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ABSTRACT Automatic image annotation is a key technology in image understanding and pattern recogni-
tion, and is becoming increasingly important in order to annotate large-scale images. In the past decade,
the nearest neighbor model-based AIA (Automatic image annotation) methods have been proved to be
the most successful in all classical models. This model has four major challenges including semantic gap,
label-imbalance, wider range labels, and weak-labeling. In this paper, we propose a novel annotation model
based on three-pass KNN (k-Nearest Neighbor) to address the aforementioned challenges. The key idea is
to identify appropriate neighbors at each pass KNN. In the first pass KNN, we identify the several most
relevant categories based on label feature rather than visual feature as traditional models. In the second pass
KNN, we determine the relevant images based on multi-modal (visual and textual label) embedding features.
As the test image has not been annotated with any label, we propose a pre-annotation strategory before image
annotation to improve the semantic level. In the third pass KNN, we capture relevant labels from semantically
and visually similar images and propagate them to the given unlabeled image. In contrast with traditional
nearest neighbor based methods, our method can inherently alleviate the problems of semantic gap, label-
imbalance, and wider range labels. In addition, to alleviate the issue of weak-labeling, we propose label
refinement for training images. Extensive experiments on three classical benchmark datasets and MS-COCO
demonstrate that the proposed method significantly outperforms the state-of-the-art in terms of per-label and

per-image metrics.

INDEX TERMS Automatic image annotation, semantic gap, nearest neighbor, weak-labeling.

I. INTRODUCTION

With the prevalence of digital photography and social net-
works in our daily lives, billions of images are generated
and shared on the Internet. Users have access to a flood
of images, making it a challenge to retrieve and manage
the ones they care about from this vast ocean of available
visual data [1]. Automatic image annotation (AIA) is the task
of automatically assigning several textual labels to a given
image based on its semantics. Recently, the ATA has been
an active research topic in the fields of computer vision and
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machine learning due to its great potential applications in
image retrieval, image classification, image understanding,
and image management [2]—[4].

In the past 20 years, a considerable amount of research
effort has been made to devise automatic image anno-
tation models. Some representative AIA approaches have
been proposed and great achievements have been made,
such as MBRM [5], JEC [6], 2PKNN [2], and D?IA [7].
Recently, significant advances have been achieved on large-
scale image recognition tasks [8], with deep learning models
such as Convolutional Neural Network (CNN) and Genera-
tive Adversarial Network (GAN). In comparison with image
recognition, image annotation is a more challenging task,
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since it is a multi-label multi-class classification problem [8],
instead of a single-label multi-class classification problem as
in image recognition. The four most difficult challenges of
AIA are semantic gap, label-imbalance, weak-labeling, and
wider range labels [2]. The semantic gap is the semantic
difference between image low-level features represented by
machines and high-level human perceptions used to perceive
the image. The label-imbalance problem means there exists
a high variance among the number of images corresponding
to different labels, and this problem is quite common when
the size of a dataset or label vocabulary is large. Today,
the label-imbalance is a pending issue. Weak-labeling means
that manual annotations are noisy, irrelevant, or incomplete.
Weak-labeling will also cause poor-labeling. The wider range
labels mean that labels in image annotation can refer to a
much wider and more diverse range of concepts or drastically
different levels of abstraction, such as concrete visual objects
(cat, train), scenes (beach, city), amorphous background ele-
ments (sky, grass), or abstract concepts (scary, serene) [1],
[9]. The traditional CNNs, designed for single-label image
classification, are thus unsuitable for image annotation task
because they fail to provide rich representations at different
abstraction scales.

