate images starting from the embedding space. The
up-size procedure is based on four transposed convolutional
layers with kernel size of 5 (stride s = 2) and 512, 256, 128
and 64 feature maps. In this case, the ReLU [40] is exploited
as activation function.

The discriminator network D predicts the probability of
an input image to be a real or generated image. Following
the principles presented in [9], [41], the D network is
implemented as a convolutional PatchGAN classifier, which
classifies 70 x 70 (in our experiments) patches belonging to
the input image as generated or not. This classifier fits with
our general goal since it is able to capture texture and style
details [9], improving the overall quality of the generated
images.

2) TRAINING

Networks G and D are trained following the well-known
adversarial paradigm [5], based on the so-called min-max
game. From a mathematical point of view, the training
operation can be formalized as the optimization of the
following problem:

min max Exwpdpt(x)[log(D(x))]
'd

6, 0
+ Eypgymllog(l = D(G(y))]  (10)

in which D(x) and 1 — D(G(y)) are the probabilities of being
a “real” or “fake” (generated) image, respectively. For the
training of the discriminator network, we use the Binary
Cross Entropy loss (Laqy), while for the generator we use a
weighted combination of the adversarial loss, i.e. the opposite
of the discriminator loss, and the L loss to compute the final
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(a) Direct patch replacement

(b) Weighted patch blending

FIGURE 5. Visual example of the weighted blending process. In (a) a
direct patch replacement of the original image is applied (without
weighted blending) and visible edges appear at the patch borders; in
(b) the proposed weight map is applied for blending and the result is
much smoother. (best in colors).

loss Lg as follows:

Lo = —Lun 2 S 116 - ] an
G = adv N i Yillt

i=1

where I and y are the input and the target image, respectively,
and A = 100. Adam [42] is used as optimizer for both the
networks, with an initial learning rate 2 - 1074, B1 = 0.5,
B2 = 0.999 and a batch size of 1. In all of our experiments,
the size of the input images is first rescaled to 286 x 286
through a bicubic interpolation, and then randomly cropped
to the final size of 256 x 256.

D. PATCH APPLICATION

Once the retouched patches have been generated, they have
to be seamlessly integrated into the morphed image. This
process is not trivial: a direct patch replacement, in fact,
is unfeasible since some visible edges may arise at the borders
as clearly shown in Figure Sa.

The solution adopted is an image blending that locally
combines the original morphed image and the retouched
patches on the basis of a weight map determined according
to the local landmark density. Close to the landmarks, in fact,
the contribution of the retouched patches to the final image
must be predominant; as we move far away from such
reference points, the weight associated with the original
morphed image must increase. This blending operation
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guarantees a smooth transition and avoids the creation of
visible edges (see Figure 5b).

The input for the retouched patch blending is the original
morphed image /, and a set of generated patches P = {P;,
i = 1...K} where each patch P; = (b;, L;, R;) is associated
to the region of interest in the image b;, the set of reference
landmarks L; and the retouched patch image R;. The result
of patch blending is the retouched morphed image I. The
pseudocode of the algorithm is described in Algorithm 1;
the reference points and distances used in the code are listed
in Table 1, where the landmark used refer to the numbering
convention proposed in [34].

Algorithm 1 Retouched Patches Blending
procedure ApPLYPATCHES(/, P)
I <1
for each P, € P, P; = (b;, L;, R;) do
w <— width(b;), h < height(b;)
Resize the patch image R; to size w x h
Initialize M to an empty image of size w x h
for each /; € L; do
¢ < reference center (cy, cy) for /; (see Table 1)
¢/ <~ map c to patch coordinates b;
dy, dy < reference size for /; (see Table 1)
Oy < §-dy,0y < 5-dy
G < N(¢, (o, 0y)) of sizew x h
M <« element-wise maximum (M, G)
end for
Smooth borders in M
M <« M /max(M)
I[b;] < M -Ri +(1 —M)-I[b;]
end for
end procedure

The size of the patches provided in output by the network is
fixed (256 x 256) and an initial resize is needed to rescale the
patch to the original size. Each patch P; € P is then applied
to the unretouched morphed image by a local blending
procedure based on a pixel-specific blending weight. The
weight map is built as a multivariate Gaussian distribution
reflecting the presence of landmark clusters in the patch
(each patch may contain more than one landmark cluster, see
Tablel). For each cluster, in fact, the algorithm generates a
specific Gaussian distribution N/ whose parameters (center
and standard deviation) are determined on the basis of the
position of the landmarks; for instance, for the nose patch,
the highest weight is assigned to the nostrils area. A further
Gaussian smoothing is finally applied to the whole patch
weight map on the borders to further reduce the presence
of the visible edges in the final image. After weight map
computation, the weighted patch blending is finally executed
(see Figure 2).

