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ABSTRACT With recent advances in the field of sensing, it has become possible to build better assistive
technologies. This enables the strengthening of eldercare with regard to daily routines and the provision of
personalised care to users. For instance, it is possible to detect a person’s behaviour based on wearable or
ambient sensors; however, it is difficult for users to wear devices 24/7, as they would have to be recharged
regularly because of their energy consumption. Similarly, although cameras have been widely used as
ambient sensors, they carry the risk of breaching users’ privacy. This paper presents a novel sensing approach
based on deep learning for human activity recognition using a non-wearable ultra-wideband (UWB) radar
sensor. UWB sensors protect privacy better than RGB cameras because they do not collect visual data.
In this study, UWB sensors were mounted on a mobile robot to monitor and observe subjects from a specific
distance (namely, 1.5-2.0 m). Initially, data were collected in a lab environment for five different human
activities. Subsequently, the data were used to train a model using the state-of-the-art deep learning approach,
namely long short-term memory (LSTM). Conventional training approaches were also tested to validate the
superiority of LSTM. As a UWB sensor collects many data points in a single frame, enhanced discriminant
analysis was used to reduce the dimensions of the features through application of principal component
analysis to the raw dataset, followed by linear discriminant analysis. The enhanced discriminant features
were fed into the LSTMs. Finally, the trained model was tested using new inputs. The proposed LSTM-based
activity recognition approach performed better than conventional approaches, with an accuracy of 99.6%.
We applied 5-fold cross-validation to test our approach. We also validated our approach on publically
available dataset. The proposed method can be applied in many prominent fields, including human-robot

interaction for various practical applications, such as mobile robots for eldercare.

INDEX TERMS Human activity recognition, LSTM, LDA, PCA, XeThru UWB sensor.

I. INTRODUCTION

According to a 2017 report by the Department of Economic
and Social Affairs in the United Nations, the population
of older adults is increasing more rapidly than other age
groups [1]. In 2015, one out of eight people worldwide were
aged 60 years or older. By 2050, the number of older adults
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is expected to reach nearly 2.1 billion. A major challenge in
working with an ageing population is the effective delivery
of healthcare services [2]. Moreover, healthcare for older
adults is a matter of great concern for their relatives. This is
particularly true when older adults are alone at home as they
are at a risk of being affected by unforeseen circumstances,
such as falls. Recently, independent living among older adults
has become a significant challenge from both social and
economic perspectives. Therefore, assisting older adults with
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their well-being and autonomy has become a research topic
of great interest [3].

Understanding the current state and context of users is
crucial for assisting in their everyday lives. Human move-
ment has been actively studied using distinguished ambient
sensors [4], [5]. Previously, video-based sensors have been
used for human activity recognition and fall detection [6].
However, video-based sensors often face challenges in their
use owing to privacy issues. In contrast, a non-contact ambi-
ent sensor that has no such privacy issues is the XeThru
ultra-wideband (UWB) radar [7]-[9]. Hence, sensors, such as
UWRB radars, can be used for general robot navigation sensing
and emergency analysis based on human body movement
while preserving privacy, particularly for older adults living
independently.

Sensors with wireless communication ability make
human-machine interaction robots suitable for human
behaviour and vital sign analysis [9]. Many researchers have
explored ambient sensors for monitoring human behaviour
and health status [10]-[15]. For instance, CASAS adopted
machine learning tools for user behaviour analysis [10].
GatorTech is an earlier research project wherein many
ambient sensors were used to provide user services, such
as voice and behaviour recognition [11]. Zhang et al. [12]
proposed an assisted living environment to help prolong
the time for which older adults could live in their homes.
SWEET-HOME, a French project, aimed at developing an
assisted living technology mainly based on audio analy-
sis [13]. Billias et al. [14] adopted ambient sensors, such as
cameras and microphones, to analyse the daily activities of
older users. Recently, Lio [15], a personal robot assistant
developed by F&P Robotics, was introduced with a multi-
functional arm. The robot could assist patients autonomously
and provide several healthcare functions. During the long
COVID-19 pandemic, additional functions, such as disin-
fection operations and remote detection of elevated body
temperature, were performed by Lio.