During the past decade, there have been several efforts for
addressing such issues as MBRM, JEC, CNN+WARP [10],
LTN [11], TagProp [12], 2PKNN, CCA-KNN, D?IA, and
CNN-RNN [13]. Benefitting from deep learning features
(such as CNN and GAN), most models based on deep learn-
ing can reduce the semantic gap, although the issue has not
been resolved thoroughly. In single-label image classifica-
tion, deep learning features are able to address the issue
of the semantic gap. CNN has shown great performance as
general feature representations for object recognition applica-
tions. However, for multi-label images that contain multiple
objects from different categories, scale and location, global
CNN features are not optimal. Some models close to success
(TagProp, KCCA-2PKNN, SKL-CRM, SVM-DMBRM [14],
and 2PKNN) are able to address the semantic gap problem
with computationally expensive metric learning. Some mod-
els based on nearest neighbors, i.e. 2PKNN, can alleviate
the label-imbalance by paying more attention to rare labels,
which always improve the performance of the low frequency
words by sacrificing high frequency words. Some researches
attempt to provide multi-level deep features to provide high-
quality image features suitable for image annotation [9],
[15]. Nevertheless, the most important challenge, i.e. weak-
labeling problem, has never been tackled explicitly. In sum-
mary, the AIA is still a difficult and challenging task [2].

In this paper, we propose a novel image annotation method
based on nearest neighbors to address the problems above
mentioned. Different from the existing methods based on
nearest neighbors, our method sequently learns from multi-
level semantic neighborhoods rather than a single neighbor-
hood as the existing methods. First, we complete labels to the
training dataset by propagating from neighbors to overcome
the problem of the weak-labeling. Second, we divide the
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training images which have similar textual label features into
a semantic neighbor group by N-cut algorithm. Each group
is considered as a category. Third, we pick up top N similar
images from the three most similar categories according to
their similarities in KCCA space, which is trained by visual
features and completed labels of the training image dataset.
The selected neighbors form a category-level similar neigh-
borhood. Fourth, pick up top M similar images from category-
level similar neighborhood according to visual similarity, and
propagate labels from category-level and object-level similar
neighbors by using their similarity as weight.

Our main contributions are as follows: (1) We pro-
posed a novel annotation method based on three-pass KNN,
which can accurately capture the relevant categories, rele-
vant images, and appropriate labels for a given test image.
(2) We proposed multi-level semantic neighborhoods rich
representations at different abstraction scales, suitable for
image annotation tasks. (3) We proposed a pre-annotation
strategy for the unlabeled test image to perform multi-modal
image retrieval so as to reduce the semantic gap. (4) We pro-
posed label refinement for training images based on their tex-
tual label similarities to alleviate the issue of weak-labeling.
(5) Our proposed model can alleviate the problem of the label-
imbalance by enhancing rare labels without sacrificing fre-
quent labels. Extensive experiments are carried out on three
benchmark datasets: (Corel5k, ESP Game and IAPR TC-12)
and MS-COCO. The experimental results demonstrate that
our model outperforms the state-of-the-art alternatives.

Il. RELATED WORKS

A large number of automatic image annotation models have
been developed. In this section, we briefly review the closely
related and representative works.

A. GENERATIVE MODELS

The generative model-based AIA methods are quite popular
in the early 21st century, and great achievements have been
made. In the model training stage, the generative model aims
at learning a joint distribution between visual and label fea-
tures so that the learned model can predict the conditional
probability of labels for features of a test image. The gener-
ative models focus on maximizing the generative likelihood
of image features and labels. The generative models used for
AIA mainly consist of relevance models, mixture models,
and topic models. The representative models include CMRM,
CRM, MBRM, and PLSA-WORDS. These models are usu-
ally expensive or require simplifying assumptions that can be
suboptimal for predictive performances [16].

B. DISCRIMINATIVE MODELS

Discriminative models consider image annotation as a multi-
label multi-class classification problem. These models regard
each label as an independent class. A separate classifier
is trained for each label with visual features of training
images, and then the trained classifier can predict particular
labels for a given test image. Most of discriminative models
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are based on support vector machine (SVM) or its vari-
ants [17]. The other representative models include SML [18],
DMBRM, and SVM-DMBRM. The SML model learns class-
specific distributions for each label. The SML model treats
the image annotation as a multi-classification problem and
learns a class-specific distribution for each label [18]. The
SVM-DMBRM model is a hybrid method that takes full
advantages of the merits of both generative and discrimi-
native models [14]. While SVM tries to solve the weak-
labeling issue, DMBRM strives to solve the class-imbalance
issue. However, these multi-label classification approaches
are unscale to a large number of labels [17].

