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ABSTRACT In this paper, the robust exponential H∞ fault tolerant control problem is investigated, which
is concerned with uncertainties, disturbances and actuator failures. Determined by whether the actuator fails
or not, the continuous-time system is remodeled as a switched system. Then a sampled-data controller
is designed. Through Lyapunov functional theory and the admissible edge-dependent average dwell time
method, some sufficient conditions are derived to ensure that the closed-loop system is robustly exponentially
stable with exponentialH∞ performance. The corresponding controller gains can also be obtained via linear
matrix inequalities (LMIs). Finally, two examples are presented to verify the validity of the relevant results.

INDEX TERMS Actuator failures, admissible edge-dependent average dwell time, exponential H∞ fault
tolerant control, sampled-data control systems, switched systems.

I. INTRODUCTION
In practice, the computer acts as a digital controller to
implement the control function of continuous-time sys-
tems. However, the enormous amount of data makes the
continuous-time controller no longer applicable. Under this
circumstance, the sampled-data control (SDC) comes into
being. SDC is a kind of time-triggered control method, and
only updates the control information at some specified time
instants. Due to its superiority such as easy implementation,
high robustness and lower requirements for network band-
width, SDC has been widely used in many fields [1]–[3].
The system under SDC is viewed as a sampled-data control
system (SDCS), which is a hybrid system simultaneously
including continuous-time and discrete-time signals. Many
methods are proposed to handle the modeling and stability
analysis of this hybrid system, in which one of the most
popular methods is the input delay approach, see [3]–[5]
and the references therein. In [3], the sampled-data con-
trol system is transmitted to a time-varying delay system,
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and sampled-data stabilization of systems with polytopic
type uncertainties and regional stabilization by sampled-data
saturated state-feedback are presented, respectively. In [5],
a memory sampled-data control scheme that involves a con-
stant signal transmission delay is employed to tackle the
stabilization problem for T-S fuzzy systems.

With the development of modern control technology,
the control systems have shown some remarkable properties:
great dimensions and complex structures. Once the system
goes wrong, the system performance will be destroyed, even
leading to huge economic losses. Therefore, to increase the
system reliability, fault tolerant control (FTC) technology
has been widely concerned in recent years [6]–[9]. Due to
the aging of key components of the actuator and unknown
changes in the external environment, actuator failure is
unavoidable in many real systems. Therefore, how to design a
suitable controller to tolerate the failure of certain control ele-
ments and maintain the system performance is a meaningful
study. In [6], the actuator fault model is presented and H∞
FTC scheme is investigated for networked control systems.
In [7], some sufficient conditions are given to guarantee the
asymptotic mean-square stability of the systems associated
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with the stochastic actuator failures. The robust reliable H∞
controller is constructed for systems with nonlinear actuator
fault in [8].

In the past few decades, switched systems have received
widespread attention because they are successfully applied
in many fields, such as network control systems [10], stirred
tank reactors [11], power electronics [12], etc.. Those studies
have shown that the design of switching signal is critical
to stability analysis and control synthesis [13]–[23]. Up to
date, many time-constraint switching signal design meth-
ods, such as average dwell time (ADT) method [17]–[20],
mode-dependent average dwell time method [21]–[23],
admissible edge-dependent average dwell time (AED-ADT)
method [24]–[26] and so on, are all used to design the switch-
ing signal. Studies have shown that AED-ADT method is
more practical and effective than MDADT switching and
ADT switching, because it is related to the former mode and
the latter one at the switching instant [24], [25].

Recently, the switched system method has been used to
cope with FTC problem with actuator failures [27]–[31],
which dominant idea is to treat the system as a switched
system depending on the degree of actuators failure.
In [27]–[29], the problem of FTC is investigated for many
kinds of systems via the switched system method, where
the switching signal is designed by using ADT method.
It is worth pointed out that in the above references,
the continuous-time controller is designed. Due to the high
bandwidth requirements of continuous-time controllers, it is
worthwhile to study the problem of sampled-data control
with actuator failures for saving communication resource.
Furthermore, the uncertainties and disturbances are inevitable
during modeling, hence the robustness and H∞ performance
of the system also need to get some attention.

On the basis of the above analysis, this study presents
the robust exponential H∞ FTC problem for sampled-data
control systems (SDCSs) with uncertainties, disturbances and
actuator failures. Firstly, by whether the actuators fail or not,
the system is modeled as a switched system. Then the design
of the sampled-data controller is given, and the original sys-
tem is transformed into a switched system with time-varying
delay. The robust exponential stability with H∞ performance
of the SDCS is analyzed, and the corresponding controller
gains is provided via solving some LMIs. Finally, two exam-
ples are presented to verify the validity of the relevant results.

II. PROBLEM FORMULATION
Consider a continuous-time linear system as follows

ẋ(t) = Āx(t)+ B̄2u(t)+ B̄1ω(t), (1a)

z(t) = C̄x(t)+ D̄2u(t)+ D̄1ω(t), (1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the control input,
z(t) ∈ Rq is the control output, ω(t) ∈ L2[0,∞) is the
disturbance. Let Ā = A + 1A, B̄2 = B2 + 1B2, B̄1 =
B1+1B1, C̄ = C+1C , D̄2 = D2+1D2, D̄1 = D1+1D1,
where A, B2, B1,C,D2 andD1 are the constant matrices with

appropriate dimensions.1A, 1B2, 1B1, 1C, 1D1 and1D2
are uncertainties satisfying[

1A 1B2 1B1
1C 1D2 1D1

]
=

[
M1
M2

]
F(t)

[
N1 N2 N3

]
(2)

with FT (t)F(t) ≤ I , in which M1, M2, N1, N2, N3 are the
constant matrices with appropriate dimensions.