Human activity recognition (HAR) and emergency detec-
tion have made significant progress in recent years through
machine learning techniques [16]. Most previous HAR stud-
ies have relied on hand-crafted features, which are some-
times difficult to distinguish with sufficient accuracy to
classify activities [17]. Conventional pattern recognition
techniques, such as K-nearest neighbour (KNN) [18], sup-
port vector machines (SVMs) [19], artificial neural networks
(ANNSs) [20], and random forest (RF) [21], perform well
in HAR and emergency detection. Meanwhile, in recent
years, we have witnessed an incredible growth in machine
learning research enabled by advancements in deep learning
approaches. Deep learning has resulted in remarkable perfor-
mance in many research areas, such as computer vision [22],
business analytics, and natural language processing [23].
Recently, convolutional neural networks (CNNs) have shown
significant improvement in classifying human activities [24].
Yang et al. [25] built a CNN-based architecture that could
analyse multi-channel time-series data. A unified layer was
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FIGURE 1. Basic flows of the proposed enhanced discriminant
features-based activity recognition system using LSTM.

introduced to merge multiple channels prior to classification.
Moreover, the CNN-based multi-channel time-series archi-
tecture is task-dependent and is characterised by a higher
discrimination accuracy for classifying human activities.
Previous research has shown the use of UWB sensors to
recognize human activities [26], [27]. Singh et al. [28] pro-
posed a framework for HAR using point clouds generated
by mmWave radar. Their activities were related to exercise.
Sharma et al. [29] introduced a channel impulse response
based HAR system which can recognize sitting, standing and
lying positions.

It has been observed that the deep network structure in deep
learning is more suitable than traditional machine learning
approaches for supervised and incremental learning [30].
Thus, deep learning is an ideal approach for analysing human
behaviour and health status using data from newly introduced
sensors, such as XeThru UWB radars [8], [9], [31]. A recur-
rent neural network (RNN) is one of the most popular deep
learning techniques for time-series data [30], [32]. An RNN is
adopted to decode time-sequential data for modelling various
events, such as an emergency due to an unusual heart rate.
Therefore, a special type of RNN, namely long short-term
memory (LSTM), is proposed in this study to classify the
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XeThru UWB radar data. The performance of conventional
approaches, such as SVM, AdaBoost, multilayer perceptron
(MLP), quadratic discriminant analysis (QDA), KNN, RF,
and decision trees (DTs), have also been evaluated and com-
pared with that of LSTM. Furthermore, as XeThru UWB
radar sensors collect a large number of data points in a single
frame, principal component analysis (PCA) and linear dis-
criminant analysis (LDA) are introduced for dimensionality
reduction. Figure 1 illustrates the basic flows of the proposed
system in two steps, namely training (left-hand side) and
testing (right-hand side).

In this study, we investigate whether a XeThru UWB radar
sensor can recognise different complex human activities.
Thus, the contributions of this work are two-fold:

o A XeThru UWB radar sensor is used with a novel
LSTM-based approach to classify activities.

o Enhanced discriminant analysis (EDA), combining PCA
with LDA, is proposed to reduce data dimensionality and
extract significant features before feeding them into the
classifiers.

Il. METHODOLOGY

A. SUBJECTS

This study aimed to classify five different activities using a
UWB sensor. Overall, 13 participants were included in the
study with six of them being female subjects. All of them
were normal healthy people. The ages of the participants vary
from 22 — 50 years. All subjects voluntarily participated in
the experiments, and written consent was obtained from all
subjects before participation. The experiments and data col-
lection were approved in advance by the Norwegian Centre
for Research Data (NSD). All experiments were performed
in accordance with relevant guidelines and regulations.