C. NEAREST NEIGHBOR BASED MODELS

The nearest neighbor based models have become a more and
more widely used method for AIA due to their effectiveness
and simplicity. These models explore the visual similarities
between a test image and training images, and finally assign
labels to the test image by sorting the scores of neighbors
of visually similar images [19]. The representative models
based on nearest neighbor include JEC [6], TagProp [12], and
2PKNN [2].

The Joint Equal Contribution (JEC) model is one of the
most classical nearest-neighbor models [6]. The JEC model
utilizes various low-level image features and a simple combi-
nation of basic distance measures to find the nearest neigh-
bors of a given image. It creates a family of very simple
and intuitive baseline methods for image annotation [20].
Guillaumin et al. presented the TagProp [12] method, which
learns the weight of each feature group and uses the label
relevance prediction to annotate images [2]. The TagProp
promotes rare labels and penalizes frequent ones by training a
logistic model, which alleviates the class-imbalance problem.
Its great achievement largely benefits from metric learning.

The 2-pass k-nearest neighbor(2PKNN) model represents
a classical solution to solve problems related to the label-
imbalance and the weak-labeling [2]. It is a two-pass variant
of the traditional KNN. In the first pass, the image-label
similarity is used, while image-image similarity is used in the
second pass. It identifies the k most similar semantic neighbor
images for each label in the vocabulary. Due to its success-
fully solving the label-imbalance problem, the 2PKNN makes
great achievements and is still one of the most influential
image annotation approaches.

D. DEEP NEURAL NETWORK BASED MODELS
Recently, Convolutional Neural Networks (CNNs) have
shown great performance in many computer vision tasks
(i.e. image recognition) by extracting end2end feature vec-
tors from original images [10], [21]-[24]. Most of the deep
learning-based AIA approaches are based on convolution
neural network (CNN) [10], [11], [24], [25], and features
are always extracted from pre-trained AlexNet, VGGNet net-
work [11], [16], [24], [25], and ResNet.

The conventional deep networks can be subjected to
the decayed performance if we have insufficient training
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examples. Shu proposed weakly-shared Deep Transfer Net-
works (DTNs) to mitigate the problem by bringing in rich
labels from the text domain [26]. The proposed model can
translate cross-domain information from text to image. Tang
proposed a novel generalized deep transfer networks (DTN),
capable of transferring label information across heteroge-
neous domains, textual domain to visual domain. The pro-
posed framework has the ability to adequately mitigate the
problem of insufficient training images by bringing in rich
labels from the textual domain [27].

The CNN+WARP [10], proposed by Jia (the creator of
Caffe), is the first attempt to leverage CNN features to
solve the image annotation task. The CNN+WARP adopts
a weighted approximate ranking loss function for training to
promote image annotation performances. The VCCA [28],
an image annotation method based on a deep multi-view
learning model, extends linear CCA to nonlinear observation
models parameterized by deep neural networks.

Different from these classical end-to-end deep learning
features, Yu proposed to extract middle-level features from
a deep learning model to accurately depict semantic con-
cepts for image annotation [15]. This model can improve
annotation performance with expensive time and space cost.
Recently, the CNN-RNN (convolutional and recurrent neural
networks) encoder-decoder architectures are jointly adopted
to image understanding, where the CNN subnetwork encodes
the input pixels of images into visual features, and the RNN
subnetwork decodes the visual feature into a label prediction
path [29], [30]. The CNN-RNN model uses the output fusion
to merge CNN output features and RNN output [29]. The
D?IA, image annotation method based on generative adver-
sarial network (GAN) model, aims to create semantically
relevant, yet distinct and diverse labels [7].

