
Received July 26, 2021, accepted September 23, 2021, date of publication October 4, 2021, date of current version October 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117852

A Deployment Framework for Formally
Verified Human-Robot Interactions
LIVIA LESTINGI 1, MEHRNOOSH ASKARPOUR 2, MARCELLO M. BERSANI 1,
AND MATTEO ROSSI 3
1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
2Department of Computing and Software, McMaster University, Hamilton, ON L8S 4L8, Canada
3Dipartimento di Meccanica, Politecnico di Milano, 20156 Milan, Italy

Corresponding author: Livia Lestingi (livia.lestingi@polimi.it)

ABSTRACT In the future, assistive robots will spread to everyday settings and regularly interact with
humans. This paper introduces a deployment approach for assistive robotic applications where human-robot
interaction is the main element. The deployment infrastructure hinges on a model-to-code transformation
technique and a ROS-based middleware layer and enables deployment in real life or simulation in a virtual
environment. The approach fits into a model-driven framework for the formal verification of interactive
scenarios. At design-time, the application analyst estimates the most likely outcome of the robotic mission
through Statistical Model Checking of a Stochastic Hybrid Automata network modeling the scenario.
We introduce an innovative approach to convert a specific subset of Stochastic Hybrid Automata into
executable code to control the robot and respond to human actions. Deploying or simulating the application
allows analysts to validate the results obtained at design time or to refine the formal model based on runs
in the real or the virtual scene. The methodology’s effectiveness is tested via simulation of use cases from
the healthcare setting, which can significantly benefit from this kind of approach thanks to its innovative
features related to human physiology and autonomous behavior.

INDEX TERMS Human-robot interaction, service robots, model-driven approach, robot deployment.

I. INTRODUCTION
In the future, robots will no longer be confined in factories,
but theywill spread to everyday life settings. Currently, robots
are either autonomous components of manufacturing lines or
support humans in collaborative tasks. Factory workers are
usually thoroughly trained to work side-by-side with robots,
and, throughout the interaction, they perform a predetermined
sequence of actions. Service robots, instead, will operate in
less controlled environments and interact with a more exten-
sive range of people [1], with different features and demands,
and likely not used to interact with a machine.
The robotic community has established strategic objectives

for robotics development over the upcoming years [2]. For
the assistive robotics field, there is a specific emphasis on
automating the most time-consuming technical tasks (such as
code generation) so that practitioners can focus on high-level
mission design and configuration. Furthermore, a recently
conducted survey on the current state of software engineering

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

for service robotics [3] has highlighted the most pressing
challenges for this domain. This paper targets the demand for
a code generation mechanism, deployment framework, and
validation environment that can copewith the uncertainty due
to the presence of humans within the environment in which
robots operate [4].

We have developed a model-driven framework to analyze
human-robot interaction scenarios [5], [6]. The methodol-
ogy covers scenarios that feature: a battery-powered mobile
robot, one or multiple humans that need to interact with
the robot, and a closed environment. The agents’—the robot
and the human—behavior is formally modeled as a network
of Stochastic Hybrid Automata. The formal model is put
through Statistical Model Checking to verify the probability
of completing the mission with success. These elements con-
stitute the design-time phase of the analysis that is performed
before the application is conclusively defined.

This paper focuses on an innovativemechanism to generate
and deploy executable code for assistive robotic applica-
tions starting from verified formal models. More precisely,
the main contributions introduced by this paper are:

136616
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8724-1541
https://orcid.org/0000-0001-6526-2544
https://orcid.org/0000-0001-5137-940X
https://orcid.org/0000-0002-9193-9560
https://orcid.org/0000-0001-7300-9215


L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

1) the formal model enhanced with deployment-related
features;

2) an approach to convert a subset of Stochastic Hybrid
Automata into executable code to deploy the applica-
tion in a real or a simulated environment.

The approachmentioned above envisages amapping function
associating each feature of the automata with an element
of the deployment framework. The procedure ensures that
the behavior observable with the deployed version of the
scenario is comparable with the one defined at design time.
Although we describe its application to the assistive robotics
domain, the model-to-code mapping principle is applicable
to a broader range of cyber-physical systems, as long as they
can be formally modeled through the same subset of Stochas-
tic Hybrid Automata and employ a middleware technology
based on the publish-subscribe pattern.
The run-time phase allows for the application’s deploy-

ment in a real-life setting and simulation in a virtual envi-
ronment. This possibility stems from the middleware layer
of the module, entirely developed using ROS, thus making it
portable both to 3D simulators and real mobile robots.

The run-time analysis phase serves a double validation
purpose. The deployment in a physical setting with data
provided by real people that interact with the robot potentially
highlights weaknesses in design-time results. The reason is
that the humans’ formal model is an underapproximation
of human behavior in real life. On the other hand, in some
cases, the set-up of an actual testing environment might be
unfeasible at an early stage of the application’s development.
Therefore, simulation with a realistic physics engine is a
valuable alternative to highlight potential weaknesses.

The new module of the framework is tested on experi-
mental scenarios inspired by case studies from the health-
care setting. Experiments are carried out in a simulated
environment with realistic parameter values compatible with
existing mobile robots, such as the TurtleBot3 Waffle Pi.1

Human-robot interaction occurs by having real human users
interact with the simulated robot in the scene.

The paper is structured as follows: Section II presents the
background for the work; Section III presents the run-time
phase of the framework; Section IV introduces the for-
mal model of the middleware; Section V introduces the
deployment approach and the formal model-to-code map-
ping principle; Section VI reports on experimental validation
results; Section VII compares our work with related ones;
Section VIII concludes.

II. PRELIMINARIES
This section reports on the prerequisites for the work pre-
sented in this paper and is further subdivided into three
sub-topics. Firstly, we recall the theoretical and techni-
cal foundations of the work, which encompass the cho-
sen formalism and verification technique, plus the primary
pre-existing technologies underlying the work. Secondly,

1Full documentation available at: https://www.turtlebot.com/

we report on the high-level model-driven robotic develop-
ment framework that this work aims at expanding. Finally,
we explain the modeling approach and the previously devel-
oped formal model, before the modifications presented in this
paper.

A. TECHNICAL BACKGROUND
Stochastic Hybrid Automata (SHA) is the modeling formal-
ism underlying the approach, whose definition—as an exten-
sion of Hybrid Automata (HA)—is reported in the following.
Definition 1: A Hybrid Automaton A is a tuple (L,W ,F,

I ,C,E, lini) [7], where:

1) L is the set of locations, and lini ∈ L is the initial
location;

2) W is the set of real-valued variables of which clocks
(X ⊂ W), dense-counter variables (Vdc ⊂ W), and
constants (K ⊂ W) are special cases;

3) F : L → (R+→ RW ) is the labeling function assign-
ing a set of flow-conditions to each location, whereRW

is the set of real-valued assignments (i.e., valuations) to
variables in W;

4) I : L → ℘(RW ) is the labeling function assigning a set
of invariants to each location;

5) C is the set of channels, including the internal action
τ ;

6) E ⊂ L × C!? × 0(W )×4(W )× L is the set of edges,
where C!? is the set of complementary labels involving
channels in C, 0(W ) is the set of guard conditions and
4(W ) is the set of updates [8].

Unlike ordinary Timed Automata [9], HA locations can be
endowed with flow conditions—i.e., differential equations—
thus supporting generic expressions for the derivatives of
real-valued variables [7]. Therefore, through HA it is pos-
sible to model systems with complex non-linear dynam-
ics. Complex systems consisting of multiple entities can be
modeled as a combination of HA, thus forming a network.
Different automata in a network can synchronize with each
other through channels [10]. Given two edges belonging to
different automata of the network and labelled as c! (the
sender) and c? (the receiver), where c ∈ C is a generic
channel, triggering an event through channel c causes the two
transitions to fire at the same time.
Definition 2: A Stochastic Hybrid AutomatonAs is a tuple

(A, µ,Pγ,c), where:
1) A is a Hybrid Automaton defined according to Def.1;
2) µ : L × RW

→ [0, 1]R+ is a labeling function assign-
ing probability measures over time delays for each state
of As, where states are (l, ν) pairs constituted by a
location l ∈ L and a valuation ν ∈ RW ;

3) Pγ,c(l, l ′) ∈ [0, 1] is the probability of switching from
location l to l ′ when guard condition γ is satisfied and
a message is triggered through channel c.

In our model, non-deterministic choices are refined
through stochastic features. As per Def.2, automata can have
probability distributions over time delays (µ(l, ν)(d)) and

VOLUME 9, 2021 136617



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

over transition outcomes (Pγ,c(l, l ′)). A transition may fire
with a bounded (e.g., within [2, 4] time units after entering
the location) or unbounded time-delay (e.g., within range
[2,+∞) time units after entering the location). We imple-
ment our SHA using the Uppaal tool. In Uppaal, probability
distributions by default are either uniform over a bounded
delay range or, in case of unbounded delay, exponential [11].
Nevertheless, it is possible to encode custom distributions
(e.g., a normal one) by combining different uniformly dis-
tributed random variables [12]. In addition, transitions can be
labelled by weights (captured by Pγ,c(l, l ′)), which describe
the probability of landing in a different location when the
transition is taken.

SHA are eligible for Statistical Model Checking (SMC),
which we run through the Uppaal tool and Uppaal SMC
extension [12]. The extension of SMC to hybrid systems is
enabled by ODE solvers that implement discretization meth-
ods. Therefore, it is possible to obtain reliable approximations
of ODE solutions, although some experimental parameters
such as the discretization step size require particular care [12].
The inputs to SMC are a stochastic system (e.g., the network
of SHA) and a property (in our case, expressed through the
PCTL logic) [13]. SMC applies statistical techniques to a
sample set of system runs to check whether the specified
property is verified or not. The experiment yields a range of
values for the probability that such property holds within a
certain time-bound. Unlike with traditional model-checking,
the state-space is not exhaustively explored, thus mitigating
the state-space explosion issue.

FIGURE 1. Scheme representing ROS processes interactions. All nodes
register to the master. When a message is published over a topic, it is
received by every node subscribed to such topic.

For the deployment approach, the chosen middleware is
ROS (Robot Operating System) [14].2 ROS is a framework
for the development of robotic applications. Specifically,
it provides a set of tools and libraries tailored to robot pro-
gramming, developed to prioritize modularity, cross-platform
compatibility, and code re-usability. Using ROS nomencla-
ture, each process in charge of processing and exchanging
data represents a node. All nodes communicate with each
other over named buses, called topics. This exchange of infor-
mation can occur throughmessages shared over topics, like in
the publish-subscribe pattern (depicted in Fig.1), or through
requests (and provision) of services (service-client pattern).
The first type of procedure is pivotal to our approach since
the robot does not ask the controller for an instruction, but

2ROS complete documentation available at: http://wiki.ros.org

the controller (i.e., the publisher) transmits instructions to the
robot (i.e., the subscriber) which is constantly listening for
new messages. Since ROS is built to be language-agnostic,
it provides a basic Interface Definition Language (IDL) to
define the messages’ structure, specifically the fields that
compose them and their type. The whole framework builds
upon the peer-to-peer pattern. A process called ROS master
serves as the conveyor unit that initially deals with nodes’
registration and sets up the peer-to-peer communication.
Sending messages through topics is, then, anonymous and
independent from the master.

Although our approach is open to deployment on a real test
bench, validation in a virtual environment is amajor feature of
the framework. Given the nature of the present work, the two
major requirements that must be satisfied by a simulation
environment are:

1) the capability to integrate with ROS;
2) the possibility to model humans and their behavior.