B. DATA ACQUISITION FROM UWB RADAR

The UWB radar has been used for imaging in sensing
through walls, [33]-[35], detecting humans [36], [37], assist-
ing in public security [38], and recognising moving sub-
jects [39], [40]. In the current study, we used XeThru X4,
a compact impulse-radio UWB radar system on a chip,
as shown in Figure 2. The radar is configurable and provides
developers with a high degree of freedom to develop new
applications, ranging from basic presence detection to vital
sign analysis. The pulse transmitted by the radar can be
configured within two bands, namely the lower and upper
bands. The lower pulse generator enables transmission within
the 6.00-8.50 GHz band, whereas the higher pulse genera-
tor enables transmission within the 7.25-10.20 GHz band.
To capture the reflected energy, the radar applies a high-speed
sampler with a sampling rate of 23.328 GS/s, which can
sample up to 1,536 samples [8]. The distance from the radar
to an object is called the slant range, which can be determined
by

CxT
R=—
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FIGURE 2. Ultra-wideband XeThru X4 sensor [8].

where C is the speed of light and T is the time required
for signal reflection. The divisor 2 is used because the radar
signal travels to the target and then travels the same distance
back to the radar. The radar system is dependent on waveform
design in several ways. The range resolution is proportional
to the bandwidth, and the signal-to-noise ratio (SNR) of the
output signal is directly proportional to the waveform energy.
In contrast, the signal wavelength affects the radial velocity
resolution [41]. Because of its short duration, good spectrum
coverage, and ease of implementation in CMOS, a frequency-
shifted Gaussian pulse can be considered as an excellent
candidate for a UWB. The frequency-shifted Gaussian pulse
can be determined by

2
g(t) = p(r) cos (wct) = Vrx exp (-#) cos (wct), (2)

where p(t) denotes the Gaussian pulse envelope and 7 deter-
mines the —10dB bandwidth.
-1

v = (2nfa(logio(0) *) . 3)

The pulse amplitude V7x is dependent on the regulatory
limits for the peak and average output power [42]. For swept-
threshold (ST) sampling, the sweep time is dependent on the
number of pulses (1pu55) and the pulse repetition frequency
(PRF).

Npulses

PRF

The matched filter radar equations are used to obtain
the SNR for an ideal pulse-based radar receiver (RX) from
a target, given its range R and radar cross-section (RCS)
orcs [43]:

“)

Isweep =

2 2
Pt'tp'npulses'G  ORCS * A

SNRideal = = T F np R

, &)

where G is the antenna gain, kp is Boltzmann’s constant, A
is the wavelength, Ty is the temperature in Kelvin, P; is the
transmitted pulse power, F is the RX noise factor, and #, is
the pulse duration. The transmitted pulse is approximated as
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FIGURE 3. Schematic setup of the five indoor activities in the experiment.

FIGURE 4. An A3 posture and the robot with a UWB sensor.

a rectangular windowed pulse with length #, such that the
energy of the pulse E, equals

Vi
Ep:P;'lp:E'tp. (6)
In an ST-based pulse radar, (5) becomes
Py -ty - Npulses - G* - orcs - A - Gst
kg -To-F - (47)> - R*- Nsteps

SNRgt = @)
where ngepg is the number of steps in the threshold sweep that
causes an SNR loss and Ggr is the SNR gain obtained from
multiple threshold levels covering the noise region around
the signal value, which results in an integration effect. The
largest signal in the sampled frame can be used to determine
the threshold sweep range, which occurs at the minimum
distance, in addition to the noise. Assuming 5 - sigmaugise
is sufficient as the maximum noise voltage, the number of
threshold steps required is

2- (Vrx - AFE + 5 - Onoise)
q

where Arg is the voltage gain of the RX front end, and the
received pulse amplitude Vgy is given by

=

1, ®)

Nsteps

G? - opcs - A2

(4n) - R* ©)

Vrx = Vrx -
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The ST-SNR loss can be expressed as

Lst =10- logl()((vsweep + q)/(1.772 - onoise))- (10)

The major advantage of using ST rather than a multi-bit
system is that it only requires a 1-bit quantiser, which can
increase the inherent linearity of the system and simplify the
design. Moreover, with no reduction in the SNR, ST can be
operated over longer consecutive ranges.

In our study, we used a UWB impulse radar, which can
sense vital sign data, such as presence, breathing patterns,
and movement from people who are either sitting on a bed
or walking around. The UWB signal returns to obtain the
required echo matrix with frames corresponding to each
range bin, as shown below [44]:

M=yl x=1,2,...X;y=1,2.., Y}, (11)

where x and y denote the range and time, respectively, while
X is the extent of the range and Y is the extent of the time
span of the data. Hence, the total size of the data is XY. The
frame M further passes through PCA, which is discussed in
more detail in the DATASET AND METRICS section.