MangoNet [31] is a novel deep learning based image
annotation model that combines co-attention mechanism and
graph convolutional network (GCN). It explores image neigh-
bors by measuring their metadata similarities and utilizes a
graph network to model the correlations between the target
image and its neighbors. To accurately capture the visual
clues from the neighborhood, a co-attention mechanism is
introduced to leverage the visual attention within the neigh-
borhood. However, the GCN model increases the space and
time complexities, which will be unfavorable to apply to
large-scale databases.

Despite their relative success, most of deep learning based
models suffer from the single abstraction level. As we knew,
the labels in AIA are always much wider and more diverse
range of visual objects or abstract concepts with different
abstraction levels, while the ones in image recognition (clas-
sification) are always concrete visual objects with the same
level. Most CNN models, designed originally for the image
classification task, are unsuitable for the image annotation
task because they fail to provide rich representations at differ-
ent abstraction scales. As a result, only CNN features could
alleviate the problem of the semantic gap in AIA rather than
solve the problem thoroughly.
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FIGURE 1. The proposed annotation framework.

lIl. OUR PROPOSED METHOD

A. OUR FRAMEWORK

To resolve problems of the weak-labeling, models close
to success focus on metric learning (such as TagProp
and SVM-DMBRM), which always require computationally
expensive metric learning approaches. 2PKNN propose a
novel two-pass KNN solution to address the issue of the
label-imbalance by considering the image-label similarity
and image-image similarity in the two passes, respectively.
Although 2PKNN significantly improves the per-label per-
formance, it always sacrifices high frequent labels. In fact,
2PKNN could not improve the annotation performance as
shown by per-label evaluation metrics.

Figure 1 shows our proposed framework for automatic
image annotation. The proposed framework is composed of
two main components, i.e. training and testing processes. The
training process includes label refinement, category genera-
tion, and KCCA model training and embedding features.

To resolve the problems of the weak-labeling and the label-
imbalance, we propose a novel image annotation method
based on nearest neighbors. In contrast with traditional NN
based models and classical 2PKNN which need computa-
tionally expensive metric learning, we propose a novel and
simple label refinement to address the weak-labeling. Rather
than in traditional visual feature space, our proposed method
refines labels for all training images in the label feature space,
which can inherently address the problem of the semantic
gap. Our proposed method divides the images which have
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similar features in the label feature space into a semantic
neighbor group called a category. Our proposed method maps
visual feature vectors extracted by deep learning architecture
(pre-trained VGG-16), and refines label vectors to a common
feature space by the KCCA model. New visual features and
new label features are used in the test stage.

Similar to 2PKNN, our proposed method is a three-pass
variant of the traditional KNN. Given a test image, in the first
KNN, our method aims to find the K1 most relevant cate-
gories based on label features. In the second KNN, we select
the K2 most similar images from each relevant category and
combine them into a single neighborhood including relevant
images. These relevant images are similar to the test image in
both embedding visual feature and embedding label feature.
In the third KNN, based on two steps, we find the K3 most
visually similar images and propagate a fixed number of
labels to the test image according to their original visual
feature similarities.

B. LABEL REFINEMENT

To alleviate the shortcoming of the weak-labeling, most
methods devise sophisticated models with expensive time
and space cost in annotation process.Tang proposed a novel
tri-clustered tensor completion framework to collaboratively
explore these three kinds of information to improve the
performance of social image tag refinement [32].Tang pro-
posed a novel Social anchor-Unit GrAph Regularized Tensor
Completion (SUGAR-TC) method to efficiently refine the
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tags of social images, which is insensitive to the scale of
data [33].

Our method compensates some appropriate labels for each
training image based on its neighbors’ labels. To start with,
our method directly completes labels for each training image
in the label feature space. More specifically, if the associated
textual labels associated with an image (I;) can be considered
as another modal feature for the image, the textual feature
vector of the image can be represented as follows:

ti=[Pwi | L), ....,.Powe [ 1), ..., Pwy | I)] (1)

where M is the volume of labels (e.g. 260 for CorelSk),
P(wi|l;) = ¢p(wr € W;) denotes the presence/absence of label
wy in the label set W; of image I;, with P(wy|[;) being 1 if the
image I; has been manually annotated with the corresponding
k-th label and O otherwise.