If the actuator failures occur, the controller information
cannot be transmitted normally, which will damage the sys-
tem performance. Therefore, how to guarantee the perfor-
mance of the control system in this situation becomes very
significant. This paper designs a group of controllers based
on whether the corresponding actuator fails or not. Once the
actuator failure is detected, the corresponding controller is
applied. Under this circumstance, the system is modeled as a
switched system. Suppose that at any time instant tk , at least
one actuator is not out of work, and other actuators will be
repaired when the failures are detected. Assuming the total
number of actuators is m, there will be 2m − 1 modeling
possibilities under the calculationmethod of the combination.
System (1) with actuator failure can be modeled as

ẋ(t) = Āx(t)+ B̄2σ (t)u(t)+ B̄1ω(t), (3a)

z(t) = C̄x(t)+ D̄2σ (t)u(t)+ D̄1ω(t), (3b)

where σ (t) represents the switching signal and its value is
taken from a set 3 = {1, 2, . . . , 2m − 1}. B̄2σ (t) = B2σ (t) +
1B2σ (t), D̄2σ (t) = D2σ (t) + 1D2σ (t), and if σ (t) = j,
it indicates the j-th subsystem is activated and works. Cor-
responding to (2), the uncertainties 1B2j and 1D2j satisfy[

1B2j
1D2j

]
=

[
M1
M2

]
F(t)N2j, j ∈ 3, (4)

where N2j are the constant matrices with appropriate dimen-
sions.
Remark 1: Note that the matrices Bj and Dj are

mode-dependent under the actuator failures. Correspond-
ingly, the uncertainties 1B2j and 1D2j are also associated to
the switching mode. Here, for simplicity, we only suppose the
matrix Nj is related to the switching mode, and the matrices
M1 and M2 are independent on the one.

Design the sampled-data controller as

u(t) = Kσ (t)x(tk ), t ∈ [tk , tk+1), (5)

where tk is the k-th sampling instant, k = 0, 1, 2, · · · .
Denoting hk = tk+1 − tk and τ (t) = t − tk , system (3) is
rewritten as

ẋ(t) = Āx(t)+ B̄2σ (t)Kσ (t)x(t − τ (t))+ B̄1ω(t), (6a)

z(t) = C̄x(t)+ D̄2σ (t)Kσ (t)x(t − τ (t))+ D̄1ω(t), (6b)

x(t) = φ(t), t ∈ [−h, 0), (6c)

where φ(t) implies a bounded continuous function, and τ (t)
represents the sampling time-varying delay with

0 ≤ τ (t) ≤ hk ≤ h, h , max{hk}. (7)
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Let the switching instant as tpq , q = 0, 1, 2, · · · , and
tp0 = t0. In this paper, suppose the switch occurs at a certain
sampling instant, that is, tpq ∈ {tk , k = 0, 1, 2, · · · }.
Remark 2: It is necessary to point out that the j-th closed-

loop subsystem is stable under the controller (5), which is
corresponding to the case that, at any time instant tk , at least
one actuator is not out of work.

When switched delay system (6) is robustly exponentially
stable with H∞ performance, then we can say system (1) can
be robustly exponentially stabilized by the sampled-data con-
troller (5) with the actuator failures. In this paper, the problem
of robust exponential H∞ FTC for system (1) is described as
follows.

Robust exponential H∞ FTC problem: For system (1),
design a sampled-data controller (5) with switching signal
σ (t), which satisfies the following conditions:
1) for ω(t) ≡ 0, the system equilibrium point of (6a) is

robustly exponentially stable;
2) for all nonzero ω(t) ∈ L2[0,∞), the following inequal-

ity holds in zero initial condition

β

∫
∞

t0
e−ι(s−t0)zT (s)z(s)ds ≤ γ 2

∫
∞

t0
ωT (s)ω(s)ds, (8)

where β > 0, γ > 0, and ι > 0 are constant scalars.
In order to express formulation clearly, there are some

definitions and lemmas for reviewing.
Definition 1 ([32]): For the scalars a > 0, c > 0, and

any initial condition φ(t0), if the state x(t) satisfies ‖x(t)‖ ≤
ce−a(t−t0)‖φ(t0)‖, ∀t > t0, then the robust exponential
stability of switched delay system (6a) can be guaranteed
under the designed switching law.
Definition 2 ([24]): For the switching signal σ (t) and
∀(i, j) ∈ 3 ×3, i 6= j, let N σi,j(t0, t) and Ti,j(t0, t) denote the
total switching numbers from subsystem i to j and the running
duration of subsystem j over the time interval [t0, t), respec-
tively. σ (t) is said to have an admissible edge-dependent
average dwell time (AED-ADT) τ ai,j if the positive numbers
τ ai,j and N

0
i,j satisfy

N σi,j(t0, t) ≤ N
0
i,j +

Ti,j(t0, t)
τ ai,j

, ∀t > t0, (9)

whereN 0
i,j are called as the admissible edge-dependent chatter

bounds.
Lemma 1 ([33]): For the positive definite matrix M > 0,

the following inequality holds∫ ι2

ι1

ẋT (s)Mẋ(s)ds

≥
3

ι2 − ι1
�TM�

+
1

ι2 − ι1
(x(ι2)− x(ι1))TM (x(ι2)− x(ι1)), (10)

where x(t) is a differentiable vector-valued function defined
on [ι1, ι2], � = x(ι2)+ x(ι1)− 2

ι2−ι1

∫ ι2
ι1
x(s)ds.