IV. EXPERIMENTAL RESULTS
In this section, we report several tests that have been carried
out on the proposed framework. In Section IV-B, we analyze
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TABLE 1. Reference landmarks for the different landmark clusters of the four patches. The given values are used to generate the Gaussian weight map
associated to the landmark cluster: dxy and dy, represent, respectively, the reference width and height, while cx and ¢y are the coordinates of the central
point (see Algorithm 1). Further details about landmarks indexes are reported in [34].

Patch Cluster dy y Cy cy
Eyebrows  za7 — 223 (y23*y25);r(1u27*y25) 1273123 y23+y£2))5+y27
Left Eye Eye T4 — T43 (y48*y44)42r(y47*y45) 7«'46;7343 y44+y45-£y47+y48
' Eyebrows  z22 — 218 (yls—yzo);(wz—ym) 1'22J2rl'18 y18+v20+v22
Right Eye Eye T40 — T37 (942*938);(1141*3139) 140J2r$37 y3s+y391y41 +ya2
Nose Nose 36 — T32 xr34 — T30 34 Y34
Mouth Mouth Tss — Tag T58 — T52 155J2r$49 y51+y531y57+y59

and compare the results of the system in terms of pixel-
wise metrics computed on single patches. This analysis
allows to choose the best hyper-parameters and settings,
such as the type of Attention Map, for the proposed system.
Finally, in Section IV-C, we show how the framework
performs on real morphed images, exploiting the weighted
blending procedure to obtain a whole face starting from single
retouched patches. This investigation is useful in order to
assess the general quality of generated images, to provide
quantitative results in terms of identity preservation and
chances of deceiving morphing attack detection algorithms
and human observers.

A. FRGCgs AND FRGCy, DATASETS

The training of deep neural networks and a quantitative
evaluation of the proposed approach would require a large
dataset of morphed images before and after manual post-
processing. Unfortunately, such a dataset is not currently
available. Therefore, we decided to generate images start-
ing from the Face Recognition Grand Challenge (FRGC)
dataset [44], chosen for the great variety of high-quality
face images. For our experiments, we considered a subset
of 1987 frontal images of different subjects, acquired in
a controlled environment and with a uniform background.
From this initial set of images, we create two datasets, here
referred to as FRGCg and FRGCy,, respectively. For both
datasets, the morphing algorithm used for image generation
is described in Section III-B. In particular, we compute facial
landmarks through the DLib libraries [33] and we use a
morphing factor « = 0.5.

FRGCs is intended for network training and quantitative
evaluation of the results obtained, in order to define the
experimental setting of the proposed framework in terms of
selection of the best map type and the following ablation
study. Since we have no pairs of morphed images before
and after manual retouching (respectively with and without
artifacts), we decided to simulate them. In particular, we gen-
erated the image with artifacts by morphing two images of
the same subject, and we used as reference the first image
used for morphing. The pairs thus obtained are reasonably
similar to the real case since the difference between the two
images is only related to morphing artifacts and not to a
different identity (as it would happen if we morphed two
different subjects). Some artifacts will be generated by the
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different subject’s pose, however, to further increase the
presence of artifacts, we applied a random perturbation to
the landmarks of the first image used for morphing, thus
explicitly causing a misalignment of the reference points. The
perturbation applied consists of an affine transform including
a random combination of rotation (—5° < r < +5°),
translation (—7px < ¢t < +7px) and scaling (0.95 < s <
1.05). This perturbation is the same for all the landmarks,
to avoid the generation of unrealistic effects during morphing.
Overall, we generated 4575 images, split into the training
set (3555 image pairs of 196 subjects) and the test set (1020
image pairs of 32 subjects). Training and testing subjects (and
datasets) are therefore disjoint. Image size in FRGCg varies
from 864 x 648 to 1808 x 1356, with an inter-eye distance
in the range [168, 357]. No compression is applied to the
generated images.

FRGC), is designed to be used as a testing set for
qualitative evaluation of the generated images as well as
for a number of experiments related to identity preservation,
human observer evaluation, and MAD testing. It has been
generated by morphing images of two different individuals.
In particular, for each of the 32 subjects (11 women, 21 men)
in the testing set previously defined, four different images
are morphed with one image of all the other subjects of
the same gender (excluding symmetric pairs), thus leading
to a total of 1060 morphed images. It is worth noting that,
since each subject is mixed with all the other subjects of
the same gender, the resulting dataset comprises morphed
images of heterogeneous quality, thus making possible a
more comprehensive analysis of the results. The images
in FRGCy, are uncompressed, with a size ranging from
992 x 744 to 1739 x 1304, and an inter-eye distance in the
range [195, 346].