The following were considered as preferable features:
3) prominence of user community support;
4) openness to general-purpose scenarios.

Askarpour et al. report a critical comparison of existing
robotic simulation tools [15]. Among the surveyed open-
source tools, CoppeliaSim has been selected. CoppeliaSim
(formerly V-REP)3 is a general-purpose simulation tool that
supports a plethora of robots, ranging from industrial manip-
ulators to wheeled mobile platforms [16]. The tool provides
a fully programmable model of a human, which is funda-
mental for developing interactive applications. This degree of
flexibility is enabled by its inner architecture, which is open
to different programming techniques. Developers can, thus,
choose how to distribute the computational power required
to control the robot and render the simulation. For example,
the robot controller and the 3D simulation could run on two
different machines (thus, splitting the computational load)
and communicate with each other over ROS nodes.

B. MODEL-DRIVEN ANALYSIS OF ROBOTIC MISSIONS
The contribution presented in this paper is the runtime
deployment infrastructure of a model-driven framework that
formally verifies scenarios involving interactions between
humans and robots. The approach is tailored, though not
exclusively, to use cases from the healthcare setting. The
motivation is that people in healthcare-related situations
are often in critical conditions. For example, patients are
usually in pain or discomfort, whereas employees can be
mentally stressed due to harsh work habits. The markedly
human-oriented nature of the tool-supported framework
makes it particularly beneficial to this area.

Potential target users also come from the healthcare envi-
ronment. As stated by Payne et al. [17], in the future, there
will be professional figures entrusted with the optimization
of hospital logistics to make services safer and more efficient.

3Full documentation available at: https://www.coppeliarobotics.com/
resources

136618 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

Given the future evolution perspective described in Section I,
this will likely also include analyzing possible contingencies
involving interaction between humans and service robots.

The framework meets different requirements, mainly:

1) the results of the analysis ought to be robust and reliable
as required by the critical setting;

2) it has to be strongly focused on human needs;
3) it has to be user-friendly and accessible to target users.

The overall workflow of the approach is represented in Fig.3.
As shown in the diagram, we have identified two macro
phases to analyze interaction scenarios: the design-time phase
and the run-time phase. The first one is briefly summarised in
the following (interested readers can refer to [5] and [6] for a
thorough presentation).

The toolchain’s entry point is the configuration of the
scenario by the application designer, referred to as the analyst
from this point forward. This occurs through a configuration
file with the main parameters of the scenario—i.e., the floor
layout, how many humans need to be served, the service they
are requesting, and their physiological features.

In our scenarios, the interaction between a human and
a robot conforms to pre-defined patterns. There is a one-
to-one correspondence between humans in the scenario and
interaction patterns since patterns semantically match the
service that each human is requesting. A pattern determines
how the agents will behavewhile that specific human is being
served and what condition needs to be verified to establish
that a service has been provided. Two notable examples of
patterns are Human-Follower and Human-Leader. In the
first case, the human needs to follow the robot until they are
both sufficiently close to the destination. In the dual case,
the robot follows the human and, when the human decides
to start or stop, the robot follows accordingly.

As for the physiological features, the analyst can choose a
fatigue profile for each human that determines how quickly
the subject will reach full exhaustion. To determine the set
of fatigue profiles, subjects are aggregated based on their age
(young/elderly) and health condition (healthy/sick) [18].

The framework automatically processes the input file,
it generates the formal model (the SHA network) and the
PCTL property and runs the SMC experiment. By doing
so, the analyst saves the effort of manually drafting the for-
mal model, which is likely a distant skill from their tech-
nical background. The main PCTL property ψ that we are
interested in verifying is: ψ = � scs, that is to say that the
mission will eventually (�) end with success, where vari-
able scs formally models the mission goal achievement.
As explained in Section II-A, the SMC experiment yields
a range for the probability of ψ holding within a time-
bound τ : P≤τ (ψ) ∈ [pmin, pmax]. The analyst assesses these
values. If the results are unsatisfactory, the scenario needs to
be refined and newly undergo formal verification. Possible
refinements of the scenario include scheduling the provision
of different services or changing the order in which humans
will be served. On the other hand, if the configuration of the

scenario passes the evaluation at design-time, the analyst can
switch to the second phase, i.e., the run-time analysis which
is the main contribution of this paper.

C. HRI SCENARIO FORMAL MODEL
As explained in Section II-B, the design-time phase of the
framework relies on a formal model of the system under
analysis, specifically a SHA network. The SHA network is
made up of the automata modeling:
(a) humans (one for each interaction pattern);
(b) the mobile robot;
(c) the robot battery;
(d) the robot controller, i.e., the orchestrator.
The general guidelines to draft the SHA are summed up

by Table 1 and are explained in the following through the
running example of the robot automaton, which is fully shown
in Fig.2. The mathematical notation is based on Def.2.

TABLE 1. SHA modeling guidelines.

Agents’ automata have two types of locations: ordinary
locations and operating conditions. Locations ridle, rrec, rturnl ,
and rturnr (also in Fig.2) are ordinary locations. An agent stays
in an ordinary location for a non-zero time, and, while in these
locations, the agent does not publish sensor measurements.
In Fig.2, ordinary locations respectively model the cases in
which the robot is idle, recharging, or turning left or right.
From this point forward, we will refer to automata modeling
the robot, the battery and humans (i.e., the agents of the
system) as generic automaton x. Operating conditions 〈op〉
correspond to SHA locations, and will be hereinafter referred
to with notation x〈op〉 ∈ L. While in x〈op〉 locations, agent
x periodically shares a new sensor reading. This modeling
pattern is presented in detail in Section IV. As for the robot,
there are three x〈op〉 locations: rstart, rmov, and rstop. These are
enclosed in as many 〈op〉_pub〈id〉 instances (also presented
in Section IV) and represented as dashed boxes in Fig.2 for
ease of visualization. Constraints within the dashed boxes in

VOLUME 9, 2021 136619



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

FIGURE 2. SHA modeling the robot. Invariants and flow conditions are represented in purple, guard conditions in green, channels in red, and
updates in blue. Real-valued variables V and 2 model the robot’s velocity and orientation. The three 〈op〉 locations (rstart, rmov, and rstop) are
embedded into corresponding 〈op〉_pub〈id〉 instances (pattern 〈op〉_pub〈id〉 is presented in Section IV and shown in Fig.6). Locations rturnl

and rturnr
model the case in which the robot is turning left or right to follow the trajectory.

Fig.2 represent flow condition and invariant associated with
the corresponding x〈op〉 location.
Each physical variable with non-trivial time dynamics is

modeled by a real-valued variable inW \ (X ∪ Vdc ∪ K ). The
robot automaton features real-valued variablesV to model the
robot’s velocity, and 2 for the robot’s orientation.
Flow conditions on each location constrain the time

dynamics of real-valued variables in the model through dif-
ferential equations. The robot’s velocity V evolves according
to a trapezoidal profile [19], and it is, thus, constrained by the
three flow conditions in Eq.1. Each flow condition in Eq.1
models a phase of the velocity profile: acceleration, travel,
and deceleration, where amax ∈ K is a constant parameter for
the robot’s maximum acceleration.

V̇ =


amax if x〈op〉 = rstart
0 if x〈op〉 = rmov

−amax if x〈op〉 = rstop

(1)

Real-valued variable2models the orientation of the robot
with respect to the x-axis, and the two locations rturnl and rturnr
model the case in which the robot is rotating left or right with
constant speed ωr ∈ K . Variable 2 varies according to flow
conditions 2̇ = ωr (in rturnl ) or 2̇ = −ωr (in rturnr ) until the
desired orientation is reached.

Clocks are a specific case of real-valued variables whose
value grows uniformly with time (ṫx = 1 holds for all
tx ∈ X ⊂ W ). A clock tx ∈ X can only be reset by transitions
and this is indicated by label {tx} (e.g., {tupd } in Fig.2).
Both the robot and the human are equipped with sensors

that monitor data required by the orchestrator (e.g., position
and orientation for the robot). Sensors’ readings are modeled
through dense-counter variables, a special case of real-valued
variables: specifically a variable in Vdc ⊂ W for each sensor.
Their value is not explicitly dependent on time (v̇ = 0 holds
for any v ∈ Vdc) and it only varies through update instruc-
tions. Each sensor detects a new value with frequency 1/Tpoll,
where Tpoll ∈ K is a constant parameter. Update instructions
ξ〈start〉, ξ〈mov〉, and ξ〈stop〉 ∈ 4(W ) (also in Fig.2) specific to

the robot are made explicit in Eq.2. The Cartesian coordinates
of the robot inside the building are measured and periodically
updated through the dense-counter variables rposx and rposy .

ξ〈start〉,〈mov〉,〈stop〉 :

{
r ′posx = rposx + VTpollcos(2)
r ′posy = rposy + VTpollsin(2)

(2)

Dense counters do not exclusively model sensor read-
ings but, more generally, non-constant variables without an
explicit time-dependency. For example, while in rmov (within
〈mov〉_pub〈1〉), every Tpoll seconds the automaton updates
dense-counter variable θ ∈ Vdc, which represents the new
set-point for orientation 2. To make the path as smooth as
possible, the robot starts turning only if the set-point θ is
greater than a threshold θth ∈ K . As in Fig.2, if |θ | > θth
holds, the robot switches from r〈mov〉 to rturnl or rturnr depend-
ing on whether2 Q θ holds. Finally, the robot switches back
to rmov and publishes the updated position values by sending
an event through channel p1 (label p1! in Fig.2): the details
of this mechanism will be presented in Section IV.

The switch between two locations is modeled as an edge
e = (l,c, γ, ξ, l ′) ∈ E that connects the starting location l to
the destination l ′.
A controllable switch occurs if a command is explicitly

issued by the orchestrator by triggering an event through a
channel c ∈ C . Channels specifically related to the robot,
the battery, and the human belong to subsets Cr ,Cb, and
Ch respectively. Examples of controllable switches are the
robot starting to move or stopping, corresponding to channels
cmd_rstart ∈ Cr ⊂ C and cmd_rstop ∈ Cr ⊂ C (see Fig.2).
An uncontrollable switch occurs when physical variables

meet specific constraints (and no command has been issued
by the orchestrator): the combination of invariant i ∈ I on
location l and a guard condition γ on the outgoing edge
e ensures that the transition fires only in the intersection
point between i and γ . In this case, no channel is necessary
for the transition and c is the null action. An example of
uncontrollable switch is the one between rstart and rmov that
captures the end of the acceleration phase and the start of

136620 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

FIGURE 3. Diagram representing the framework’s workflow. The two macro-phases are: design time and run-time analysis. The framework
automatically generates the formal model M and the PCTL property ψ starting from a configuration file, and, then, runs the SMC experiment.
If verification results are satisfactory, the analysis switches to the run-time phase. The application can either be deployed in a real setting or
simulated in a virtual environment. Through mapping function 1 (presented in Section V), the automata network is translated into an executable
form. The orchestrator communicates with agents through a ROS-based middleware layer. Deployment in a real environment is set for further
investigation as future work.

the travel phase of the velocity profile. The invariant V ≤
vmax on rstart (visible within 〈start〉_pub〈1〉) and the guard
conditionV ≥ vmax on the edge to rmov ensure that the switch
occurs exactly when velocity V equals the maximum value,
corresponding to constant vmax ∈ K .