III. MAIN RESULTS
A. ROBUST EXPONENTIAL STABILITY
Suppose σ (tpq ) = j when t ∈ [tpq , tpq+1 ), q = 0, 1, 2, · · · .
For j-th subsystem of system (6a) with ω(t) = 0, construct
the Lyapunov-Krosovskii functional as

Vj(t) = xT (t)Pjx(t)+
∫ 0

−h

∫ t

t+θ
ẋT (s)eαj(s−t)Qjẋ(s)dsdθ,

(11)

where scalars h > 0, αj > 0, matrices Pj > 0, Qj > 0, j ∈ 3.
Then we can obtain the following proposition.
Proposition 1: For given scalars αj > 0, h > 0 and ε > 0,

the inequality

Vj(t) ≤ e
−αj(t−tpq )Vj(tpq ) (12)

holds if there exist matrices Pj > 0, Qj > 0 and Kj such that
the following inequality is true8j εMj Nj

∗ −εI 0
∗ ∗ −εI

 < 0, (13)

where

8j =


8j(1, 1) 8j(1, 2) 8j(1, 3) hATQj
∗ 8j(2, 2) 8j(2, 3) h(BjKj)TQj
∗ ∗ 8j(3, 3) 0
∗ ∗ ∗ − hQj

 ,

Mj =


PjM1
0
0

hQjM1

 , Nj =


NT
1

KT
j N

T
2j

0
0

 ,
with

8j(1, 1) = ATPj + αjPj + PjA−
4
h
e−αjhQj,

8j(1, 2) = PjBjKj −
2
h
e−αjhQj,

8j(1, 3) = 8j(2, 3) =
6
h
e−αjhQj,

8j(2, 2) = −
4
h
e−αjhQj,

8j(3, 3) = −
12
h
e−αjhQj.

Proof: By taking the derivative of (11) when t ∈
[tpq , tpq+1 ), q = 0, 1, 2, · · · with σ (tpq ) = j, it yields

V̇j(t) = 2xT (t)Pjẋ(t)+ hẋT (t)Qjẋ(t)

−

∫ t

t−h
ẋT (s)eαj(s−t)Qjẋ(s)ds

−αj

∫ 0

−h

∫ t

t+θ
ẋT (s)eαj(s−t)Qjẋ(s)dsdθ

≤ 2xT (t)Pjẋ(t)+ hẋT (t)Qjẋ(t)

−

∫ t

t−τ (t)
ẋT (s)e−αjhQjẋ(s)ds

+αjxT (t)Pjx(t)− αjVj(t). (14)
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In terms of Lemma 1, there yields

−

∫ t

t−τ (t)
e−αjhẋT (s)Qjẋ(s)ds

≤
e−αjh

h
ηT (t)

−4Qj −2Qj 6Qj
∗ −4Qj 6Qj
∗ ∗ −12Qj

 η(t), (15)

where

η(t) = col
{
x(t), x(t − τ (t)),

1
τ (t)

∫ t

t−τ (t)
x(s)ds

}
.

Substituting (6a) (ω(t) = 0) and (15) into (14) leads to

V̇j(t) ≤ 2xT (t)Pj
(
Āx(t)+ B̄2jKjx(t − τ (t))

)
+ h

(
Āx(t)+ B̄2jKjx(t − τ (t))

)T
Qj

×

(
Āx(t)+ B̄2jKjx(t − τ (t))

)
+
e−αjh

h
ηT (t)

−4Qj − 2Qj 6Qj
∗ − 4Qj 6Qj
∗ ∗ − 12Qj

 η(t)
+αjxT (t)Pjx(t)− αjVj(t)

= ηT (t)

8j(1, 1) 8j(1, 2) 8j(1, 3)
∗ 8j(2, 2) 8j(2, 3)
∗ ∗ 8j(3, 3)

 η(t)
+ ηT (t)

1A Pj1B2jKj 0
∗ 0 0
∗ ∗ 0

 η(t)
+ hηT (t)

 ĀT

(B̄2jKj)T

0

Qj [Ā B̄2jKj 0
]
η(t)

−αjVj(t), (16)

where1A = Pj1A+1ATPj. On the basis of (13) and Schur
complete lemma, we have

8j + εMjMT
j + ε

−1NjN T
j < 0, (17)

which combining with Lemma 4 in [34] implies that

8j +18j < 0, (18)

where

18j =


1A Pj1B2jKj 0 h1ATQj
∗ 0 0 h(1B2jKj)TQj
∗ ∗ 0 0
∗ ∗ ∗ 0

 .
From Schur complete lemma, one gets8j(1, 1) 8j(1, 2) 8j(1, 3)

∗ 8j(2, 2) 8j(2, 3)
∗ ∗ 8j(3, 3)


+h

 ĀT

(B̄2jKj)T

0

Qj [ Ā B̄2jKj 0
]

+

1A Pj1B2jKj 0
∗ 0 0
∗ ∗ 0

 < 0. (19)

Hence we obtain

V̇j(t) ≤ −αjVj(t). (20)

Integrating (20) from tpq to t leads to (12). The proof is
completed.
From Proposition 1, the robust exponential stability is

presented for system (6a) with ω(t) = 0.
Theorem 1: For given scalars αi > 0, µij > 1, h > 0,

ε > 0, switched system (6a) with ω(t) = 0 is robustly expo-
nentially stable under the designed switching signal satifying

τ aij ≥ τ
∗
ij =

lnµij
αj

, (21)

if the existence of the matrices Pj > 0, Qj > 0 and Kj, which
makes (13) and the following inequalities hold

Pj ≤ µijPi, Qj ≤ µijQi, (22)

where i, j ∈ 3 and i 6= j.
Proof: Suppose that t ∈ [tpq , tpq+1 ), ∀(i, j) ∈ 3 × 3,

and σ (tpq ) = j, σ (tpq−1 ) = i,

Vσ (t)(t) ≤ e
−ασ (t)(t−tpq )Vσ (tpq )(tpq ). (23)

By iterating (23) from t0 to t , for any time interval t ∈
[tpq , tpq+1 ), then the above inequality leads to

Vσ (t)(t) ≤ e−ασ (tpq )(t−tpq )Vσ (tpq )(tpq )

≤ µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )Vσ (tpq−1 )(tpq )

≤ µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )

×e
−ασ (tpq−1 )

(tpq−tpq−1 )Vσ (tpq−1 )(tpq−1 )

≤
...