B. FRAMEWORK ANALYSIS THROUGH FRGCg

As mentioned before, FRGCy allows computing quantitative
results due to the presence of a reference image. Therefore,
we compare two images, i.e. the reference and the retouched
patch, through a variety of pixel-wise metrics. We imple-
mented the metrics described in literature works [43], [45],
being aware that the evaluation of the visual quality of images
is still an open problem, as highlighted in [46]. Specifically,
we use the L and L distance, the absolute and square-
root differences, the Root Mean Square Error (RMSE), and
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TABLE 2. Pixel-wise metrics computed on generated images from FRGCg dataset to compare the performance of the framework using different attention
map types in input. Further details about metrics are reported in Section IV-B and [43]. On the top, arrows indicate the positive changing direction,
in which better performance corresponds to a variation that follows the arrow. At the bottom of the table, average values computed on all patch types are

reported. As shown, M, represents the best choice.

Norm | Difference | RMSE | d-metrics 1 Indexes 1  Perc. |

PatchType MapType —; ""/, Abs Sqr  Lin Log S 125 1.25% 1.25% PSNR SSIM LPIPS
M, 734 4636 007 115 104 024 038 274 293 297 2839 0.63 2905

Right Eye Mo 714 4511 007 LIS 101 024 037 275 293 297 2881 063 2929
M; 6.57 4224 007 095 953 023 038 278 294 298 20.16 0.65 2.844

M, 7.53 4664 007 LI3 105 025 041 275 293 298 2829 0.62 2.926

LeftEye Mo 759 4775 008 122 107 026 042 274 293 297 2821 0.60 3.063
Ms 7.04 4457 007 107 101 025 042 277 293 297 2877 0.61 3.089

M, 7.52 4433 007 096 100 046 079 282 296 299 2886 0.57 3.115

Nose My 621 3715 006 066 838 043 074 289 298 299  30.17 0.60 2.894
Ms 793 4744 007 116 107 055 095 277 294 297 2867 054 3257

M 763 4571 007 099 103 0.8 028 282 296 299 2844 056 3312

Mouth Mo 701 4299 006 086 970 0.7 027 285 297 299 2896 058 3211
M; 6.71 4106 006 081 926 0.6 026 286 297 299 2945 059 3.133

M, 7.50 4576 0.07 106 103 028 046 278 295 298 2850 0.60 3.065

All Pacthes Mo 699 4325 007 097 975 027 045 281 295 298 2903 0.61 3.024
Ms 706 4383 0.07 100 988 030 050 279 295 298 2901 060 3.081

three §-metrics, i.e. the percentage of pixels under a given
threshold. In our analysis, we include also the Peak Signal-
to-Noise Ratio (PSNR), that estimates the logarithmic level
of noise defined as:

max /

PSNR = 10 - log; (12)
where max/ is the maximum possible value of the ground
truth image / and the generated image (in our experiments,
we set max/ = 255). We also use the Structural Similarity
(SSIM), which estimates the perceived visual similarity of
two images, defined as:

Cpw, w, + €1)2ow, , + €2)
(13, + 13, +e)ol +o2, +c2)

SSIM(w12) = (13)

Given two windows wi, wy of equal size, Wy, ,, Ow,,
are the mean and variance of wj,wy while ¢y are
used to stabilize the division. Further details are reported
in [47]. We believe that these metrics can capture the
differences in pixels between the real and the retouched
images.

Moreover, we exploit the Learn Perceptual Image Patch
Similarity (LPIPS) [48],2 based on deep neural network
activations (in our tests we use VGG-16 [49] trained on
Imagenet [50] dataset), to estimate the visual quality of
generated images. In the work of Zhang et al. [48], it has
been shown that LPIPS metrics is strictly related to human
judgment.

1) ATTENTION MAP ANALYSIS

As a first step in the performance analysis of the framework,
we investigate the impact of the use of different types of
Attention Maps. Specifically, we compare the three different

2https:// github.com/richzhang/PerceptualSimilarity

VOLUME 9, 2021

maps, referred to as M, M> and M3, computed as detailed in
Section III-B and depicted in Figure 3.

Results are reported in Table 2, in which, for the sake of
comprehension, the first lines show the quantitative results
obtained on each single patch type, and the final row contains
the average values computed on all patch types. Average
values indicated that the second type of the map, M>,
represents the best choice for the framework, even though for
certain metrics the difference of values is limited. However,
the higher PSNR value reveals that the output tends to
be less affected by noise. Furthermore, L; and L, metrics,
computed on the distance between pixel values, indicate that
the framework is able to retouch patches in specific areas.
Starting from these considerations and results, we selected
the hyper-parameters empirically found in this experiment
and we used M; as the attention map in all the following
experiments.