III. EXTENDING THE FRAMEWORK TO RUN-TIME
As mentioned in Section I, this work targets the demand for
well-engineered approaches to service robotics application
development. The framework presented in this paper is an
adaptation to the assistive robotics domain of the Multi-
Paradigm Modeling (MPM) framework [20], which previous
studies have suggested as a solution to tackle the com-
plexity of cyber-physical systems [21]. Similarly to MPM,
we propose a validation approach for robotic applications
based on the comparison between the results obtained at
design-time as described in Section II-B with those obtained
by deploying the application in a realistic environment. This
paper contributes with a rigorous methodology to translate
the formalism from Section II-C into deployable code, which
is fundamental to carry out the validation process.

In this section, we present the high-level architecture of the
run-time phase and its relation to themodel-driven framework
recalled in Section II-B. As a further remark, the formal
model presented in Section II-C has been enriched to match
more accurately the deployment architecture. Therefore, it is

marked as ‘‘extended’’ in Fig.3. The three main elements of
the run-time phase (numbered accordingly in Fig.3) are:

(1) the model-to-code mapping function 1 responsible
for converting automata into deployment units;

(2) a deployable form of the robot controller, i.e., the exe-
cutable orchestrator;

(3) the deployment environment (real or virtual);
(4) amiddleware layer that allows the orchestrator and the

agents in the environment to communicate via a ROS
node network.

Function 1 is presented in detail in Section V. The exe-
cutable orchestrator should be a replica of the orchestrator
from the formal model. This entails that each automaton
component (e.g., locations, edges, and flow conditions) needs
to be translated into a suitable deployment unit element.
The two versions should check the system’s state against the
same set of policies and perform operations with the same
timing. Section V describes in detail the protocol to obtain a
deployable version of the automata.

The middleware layer, as mentioned in Section II-A,
is based on a network of ROS publisher and subscriber
nodes. Fig.4 represents how data flows from the deploy-
ment environment to the orchestrator and vice versa. The
orchestrator receives sensor updates as messages published
on dedicated topics and sends commands to the agents via
the same mechanism. Commands cause agents to react to a
specific observable situation.

VOLUME 9, 2021 136621



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

FIGURE 4. Diagram of the data flow between agents in the deployment
environment and the orchestrator. Publisher nodes in the scene send the
latest sensor readings to the orchestrator. The orchestrator sends new
commands through a dedicated topic, and the agents in the scene receive
them by subscribing to the same topic.

The usefulness of the run-time phase is twofold. In the
first place, it is possible to deploy the application in a real
setting so that the interaction between the human and the
robot can actually occur. As Fig.3 shows, the approach is open
to deployment in a real environment, as long as it is properly
instrumented. Specifically, the necessary equipment includes
a wheeled mobile robot compatible with ROS and a set of
sensors: an Indoor Positioning System (IPS) to locate both
the robot and the human inside the building, and a wearable
device to measure health-related variables. The robot should
also be powered by a lithium battery, typical of electronic
devices, with a state of charge sensor.

As per Fig.3, it is also possible to simulate the applica-
tion in a virtual environment. This operation aims to criti-
cally compare the results obtained at design-time with those
obtained with the simulations. Indeed, the formal model
represents a high-level abstraction of the system, especially
its human-related component. While developing the formal
model, our efforts focused on identifying the subpart of the
whole system that represents the best tradeoff between the
degree of complexity of the model and its reliability. For
example, not all physical aspects, such as friction between the
robot wheels and the floor, are covered as this would require
an excessive degree of complexity. The residual model-to-
reality gap needs to be dealt with. Increasing the model’s
complexity is a possible solution, but it may cause verifi-
cation times to rise to a point where the framework is no
longer usable in practice. The second possibility is to simulate
the specific scenario in a virtual environment, like a three-
dimensional simulator. In more detail, this results in a simula-
tion relying on an executable version of the same orchestrator
as in the formal model, a scenario with the same features
as the one analyzed at design-time, but with a model of
the agents driven by a realistic physics engine. Furthermore,
the human agent in the simulation moves as a result of user
input. Therefore, we can say that the robot in the simulation
scene interacts with a human who provides the inputs even if
the deployment environment is virtual.

The simulator’s advanced physics engine raises the anal-
ysis’s level of accuracy. Nevertheless, it is inexact to state

that the results obtained with SMC experiments and those
obtained with a single simulation are directly comparable.
As a matter of fact, simulation cannot issue an exhaustive
verdict like a model-checking experiment. For example, if a
scenario has a 90% probability of success at the end of the
design-time phase, a single successful run in the simulator
would not be sufficient to say that the verification results are
indisputable. On the other hand, a failed run might indicate a
critical oversight of the formal model. It is possible to identify
different degrees of the criticality of these flaws, depending
on the level of expertise required to tackle them. Concrete
examples are reported in Section VI with the presentation of
experimental results.

IV. MIDDLEWARE FORMAL MODEL
As discussed in Section III, it is necessary for the verification
and the deployment results to be comparable. To this end,
the formal model presented in Section II-C has been enriched
with features related to the software and middleware layers.

Publisher nodes are recurrent within the system since,
for each sensor, a ROS node periodically shares the latest
readings with the orchestrator. More specifically, the agents
in the network—the robot and the humans—are responsible
for publishing new data, whereas the orchestrator serves as a
subscriber to such data.
ROS handles all messages received by subscribers and

shared by publishers through independent queues. The rate
at which subscriber queues are emptied is easier to control
and anticipate than for publisher queues. As a matter of
fact, the first one depends either on the time it takes to
execute a single iteration of the callback function, or on the
rate explicitly set for the execution of callbacks through the
ros :: spinOnce() function. On the other hand, the time
necessary to process a publisher queue depends on how
quickly the message can reach the subscribers, which is not
fully controllable [22].

As argued by Halder et al. [23], a formal model of this
mechanism should include the following parameters: the
publisher’s publishing rate (Tpub), the subscriber’s spin rate
(Tsub), the time required to trasmit messages over channels
(Tmin and Tmax) and the time required to process callbacks
(CBmin and CBmax). Sensor readings are shared with fre-
quency 1/Tpoll with Tpoll ∈ K , therefore Tpub = Tpoll holds.
In our framework, all subscriber nodes perform no other

action besides data subscription, thus we can assume that
Tsub = 0 holds and the only delay attributable to the sub-
scriber is the callback execution time. Given that callbacks
consist of update instruction sets (see, for example, Eq.2),
we can assume that CBmin and CBmax are negligible com-
pared to the timeline of a mission (usually in the order of
minutes). We also choose not to include the tuning of queue
sizes or formally verify the overflow problem avoidance.
Given the sizing of the system’s parameters (for example,
Tpoll is always approximately 1s), themessage publishing rate
is such that the overflow issue is not pressing enough to justify
an increase in model complexity.

136622 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

In the following, we present the developed SHA conform-
ing to Def.2 and modeling:

1) ROS publisher queues, each referred to as
ros_pub〈id〉;

2) agents’ modeling pattern responsible for periodically
sharing the latest reading, referred to as 〈op〉_pub〈id〉.

1) ROS PUBLISHER QUEUE MODEL
The ros_pub〈id〉 automaton, also shown in Fig.5, models
independent publisher queues. This element of the SHA net-
work models the previously mentioned delays to transmit
messages stored in queues over ROS topics. To capture the
uncertain nature of the time required to publish the mes-
sage, we envisage a probability distribution that approximates
this delay. Instead of having a defined interval Tmin and
Tmax, we model the delay through variable λ ∈ Vdc, whose
values are randomly generated from a Normal distribution
N (µλ, σ 2

λ ). Previous studies have shown that such distribu-
tion is a suitable approximation for message transmission
delays [24]. In this way, communication delays due to ROS
latency are embedded in the model and potential impacts are
accounted for by the verification process.

FIGURE 5. ros_pub〈id〉 automaton modeling ROS publisher queue
identified by parameter 〈id〉. Color-coding is the same as in Fig.2.

As in Fig.5, a publisher queue is empty (location pidle)
until an agent (e.g., the robot) requests the publication of a
message through channel p〈id〉 ∈ C . Parameter 〈id〉 identifies
the selected queue and semantically corresponds to a ROS
topic. The publication request is captured by edge label p〈id〉!,
either in the component presented in Section IV-2 (and shown
in Fig.6) or as seen in Fig.2 (label p1!). As explained in
Section II-A, when the edge with label p〈id〉! fires, the edge
from location pidle to pbusy with label p〈id〉? (see Fig.5) fires
simultaneously.

Queues are modeled as fixed-length arrays, and variable
bpos ∈ Vdc keeps track of the first available position’s index
inside the queue. As the publication request is issued (),
the message is added to the buffer through the update instruc-
tion enqueue(msg), a new value of λ is generated through
update ξλ, and the automaton switches to location pbusy. The
automaton stays in pbusy as long as3 ≤ λ holds, where clock
3 ∈ X models the message publication latency. Once time
λ has elapsed, the first element of the queue is published to
the orchestrator through instruction dequeue() (see Fig.5).

FIGURE 6. 〈op〉_pub〈id〉 pattern, applied to all x〈op〉 locations in the
network to model the message publishing mechanism on queue 〈id〉.
Color-coding is the same as in Fig.2.

The latter subsumes the subscriber (e.g., the orchestrator)
behavior, which, as already argued, is not explicitly modeled
to limit complexity.

2) SENSOR DATA PUBLISHING PATTERN
While ros_pub〈id〉 instances deal with message queue man-
agement, 〈op〉_pub〈id〉 patterns are responsible for periodi-
cally publishing the latest readings. This pattern is applied to
all agents’ operating conditions (see Section II-C). Location
x〈op〉 in Fig.6 corresponds to a generic operating condition of
agent x, and ports start, stop, and hold mark the transitions
that enter and leave x〈op〉, whose characteristics change from
case to case. Ports are not officially part of the formalism, but
merely a visual expedient to represent the transitions entering
and leaving the component.

While in x〈op〉, the dynamics of the system are constrained
by differential equations marked by the generic symbol
δ〈op〉 ∈ F . Symbol i〈op〉 ∈ I corresponds to the set of location-
dependent invariants, in addition to constraint tupd ≤ Tpoll,
which is common to all instances of 〈op〉_pub〈id〉. Clock
tupd ∈ X measures time between consecutive readings. Every
Tpoll time instants, the sensor reading, modeled by a
dense counter variable v ∈ Vdc, is updated by instruction
ξ〈op〉 ∈ 4(W ). It is possible for one 〈op〉_pub〈id〉 instance to
be in charge of publishing multiple sensor readings (e.g., the
human shares data about fatigue and position), thus, multiple
dense-counter variables are simultaneously updated by ξ〈op〉.
The automaton then switches to a committed location xpubi .

In Uppaal parlance, the automaton must leave a committed
location without any delay [10] and this ensures that the latest
sensor readings have precedence over the other transitions.
Therefore, upon entering xpubi , if the execution of the pattern
does not need to be put on hold, the automaton immediately
sends an event through channel p〈id〉, triggering the queueing
routine on the corresponding ros_pub〈id〉 instance. If, for a
specific x〈op〉, execution can be put on hold, it is represented
via an edge connecting location xpubi to port hold. This is use-
ful when the operating condition has to be suspended—on an
exceptional basis—to apply some reconfiguration measure.
For example, concerning the robot SHA in Fig.2, this occurs
when the robot has to momentarily stop moving forward to
adjust its orientation 2.

VOLUME 9, 2021 136623



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

There are three instances of the 〈op〉_pub〈id〉 pattern in the
robot automaton, one for each 〈op〉 location, also highlighted
in Fig.2 and identified by a different 〈id〉 for each separate
queue. As per Eq.2, depending on the values of the design
parameters (i.e., if vmax

amax
≥ Tpoll holds), the robot might keep

sharing sensors readings also while it decelerates to a full
stop.