Ill. DATASET AND METRICS

The obtained dataset comprised five normal activities: lying
(A1), sitting on the bed with the legs on the bed (A2), sitting
on the bed with the legs on the floor (A3), standing (A4),
and walking (AS5). An illustration of each activity is given
in Figure 3. Figure 4 shows an A3 posture wherein a robot
with a UWB sensor monitors a subject.

The possible classification outcomes are based on true
positives (TP), true negatives (TN ), false positives (FP), and
false negatives (FN). To measure the performance, we used
the following metrics.

Accuracy is the ratio of the number of correctly predicted
observations to the total number of observations.

Accuracy = TP+ TN (12)
TP+ FP+ FN + 1IN

Precision is the ratio of the number of correctly predicted
positive observations to the total number of predicted positive
observations.

. P
Precision = —— (13)
TP + FP

Recall is the ratio of the number of correctly predicted
positive observations to the total number of observations in
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FIGURE 5. Top 20 eigenvalues corresponding to the eigenvectors.

the actual class.

TP
Recall = —— (14)
TP + FN

F1-score is an overall measure of the accuracy of the model
combining precision and recall.

Precision x Recall
F1 —score =2 x — (15)
Precision x Recall

A. FEATURE EXTRACTION USING PRINCIPAL

COMPONENT ANALYSIS (PCA)

We apply Gaussian kernel-based PCA to the input data to
approximate the original data with fewer dimensions. PCA
focuses on the direction of the maximum covariance in the
new feature space. It reduces the dimensions by focusing
mainly on the essential variations in the data. Because the data
are nonlinear, a Gaussian kernel-based PCA was used [45].
The covariance matrix of the data is defined as

1 Y .
K= i:Zl(WMi).V(M,-) ), (16)
VM) = y(My) — 7, (17)
I
7=x ; y (M), (18)

where y is a Gaussian kernel and N is the total number of
events in the activity period. Eigenvalue decomposition can
be applied as

K =ETaE, (19)

where E represents the principal components, « represents
the eigenvalues, and K is the diagonal matrix of the eigen-
values. Then, the features for an event can be represented by
projection of the principal components as

P = MEL. (20)

The size of the matrix £ becomes ¢t x m, where ¢t is
the dimension of each vector, m is the number of principal
components to be considered, and K is an m x m diagonal
matrix. Moreover, E reflects the original coordinate system
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FIGURE 6. 3D scatter plot of the features after applying PCA.

onto the eigenvectors. The eigenvector corresponding to the
largest eigenvalue indicates the axis of largest variance, and
the eigenvector corresponding to the next largest eigenvalue
indicates the axis that is orthogonal to the first indicating
the second largest variance, and so on. Typically, eigenval-
ues close to zero have negligible variance and can thus be
excluded. Hence, the m eigenvectors corresponding to cer-
tain large eigenvalues can be used to define the subspace.
Figure 5 shows the top 20 eigenvalues corresponding to the
first 20 eigenvectors.

PCA is a second-order statistics-based method of analysis
that represents global information [46]. Applying PCA to
human activities produces global features that represent fre-
quently moving parts of the human body engaged in various
activities [47], [48]. Because we apply EDA, which is a
combination of PCA and LDA, for dimensionality reduction,
the principal components extracted through PCA are passed
through LDA.

B. FEATURE EXTRACTION USING LDA

LDA is popular in supervised classification approaches.
It creates hyperplanes to separate the different classes. The
hyperplanes maximise the separation between classes and
minimise the intra-class variance. LDA, which is known to
extract the best features and reduce the dimensionality of
the data [49], projects the input data in a lower-dimensional
space. The equations below define the within-class Sy and
between-class Sp scattering comparison.

C
Sg =Y _Jitnj — m)(ni —m)" 1)

i=1

C
Sw =Y Y Jilm —n)m —n), (22)

i=1 mpeC;

where J; is the number of vectors in the ith class C;, c is the
number of classes (number of activities), n; is the mean of
class c¢;, and my is the vector of a specific class.