2) ABLATION STUDY

As the second step, we directly analyze the impact of
using M; in input through an Ablation Study. In particular,
we compare the performance of the presented framework
with and without the use of the Attention Map. Results are
shown in Table 3, in which we report, as in the previous
case, the pixel-wise metrics computed on each patch type
and, at the bottom of the table, the average evaluation of the
collected values.

We observe that the impact of the Attention Map is largely
positive since all the pixel-wise metrics show a substantial
improvement. In particular, the PSNR metric value (in
logarithmic scale) reveals that the use of Attention Maps
can significantly reduce the amount of noise in generated
images, i.e. the conditional GAN is focused to change only
a limited amount of pixels in the patch. Also, the distance
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TABLE 3. Pixel-wise metrics computed on the FRGCg dataset for the ablation study of the proposed framework. Specifically, the values reflect the impact
of the use of attention maps in the input of the conditional GAN. On the top, arrows indicate the positive changing direction, in which better performance

corresponds to a value variation that follows the arrow.

Norm | Difference | RMSE | é-metrics 1 Indexes T  Perc. |

Patch Type Method ;"0 Abs  Sqr Lin Log Sel 125 1.252 1.25% PSNR SSIM LPIPS
Right Eve NoMap 7.84 5113 0.08 1.26 11.5 025 040 272 292 297 27.15 0.61 3.002
ght By Mo 7.14 4511  0.07 1.15 10.1 024 037 275 293 297 28.81 0.63 2929
Left Eve NoMap 7.62 4792 0.08 1.16 108 025 042 274 293 297 2796 0.62 3.051
¥ Mo 7.59 4775 0.08 1.22 10.7 026 042 274 293 297 2821 0.60 3.063

Nose NoMap 8.77 5272 0.08 1.29 11.9 049 0.84 276 294 298 27.11 054 3.054
Mo 6.21 3715 0.06 0.66 838 043 074 289 298 299 30.17 0.60 2.894

Mouth NoMap 824 4895 0.07 1.17 11.0 0.19 030 2.77 295 298 2795 055 3.200
Mo 7.01 4299 0.06 0.86 9.70 0.17 027 285 297 299 2896 0.58 3.211

All Pacthes NoMap 8.12 5018 0.08 1.22 11.32 030 049 275 294 2098 2754 058 3.077
Mo 6.99 4325 0.07 0.97 975 0.27 045 2.81 295 298 29.03 0.61 3.024

Retouched  Attention Map Input

Reference

FIGURE 6. Example of generated images on the FRGCg dataset. In the first line, original images with artifacts are reported. Then, the M, attention
maps, the generated and reference images are shown in the following lines. (best zoomed on screen).

metrics, ranging from L; to the RMSE confirm that the
generated patches have superior quality. Moreover, some
qualitative results are reported in Figure 7, in which we
observe that the quantitative results reflect the quality of the
generated images. Indeed, the effects of the use of Attention
Maps in the input are visible, in the three different patches.
We note that generally, the presence of artifacts is limited
in space, since visible artifacts are less scattered along the
contours of the image, such as in the eye patch of the first
line. Moreover, we note that thanks to the Attention Map
the retouching procedure is focused also on small details,
as shown in the right naris and the lips of the second and
third rows.
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3) EXTERNAL COMPARISON

Finally, we carried out a comparison between the proposed
approach and the most similar work from the recent literature,
the style transfer-based approach [17] previously introduced
and described in Section II. Quantitative results are reported
in Table 4. In the first line, referred to as “‘baseline”’, we show
the values obtained comparing reference images with initial
patches, i.e. the patches not automatically retouched by the
proposed framework: we believe these numbers provide a
baseline and increase the understanding of the real improve-
ment introduced by the retouching operation. As shown, our
approach generally overcomes the baseline and the literature
competitor in the large majority of reported metrics. L; and L;
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TABLE 4. Experimental results of pixel-wise metrics computed on generated images from FRGCg dataset. Further details about metrics are reported in
Section IV-B and [43]. On the top, arrows indicate the positive changing direction, in which better performance corresponds to a value variation that

follows the arrow.

Norm | Difference | RMSE | d-metrics T Indexes T Perc. |

Patch Type Method ;"0 Abs Sqr Lin Log Sl 1.25 1.252 1.25° PSNR SSIM LPIPS
Baseline 7.74 4889 007 118 111 024 039 275 293 297 27.65 063 3.003

RightEye  [17] 826 5557 0.08 1.63 125 0.16 025 270 290 296 2686 050 3.121
Ours  7.14 4511 007 1.15 101 024 037 275 293 297 2881 076 2929

Baseline 7.86 4966 0.07 120 112 025 041 275 293 297 2757 060 3.025

LeftEye  [17] 812 5487 008 155 123 0.6 025 272 291 296 2694 050 3.100
Ours  7.59 4775 008 122 107 026 042 274 293 297 2821 075 3.063