FIGURE 7. Diagram of the synchronization contingencies between an
〈op〉_pub〈id〉 pattern and the corresponding ros_pub〈id〉 automaton.
Case (a) occurs when ∀i, λi < Tpoll holds, so the buffer never contains
more than one element. If it is true that ∃i s.t. λi ≥ Tpoll (case (b)),
the publisher will send two consecutive messages and switch back to
pidle only after the second one has been published.

Fig.7 displays possible contingencies (cases (a) and (b))
resulting from the combination of a 〈op〉_pub〈id〉 pattern with
the corresponding ros_pub〈id〉 automaton. Case (a) occurs
when ∀i, λi ≤ Tpoll holds, therefore a message is always
successfully published before the new reading and the queue
never holds more than one element. If, on the other hand,
∃i, s.t.λi > Tpoll holds, which corresponds to case (b) in
Fig.7, more than one position in the queue will be simulta-
neously occupied and two messages will be published back-
to-back without switching back to pidle. Case (b) is enabled
by the two self-loops on pbusy (Fig.5) and guard conditions
on variable bpos.

V. DEPLOYMENT FRAMEWORK
The model presented in Section IV is put through Statistical
Model Checking, as described in Section II-B. Once the
results at design-time are deemed adequate, the scenario can
be either deployed in a real environment or simulated, as per
Fig.3. This section focuses on the deployment infrastruc-
ture (summarized by Fig.8) and the model-to-code mapping
principle. The main elements are the executable orchestrator,
the middleware layer, and the environment. The high-level
role they play in the framework is explained in Section III.
In the following, we explain in detail how each formal model
feature is mapped to an equivalent deployable form, and how
we guarantee that the deployed system and the formal model
behave correspondingly.

The high-level mapping between the formal model and the
deployment framework is depicted in Fig.8. Each automaton
of the SHA network, excluding instances of ros_pub〈id〉,
corresponds to an atomic entity of the deployment model.
The robot, the battery, and the human, which are real entities
if the application is deployed in a real environment, are

FIGURE 8. Diagram of the mapping between the formal model and the
deployment infrastructure. The automata for the robot, the battery and
the human are each mapped to a deployment unit. The orchestrator is
ported to a standalone script, that communicates with the agents through
ROS nodes. Sensor readings are shared with the orchestrator by a
publisher node for each agent. The orchestrator sends its commands
through a fourth publisher to all agents but the human, that is directly
controlled by the human user.

actuated through scripts internal to the simulator in case of a
virtual environment. The orchestrator is implemented through
a standalone script in both cases.

This architecture allows the analyst to choose between
deploying the application in a real or virtual environment
without changing the code. All ros_pub〈id〉 instances cor-
respond to a real ROS publisher node (and queue). Nodes
internal to the simulator are implemented using the ROS
interface provided by the CoppeliaSim API framework [16],
while the nodes related to the orchestrator are implemented
using the rospy library.4

Note that assistive robotics applications are our running
example, and we test the effectiveness of this approach on
use cases from this field, but it is not the only application
domain of the model-to-code mapping principle presented
in the following. A cyber-physical system is eligible for this
technique if it consists of distributed agents that periodically
share sensor readings through a publish-subscribe middle-
ware technology and a centralized controller that monitors
the system’s state and sends instructions accordingly. In the
future, we plan on deepening the analysis of the generality of
the approach by testing it on other areas, such as smart homes
or automated warehouses management systems.

A. MAPPING MODEL TO CODE
We exploit the stochastic features of SHA presented in
Section II-A to capture the uncertain aspects of reality which

4rospy documentation available at: http://wiki.ros.org/rospy

136624 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

TABLE 2. Mapping relations between features of a HA A and a deployment unit D, as defined by function 1.

are relevant to our scenarios, i.e., human behavior and unpre-
dictable network delays. Other elements of the SHA net-
work represent either electronic devices or software modules
whose behavior is fully deterministic. Therefore, although all
automata in the network are defined as SHA, only those mod-
eling humans and the ros_pub〈id〉 instances fully exploit the
stochastic features of SHA. All other automata are designed
to have a deterministic behavior, that is:

1) there are no edges that may fire with unbounded delay,
thus described by an exponential distribution;

2) for all states (l, ν), with l ∈ L and ν ∈ RW , there
is only one delay d ∈ R+ such that µ(l, ν)(d) = 1
holds, whereas, for all other d ′ ∈ R+ such that d ′ 6= d ,
µ(l, ν)(d ′) equals 0. This means that, for each state,
there is always only one delay which allows an uncon-
trollable switch (see Section II-C) to fire: thus, it is
necessarily assigned probability 1;

3) all edges have probability weight 1 (Pγ,c(l, l ′) = 1
holds in any case).

Under these premises, we can conclude that automata rep-
resenting electronic devices or software modules in the net-
work reduce to pure Hybrid Automata (HA). The aspects
modeled by the stochastic features do not require deployment
since they are naturally present in the deployment environ-
ment. Therefore, they are not considered by the deployment
approach presented in this paper. Hence, from this point for-
ward, the discussion will focus exclusively on the automata
that behave like purely HA, as they are the only ones relevant
to the present work.

To guarantee that the deployed system is a sound transposi-
tion of the original network of automata, we define amapping
function 1 that maps an HA automaton A to D, a generic
atomic entity of the deployment framework. An atomic
deployment unit D = (6,ϒ,8, S,T ,B, σini) consists of the
following artefacts:

1) the set 6 of agent states, including the initial one σini;
2) the set ϒ of variables, including sensor read-

ings (ϒs ⊂ ϒ), constant parameters (K ⊂ ϒ), clocks

(X ⊂ ϒ), and physical variables (real or simulated)
(ϒ \ (X ∪ ϒs ∪ K ));

3) the set 8, which contains physical laws in case of
deployment in the real world, or the implementation of
such laws in the case of simulation;

4) the set S(ϒ) of conditional expressions on variables
in ϒ ;

5) the set T of ROS topics over which messages (or com-
mands) that trigger a change of state are published, with
subsets Tr,Tb, and Th related respectively to the robot,
the battery, and the human;

6) the set B ⊂ 6 × T × S(ϒ)× A(ϒ)×6 of conditional
statements governing the control flow, where A(ϒ) is
the set of assignment instructions executed on variables
in ϒ .

The definition of D is to be strictly followed while draft-
ing the orchestrator script (both in simulated and real
environments) and the agents’ scripts for the simulator.
As for the agents’ deployment units in a real environment,
since this involves actual robotic systems and humans, this
definition must be intended as a high-level guideline to
identify the correspondence between the formal and real
systems.

Two reasons underlie this discrepancy in the interpretation.
Firstly, the robotic system’s code might vary significantly
depending on the specific manufacturer and model and might
not be fully accessible to the public. Secondly, since one
of the agents is an actual person, artefacts composing the
human deployment unit should not be interpreted in a soft-
ware engineering-specific sense but as abstract elements con-
stituting the human decision-making process. An explanatory
example is the set S that cannot contain classic Boolean
expressions for the human, but notionally corresponds to the
set of questions that someone (consciously or not) ponders to
make a decision [25].

Table 2 displays how function 1 maps each element of A
to an element ofD and is presented in detail in the following.

Each non-committed location in L corresponds to a state in
6, that is to say a block of code that defines the behavior of an

VOLUME 9, 2021 136625



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

agent under certain circumstances (e.g., the humanwalking or
standing still).

Dense-counter variables in Vdc ⊂ W have an equivalent
variable in set ϒs ⊂ ϒ . In particular, variables represent-
ing sensor readings are periodically updated with frequency
1/Tpoll like dense-counter variables in the formal model.

Constants in K ⊂ W are mapped to constant parameters
in K ⊂ ϒ , which match design parameters of the physical
equipment.

Each real-valued variable inW \ (X ∪ Vdc ∪ K ) matches a
physical variable in ϒ \ (X ∪ ϒs ∪ K ), whereas flow condi-
tions in F correspond to physical laws (or their implementa-
tions) in 8.
Each clock in X ⊂ W is mapped to a special case of

variable in X ⊂ ϒ that evolves uniformly with time. As for
the orchestrator, staying in a certain location until clock
tx ∈ X ⊂ W reaches threshold k ∈ K ⊂ W is implemented
as a sleep(κ) instruction, where κ ∈ K ⊂ ϒ is expressed in
seconds. This binds the behavior of the orchestrator deploy-
ment unit to the system time, which can be considered an
element of set X ⊂ ϒ . Time in the simulated environment
is discrete with a time-step 1t that has a minimum value
of 10ms. Given the system’s time variables sizing (e.g., Tpoll
equals 1s, which is two orders of magnitude greater than1t),
the error caused by the discretization interval has a negligible
impact on the system’s behavior and, therefore, on the results
of the analysis. Let us consider, for example, the model of
fatigue F while the human is walking, which evolves accord-
ing to equation F(t) = 1− e−νt [26]. To prevent the human
from reaching full exhaustion, the orchestrator instructs them
to stop when it detects that F = 0.7 holds. If the reaching of
this threshold is detected at time tstop with a continuous-time
model, in simulation it is detected at time tstop +1t at the
latest. With the most critical fatigue profile, that is with the
highest rate ν = 0.025, the value of F when the reaching of
the threshold is detected is F(tstop +1t) ≈ 0.700075, which
approximately corresponds to a 0.11% error. Similar conclu-
sions can be drawn about the other physical variables. Con-
sidering that the nature of the system does not require a sharp
real-time synchronization among the various components,
we can reasonably conclude that the order of magnitude
of the errors does not critically threaten the model-to-code
transposition soundness.

As for commands issued by the orchestrator, it is necessary
to make a distinction between the ones destined to the robot
or the battery and the ones destined to humans. In the first
case, triggering an event through channel c ∈ (Cr ∪ Cb) ⊂ C
corresponds to publishing a message over a ROS topic
t ∈ (Tr ∪ Tb) ⊂ T . The format of these messages is fixed
and defined a-priori. On the other hand, the way com-
mands are sent to the human constitutes a slight discrepancy
between the formal and the deployment model. Within the
HA network, the orchestrator shares its commands with the
human through channels identically to what it does with the
robot. The unpredictability of human behavior is embed-
ded in the formal model in terms of stochastic features [5].

Specifically, once the command has been received, edges are
also labelled by probability weights that determine whether
the human will obey or disobey. Furthermore, the human
can also make autonomous decisions, approximated by a
Bernoulli probability distribution. At deployment-time, these
stochastic approximations are lifted by having a real human
either providing keyboard input (in simulation) or directly
operating in the environment. In the latter case, human
‘‘inputs’’ are not explicit (e.g., when a human stops walking)
and need to be inferred from sensors data. Therefore, human-
related channels in Ch ⊂ C match user inputs t ∈ Th ⊂ T .

Edges in E are translated to scripts’ conditional state-
ments and callback functions in B, representing the switch
of an agent from state σ ∈ 6 to a new state σ ′ ∈ 6.
As discussed in Section II-C, edges can model control-
lable and uncontrollable switches. Controllable switches are
triggered by ROS messages, i.e., commands sent by the
orchestrator. Uncontrollable switches occur in correspon-
dence of the intersection between values that satisfy i ∈ I
and values that satisfy condition γ ∈ 0(V ) on the outgoing
edge. An edge e = (l,⊥, γ, ξ, l ′) modeling an uncontrol-
lable switch is mapped to conditional statement (i.e., if-then
construct) β = (σ,⊥, s, a, σ ′), where states σ and σ ′ map
locations l and l ′, respectively. Condition γ is mapped to the
conditional expression s ∈ S(ϒ) guarding β. Update instruc-
tions ξ are mapped to a ∈ A(ϒ), representing the (set of)
assignment instruction(s) performed as soon as β is executed
and s evaluates to true.