The optimal discrimination matrix is selected by max-
imising the ratio of the determinant of the between- and
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FIGURE 7. 3D scatter plot of the features after applying LDA.

within-class scatter matrices as

|DT SgD|
IDTSwD|’
where D, is the set of discriminant vectors of Sy and Sp

corresponding to the (¢ — 1) largest generalised eigenvalues
A, and can be obtained by solving (24):

Sgd; = MiSwd;, i=1,2,...,(c—1), (24)

Dy = argmax (23)

where the rank of Sp is (c — 1) or less; hence, the upper bound
value of 7 is (c—1). The PCA features of the different activities
are projected onto the LDA features as

L=PD],.

(25)

Thus, the EDA features (i.e. L) are obtained to apply
machine learning algorithms for training and testing of activ-
ities.

C. CLASSIFICATION
We applied different classification algorithms to the dataset
for comparative and performance analyses. SVM [50], intro-
duced by Vapnik, uses support vectors. It has been widely
used in HAR systems owing to its high classification per-
formance [51], [52]. It creates hyperplanes to maximise the
margins between classes. By minimising the cost function,
the optimal solution can be obtained, namely, the solution
that maximises the distance between the hyperplane and the
nearest training point. Herein, a nonlinear multiclass SVM
with a sigmoid kernel was used. Sigmoid is used as it’s a
popular kernel. However, we also implemented RBF and
Gaussian kernel, but it didn’t improve the results remarkably.
Adaptive boosting, known as AdaBoost [53], is used pri-
marily for ensemble learning or meta-learning. It applies an
iterative approach to learn from the mistakes of classifiers
to improve their performance. AdaBoost has been widely
used in HAR by researchers [54]. MLP [55] is also known
as a feed-forward ANN. It consists of multiple hidden layer
in addition to the input and output layers. With the help of
error backpropagation, it can be trained to classify data that
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are not linearly separable. MLP has been used in ambient
assisted living to recognise poses and to monitor dangerous
situations [56]. QDA is closely related to LDA, but it does not
assume that the covariance of each class is identical [57].

KNN is the simplest classification technique used for
machine learning. The KNN algorithm determines the points
from the training data that are close enough to be considered
when selecting the class to predict a new observation [58].
The RF [59] method is used for both classification and regres-
sion problems. It generates multiple DTs based on the random
selection of variables and data, and recognises dependent
variables based on the DTs. RF has been widely used to
recognise different human activities [60], [61]. In this study,
10 DTs were used to explore the classes.

A decision support tool that utilises a model of decisions
or tree-like graphs and their possible consequences, including
the utility and probability of event outcomes, is called a
decision tree. A decision tree is a well-known classifier used
in machine learning. Its structure is similar to a flowchart in
which each internal node represents a test of an attribute, such
as the probability a coin flip producing heads or tails. Each
branch corresponds to a possible test outcome, and each leaf
node corresponds to the class label. The decision is taken after
applying all the features. The classification rules are based on
the paths from the root to the leaf [62].

1) RECURRENT NEURAL NETWORKS

The events are represented based on time-sequential data
from the sensor. A machine learning model able to encode
time-sequential data is suitable for our purpose. Hence, RNNs
were used in this study. They are one of the most widely
applied deep learning methods for modelling events underly-
ing time-sequential data. An RNN typically consists of recur-
rent relations within the model’s hidden units, which connect
its history (i.e. memory) to the present. RNNs often face
vanishing gradient problems that cause challenges in process-
ing long-term information. This phenomenon is known as
long-term dependency. LSTM, proposed by Hochreiter and
Schmidhuber [63], can solve the vanishing gradient problem
typical of RNNs. RNNs and LSTMs have performed well
in various fields, such as handwriting and speech recogni-
tion [64]. Figure 8 shows a sample deep RNN consisting of
N LSTM units. Each LSTM block consists of an input gate
I, a forget gate F, and an output gate U. The input gate I is
expressed as

I =s (YL + YarHi—1 +ap) . (26)

The input gate Y represents the weight matrix, bias a, and
sigmoid function s. The forget gate F is expressed as follows:

Fy = s(YppLy + YypHi—1 + ar) . 27

The long-term memory is stored by a cell in a state vector
B, which can be represented as

B = FB;_| + I tanh (Y gL + YypH;—| +ap). (28)
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FIGURE 9. Confusion matrix of 5-fold cross-validation.