Baseline 7.87 4744 008 1.13 107 047 081 278 294 297 2797 0.60 3.991

Nose [17] 839 4611 0.3 107 107 029 048 237 275 283 2195 060 3211
Ours 621 3715 006 0.66 838 043 074 2.89 298 299  30.17 0.69 2.894

Baseline 7.95 4298 006 091  9.69 0.8 030 2.82 296 299 2884 0.58 3.509

Mouth [17]  7.64 4393 009 129 104 0.17 027 263 2.88 295 2838 058 3342
Ours 701 4299 006 086 970 0.17 027 285 297 299 2896 069 3211

Baseline 7.85 4724 007 111 107 029 048 278 294 298 2751 061 3.382

All Pacthes [17] 810 5012 0.10 139 115 020 031 261 286 294 2478 055 3.194
Ours 699 4325 0.07 097 975 027 045 281 295 298 29.03 072 3.024

(a) Input (b) Without Attention (c) With Attention

FIGURE 7. Visual example on the effects of introducing an attention map
in the generative process. In (a) is reported the reference image,

the output of the framework without and with the use of the Attention
Map is shown in (b) and (c), respectively. Generally, in (c) artifacts related
to the cGAN generation, are less visible or more limited in space.

metrics reveal that our framework is able to accurately adjust
the intensity of pixel values. It is also important to note that
the PSNR, which reveals the presence of noise in images and
is expressed in a logarithmic scale, is largely better. Also,
the perceptual similarity metric (LPIPS) confirms the good
visual results obtained, together with the SSIM. We note
the style transfer method [17] does not perform well on this
dataset: probably, pixel-wise metrics penalize the limited size
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of generated images (only 224 x 224 for the whole face),
and the salt-and-pepper noise visible in them. Moreover,
this method requires a significant amount of time to be
evaluated on a single input image due to the optimization
process. Qualitative results of the proposed method are shown
in Figure 6: in the first line, there are the input patches with
artifacts along with the related Attention Maps on the second
line. Then, the retouched and reference images are depicted,
respectively. The visual results confirm the effectiveness of
the proposed approach in terms of artifact removal. The
modifications introduced are mainly focused on the regions
highlighted by the Attention Map, even though small GAN-
generated artificial details are rarely visible.

C. FRAMEWORK ANALYSIS THROUGH FRGCy,

In this section, we test our system with morphed images
contained in the FRGCy, set. In this setting, differently from
FRGC; dataset, a ground truth reference image is missing;
however, FRGC), allows the testing of the framework with
real morphed images. Several qualitative results are depicted
in Figure 8, in which the last line shows the retouched patches
computed starting from the morphed ones in the first row.
As shown, the overall visual quality of the generated images
is adequate, especially in comparison with the input ones:
indeed, the proposed system is effectively able to retouch
artifacts in terms of ghosts, blurred areas, and different levels
of color equalization. The improvement is clear for each patch
type, the retouching result is visible in specific areas such as
near the contour of the iris and the nostrils, and the internal
part of the mouth lips. In the third row of the table, we report
also the difference between the final retouched patch and the
input image: in this manner, we are able to visually highlight
the areas retouched by the cGAN and to compare this result
with the Attention Map. This visualization confirms that
cGAN acts on very limited areas modifying pixels in specific
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Input

Attention Map

Ret. - Input

Retouched

FIGURE 8. Example of generated images on the FRGCy; dataset. In the first line, original images with artifacts are reported. The M, attention map
is reported in the second line, while the final retouched patches are reported in the last row. In the third line, we show the difference between
images in line 4 and line 1, in order to highlight the areas changed by the proposed framework to be compared with the related attention map.

(best zoomed on screen).

positions suggested by the Attention Map, even though a
small amount of background noise is present. This property
is very important since the small changes introduced by
the retouching process do not significantly alter the image
content, as discussed in the next section.

1) OVERALL VISUAL QUALITY

The overall quality of retouched images can be appreciated
in Figure 9, which reports the whole faces obtained after the
automatic retouch and the weighted blending procedure. The
images refer to 10 different morphing examples, 5 men (left)
and 5 women (right). A visual analysis of the results
obtained confirms the efficacy of the proposed approach in
removing the typical morphing artifacts. The general aspect
is preserved, the main facial features remain unaltered and
the intervention is limited to small image areas. A significant
improvement can be observed in the eye region, where the
iris artifacts are successfully removed, as well as the double
reflections in the pupils that usually characterize morphed
images. The result obtained is satisfactory and quite realistic
even for subjects wearing eyeglasses (see the fourth row): the
eye definition and sharpness are improved without causing
anomalous distortions to the glasses frame that could reveal
an image alteration. Analogous results are obtained for the
nose and mouth region where double edges in the nostrils or
lips are effectively removed. Some details worth of attention
can be observed in the mouth region where also major defects,
deriving for instance from the mouth open in one of the two
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parent images (see last two rows), are successfully addressed;
in general, in these cases, the proposed approach tends to
regularize anomalies by, for instance, “‘closing” the mouth,
as shown in the examples.