≤ e−ασ (tpq )(t−tpq )e−ασ (t0)(t1−t0)µσ (tpq−1 ),σ (tpq )

×

l=q−2∏
l=0

e−ασ (tl+1)(tl+2−tl+1)µσ (tpl ),σ (tpl+1 )

×Vσ (tp0 )(tp0 ). (24)

By Definition 2, we have

Vσ (t)(t) ≤ e
∑

j∈3
∑

i∈3,i 6=j N
σ
i,j(tp0 ,t) lnµi,j−αjTi,j(tp0 ,t)

×Vσ (tp0 )(tp0 )

≤ e

∑
j∈3

∑
i∈3,i 6=j(N

0
i,j+

Ti,j(tp0 ,t)

τai,j
) lnµi,j

×e
∑

j∈3
∑

i∈3,i6=j−αjTi,j(tp0 ,t)

×Vσ (tp0 )(tp0 )

≤ e

∑
j∈3

∑
i∈3,i 6=j(

lnµi,j
τai,j
−αj)Ti,j(tp0 ,t)

×e
∑

j∈3
∑

i∈3,i6=j N
0
i,j lnµi,jVσ (tp0 )(tp0 ). (25)
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From (11), we have

β1‖x(t)‖2 ≤ Vσ (t)(t) ≤ β2‖φ(t)‖2, (26)

where β1 = minj∈3{λmin(Pj)}, β2 = maxj∈3{λmax(Pj) +
h
αj
λmax(Qj)}.

Consequently, from (25) and (26), one has

‖x(t)‖2 ≤
β2

β1
e

∑
j∈3

∑
i∈3,i 6=j(

lnµi,j
τai,j
−αj)Ti,j(t0,t)

×e
∑

j∈3
∑

i∈3,i 6=j N
0
i,j lnµi,j‖φ(t0)‖2. (27)

Set c = maxi,j∈3,i 6=j

√
β2
β1
e
∑

j∈3
∑

i∈3,i6=j N
0
i,j lnµi,j , a =

maxi,j∈3,i 6=j 12

{
αj −

lnµi,j
τ ai,j

}
, then (27) implies

‖x(t)‖ ≤ ce−a(t−t0)‖x(t0)‖. (28)

From Definition 1, we have system (6a) with ω(t) = 0 is
robustly exponentially stable. The proof is completed.
Remark 3: In this paper, the slow switching signal is

applied based on the AED-ADT approach, because we sup-
pose that all of the closed-loop subsystems are stable on the
basis of at least one actuator does not fail. Once the failures of
all the actuators are considered, then the unstable subsystems
will occur. In this case, a switching law with both fast and
slow switching will be adopted, which is our future study.

B. ROBUST EXPONENTIAL H∞ PERFORMANCE
This subsection studies the robust exponential H∞ perfor-
mance for system (6).
Theorem 2: Given scalars αj > 0, µij > 1, h > 0,

γ > 0, ε > 0, system (6) is robustly exponentially stable
with H∞ performance γ under the designed switching signal
satisfying (21), if there exist matrices Pj > 0, Qj > 0 and Kj
such that (22) and [

411 412
∗ 422

]
< 0 (29)

hold, where

412 =


8j(1, 1) 8j(1, 2) 8j(1, 3) PjB1
∗ 8j(2, 2) 8j(2, 3) 0
∗ ∗ 8j(3, 3) 0
∗ ∗ ∗ −γ 2I

 ,

411 =


hATQj CT εPjM1 NT

1
h(B2jKj)TQj KT

j D
T
2j 0 KT

j N
T
2j

0 0 0 0
0 DT1 0 NT

3

 ,

422 =


−hQj 0 εhQjM1 0
∗ −I εM2 0
∗ ∗ −εI 0
∗ ∗ ∗ −εI

 .
Proof: From Theorem 1, we can see system (6a) is

robustly exponentially stable when ω(t) = 0. In the sequel,
the exponential H∞ performance is analyzed.

When ω(t) 6= 0, taking the derivative of (11) along the
trajectory of system (6a), it yields

V̇j(t)− γ 2ωT (t)ω(t)+ zT (t)z(t)

≤ 2xT (t)Pj
(
Āx(t)+ B̄2jKjx(t − τ (t)))+ B̄1ω(t)

)
+h
(
Āx(t)+ B̄2jKjx(t − τ (t))+ B̄1ω(t)

)T
Qj

×

(
Āx(t)+ B̄2jKjx(t − τ (t))+ B̄1ω(t)

)
+
e−αjh

h
ηT (t)

−4Qj −2Qj 6Qj
∗ −4Qj 6Qj
∗ ∗ −12Qj

 η(t)
+

(
C̄x(t)+ D̄2jKjx(t − τ (t))+ D̄1ω(t)

)T
×

(
C̄x(t)+ D̄2jKjx(t − τ (t))+ D̄1ω(t)

)

= ξT (t)


8j(1, 1) 8j(1, 2) 8j(1, 3) PjB1
∗ 8j(2, 2) 8j(2, 3) 0
∗ ∗ 8j(3, 3) 0
∗ ∗ ∗ − γ 2I

 ξ (t)

+ξT (t)


1A Pj1B2jKj 0 Pj1B1
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ξ (t)

+hξT (t)


ĀT

(B̄2jKj)T

0
B̄T1

Qj


ĀT

(B̄2jKj)T

0
B̄T1


T

ξ (t)