The output gate O represents the output as

Ui =sYyL + YguH; -1 +ay) . (29)
The hidden state H is represented as
H; = U;tanh (B) . (30)
The final output N can be determined by
N; = softmax (YyH; + ay) , 3

where i represents the LSTM number and H hidden states.
We have used four hidden layers stacked LSTM. The
first three layers have 100 memory units (or smart neu-
rons) followed by 50 memory units in the next layer. The
best hyper-parameters were chosen by grid search. Finally,
because this is a classification problem, we use a dense output
layer with a softmax activation function to make predictions
for five classes. Our model has 847,055 trainable parameters.

IV. RESULTS AND DISCUSSION

In this section, we describe the experiments performed on
the XeThru UWB sensor dataset to recognise various human
activities. The dataset consisted of data from 13 participants,
with a total of 65,000 samples for the five activities. Ten
radar frames per second were used, with 1,535 data points
in each frame. Therefore, the data size for each sample was
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10 x 1, 535. In total, we used nine different classification
approaches, with 80% of the total mixed up dataset used for
training all models and 20% used for testing. Moreover, 10%
of the training dataset was used for validation.

For performance measures, the accuracy, precision, recall,
and F1-scores were evaluated for each classifier. The accu-
racy of each classifier is listed in Table 2. All classifiers
were tested using a built-in Python library, scikit-learn.
Two conventional classifiers, SVM and AdaBoost, performed
poorly in classifying activities, with accuracies of less than
50% as shown in Figure 10a and 10b, respectively. Nei-
ther classifier could distinguish between the standing and
walking activities. MLP performed only slightly better than
these classifiers, with an accuracy of 51.3%. This clas-
sifier could detect the lying posture well, as shown in
Figure 10c.

The QDA and KNN classifiers performed moderately
well and classified all activities with an accuracy of 75%.
Figure 10d and 10e shows the confusion matrices of QDA
and KNN. QDA primarily misclassified the activities when
the subjects were sitting on the bed with their legs on
the bed or floor. RF and DT were the only two conven-
tional approaches with accuracies of approximately 90%.
The confusion matrices of these two classifiers are shown
in Figure 10f and 10g, respectively.
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Finally, we tested the dataset using a state-of-the-
art LSTM, built using Keras [65], with Tensorflow as
the back end. It outperformed all other classifiers by
achieving an excellent accuracy of 98%. Figure 10h
shows the confusion matrices, while graphs of the
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model’s accuracy and the model’s loss are shown in
Figure 11.

As we had 1,535 data points in each frame, EDA was intro-
duced to reduce the dimensionality. In the EDA, a PCA was
introduced to reduce the dimensions. The performance was
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TABLE 1. Classification performances of top four classifiers.
Approach Activity Precision  Recall F1-score
Lying 0.95 0.97 0.96
Sitting on the bed while the legs are also on the bed | 0.88 0.91 0.89
Random Forest Sitting on the bed while the legs are on the floor 0.85 0.86 0.86
Standing 0.81 0.81 0.81
Walking 0.86 0.81 0.83
Lying 0.98 0.99 0.98
Sitting on the bed while the legs are also on the bed | 0.94 0.95 0.94
Decision Trees Sitting on the bed while the legs are on the floor 0.89 0.90 0.90
Standing 0.89 0.86 0.88
Walking 0.84 0.85 0.85
Lying 0.97 0.90 0.93
Sitting on the bed while the legs are also on the bed | 0.99 0.99 0.99
LSTM Sitting on the bed while the legs are on the floor 0.89 1.00 0.94
Standing 0.97 0.99 0.98
Walking 0.99 0.94 0.96
Lying 0.92 0.99 0.95
S . Sitting on the bed while the legs are also on the bed | 0.99 0.99 0.99
Enhanced Discriminant Analysis L .
(EDA) + LSTM Slttmg on the bed while the legs are on the floor 1.00 0.99 0.99
Standing 1.00 0.99 0.99
Walking 0.99 0.93 0.96
insufficient when using PCA alone, as shown in the scatter TABLE 2. Accuracies of all classifiers.
plot in Figure 6; thus, LDA was introduced. The combination Classifier Accuracy (%)
of PCA and LDA, which we refer to as enhanced discrim- SVM 34.7
. . AdaBoost 47.3
inant analysis (EDA), outperformed all other ap.pro.aches. Multilayer Perceptron 513
The 3D plot of the features extracted after application of Quadratic Discriminant Analysis 74.4
LDA is shown in the scatter plot in Figure 7. The EDA KNN 76.5
with LSTM training model performed better than the LSTM Random Forest 87.1
R Decision Trees 91.0
model alone and demonstrated excellent performance in all LSTM 98.0
activities, as shown in Figure 10i. The trained model and loss EDA + LSTM 99.6