B. DEPLOYABLE CODE PATTERNS
Applying this mapping principle to recurrent modeling pat-
terns in the HA model leads to recurrent code patterns, pre-
sented in the following. Lines in Table 3, 4, 5, and 6 are
color-coded to highlight differences between deployment in
a real and simulated environment.

TABLE 3. Controllable Switch pattern model (on the left) to code (on the
right) transformation. Color-coding for the automaton is the same as in
Fig.2, except for channel labels which, for visualization purposes, are
black instead of red. The code pattern highlights mutually exclusive lines
that are present if the application is simulated (in dark blue) or deployed
in a real environment (in red).

Hereinafter, while presenting code patterns, we use nota-
tion a (→ b ∈ B) to indicate how a formal model element a
is mapped to a deployment unit element b ∈ B: for example,
the fact that guard condition γj is mapped to conditional

136626 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

TABLE 4. Uncontrollable Switch pattern model-to-code transformation.
Color-coding is the same as in Table 3 for both columns.

TABLE 5. Sensor reading pattern (〈op〉_pub〈id〉) model-to-code
transformation. Color-coding is the same as in Table 3 for both columns.

expression sj is expressed as γj (→ sj ∈ S(ϒ)).We recall that,
as in Section II-C, the automata that model the robot, the bat-
tery, and the humans are generically labeled as x, whereas the
location capturing a generic operating condition 〈op〉 of agent
x is labelled as x〈op〉. The pattern featuring locations labelled
as o is instead a subcomponent of the orchestrator automaton
and is, thus, realized by a standalone script.

As for the patterns for simulation scripts (described in
Section V-B1, Section V-B2, and Section V-B3), a fur-
ther remark is necessary about their apparently non-cyclical
nature. The scripts implement a standard interface provided
by the simulator. All the code blocks shown in Table 3, 4,
and 5 belong to a function of the interface that deals with
agents’ actuation in the scene and is, by default, re-run at each
time step (1t = 10ms) throughout the whole simulation.

1) CONTROLLABLE SWITCH PATTERN
The first pattern, shown in Table 3, is the controllable switch.
The resulting code pattern consists of:

TABLE 6. System monitoring pattern model-to-code transformation. The
generic automaton and code patterns are shown on the left, whereas the
right column features the specific instance of this pattern in our
framework. Color-coding is the same as in Table 3 for both columns.

• a for loop so that, during initizialization, agent x sub-
scribes to ROS topics tj ∈ T ;

• a callback function t_cbj (one for each subscribed
topic) which is invoked every time a new message m is
received through topictj: within the function, operating
condition x.l is updated, then assignment instructions
a〈op,opj(m)〉 are executed.

A controllable switch occurs when a change of operating
condition from 〈op〉 to 〈opj〉 is appropriate according to the
orchestrator policies. In the formal model, this causes the
related channel cj to fire; the orchestrator triggers an event
(cj!) and an agent reacts to it (cj?). In the deployment model,
commands are shared via ROS. Therefore, the orchestrator
script publishes the command through a dedicated ROS pub-
lisher node. The script internal to the simulator corresponding
to the destination agent, having subscribed to ROS topic cj
(→ tj ∈ T ) at the beginning of the simulation/execution,
receives such command over the same topic.

While in the corresponding status 〈op〉, the agent is con-
stantly listening on topic cj (→ tj ∈ T ). As soon as a
new message is published, the script executes the callback
function, generically called t_cbj.
In the real script, the whole ROS message m is passed as

input parameter to the callback function. The target operating
condition is a function of messagem and is, thus, with a slight
abuse of notation, referred to in Table 3 as 〈opj(m)〉.
The content of functiont_cbj replicates the corresponding

edge of the automaton: firstly the variable x.l ∈ ϒs ⊂ ϒ

VOLUME 9, 2021 136627



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

that keeps track of agent x’s current location is updated
to x〈opj(m)〉. Subsequently, the actions performed (or simu-
lated) by agent x in reaction to the command are captured
by update instructions ξ〈op,opj(m)〉 (→ a〈op,opj(m)〉 ∈ A(ϒ)).
As per Table 3, in case of deployment in a real set-
ting, this would correspond to the execution of proprietary
functions dealing with lower-level tasks (e.g., trajectory
planning).

2) UNCONTROLLABLE SWITCH PATTERN
The uncontrollable switch pattern, shown in Table 4, consists
of:
• n if-then-else statements βj ∈ B guarded by as
many conditional expressions sj ∧ x.l = x〈op〉, where
sj ∈ S(ϒ) holds for all j ∈ [1, n]: when one of conditions
sj evaluates to true, assignment instructions a〈op,opj〉 are
executed.

Note that combining the modeling patterns that formally
model the scenario in our framework leads to uncontrollable
switches which are guaranteed to be well-formed, that is, that
have the following features:

1) given the invariant i and guard γ associated with the
switch:
a) |Ni ∩ Nγ | > 0 holds for all uncontrollable

switches, where Ni ⊂ RW and Nγ ⊂ RW are the
sets of valuations that satisfy i and γ respectively;

b) there exists at least one real-valued vari-
able or clock v ∈ W \ Vdc ∪ K such that
νi,var(v) = νj,var(v) = v holds for some v ∈ R for
all νi,var ∈ Ni and all νj,var ∈ Nj;

2) given n uncontrollable edges outgoing from the same
location and guarded by as many γj conditions, such
conditions must be disjoint: ∩nj=1 Nγj = ∅ holds, where
Nγj is the set of valuations satisfying γj.

In case of an uncontrollable switch, as in Table 4, the edge
from location x〈op〉 to x〈opj〉 is guarded by condition γj
and i〈opj〉(→ sj ∈ S(ϒ)) is a member of the invariant of
x〈op〉. The way in which invariants i〈opj〉(→ sj ∈ S(ϒ)) are
enforced in scripts is explained in Section V-B3, here
we focus only on how outgoing edges are translated into
code.

As explained in Section IV, the automaton is forced to
switch to x〈opj〉 when variable and clock values simulta-
neously satisfy both i〈opj〉 and γj. Note that, as previously
mentioned, in our model guard conditions on uncontrollable
edges are guaranteed to be disjoint. For this reason, in the
corresponding code pattern reported in Table 4, it is correct
that, when one of the γj ∧ x.l = x〈op〉 conditions is verified,
no other if branch is visited. Constraint x.l = x〈op〉 is
necessary because the location might also be updated by a
callback function, as explained in Section V-B1. As soon as
a γj (→ sj ∈ S(ϒ)) condition becomes true, update ξ〈op,opj〉

(→ a〈op,opj〉 ∈ A(ϒ)) is executed (or proprietary functions
are invoked). Finally, x.l is updated to x〈opj〉.

3) SENSOR READING PATTERN
The third pattern is the one presented as 〈op〉_pub〈id〉 in
Section IV, which consists of:

• an update of variable t ∈ ϒ through simulator-specific
function getSysTime();

• an if-then statement β1 ∈ Bwhich is executed if: agent x
is in operating condition x〈op〉, expression s〈opj〉 ∈ S(ϒ)
is true for all j ∈ [1, n], and t− tlast ≤ Tpoll holds.
If all of these conditions hold, physical variables evolve
according to laws φ〈op〉;

• an if-then statement β2 ∈ Bwhich is executed if: agent x
is in operating condition x〈op〉, and t− tlast ≥ Tpoll holds.
Assignment instructions a〈op〉 are subsequently executed
and each sensor reading υ ∈ ϒs is published on topic
t〈id〉 ∈ T through a for loop.

As per Table 5, every time this block of code is reached,
variable t ∈ X ⊂ ϒ storing time is updated using proprietary
functions provided by the system [16]. In the automaton,
the value of clock tupd is compared against Tpoll to check
whether a new sensor reading is available. As for the code,
a support variable tlast ∈ ϒs ⊂ ϒ keeps track of the time
at which the previous sensor measurement was published.
It follows that the expression t− tlast is uniform to clock tupd.
If all invariants i〈opj〉(→ s〈opj〉 ∈ S(ϒ)) hold, the simulated

physical variables are then updated according to laws δ〈op〉
(→ φ〈op〉 ∈ 8). If the condition guarding the end of a sen-
sor’s refresh period (i.e., t− tlast ≥ Tpoll) is satisfied, tlast is
updated and variables in ϒs ⊂ ϒ corresponding to sensor
readings are updated as required by ξ〈op〉 (→ a〈op〉 ∈ A(ϒ)).
Since the committed location prescribes that no time

elapses before the following instruction is executed (i.e.,
triggering channel p〈id〉), the script immediately instructs a
dedicated ROS node to publish the updated sensor readings
on topic 〈id〉 through the ROS interface provided by the
simulator. At this point, message publication occurs asyn-
chronously with respect to the agent’s script. As a matter of
fact, ROS handles the publisher’s queue independently of the
script, which in the formal model is captured by a specific
instance of template ros_pub〈id〉 presented in Section IV.

4) SYSTEM MONITORING PATTERN
The final pattern in Table 6 is the subcomponent
〈op〉_chk〈x〉 [5], which is applied to all 〈op〉 locations of the
orchestrator. The purpose of this pattern is to periodically
check the state of the system every Tint time instants against
a set of policies and, if necessary, send commands to the
agents (e.g., stop the robot if it has reached the destination).
Note that the pattern is also applicable to other systems with
a likewise behavior (i.e., sampling-based system monitoring
with custom policy enforcement). While Table 6 displays the
generic pattern in the left column, in the following, to explain
how the pattern works, we exploit the specific instance from
our framework, which is shown on the right in Table 6.

136628 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

We recall that the orchestrator controls the execution from
a high abstraction level. Using as reference the abstraction
levels proposed by Lutz et al. [27], the orchestrator in our
framework operates at the task level, meaning that it manages
when and how the robot does something, irrespective of the
underlying implementation. All the lower-level details (e.g.,
the trajectory-planning algorithm) should be proprietary to
the robot manufacturer and dependent on the specific robot
model involved in the application. An implementation of
these low-level algorithms has been provided to test the
model-driven framework, though we do not claim it is the
optimal one, since, for the reasons listed above, it is not
the core of this research.

The resulting code pattern consists of:

• a while loop that runs as long as all expressions
sj ∈ S(ϒ) that map the automaton’s γj conditions,
with j ∈ [1, n], are false: in our specific instance,
these are sscs, sfail, and sstop. Within the loop,
the script: updates the state to o〈op〉 ∈ 6; pauses for
time Tint ∈ K (sleep(Tint)); executes assignments
aO ∈ A(ϒ); switches to ochk〈x〉 ∈ 6; and pauses for
Tproc ∈ K seconds (sleep(Tproc)).

Upon switching to checking location ochk〈x〉 , the automaton
applies the orchestrator’s set of policies, referred to as ξO
(→ aO ∈ A(ϒ)) [5], to the agents. After executing all the
instructions in ξO, one of the following guard conditions
might become true:

1) the condition that determines whether the mission has
ended with success γscs (→ sscs ∈ S(ϒ));

2) the condition that determines whether the mission has
failed γfail (→ sfail ∈ S(ϒ));

3) the condition that determines, for every controlled
agent in the system, whether the current agent’s action
has to stop γstop (→ sstop ∈ S(ϒ)).