+

(
C̄x(t)+ D̄2jKjx(t − τ (t))+ D̄1ω(t)

)T
×

(
C̄x(t)+ D̄2jKjx(t − τ (t))+ D̄1ω(t)

)
+αjxT (t)Pjx(t)− αjVj(t)− γ 2ωT (t)ω(t), (30)

where ξ (t) = col{η(t), ω(t)}. From the proof of Proposi-
tion 1, (29) and Schur complete lemma, one obtains

V̇j(t) ≤ −αjVj(t)+ γ 2ωT (t)ω(t)− zT (t)z(t). (31)

Then for any t ∈ [tpq , tpq+1 ), integrating (31), it holds

Vσ (t)(t) ≤ e
−ασ (tpq )(t−tpq )Vσ (tpq )(tpq )

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds, (32)

where 0(t) = −zT (t)z(t)+γ 2ωT (t)ω(t). (22) and (32) imply
that

Vσ (t)(t) ≤ e−ασ (tpq )(t−tpq )Vσ (tpq )(tpq )

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

≤ µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )Vσ (tpq−1 )(tpq )

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

≤ µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )
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×

(
e
−ασ (tpq−1 )

(tpq−tpq−1 )Vσ (tpq−1 )(tpq−1 )

+

∫ tpq

tpq−1

e
−ασ (tpq−1 )

(t−s)
0(s)ds

)
+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

= µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )

×e
−ασ (tpq−1 )

(tpq−tpq−1 )Vσ (tpq−1 )(tpq−1 )

+µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )

×

∫ tpq

tpq−1

e
−ασ (tpq−1 )

(t−s)
0(s)ds

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

≤ µσ (tpq−1 ),σ (tpq )
e−ασ (tpq )(t−tpq )

×e
−ασ (tpq−1 )

(tpq−tpq−1 )µσ (tpq−2 ),σ (tpq−1 )

×Vσ (tpq−2 )(tpq−1 )+ µσ (tpq−1 ),σ (tpq )

×

∫ tpq

tpq−1

e
−ασ (tpq−1 )

(t−s)
0(s)ds

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

≤ · · ·

≤ e−ασ (tpq )(t−tpq )e
−ασ (tpq−1 )

(tpq−tpq−1 ) · · ·

×e−ασ (t0)(tp1−t0)µσ (tpq−1 ),σ (tpq )
×µσ (tpq−2 ),σ (tpq−1 )

· · ·µσ (t0),σ (tp1 )
Vσ (t0)(t0)

+e−ασ (tpq )(t−tpq )e
−ασ (tpq−1 )

(tpq−tpq−1 ) · · ·

×e−ασ (tp1 )(t2−tp1 )µσ (tpq−1 ),σ (tpq )
×µσ (tpq−2 ),σ (tpq−1 )

· · ·µσ (t0),σ (tp1 )

×

∫ tp1

t0
e−ασ (t0)(tp1−s)0(s)ds

+e−ασ (tpq )(t−tpq )e
−ασ (tpq−1 )

(tpq−tpq−1 ) · · ·

×e−ασ (t2)(t3−t2)µσ (tpq−1 ),σ (tpq )
×µσ (tpq−2 ),σ (tpq−1 )

· · ·µσ (tp1 ),σ (t2)

×

∫ t2

tp1

e−ασ (tp1 )(t2−s)0(s)ds

+ · · ·

+e−ασ (tpq )(t−tpq )e
−ασ (tpq−1 )

(tpq−tpq−1 )

×µσ (tpq−1 ),σ (tpq )
µσ (tpq−2 ),σ (tpq−1 )

×

∫ tpq−1

tpq−2

e
−ασ (tpq−2 )

(tpq−1−s)0(s)ds

+e−ασ (tpq )(t−tpq )µσ (tpq−1 ),σ (tpq )

×

∫ tpq

tpq−1

e
−ασ (tpq−1 )

(tpq−s)0(s)ds

+

∫ t

tpq

e−ασ (tpq )(t−s)0(s)ds

≤ exp
(∑
j∈3

∑
i∈3,i 6=j

N 0
i,j lnµi,j

)
× exp

(∑
j∈3

∑
i∈3,i 6=j

(
lnµi,j
τ ai,j
− αj)Ti,j(t0, t)

)
×Vσ (t0)(t0)+

∫ t

t0
exp

(∑
j∈3

∑
i∈3,i 6=j

(−αj

×Ti,j(s, t)+ N σi,j(s, t) lnµi,j)
)
0(s)ds, (33)

where tp0 = t0. Hence we have∫ t

t0
exp

(∑
j∈3

∑
i∈3,i 6=j

(−αjTi,j(s, t)+ N σi,j(s, t)

× lnµi,j)
)
zT (s)z(s)ds

≤ γ 2
∫ t

t0
exp

(∑
j∈3

∑
i∈3,i 6=j

(−αjTi,j(s, t)

+N σi,j(s, t) lnµi,j)
)
ωT (s)ω(s)ds. (34)

Multiplying both sides of (34) by

exp
(∑
j∈3

∑
i∈3,i 6=j

(−N σi,j(t0, t) lnµi,j)
)

leads to∫ t

t0
exp

(∑
j∈3

∑
i∈3,i 6=j

(−αjTi,j(s, t)− N σi,j(t0, s)

× lnµi,j)
)
zT (s)z(s)ds

≤ γ 2
∫ t

t0
exp

(∑
j∈3

∑
i∈3,i 6=j

(−αjTi,j(s, t)− N σi,j(t0, s)