2) IDENTITY PRESERVATION

One important requirement for automated post-processing is
the preservation of the identity associated with the morphed
image, meaning that if a morphed image can be successfully
matched to both parent subjects before retouching, this
property should persist even after automated artifact removal.
To analyze this phenomenon, we adopt here the Mated
Morph Presentation Match Rate (MMPMR) metric, proposed
in [4] as a measure of the vulnerability of FRSs. MMPMR
represents the proportion of morphed images that can be
successfully matched with both parent subjects and is defined
as:

M

MMPMR = Ai/l Z[minnzlmNMSZ"] >1 (14)

m=1

where, M is the number of morphed images in the dataset,
N,, is the number of parent subjects for a specific morphed
image I, (N, = 2 here), S,"m is the comparison score for the
morph I, of subject n and t being the threshold of FRS at a
chosen False Acceptance Rate (FAR). For our experiments,
we used two FRSs: i) a commercial SDK, VeriLook (version
12) by Neurotechnology, and ii) ArcFace [51], an open-
source deep-learning-based solution. For the face verification
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Input Retouched Retouched

FIGURE 9. The final output of the proposed framework, that consists of whole faces automatically retouched by a weighted blending in the starting
morphed face. For each column, on the left, the initial morphed face with artifacts is shown, while the retouched face is reported on the right. (best
zoomed on screen).
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FIGURE 10. MMPMR values measured in the identity preservation test as
a function of the similarity score between the two parent images used for
morphing; the results are reported for two FRS: (a) VeriLook v12 by
Neurotechnology (commercial) and (b) ArcFace (open source).

experiments, each morphed image m is compared against a
test image of each parent subject (different from the one used
for morphing creation). Following the Frontex guidelines for
face verification at ABC gates, the threshold has been fixed
for both SDKSs in order to operate at a FAR of 0.1%; while for
VeriLook the threshold to be used is provided by the SDK,
for ArcFace we established it on the basis of an internal test
including a number of impostor attempts.

Figure 10 reports the MMPMR values measured for the
two SDKs before and after automated artifact removal.
It is generally recognized that high similarity between the
two parent subjects used for morphing noticeably increases
the effectiveness of the morphing attack; for this reason,
the graphs report the MMPMR values for discretized values
of similarity between the two contributing images. The
graphs confirm a common trend for the two SDKs and
clearly show that, for high similarity scores, the automated
retouching does not affect MMPMR, thus confirming that the
morphed identity is preserved. For lower similarity scores,
a reduction of MMPMR is observed after retouching; this
phenomenon is not unexpected, since generally in this case
the chances of success are quite limited, the matching score
is low and even small image modifications often cause it to
drop below the established matching threshold. According
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to our direct experience, the same behaviour is observed
when the retouching is manually executed by human experts
and sometimes even the alteration of apparently insignificant
details has an impact on the FRS similarity score.

Overall we can conclude that, when the morphed image has
high chances of success, i.e. it has been generated from quite
similar subjects, the proposed automated retouching doesn’t
affect the probability of fooling the FRS.

3) MORPHING ATTACK DETECTION

In this section, we investigate whether generated images are
able to fool MAD algorithms and whether they can be used
for data augmentation to improve the training procedure.
Specifically, in the following tests, we address the Single
image-based MAD (S-MAD) task, since it perfectly suits the
focus of our work: during the testing phase, for each input
image, an S-MAD algorithm outputs a value in the range
of [0, 1], representing how confident the method is that the
input image is morphed (0 means that image does not contain
a morph while 1 reveals certainty that the image contains a
morph). We use the images in FRGCy; as the test set. In this
case, all images are labeled as morphed.

Firstly, we assess if the quality of retouched images is
suitable to fool an algorithm developed for the S-MAD
task: indeed, the goal of the proposed framework is to
automatically retouch morphed images, leading to a high-
quality result comparable with the time-consuming manual
retouch. Two different methods available in the literature
are selected: the first one is based on a Machine Learning
approach and it is described in [30] and summarized in
Section II. This method has been selected since, currently,
it has state-of-the-art performance on public evaluation
platforms [52]. The second method is based on Deep Neural
Network and it is inspired by the recent work described
in [32]: a ResNet-18 [53] architecture, pre-trained on the
Imagenet dataset [50], is fine-tuned on the PMDB [35]
dataset. Results are reported in two histograms in Figure 11.
On the x-axis we report the thresholds used to classify if an
input image is morphed or not, while in the y-axis we report
the percentage of images correctly detected as morphed.
We note that the proposed framework effectively introduces
an improvement of quality in tested morphed images since
orange bars in Figure 11a reveal a lower morphing detection
percentage. Therefore, retouched images are able to fool the
S-MAD detector better than the original morphed images.
We report similar observation also for the deep learning-
based method in Figure 11b, since also in this case the
percentages of detected morphed images are lower.