In the formal model, the time required by the orchestrator to
make a decision based on the current system state is modeled
by parameter Tproc ∈ K ⊂ W . Once time Tproc has elapsed
(γproc = tact ≥ Tproc holds), if one of the outgoing edges
is enabled (γscs ∨ γstop ∨ γfail holds), the subcomponent
〈op〉_chk〈x〉 is left, otherwise the orchestrator switches back
to o〈op〉. The corresponding code block, shown in Table 6,
captures the cyclical succession of o〈op〉 and ochk〈x〉 . The
orchestrator script is put on hold for Tint seconds, while
the system evolves, through the programmatic instruction
sleep (the same happens afterwards for Tproc seconds in
ochk〈x〉). A set of policies equivalent to ξO(→ aO ∈ A(ϒ)) is
enforced afterwards.

The variable o.l ∈ ϒs ⊂ ϒ that keeps track of the location
is updated to ochk〈x〉 and a second sleep instruction is issued
to pause the execution for Tproc seconds (thus, γproc is not
part of the condition for the while cycle). Identically to the
〈op〉_chk〈x〉 pattern, at this point the loop condition is re-
evaluated and, if γscs∨γstop∨γfail holds, the loop ends along
with the execution of this pattern.

As per Table 6, for the last pattern the cycle is explicitly
defined since it is part of an ordinary script external to the
simulator or the real agent, whose execution flow requires
explicit programming.

VI. EXPERIMENTAL VALIDATION
As discussed in Section II-B, Statistical Model-Checking is
a valuable tool to analyze cyber-physical systems’ settings at
an early design stage. However, it cannot provide all-inclusive
results on its own [28]. The deployment module presented in
this paper strengthens the model-driven framework by pro-
viding users with additional tools to test and validate interac-
tive scenarios. These features are enabled by the fact that the
deployment framework elements are a rigorous transposition
of the HA network. Therefore, the approach ensures that the
system will display corresponding behavior at design-time
and at deployment time.

In the following, we discuss the deployment module’s
validation process and present relevant case studies that serve
the following two purposes:

P1: provide evidence that the formally modeled and the
deployed agents behave correspondingly;

P2: showcase the relevance of the deployment module to
the overall assessment process.

Through simulation, analysts can test applications in phys-
ically accurate environments. Moreover, they can focus
their assessment on manually induced situations theoretically
unlikely to occur, but critical for the mission’s outcome.
As explained in Section I, the mission ends with success if
the robot successfully serves all humans. Failure, instead, can
occur in twoways: 1) the robot’s battery gets fully discharged,
which makes the robot unable to move autonomously; 2) one
of the humans reaches full-exhaustion; therefore, they can no
longer move nor interact with the robot. To test the effective-
ness of the approach in all its possible use cases, our exper-
iments have focused on charge-critical or fatigue-critical
configurations that are fitting sources of stress to the system.

EXPERIMENTAL SETTING
Though the approach is general, the performed experiments
are based on healthcare-related settings. The chosen exper-
imental setting is represented in Fig.9. The scenario fea-
tures a T-shaped hospital corridor with doors leading to
offices and two cupboards with medical equipment. Specif-
ically, the main corridor of the floor layout has an area of
22m× 4m, whereas the shorter aisle leading to the cupboards
is 14m× 2m. We assume that a mobile platform is deployed
in this environment to assist patients and employees. In this
specific example, two humans are requesting the robot’s
assistance. The first person needs to fetch an item whose
location is unknown to them but known to the robot. There-
fore, the robot has to lead the human to their destination
(DEST 1 in Fig.9), and the suitable interaction pattern is
Human-Follower. The second human is a doctor who needs
the robot to carry some tools. The doctor has to lead the robot

VOLUME 9, 2021 136629



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

FIGURE 9. Experimental setting used for both experiments. The picture
captures the layout from the simulator, which is identically replicated in
the formal model. The two humans and the robot are represented in their
starting positions. The picture also highlights the two destination points
and the location of the recharge station.

to the tools’ location (point DEST 2 in Fig.9), conforming
to the Human-Leader interaction pattern. Both patterns are
described in more detail in Section II-B.

Results obtained by applying our model-driven approach
to this scenario significantly vary depending on parameter
values. As already discussed, the two critical factors are the
robot battery charge (Cstart) and the fatigue profiles of the
two humans (pf1,pf2), presented in Section II-B. The fatigue
profile determines the Maximum Endurable Time (MET)
value—i.e., how long a subject can walk non-stop before
reaching full exhaustion. The MET is an indicator of how
critical a fatigue profile is. When the human is walking,
fatigue grows exponentially (F(t) = 1 − e−νt ) [26]. Since
full exhaustion occurs when F equals 1−ε, it follows that the
MET value is − ln (ε)

ν
, where parameter ε represents an uncer-

tainty factor due to sensors’ inaccuracy and human physiol-
ogy variability. If we assume that ε equals 0.01, full exhaus-
tion is reached when F equals 0.99. The Young/Healthy
fatigue profile corresponds to a MET of 9210.34s [29].
With an Elderly/Healthy profile, the MET equals 575.65s,
whereas with the Young/Sick profile theMET equals 460.51s
(see Table 7).

We present two significant use cases, hereinafter referred
to as Experiment 1 and Experiment 2. Experiment 1 presents a
charge-critical configuration and consists of two iterations of
the approach (labelled as Experiment 1a and 1b). Experiment
2 starts with a fatigue-critical configuration. Table 7 sum-
marizes the parameters for each experimental configuration.
As explained in Section V, the listed design parameters and
the low-level algorithms are specified for a generic mobile
platformfit for testing purposes. However, theywould need to
be tuned (or come pre-packaged with the simulation model)
based on the specific robot model to be deployed in a real
environment.

EXPERIMENTAL VALIDATION PROCESS
The validation process we followed to assess if the deploy-
ment framework is an accurate translation of the formal

TABLE 7. Summary of experimental parameters set. Parameters that
make the configuration critical are marked in red, whereas the ones the
decrease the degree of criticality are in green.

model (i.e., goal P1) consists of the following steps (also
conforming to the framework presented in Section II-B):

1) automatically generate the formal model configured
according to parameters in Table 7;

2) run the SMC experiment to estimate the probabil-
ity of success by verifying property ψ presented in
Section II-B. The upper part of Table 8 displays the
chosen time-bound values and performance data (dura-
tion of the experiment and number of states explored);

3) deploy the application in the simulated environment,
with a real human user giving instructions to the human
avatar in the scene;

4) collect the simulations’ log files and compute metrics
to compare the system’s behavior at design-time and
at runtime and draw conclusions about the soundness of
the deployment approach. The bottom part of Table 8
displays the resulting values of such metrics for each
experiment, which will be analyzed in more detail later
in this section.

Further remarks are necessary about the data shown in
Table 8 and howwe have calculated it. Firstly we have empiri-
cally analyzed single traces for all experiments to estimate the
average duration of the mission and choose the time-bound τ
accordingly. Hence, we reasonably rule out the possibility of
obtaining a low probability of success due to an insufficient
time-bound.

In the second place, it is necessary to explain why the num-
ber of runs differs between design-time and runtime. Before
running the SMC experiment, Uppaal automatically com-
putes the number of traces (i.e., runs) necessary to reach the
required level of confidence 0.95. Since the set of statistical

136630 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

TABLE 8. Metrics to evaluate the correspondence between the formal model (FM) and the simulated system behavior at deployment time (SIM). The
upper part of the table reports performance data about the Statistical Model-Checking experiments and the number of runs for each experiment. In the
bottom part, the above-mentioned metrics are listed. These metrics concern the average mission duration in simulation and the time-bound (τ ) for the
verification, the resulting probability of success within the specified time-bound, and the expected values for the most critical physical variables: the two
humans’ fatigue (Fh1 and Fh2, respectively) and robot battery charge (C).

parameters (including the confidence) of Uppaal is the same
for all experiments, this computation yields the same result,
that is, 389 runs of the system. The deployment phase is not
subject to such statistical requirements. Therefore, we choose
to produce a number of simulation runs that is meaningful for
practical reasons. If we assume that about 40 people might
be served by the robot every day for 5 workdays a week and
2 humans are served in each run, simulating themission about
100 times realistically corresponds to testing the deployment
framework over the span of a week.

To fulfill goal P2, the validation process also envisages the
following step:

5) while simulating the application, force situations that
can lead to mission failure which are not covered
by the formal model and, thus, not accounted for by
verification results. Some examples and possible coun-
termeasures for each experiment are presented in the
corresponding subsections.

The deployment framework used for the experiments is
available at [30]. Recording of sample simulation runs is also
provided for interested readers [31]. The formal model is
created with Uppaal v.4.1.24 [12].5 The virtual environment
is created using CoppeliaSim v.3.6.2. The deployment units’
scripts are implemented in Python v.3.6.9 and the LUA script-
ing language.6 Finally, the middleware layer is built using the
ROS Melodic distribution v.1.14.7.

A. EXPERIMENT 1: CHARGE-CRITICAL CONFIGURATION
Experiment 1a involves two young healthy humans and a
robot with a low charge value (Cstart = 30%). With this con-
figuration, when the mission starts, the robot approximately
has 350s of battery life remaining. If both humans start walk-
ing as soon as it is their turn to be served and they perform

5SMC experiments are performed on a Linux machine with 128 cores,
515GB of RAM, and Debian Linux version 10.

6Simulations are executed on a Ubuntu 18.04 virtual machine with 2 cores
and 4GB of RAM.

flawlessly, 350s are sufficient to complete the mission. As
Table 8 shows, the average mission completion time observed
in the simulations is 65.32s. This result is compatible with
the time-bound empirically chosen for the formal verifica-
tion (70s), which leads to a success probability interval—
estimated with SMC—of [0.90186, 1]. This success rate is
confirmed while deploying the application since processing
the collected log files reveals that in 96.1% of the simulations
the mission was indeed successfully completed within 70s.
Note that, with a slight abuse of notation, both in Table 8
and below the success rate of the deployed application is still
indicated as P≤τ (� scs), as in the formal model; however,
it is not calculated through SMC, but as the ratio between how
many runs feature the mission successfully ending within τ
and the total number of runs, as per Eq.3.

P≤τ (� scs) =
# successful runs within τ

# runs
(3)

Besides the success rate, it is crucial to also verify that
physical variables are accurately simulated. To this end,
we have calculated through Uppaal the expected value for
the maximum value of fatigue reached by the two humans
and the residual battery charge at the end of the mission
(thus, the minimum value since, in these scenarios, the robot
never recharges). The same three metrics are extracted from
the simulation logs. By comparing these indicators, we can
conclude that both fatigue and charge evolutions in time are
consistent with the results obtained with the formal model.
In both phases, the two humans reach a negligible value of
fatigue (∼1%) as they both conform to the ‘‘best’’ fatigue
profile and only walk for about 30s each, whereas the residual
level of charge is approximately 24%.

After a thorough evaluation of the system’s behavior in
‘‘regular’’ circumstances, the analyst can forcedly induce the
situation in which the second human does not start as soon
as it is their turn, and the whole execution of the mission is
delayed (see Fig.10). The cause of the delay in a real setting
could be the doctor being unexpectedly held up or failing to

VOLUME 9, 2021 136631



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

FIGURE 10. Plot of the unsuccessful simulation run from Experiment 1a.
Green lines correspond to human fatigue ([0− 100]), while the orange
line corresponds to the battery charge ([0− 10]). Human 2 starts walking
at t ' 320s, about 270s after the first human has been served, causing
mission failure (bch ' 0%).

react immediately, which is a common human mistake [32].
The consequently extended duration of the mission leads
to the robot being fully discharged before its completion,7

which is one of the two possible causes of failure.
The analyst is now able to assess the unsuccessful simula-

tion run. They might decide that this manifestation of human
free will is plausible in real life and critical enough to moti-
vate a scenario refinement and an additional iteration of the
design-time analysis. Since humans cannot be programmati-
cally instructed to perform actions in a machine-like manner
(neither in the formal model nor in real life), the most sensible
refinement action would be selecting a higher value of Cstart.
If multiple mobile platforms are available, this can be realized
by choosing a different robot from the fleet, otherwise by
recharging the robot before starting the mission.