× lnµi,j)
)
ωT (s)ω(s)ds, (35)

which combining the truth Ni,j(t0, s) lnµi,j ≤ N 0
i,j lnµi,j +

αjTi,j(t0, s) further implies∫ t

t0
κe−α(t−t0)zT (s)z(s)ds ≤ γ 2

∫ t

t0
e−α(t−s)ωT (s)ω(s)ds,

(36)

where κ = exp
(∑

j∈3
∑

i∈3,i 6=j−N
0
i,j lnµi,j

)
, −α =

minj∈3{−αj}, and −α = maxj∈3{−αj}.
Note that∫

∞

t0

∫ t

t0
κe−α(t−t0)zT (s)z(s)dsdt

=

∫
∞

t0

∫
∞

s
κe−α(t−t0)zT (s)z(s)dtds

=
κ

α

∫
∞

t0
e−α(s−t0)zT (s)z(s)ds, (37)
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∫
∞

t0

∫ t

t0
e−α(t−s)ωT (s)ω(s)dsdt

=

∫
∞

t0

∫
∞

s
e−α(t−s)ωT (s)ω(s)dtds

=
1
α

∫
∞

t0
ωT (s)ω(s)ds. (38)

From (36) to (38), we can obtain (8) is satisfied with

β =
κα

α
. The proof is completed.

Remark 4: When ω(t) 6= 0, the relationship among
Vσ (t)(t), Vσ (tpq )(tpq ) and 0(t) = −z

T (t)z(t) + γ 2ωT (t)ω(t)
is given in (32). To obtain H∞ performance, the itera-
tive procedure is shown in (33), which is more complex
under AED-ADT switching method. By scaling down the
inequalities (36)-(38), (8) is obtained, which means H∞ per-
formance is guaranteed.

C. ROBUST EXPONENTIAL H∞ FTC CONTROL
The existences of PjBjKj and h(B2jKj)TQj make (29) a non-
linear matrix inequality, which cannot be solved directly.
The following theorem is presented to obtain the controller
gains Kj.
Theorem 3: Given scalars αj > 0, µij > 1, h > 0, γ > 0,

ε > 0, the robust exponential H∞ FTC control problem of
system (1) is solved if there exist matrices Xj > 0, Yj > 0, K j
such that the following inequalities hold[

ϒ11 ϒ12
∗ ϒ22

]
< 0, (39)[

−µijXi Xi
∗ −Xj

]
< 0, (40)[

−µijYi Yi
∗ −Yj

]
< 0, (41)

where

ϒ11 =


9 j(1, 1) 9j(1, 2) 9j(1, 3) B1
∗ 9j(2, 2) 9j(2, 3) 0
∗ ∗ 9j(3, 3) 0
∗ ∗ ∗ −γ 2I

 ,

ϒ12 =


hXjAT XjCT εM1 XjNT

1

hK
T
j B

T
2j K

T
j D

T
2j 0 K

T
j N

T
2j

0 0 0 0
0 DT1 0 NT

3

 ,

ϒ22 =


−hYj 0 εhM1 0
∗ −I εM2 0
∗ ∗ −εI 0
∗ ∗ ∗ −εI

 ,
9 j(1, 1) = XjAT + αjXj + AXj +

4
h
e−αjhYj

−
8
h
e−αjhXj,

9j(1, 2) = B2jK j −
2
h
e−αjhXj,

9j(1, 3) =
6
h
e−αjhXj, 8j(2, 3) =

6
h
e−αjhYj,

9j(2, 2) = −
4
h
e−αjhYj, 9j(3, 3) = −

12
h
e−αjhYj.

Moreover, the controller gains are Kj = K jY
−1
j .

Proof: Let Xj = P−1j , Yj = Q−1j and K j = KjYj.
Multiplying diag{Xj,Yj,Yj, I ,Yj, I , I , I } on the left and right
sides of the inequality (29) gives rise to[

111 ϒ12
∗ ϒ22

]
< 0, (42)

where

111 =


9j(1, 1) 9j(1, 2) 9j(1, 3) B1
∗ 9j(2, 2) 9j(2, 3) 0
∗ ∗ 9j(3, 3) 0
∗ ∗ ∗ −γ 2I

 ,
and 9j(1, 1) = XjAT + αjXj + AXj − 4

he
−αjhXjQjXj. By

Lemma 3 in [34], we have

−XjQjXj ≤ Yj − 2Xj. (43)

(42) and (43) lead to (39). (40) and (41) are consistent with
the following inequalities based on the Schur complement
lemma,

−µi,jXi + XiX
−1
j Xi ≤ 0, (44)

−µi,jYi + YiY
−1
j Yi ≤ 0. (45)

For (44), by pre-multiplying and post-multiplying X−1i ,
it yields −µi,jPi + Pj ≤ 0. Following the similar pro-
cess, the inequality −µi,jQi + Qj ≤ 0 can be obtained by
pre-multiplying and post-multiplying Y−1i on inequality (45).
The proof is completed.
Remark 5: Notice that the parameter γ presents the dis-

turbance rejection capacity. The smaller γ implies the bet-
ter disturbance rejection performance is achieved. However,
the upper bound of the sampling period is not too much,
because the large sampling period will make the sampling
information inaccurate. The relationship between these two
parameter will be presented in the simulation.