Secondly, we investigated if the retouched images can be
useful to more robustly train a MAD algorithm. In other
words, we test the possibility to use the proposed framework
to augment the quantity and quality of training data
exploitable by MAD algorithms, especially if deep learning-
based. Therefore, we adopt, as in the previous case, a ResNet-
18 [53] architecture, pre-trained on Imagenet dataset [50].
Then, we test its performance on the MorphDB [35] dataset
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FIGURE 11. Results of the S-MAD algorithms computed on the retouched
images from FRGC,,; dataset. (a) is the machine learning-based method
described in [30], while (b) is a deep learning-based introduced in [32].

that contains 100 manually retouched high-quality morphed
images. Specifically, we compare two training procedures.
In the first one, the deep neural network is trained only on the
PMDB dataset, while in the second case the network is trained
on the images contained in the PMDB dataset merged with the
retouched ones in the FRGC), dataset. Results are reported
in Figure 12 in the form of Detection Error Trade-off (DET)
curve. In red, the curve of the system trained with only the
PMDB data, while in blue the curve of the framework trained
with the merged data. Although the absolute performance of
the S-MAD approach can be further improved, we note that
the use of retouched images effectively increases the efficacy
of the training procedure, leading to more accurate results.
Probably, the use of retouched images helps to prevent over-
fitting phenomena.

4) HUMAN OBSERVER ANALYSIS

In the final part of our work, we describe the qualita-
tive assessment made by human observers regarding the
retouched morphed images. To collect human evaluations,
we developed a web page where the images are shown
in a grid and the user has to indicate what images are
altered. We do not explicitly indicate the type of artifacts
present in the images, since this will instill a bias in the

VOLUME 9, 2021

BPCER
1
10"
1072
1073
—=—Train: PMDB
—— Train: PMDB +retouched
10— 3 — — =)
10 10 10 10 1
APCER

FIGURE 12. Detection Error Trade-off (DET) curve computed on MorphDB
dataset [35]. In red, the curve of the model trained only with PMDB

data [35], while in blue the values of the model trained with PMDB and
retouched images from FRGCy, dataset.

participant choices. The images are displayed in a grid and
for each of them, the users have to indicate if they think the
image was altered in any way. This setting is similar to a
single morphing attack detection (S-MAD) scenario, where
no reference image is present for comparison. Note that the
aim of this test is to qualitatively assess the performance
of our retouching algorithm, in terms of the realness of the
generated images.

We selected a total of 75 images from 5 different groups:
bona fide (unaltered, not morphed, images), morphed images
without retouching, morphed images after retouching, images
retouched through the approach described in [17], and the
ones generated by MIPGAN [7]. For each group, we selected
15 images, with a near equal number of male and female
subjects. The images are displayed on five pages with
15 images each (in order to not overload and stress the
evaluator with many images at the same time). Each page
contains 3 images for each group and a similar number of
female and male subjects. The placement of the images in
the pages is totally random and no predetermined scheme is
used. We do not impose any time limit to the evaluation, but
we encouraged the participants to spend a maximum of one
minute per page, so approximately four seconds per image,
in order to reproduce a control at ABC gates. A screenshot of
a part of the web page developed is shown in Figure 14.

A total of 57 people participated in the evaluation, both
experts/experienced people in the field of face morphing,
and inexperienced people. The group of experienced people
is composed of researchers and experts in the field of face
morphing, while the inexperienced group is composed of
students, computer science professionals, and even people not
related to computer vision or computer science.
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FIGURE 13. Results of the human evaluation analysis. (a): percentages of images of each category indicated as altered; (b): percentages of images of
each category indicated as altered, computed over the final set of images selected by participants; (c): percentages of images indicated as altered for
every page of the evaluation form. Each page includes the same number of images for each category, so the same number of altered images. The
number of indicated images should be constant throughout the test to indicate a constant level of attention of the participants throughout the test.
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FIGURE 14. A screenshot of a part of the web page used for human
observer analysis. The images from the five groups are displayed
randomly in a grid, for a total of 15 options, and the participants have to
select the ones they believe are altered checking the corresponding check
box under the image. In the image, “Option 1” and “Option 3” show a
morphed image before the retouch, “Option 2” a retouched image,
“Option 4” a MIPGAN image, “Option 5” a real (bona fide) image and
“Option 6" the output of [17].