The new configuration is shown in Table 7 as Experiment
1b, with the updated value of Cstart = 90%. The second
iteration of SMC experiments, with τ = 70s, yields the same
success rate P≤τ (� scs) ∈ [0.90186, 1] (see Table 8). Re-
running the batch of simulations leads to similar results as
for Experiment 1a: the average completion time is approx-
imately 66s and the success rate within 70s is 94.5%. Note
that metrics concerning fatigue are almost unchanged with
respect to Experiment 1a and are still comparable to the ones
estimated with the formal model. As expected, the residual
battery charge is higher than for Experiment 1a (about 89%)
coherently with the different value of Cstart.

B. EXPERIMENT 2: FATIGUE-CRITICAL CONFIGURATION
The setup for Experiment 2 is more critical in terms of
human endurance to physical strain. Specifically, criticality
arises from the different fatigue profiles Elderly/Healthy and
Young/Sick, as in Table 7. In practice, the second subject
could be an employee with an undiagnosed condition affect-
ing their respiratory capacity and physical endurance.

7Although the robot can recharge itself both in the formal model and dur-
ing simulation, it is effectively busy serving a leader human when it reaches
the recharge threshold (C = 20%). Under these circumstances, the robot
cannot halt service delivery even if the human is delaying their action.

For this experiment, we have calculated the same metrics
described in Section VI-A, whose resulting values are also
shown in Table 8. The chosen value for τ in this case is
80s, which is slightly higher than for Experiment 1 since
humans walk at a slower pace due to the critical health
conditions. The SMC experiment yields a success proba-
bility range of [0.90186, 1]. Therefore, as in Experiment 1,
the analyst would have sufficient evidence to consider the
mission fit for deployment. Also in this case, the results
obtained at design-time are confirmed by deploying the appli-
cation. The averagemission completion time is 70.95swhich,
as expected, is slightly higher than for Experiment 1 and
compliant with the chosen time-bound. More specifically,
all the performed simulations were successfully completed
within τ = 80s (P≤τ (� scs) = 100%). The expected values
for the fatigue peaks are significantly higher than in the
previous experiment (∼20% � ∼1%) due to the different
fatigue profiles, but they are still compliant with the values
calculated through Uppaal at design-time. The same stands
for the robot battery charge. Therefore, also in this second
experiment, the deployed system’s behavior shows evidence
of an accurate transposition of the formal model.
Nevertheless, suppose now that the second subject—with

a more critical fatigue profile—follows an erratic trajec-
tory and not the shortest one. This situation can be sim-
ulated in the virtual environment. Fig.11 shows a specific
simulation run in which the second human exhibits this
behavior and keeps walking until full exhaustion. The first
human reaches their destination in approximately 50s (as
in Fig.11, they stop walking and start resting). The second
human starts walking at around t = 20s and keeps moving
for about 450s. As in Table 7, a subject with the Young/Sick
fatigue profile can walk non-stop at most for approximately
7.5min (MET2 = 460.51s). Therefore, the mission fails after
about 500s because the second human reaches the maximum
endurable value of fatigue.

FIGURE 11. Plot of the unsuccessful simulation run for Experiment 2.
Green lines correspond to human fatigue ([0− 100]), while the orange
line corresponds to the battery charge ([0− 100]). The plot shows that the
first human is successfully served in about 50s as expected, whereas
the second one keeps moving until they reach full exhaustion leading to
mission failure (Fh2 ' 100%).

This specific manifestation of human autonomy is not
covered by the formal model in its current development
stage. It follows that SMC experiments do not account for

136632 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

this possibility and yield a very high value for the chances
of success. Indeed, as explained in Section V, the formal
model accounts for human autonomy only to some extent;
in particular, it covers the possibility of a human disobeying
a command or freely deciding when to start or stop. On the
other hand, it currently does not allow for the possibility that
the human freely strays from the planned trajectory, as in the
simulation in Fig.11.

C. DISCUSSION
Firstly, the experiments in Section VI-A and Section VI-B
provide evidence that the formally modeled and the virtu-
ally simulated agents behave correspondingly. Comparing
the average completion times and success rates allows us to
conclude that the deployed robot controller issues the same
commands as the corresponding automaton andwith the same
timing, leading to mission success in a comparable amount of
time. As for human fatigue and battery chargemetrics, it is not
surprising that fatigue is—apparently—less accurately simu-
lated than charge: the average formal model-to-deployment
error for fatigue is 5.35% while it is only 0.13% for the
battery charge. This discrepancy is due to the higher degree
of variability of fatigue ascribable to the unpredictability of
human behavior. On the other hand, battery charge evolution
in time is entirely deterministic, thus leading to a minor error.

In this regard, we highlight possible limitations to our
comparison between the formal model and the deployed
system. Firstly, experiments are entirely carried out in a
simulated environment: running the robotic application in a
more dynamic setting such as a real hospital corridor may
lead to unexpected contingencies that alter the presented
metrics. Nevertheless, as previously discussed, simulation is
sufficient to assess the accuracy of the model-to-code trans-
lation principle, which is the core of this work. Furthermore,
the fatigue-related metrics involved in the discussion of the
experimental results may also be refined. In fact, during
simulation, we exploit benchmark data to simulate human
fatigue without considering the variability due to subjects’
characteristics that would provide a more comprehensive pic-
ture of the human fatigue phenomenon. In the future, we plan
to include the fatigue’s volatility in the simulated environment
to run a more in-depth analysis.

By assessing these experimental results it is possible to
identify two types of model-to-reality discrepancies that can
be detected through deployment. In the first case, as in Exper-
iment 1, even if the deployment highlights a failure due to a
gap in the formal model, it is still feasible to counteract it by
tuning the parameters of the scenario, e.g., the initial battery
charge Cstart. In the second case, of which Experiment 2 is
an example, the failure caused by the gap in the formal model
can only be tackled at design-time by refining the formal
model itself. The fundamental difference is that the first case
can be directly handled by the analyst (Type I refinement),
whereas the second case requires expertise in formal model-
ing that they are unlikely to possess (Type II refinement). The
next step in the development of the approach is, therefore,

the creation of an automated procedure that processes data
from scenarios deployed in real-life settings and refines the
SHAnetwork. By doing so, it will become possible to identify
and counteract Type II failures with multiple iterations of the
design-time analysis.

VII. RELATED WORK
The work presented in this paper mainly revolves around a
code generation technique that translates a Stochastic Hybrid
Automata network into a robotic deployment framework.
There are several works in literature with a comparable
goal, though often targeting a different formalism or a dif-
ferent phase of the software development process. In some
cases, testing rather than deployment is the main purpose,
as TA can be exploited to automatically generate offline
and online test-cases (e.g., for ROS packages [33]). There
are also previous attempts at porting a formal model to
a simulation environment. One such example is the TestIt
framework, that generates a simulator-agnostic simulation
environment for multi-agent robotic applications starting
from Timed Automata [34]. Other works focus on code anal-
ysis and explore the possibility to highlight potential flaws
in a ROS-based infrastructure through model-checking [23].
Another notable example is thework byWang et al. [35], pre-
senting a model-driven framework to convert a TA network
into C++ code, which is tested on a robot grasping task.

This brief survey suggests that developing code generation
techniques starting from formal models is valuable to the
robotic field. The approach allows for testing and deploy-
ment of robotic applications whose properties (for example,
concerning safety or efficiency) have been formally verified.
On the other hand, the assistive robotics domain, to which
this work is tailored, calls for a sound mathematical formu-
lation of human physiological and behavioral properties to
be involved in the formal verification process. More complex
time-dynamics mean that Timed Automata—including the
non-deterministic or probabilistic extensions—or temporal
logic-based notations [36] no longer suffice as they require
a hybrid formalism.

Pre-existing works that introduce translation principles of
Hybrid Automata into executable code do not suit robotic
applications. In some cases, modular architectures with paral-
lel components are the target [37], whereas interactive robotic
applications require a hierarchical deployment structure with
an intermediary middleware layer. As previously noted, some
works target testing and code coverage rather than deploy-
ment [38], or model-to-model transformations, such as HA
to SLSF diagrams [39]. To the best of the authors’ knowledge,
the work presented in this paper is the first introducing a
mapping principle between a HA network and a software
architecture compatible with a ROS-based robotic system.

The research line on verification and simulation techniques
for analyzing human-robot interaction is also worthy of dis-
cussion. Simulation can be used to estimate the final level of
satisfaction of the human customer after short-term human-
robot interactions [40]. Some works focus on the planning

VOLUME 9, 2021 136633



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

phase of the robotic mission, for example analyzing alter-
native workflows for the task driven by human input [41].
Quintas et al. [42] investigate how an agent’s performance
is affected by interaction workflows in its decision-making
process. The framework processes a high-level description
of the scenario and the human that will interact with the
robot to generate a mission plan graph. The inclusion of a
human operator model is also of paramount importance in the
Virtual Commissioning (VC) of collaborative manufacturing
tasks, whose purpose is to test in advance the reaction of the
system to malfunctions [43]. Webster et al. [44] also argue
that different verification and validation (V&V) techniques
are not fully exhaustive when they are used alone, but should
be combined into a corroborative approach to considerably
increase their effectiveness.

To conclude, an approach based on formal methods, such
as the one presented in this paper, can significantly benefit the
software development lifecycle in terms of dependability. The
vast majority of industry professionals who have employed
formal verification techniques report a quality boost for the
final product [45], and demand for this kind of approach
is rapidly growing [46]. This kind of approach can prove
especially beneficial to cyber-physical systems, where robots
interact with the environment and humans [4]. Therefore,
software running on robots in charge of decision-making
must result from a trustworthy verification process. The
deployment approach presented in this paper paves the way
for a dependable code generation technique retaining the
features verified while designing the robotic application.

VIII. CONCLUSION AND FUTURE WORK
We have presented a model-driven deployment approach to
generate deployable code from a specific subset of SHA.
If applied to the assistive robotics domain, the methodol-
ogy allows roboticists to deploy formally-verified interactive
applications or simulate them in a realistic virtual environ-
ment. The model-to-code conversion principle ensures that
the deployed system behaves correspondingly to the original
formal model, thus guaranteeing the retention of properties
verified at design time. We provide empirical evidence of
code conformity through experimental use cases from the
healthcare setting. Simulation can also prove valuable to
induce problematic contingencies which are not covered by
the formal model and might call for a refinement of the
robotic mission.

The approach lends itself to several future development
directions. First and foremost, the framework ought to be
validated in a real environment, as mentioned in Section III.
Furthermore, the framework will be further expanded with a
module in charge of automatically refining the SHA network,
specifically the human behavior model, based on logs from
real-life runs. We also plan to improve the user-friendliness
of the approach by developing a Domain-Specific Lan-
guage (DSL) that allows users to configure scenarios in more
detail.

REFERENCES

[1] T. Gwon, H. Park, D. Seo, S. Lee, D. Kim, and S. Jeon, ‘‘A study on safety
evaluation criteria of the personal carrier robot based on ISO 13482,’’ in
Proc. 3rd IEEE Int. Conf. Robotic Comput. (IRC), Feb. 2019, pp. 477–482.