IV. NUMERICAL EXAMPLES
In this section, two examples are presented to verify the
effectiveness of the main results proposed in this paper.
Example 1: Consider system (1) with parameters as

A =
[
0.2 0.1
0.1 −0.1

]
, B2 =

[
0.3 0.2
0.1 0.1

]
,

B1 =
[
−0.2 0.3
0.2 0.1

]
, C =

[
0.1 0.3
0.1 0.1

]
,

D2 =

[
0.1 0.1
0.1 −0.2

]
, D1 =

[
0.2 −0.3
0.1 0.1

]
,

M1 = M2 =

[
0.1 0.3
0.1 0.1

]
, N1 =

[
0.4 0.3
0.1 0.1

]
,

N2 =

[
0.1 −0.1
0.1 0.1

]
, N3 =

[
0.1 0.2
0.1 0.15

]
.
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Note that m = 2. Depending on whether the actuator fails
or not, switched system model (6) contains three (2m − 1)
subsystems, where

B21 =
[
0 0.2
0 0.1

]
, B22 =

[
0.3 0
0.1 0

]
,

D21 =

[
0 0.1
0 −0.2

]
, D22 =

[
0.1 0
0.1 0

]
,

N21 =

[
0 −0.1
0 0.1

]
, N22 =

[
0.1 0
0.1 0

]
,

B23 = B2, D23 = D2, N23 = N2.

Let h = 0.1, ε = 0.1, γ = 0.5, and

α1 = 1.2, α2 = 0.7, α3 = 1.5, µ12 = 1.2,

µ13 = 2, µ21 = 1.5, µ23 = 2.5, µ31 = 1.8,

µ32 = 2.2. (46)

From Theorem 3, we can obtain the bounds of the
AED-ADTs are τ ∗12 = 0.2605, τ ∗13 = 0.4621, τ ∗21 = 0.3379,
τ ∗23 = 0.6109, τ ∗31 = 0.4898, τ ∗32 = 0.9902, and the
controller gains are

K1 =

[
0 0

−3.1138 −3.0733

]
,

K2 =

[
−6.5421 −4.5029

0 0

]
,

K3 =

[
−5.4412 −2.2299
−3.2499 −1.5212

]
.

The parameters αj and µij, i, j ∈ 3 are set in (46). The
relationship between parameters h and γ is demonstrated in
Table 1 when ε = 2, from which we can see that the larger h
can obtain the smaller γ .

TABLE 1. The relations between the value of h and γmin when ε = 2.

Furthermore, the values of parameters γ and ε are also
interactional, which relationship is listed in Table 2. As shown
in Table 2, it can be found that the larger γ leads to the
smaller ε.

TABLE 2. The relations between the value of γ and εmin when h = 0.1.

Choose the switching sequence as 1 → 3 → 2 → 1 →
3 → · · · , and the initial state is defined as [−0.1, 0.2]T .
The corresponding dwell-time is chosen as τ1,3 = 0.5,
τ3,2 = 1, τ2,1 = 0.4. Figure 1 presents the trajectory
of state x(t) converges to zero, which shows the effective-
ness of the designed controller and switching signal. The
trajectory of the corresponding control input u(t) is demon-
strated in Figure 2. Furthermore, choose the disturbance as

FIGURE 1. The state x(t).

FIGURE 2. The control input u(t).

FIGURE 3. The control output z(t).

ω(t) = [0.1 exp(−0.2t) 0.1 exp(−0.2t)]T . Then under the
zero initial condition, the trajectory of the output z(t) is
depicted in Figure 3, fromwhich we can see that the designed
controller can suppress the disturbance well.
Example 2: Consider the model of rocket fairing

structural-acoustics with disturbances borrowed the
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parameters from [35] as

A =


0 1 0.0802 1.0415

−0.1980 −1.15 −0.0318 0.3
−3.0500 1.1880 −1.4650 0.9

0 0.0805 1 0

 ,

B2 =


1 1.55 0.75

0.975 0.8 0.85
0 0 0
0 0 0

 , B1 =


−2.35 −0.175
−0.9875 0.6

0 0
0 0

 ,
and the corresponding parameters including uncertainties and
the output are as

C =


1
0
0
0


T

, D2 =

 0.1
0.1
0.1

T , D1 =

[
0.1
0.1

]T
,

M1 = N1 =


0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1

 , M2 =


0.1
0.1
0.1
0.1


T

,

N2 =


0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

 , N3 =


0.1 0.1
0.1 0.1
0.1 0.1
0.1 0.1

 .
Note that m = 3. Depending on whether the actuator fails

or not, switched system model (6) contains seven (2m − 1)
subsystems, where

B21 =


0 1.55 0.75
0 0.8 0.85
0 0 0
0 0 0

 , B22=


1 0 0.75

0.975 0 0.85
0 0 0
0 0 0

 ,

B23 =


1 1.55 0

0.975 0.8 0
0 0 0
0 0 0

 , B24 =


0 0 0.75
0 0 0.85
0 0 0
0 0 0

 ,

B25 =


0 1.55 0
0 0.8 0
0 0 0
0 0 0

 , B26 =


1 0 0

0.975 0 0
0 0 0
0 0 0

 ,

D21 =

 0
0.1
0.1

T , D22 =

 0.1
0
0.1

T ,
D23 =

 0.1
0.1
0

T , D24 =

 0
0
0.1

T ,
D25 =

 0
0.1
0

T , D26 =

 0.1
0
0

T ,
N21 =


0 0.1 0.1
0 0.1 0.1
0 0.1 0.1
0 0.1 0.1

 , N22 =


0.1 0 0.1
0.1 0 0.1
0.1 0 0.1
0.1 0 0.1

 ,

N23 =


0.1 0.1 0
0.1 0.1 0
0.1 0.1 0
0.1 0.1 0

 , N24 =


0 0 0.1
0 0 0.1
0 0 0.1
0 0 0.1

 ,

N25 =


0 0.1 0
0 0.1 0
0 0.1 0
0 0.1 0

 , N26 =


0.1 0 0
0.1 0 0
0.1 0 0
0.1 0 0

 ,
B27 = B2, D27 = D2, N27 = N2.