The results are shown in Figure 13. The effectiveness of
the proposed retouch method is confirmed by the results of
the human observer analysis. With respect to the number
of images of each category, morphed images not retouched
are indicated as altered 23.8% times, but after retouching
the number drops to 10.1%, with an improvement of 13.7%
in terms of missed detections. This percentage is similar
to the evaluation of real (bona fide) images, which are
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indicated as altered 8.9% times. This can be explained
since some of the chosen real images are slightly blurred
or the person does not directly watch into the camera.
Nevertheless, these results indicate that the retouched images
have a visual quality similar to the real ones. In the case
of MIPGAN [7] (“MIPGAN” in the graphs) and style
transfer-based work [17] (referred to as ““Seibold et al.”
in the graphs), the examined people indicated 25.0% and
32.2% altered images respectively. It is important to note that
MIPGAN is not oriented to the retouching of artifacts, but
it is a GAN-based morphing generator. Therefore, a direct
comparison between our framework and MIPGAN is not
fair and it is out of the scope of this paper. However,
it is interesting including also those images in the test in
order to understand the impact of GAN-related artifacts on
human morphing detection capabilities. Moreover, in case of
“Seibold et al.”’, the method was initially conceived for face
enhancement, especially for correcting face imperfections,
and it was not designed to correct the typical morphing
artifacts. Nevertheless, a comparison with this method may
provide a solid baseline w.r.t. state-of-the-art face enhance-
ment algorithms. Indeed, the MIPGAN images appear quite
blurred and the skin and facial hairs are smoothed. In general,
for the participants identifying morphed images produced by
MIPGAN and by landmark-based morphing algorithms has
the same difficulty, since the percentage of images selected
as altered is similar for both the categories. Style you Face
Morph [17] presents the worst results, and it seems quite
easy for the humans involved in this experiment to spot the
images retouched with it. This can be explained by the fact
that the method is mainly focused on texture artifacts and the
smoothing effect often present in the morphed images.

To further validate the results we conducted an analysis to
understand if the attention of the participants remains stable
during the entire duration of the test or it decays in the final
part of the experiment. Thus, we examined the number of
indicated altered images for every page. As discussed before,
there are five pages, each of them composed of 15 images.
The same number of images for each category is present on
every page, so we expect that the number of images indicated
as altered remains constant throughout the pages. A decaying
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FIGURE 15. Some examples of failure cases, in which it is possible to note the presence of typical texture artifacts introduced by GANs or
not optimal retouches in some regions.

number of selected images in the final pages may indicate
a drop in the attention of the participants. The results are
reported in Figure 13c. As it can be seen the percentage of
altered images indicated by the participants on every page
is almost the same, and there is no drop in the number as
the evaluation progresses. The number of indicated images
slightly fluctuates between pages, but this can be explained
by the different difficulties of the included images. This
further analysis confirms that the level of attention remained
stable throughout the test, validating the results and the
methodology used to assess human observer analysis.

V. CONCLUSION

In this paper, a system to automatically retouch visual
artifacts generated by a landmark-based morphing process is
presented. The system, based on a Conditional GAN, is fed
with the concatenation of an RGB image and the related
Attention Map derived from the two warped subjects involved
in the morphing process. The final retouched patches are then
blended in the original morphed face. The quantitative and
qualitative results are very encouraging. Indeed, a variety of
investigations have been conducted in order to assess the
visual quality of retouched patches, identity preservation,
and the ability to fool both human observers and MAD
algorithms. Moreover, the utility of the generated images
for data augmentation in MAD training has been proved as
well. Therefore, this work can be one of the first successful
investigations on the use of a GAN-based approach to
automatically retouch morphed images.

Although the overall results are satisfactory, some failure
cases have been observed in our experiments as shown
in Figure 15. The main causes of errors can generally
be identified in relation to particular lighting conditions,
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suggesting the adoption of a more effective image pre-
processing to reduce this phenomenon; however, it is worth
mentioning that this situation is unlikely to happen in a
real case where the images used for morphing are well
controlled and fully ISO/ICAO compliant. Other cases refer
to specific image features (e.g. eyeglasses or open mouth) that
are underrepresented in the training set and therefore more
difficult to address.

A variety of future work can be planned. The final
weighted blending procedure can be improved, for instance,
by exploiting a deep learning-based method, following
the recent in-painting works available in the literature.
Furthermore, the attention paradigm can be implemented not
only in input through the use of Attention Maps, but, for
instance, can be injected inside the deep neural network,
through the use of attentional mechanism or transformer-
based architectures. Again, the working spatial resolution
of patches can be increased through the use of specific
architectures and appropriate Graphical Processing Units
(GPUs), which can lead to overcoming the patch-based
approach and enable processing the whole face at once.
Finally, the patch-based approach in input can be overcome
in order to avoid limitations related to the fixed size of the
patches and the different statistical characteristics of pixels
that can divert from the different face areas.
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