[2] SPARC, ‘‘Robotics 2020 multi-annual roadmap for robotics in Europe,’’
SPARC Robot., Brussels, Belgium, Tech. Rep. 1, 2016.

[3] S. García, D. Strüber, D. Brugali, T. Berger, and P. Pelliccione, ‘‘Robotics
software engineering: A perspective from the service robotics domain,’’ in
Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., Nov. 2020, pp. 593–604.

[4] S. García, D. Strüber, D. Brugali, A. Di Fava, P. Schillinger, P. Pelliccione,
and T. Berger, ‘‘Variability modeling of service robots: Experiences and
challenges,’’ in Proc. 13th Int. Workshop Variability Modeling Softw.-
Intensive Syst., Feb. 2019, pp. 1–6.

[5] L. Lestingi, M. Askarpour, M.M. Bersani, andM. Rossi, ‘‘Formal verifica-
tion of human-robot interaction in healthcare scenarios,’’ in Proc. SEFM.
Amsterdam, The Netherlands: Springer, 2020, pp. 303–324.

[6] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi, ‘‘A model-
driven approach for the formal analysis of human-robot interaction sce-
narios,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2020,
pp. 1907–1914.

[7] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, ‘‘The algorithmic anal-
ysis of hybrid systems,’’ Theor. Comput. Sci., vol. 138, no. 1, pp. 3–34,
1995.

[8] S. Feo-Arenis, M. Vujinović, and B. Westphal, ‘‘On implementable timed
automata,’’ in Proc. Int. Conf. Formal Techn. Distrib. Objects, Compon.,
Syst. Valletta, Malta: Springer, 2020, pp. 78–95.

[9] R. Alur and D. L. Dill, ‘‘A theory of timed automata,’’ Theory Comput.
Scince, vol. 126, no. 2, pp. 183–235, 1994.

[10] G. Behrmann, A. David, and K. G. Larsen, ‘‘A tutorial on UPPAAL,’’ in
Formal Methods for the Design of Real-Time Systems. Bertinoro, Italy:
Springer, 2004, pp. 200–236.

[11] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
J. Van Vliet, and Z. Wang, ‘‘Statistical model checking for networks of
priced timed automata,’’ in Proc. Int. Conf. Formal Modeling Anal. Timed
Syst. Aalborg, Denmark: Springer, 2011, pp. 80–96.

[12] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
‘‘Uppaal SMC tutorial,’’ Int. J. Softw. Tools Technol. Transf., vol. 17, no. 4,
pp. 397–415, Aug. 2015.

[13] G. Agha and K. Palmskog, ‘‘A survey of statistical model checking,’’ ACM
Trans. Model. Comput. Simul., vol. 28, no. 1, pp. 1–39, Jan. 2018.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA, vol. 3, no. 3, 2009, p. 5.

[15] M. Askarpour, M. Rossi, and O. Tiryakiler, ‘‘Co-simulation of human-
robot collaboration: From temporal logic to 3D simulation,’’ 2020,
arXiv:2007.11737. [Online]. Available: http://arxiv.org/abs/2007.11737

[16] E. Rohmer, S. P. N. Singh, and M. Freese, ‘‘CoppeliaSim (formerly V-
REP): A versatile and scalable robot simulation framework,’’ in Proc.
IROS, Nov. 2013, pp. 1321–1326.

[17] P. Payne, M. Lopetegui, and S. Yu, ‘‘A review of clinical workflow studies
and methods,’’ in Cognitive Informatics. Cham, Switzerland: Springer,
2019, pp. 47–61.

[18] R. Acharya, N. Kannathal, O.W. Sing, L. Y. Ping, and T. Chua, ‘‘Heart rate
analysis in normal subjects of various age groups,’’ Biomed. Eng. OnLine,
vol. 3, no. 1, p. 24, Dec. 2004.

[19] T. Chettibi, M. Haddad, H. E. Lehtihet, andW. Khalil, ‘‘Suboptimal trajec-
tory generation for industrial robots using trapezoidal velocity profiles,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 729–735.

[20] H.Vangheluwe, J. De Lara, and P. J.Mosterman, ‘‘An introduction tomulti-
paradigm modelling and simulation,’’ in Proc. Int. Conf. AI, Simulation
Planning High Autonomy Syst., 2002, pp. 9–20.

[21] Y. Van Tendeloo and H. Vangheluwe, ‘‘The modelverse: A tool for multi-
paradigm modelling and simulation,’’ in Proc. Winter Simulation Conf.
(WSC), Dec. 2017, pp. 944–955.

[22] J. M. O’Kane, ‘‘A gentle introduction to ROS,’’ Dept. Comput. Sci. Eng.,
Univ. South Carolina, Columbia, SC, USA, Tech. Rep. 1, 2014.

[23] R. Halder, J. Proenca, N. Macedo, and A. Santos, ‘‘Formal verifi-
cation of ROS-based robotic applications using timed-automata,’’ in
Proc. IEEE/ACM 5th Int. FME Workshop Formal Methods Softw. Eng.
(FormaliSE), May 2017, pp. 44–50.

[24] D. Tardioli, R. Parasuraman, and P. Ögren, ‘‘Pound: A multi-master ROS
node for reducing delay and jitter in wirelessmulti-robot networks,’’Robot.
Auto. Syst., vol. 111, pp. 73–87, Jan. 2019.

136634 VOLUME 9, 2021



L. Lestingi et al.: Deployment Framework for Formally Verified Human-Robot Interactions

[25] O. Svenson, ‘‘Decision making and the search for fundamental psycho-
logical regularities: What can be learned from a process perspective?’’
Organizational Behav. Hum. Decis. Processes, vol. 65, no. 3, pp. 252–267,
Mar. 1996.

[26] S. Konz, ‘‘Work/rest: Part II-the scientific basis (knowledge base) for the
guide 1,’’ Ergonom. Guidelines Problem Solving, vol. 1, no. 401, p. 38,
2000.

[27] M. Lutz, D. Stampfer, A. Lotz, and C. Schlegel, ‘‘Service robot control
architectures for flexible and robust real-world task execution: Best prac-
tices and patterns,’’ Informatik, vol. P-232, pp. 1295–1306, Jul. 2014.

[28] N. Li, C. Tsigkanos, Z. Jin, Z. Hu, and C. Ghezzi, ‘‘Early validation
of cyber–physical space systems via multi-concerns integration,’’ J. Syst.
Softw., vol. 170, Dec. 2020, Art. no. 110742.

[29] K.Yoshino, T.Motoshige, T. Araki, andK.Matsuoka, ‘‘Effect of prolonged
free-walking fatigue on gait and physiological rhythm,’’ J. Biomech.,
vol. 37, no. 8, pp. 1271–1280, Aug. 2004.

[30] (2020). HRI Deployment. [Online]. Available: https://github.com/
LesLivia/hri_deployment

[31] (2020). HRI Deployment Demo. [Online]. Available: https://tinyurl.
com/y2p2lrbx

[32] M. Askarpour, D. Mandrioli, M. Rossi, and F. Vicentini, ‘‘Formal model
of human erroneous behavior for safety analysis in collaborative robotics,’’
Robot. Comput. Integr. Manuf., vol. 57, pp. 465–476, Jun. 2019.

[33] J. Ernits, E. Halling, G. Kanter, and J. Vain, ‘‘Model-based integration
testing of ROS packages: A mobile robot case study,’’ in Proc. Eur. Conf.
Mobile Robots (ECMR), Sep. 2015, pp. 1–7.

[34] G. Kanter and J. Vain, ‘‘Model-based testing of autonomous robots using
TestIt,’’ J. Reliable Intell. Environ., vol. 6, no. 1, pp. 15–30, 2020.

[35] R. Wang, Y. Guan, H. Song, X. Li, X. Li, Z. Shi, and X. Song, ‘‘A formal
model-based design method for robotic systems,’’ IEEE Syst. J., vol. 13,
no. 1, pp. 1096–1107, Mar. 2019.

[36] F. Vicentini, M. Askarpour, M. G. Rossi, and D.Mandrioli, ‘‘Safety assess-
ment of collaborative robotics through automated formal verification,’’
IEEE Trans. Robot., vol. 36, no. 1, pp. 42–61, Feb. 2020.

[37] A. Malik, P. S. Roop, S. Andalam, M. Trew, and M. Mendler, ‘‘Modular
compilation of hybrid systems for emulation and large scale simulation,’’
ACM Trans. Embedded Comput. Syst., vol. 16, no. 5s, pp. 1–21, Oct. 2017.

[38] J. Eddeland, J. G. Cepeda, R. Fransen, S. Miremadi, M. Fabian, and
K. Åkesson, ‘‘Automated mode coverage analysis for cyber-physical
systems using hybrid automata,’’ IFAC-PapersOnLine, vol. 50, no. 1,
pp. 9260–9265, 2017.

[39] S. Bak, O. A. Beg, S. Bogomolov, T. T. Johnson, L. V. Nguyen, and
C. Schilling, ‘‘Hybrid automata: From verification to implementation,’’
Int. J. Softw. Tools Technol. Transf., vol. 21, no. 1, pp. 87–104, Feb. 2019.

[40] K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, andN. Hagita, ‘‘Designing and
implementing a human–robot team for social interactions,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 43, no. 4, pp. 843–859, Jul. 2013.

[41] Y. Kim and W. C. Yoon, ‘‘Generating task-oriented interactions of ser-
vice robots,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8,
pp. 981–994, Aug. 2014.

[42] J. Quintas, G. S. Martins, L. Santos, P. Menezes, and J. Dias, ‘‘Toward
a context-aware human–robot interaction framework based on cognitive
development,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 1,
pp. 227–237, Jan. 2019.

[43] P. Rueckert, S. Muenkewarf, and K. Tracht, ‘‘Human-in-the-loop sim-
ulation for virtual commissioning of human-robot-collaboration,’’ Proc.
CIRP, vol. 88, pp. 229–233, Jan. 2020.

[44] M. Webster, D. Western, D. Araiza-Illan, C. Dixon, K. Eder, M. Fisher,
and A. G. Pipe, ‘‘A corroborative approach to verification and validation
of human–robot teams,’’ Int. J. Robot. Res., vol. 39, no. 1, pp. 73–99,
Jan. 2020.

[45] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, ‘‘Formal
methods: Practice and experience,’’ ACM Comput. Surv., vol. 41, no. 4,
pp. 1–36, 2009.

[46] M. Gleirscher and D. Marmsoler, ‘‘Formal methods in dependable systems
engineering: A survey of professionals from Europe and North America,’’
Empirical Softw. Eng., vol. 25, no. 6, pp. 4473–4546, Nov. 2020.

LIVIA LESTINGI received the M.Sc. degree in
automation engineering from the Politecnico di
Milano, in 2017, where she is currently pur-
suing the Ph.D. degree in information technol-
ogy. Her research interests include the analysis
of human–robot interaction through formal meth-
ods and formal modeling techniques of human
behavior.

MEHRNOOSH ASKARPOUR is currently an
Adjunct Assistant Professor with McMaster Uni-
versity. Her current research interests include ver-
ification of safety-critical system properties and
application of formalmethods for safe robotics and
autonomous vehicles.

MARCELLO M. BERSANI is currently a Senior
Assistant Professor with the Politecnico di
Milano. His research interests include formal
methods, temporal logic, and verification.

MATTEO ROSSI is currently an Associate Profes-
sor with the Politecnico di Milano. His research
interests include formal methods for safety-critical
and real-time systems, architectures for real-time
distributed systems, and transportation systems
both from the point of view of their design, and
of their application in urban mobility scenarios.

VOLUME 9, 2021 136635