Let h = 0.1, ε = 2, γ = 0.8, and these are values

α1 = 1.2, α2 = 0.7, α3 = 1.5, α4 = 2.2, α5 = 0.9,

α6 = 1.4, α7 = 1.8, µ21 = 1.3, µ31 = 1.2, µ41 = 2.2,

µ51 = 1.5, µ61 = 1.2, µ71 = 1.8, µ12 = 2.2, µ32 = 2.5,

µ42 = 1.8, µ52 = 2.6, µ62 = 1.2, µ72 = 1.5, µ13 = 1.3,

µ23 = 1.6, µ43 = 1.2, µ53 = 1.2, µ63 = 1.2, µ73 = 1.2,

µ14 = 1.5, µ24 = 1.8, µ34 = 2.2, µ54 = 3.2, µ64 = 2.5,

µ74 = 3.2, µ15 = 1.5, µ25 = 2.1, µ35 = 2.0, µ45 = 1.8,

µ65 = 1.2, µ75 = 2.0, µ16 = 1.4, µ26 = 1.6, µ36 = 1.7,

µ46 = 1.8, µ56 = 2.0, µ76 = 1.2, µ17 = 2.1, µ27 = 2.3,

µ37 = 1.8, µ47 = 2.5, µ57 = 3.2, µ67 = 2.8.

From Theorem 3, the bounds of the AED-ADTs are as

τ ∗21 = 0.2186, τ ∗31 = 0.1519, τ ∗41 = 0.6570, τ ∗51 = 0.3379,

τ ∗61 = 0.1519, τ ∗71 = 0.4898, τ ∗12 = 1.1264, τ ∗32 = 1.3090,

τ ∗42 = 0.8397, τ ∗52 = 1.3650, τ ∗62 = 0.2605, τ ∗72 = 0.5792,

τ ∗13 = 0.1749, τ ∗23 = 0.3133, τ ∗43 = 0.1215, τ ∗53 = 0.1215,

τ ∗63 = 0.1215, τ ∗73 = 0.1215, τ ∗14 = 0.1843, τ ∗24 = 0.2672,

τ ∗34 = 0.3584, τ ∗54 = 0.5287, τ ∗64 = 0.4165, τ ∗74 = 0.5287,

τ ∗15 = 0.4505, τ ∗25 = 0.8244, τ ∗35 = 0.7702, τ ∗45 = 0.6531,

τ ∗65 = 0.2026, τ ∗75 = 0.7702, τ ∗16 = 0.2403, τ ∗26 = 0.3357,

τ ∗36 = 0.3790, τ ∗46 = 0.4198, τ ∗56 = 0.4951, τ ∗76 = 0.1302,

τ ∗17 = 0.4122, τ ∗27 = 0.4627, τ ∗37 = 0.3265, τ ∗47 = 0.5091,

τ ∗57 = 0.6462, τ ∗67 = 0.5720,

and the controller gains are

K1 =

 0 0 0 0
−3.4825 1.3523 0.1492 −0.0879
3.3217 −2.6470 −0.2950 −0.1005

 ,
K2 =

−10.7412 −1.1504 0.9035 0.0384
0 0 0 0

10.9651 0.3423 −1.1382 −0.2534

 ,
K3 =

 3.8165 −4.1435 −0.2723 −0.0544
−4.2765 2.8677 0.1716 −0.1159

0 0 0 0

 ,
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FIGURE 4. The state x(t).

FIGURE 5. The control input u(t).

K4 =

 0 0 0 0
0 0 0 0

−0.8086 −0.5301 −0.0621 −0.2435

 ,

K5 =

 0 0 0 0

−0.6334 −0.1717 −0.0355 −0.1701

0 0 0 0

 ,

K6 =

−0.4827 −0.1365 −0.0352 −0.2061

0 0 0 0

0 0 0 0

 ,

K7 =

 2.0092 −1.8095 2.3386 1.2040

−1.8314 0.8916 −0.4541 −0.4334

−0.4861 0.5920 −2.2332 −1.0993

 .
Choose the switching sequence as 2 → 1 → 4 →

3 → 5 → 7 → 6 → 2 → · · · , and the initial state
as [−0.1 0.2 0.1 − 0.2]T . Let τ2,1 = 0.25, τ1,4 = 0.2,
τ4,3 = 0.13, τ3,5 = 0.8, τ5,7 = 0.7, τ7,6 = 0.15, τ6,2 = 1.2.
Figure 4 presents the trajectory of state x(t) converges to zero,
which shows the designed controller and switching signal are
effective. The trajectory of the corresponding control input

FIGURE 6. The control output z(t).

u(t) is demonstrated in Figure 5. Furthermore, choose the
disturbance as ω(t) = [0.1 exp(−0.2t) 0.1 exp(−0.2t)]T .
Then under the zero initial condition, the trajectory of the
output z(t) is depicted in Figure 6, from which we can see
that the designed controller can suppress the disturbance
well.

V. CONCLUSION
In this paper, the robust exponentialH∞ fault tolerant control
problem has been studied for the systems with uncertainties,
disturbances and actuator failures. The considered system has
been modeled as a switched system based on whether the
actuator fails or not. The sampled-data controller has been
designed, and the original system has been transformed to
a switched system with time-varying delay. The AED-ADT
method has been applied to design the switching signal to
guarantee the robust exponential stability with H∞ perfor-
mance, and the corresponding controller gains have also been
obtained. Finally, two examples have been presented to verify
the effectiveness of the relevant results.

Based on this article, some relevant problems can be con-
sidered in the future as follows. 1). Design the controller by
combination of time-triggered and event-triggered scheme to
save the network resources bymoving unneeded computation
and transmission. 2). Design the switching signal by the com-
bination of slow AED-ADT switching and fast AED-ADT
switching method under the case that of all the actuators
fail. 3). Construct a more complicated Lyapunov-Krosovskii
functional related to time-varying delay τ (t) to reduce the
conservation of the results, and so on.
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