graphs are shown in Figure 12. The overall accuracies of all
nine classifiers that were implemented are listed in Table 2.
The precision, recall, and F1-scores of the top four classifiers
alone are presented in Table 1. Furthermore, to validate our
approach, 5-fold cross-validation was performed on LSTM
and EDA with LSTM for HAR. The confusion matrices of
both approaches are shown in Figure 9.

Afterwards, we continued our experiments using leave-
one-subject-out validation. Initially, we took 5% data out
from the testing subjects, mixed it with the training data, and
obtained an average accuracy of 86%. Figure 13 shows the
average confusion matrix of our results. In the next exper-
iments, we applied no data taken from the testing subjects,
i.e., leave one whole subject out and obtained the average
accuracy of 66%, as shown in Figure 14. Given the lower
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performance, we are planning to work on improving the
subject generic validation results in the future by improving
the model. However, during the experiments with similar
data selections, we experienced that none of the traditional
approaches yielded accuracies more than 60%.

Singh et al. [28] introduced exercise-based activities by
using mmWave radar. Bouchard et al. [66] introduced
15 daily life activities based on ten males. No female par-
ticipated in their study. Moreover, the age range was between
22 to 39. In our case, we have quite a diverse age range, and
almost half of the participants were females to avoid bias
in the study. Sharma et al. [29] proposed a channel impulse
response based activity recognition system, but their activities
were limited, i.e. standing, sitting and lying. While our
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FIGURE 14. Confusion matrix of leave-one-person-out validation.

activities also cater to a different sitting posture, i.e. either
legs are on the bed or the floor. Furthermore, we also intro-
duced an EDA based feature extraction approach. We also
tested our approach on a Ahmed er al. [67] dataset (as they
used a similar UWB sensor), which showed promising results
and outperformed their results. Figure 15 shows the confusion
matrix and whose columns from a to | representing the twelve
different dynamic hand gestures as proposed in [67]. To the
best of the author’s knowledge, there is no current study based
on UWB sensors that focused on enhanced discriminant
features analysis before feeding the data into the machine
learning algorithms.

V. CONCLUSION

In this study, a novel approach was proposed for HAR using a
UWB sensor and state-of-the-art deep learning models. The
proposed approach is beneficial for older adults because it
is difficult for them to wear actigraphy devices 24/7 or to
be monitored through an RGB camera, which could breach
their privacy. In this work, a UWB sensor was mounted on
a robot at a certain distance. Because the UWB sensor has
several features, EDA was used to reduce the dimensions
of the features before feeding them into the deep learning
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FIGURE 15. Our approach classifying twelve dynamic hand gestures
based on [67] dataset.

model. The results were compared with those of conventional
approaches. The proposed approach was found to perform
significantly better, with an accuracy of 99.6%. Moreover,
5-fold cross-validation was performed for generalisation of
the system. Furthermore, we implemented our approach on a
publicly available dataset and got better results.

In the future, we intend to perform more complex exper-
iments in real-time environments. Furthermore, we plan on
extending the algorithms by introducing the heart rate into the
monitoring system to detect emergencies. Moreover, we also
need to acquire data from older people since the approach
focuses on eldercare. Finally, we can also introduce multiple
UWRB sensors in the apartment or other thermal/depth-based
sensors to localize the exact position of persons. In that
context, different sensor fusion strategies might be explored.
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