For each training image, if the number of its initial labels
is smaller than the target number (M), we can compensate
several labels to the image by propagating labels from the
neighbourhood in the label feature space. The similarity mea-
sure between the image /; and the image I; is based on L2
distance, as follows:

Simygext (i, I}) = exp(=Distra(t;, t7)) (2)

We choose K neighbor training images in the textual label
feature space for each current image /; and rank the labels for
image I; according to their probability scores of:

K

PU; [ wi) =Y simieu (I 1) x 0w € W) (3)
j=1

where simyey (I;, I;) is the textual similarity between /; and /;
(as shown in Equation 2). Based on probability theory, the
probability of assigning a label wy to I; can be defined the
posterior probability as follows:
Pl | wi)P(wi)
Plwy | ) = ——— - “)
P(Iy)

where P(wy) is the probability of the label wy. The best label
for the test image I; will be given by the following:

y* =arg max P(wi | 1) (5)

We consider the top M — |[;| labels as refined labels for
the current image I;, |I;| is the number of original manual
labels associated with the image /;. In addition, the posterior
probability of specific label w;, computed by Equation 4,
is considered as its confidence in the image’s label vector.
After label refinement, several zero elements of the textual
label feature vector of the image (as shown in Equation 1)
are replaced by non-zero probability scores of corresponding
labels. As a result, the refined label vector is real-valued
rather than discrete (or binary) as the original label feature.

In the training stage, the proposed method divides the
images which have similar refined label features into the
same category by using k-means algorithm. The center of
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Input: 1) Q: the binary image-label matrix, Q € BV N
is the number of the training image dataset, M is the number
of labels in the image dataset. 2) traininglmgSet: the training
image dataset.

1: assign Q to NQ, NQ € RVM | NQ is a real-valued image-

label matrix

2: for I; in traininglmgSet do

3 set SiMmvector = @

4 set neighborhood = ¢

5. for I; in traininglmgSet do

6: compute sim = simyey (I;, J) with Equation (2)
7 set SiMvector () = sim

8 end for

9 SOIt Simyector in descending order

10:  assign top K elements of simyecr to simgny, and their
corresponding images to the neighborhood

11: forkin[l,M]do

12: compute P(wy | I) with Equation (4)

13:  end for

14:  sort P(wg | I) in descending order

15:  assign the largest (5-I1;]) probability scores of P(wy, |
I;) to NQ(i).

16: end for=0

Output: NOV¥: the refined image-label matrix.

a category (k) is defined as the mean of all images’ label
features in this category, denoted as:

o= > i (6)

C. FEATURE EXTRACTION AND REPRESENTATION

The feature vectors in our method are different at different
stages. The original visual feature is extracted by pre-trained
architecture (VGG-16). We also consider the label informa-
tion associated with the image as its another modal feature.

To promote the semantic level of the image feature vec-
tor, our model utilizes semantic embedding to properly map
refined labels and visual features to a meaningful seman-
tic space by using kernelized canonical correlation analy-
sis (KCCA). In the training stage, the KCCA model can
be learned from the original visual feature and the refined
label feature. Then, the learned KCCA model can map the
original visual feature and the textual label feature to a com-
mon meaningful semantic space, where the (embedding) new
visual feature and the (embedding) new label feature can be
generated.

Given the two views (visual modality and textual label
modality) of the images, a common representation can
be constructed by KCCA model. KCCA seeks to utilize
images consisting of paired views to simultaneously find
projections from each feature space so that the correlation
between the projected representations is maximized. For
given N training pairs of visual and refined label features
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{(vi, t1), ..., (Vis 1)), ..., (vN, Iv)}, the idea is to simultane-
ously find directions w, and w; that maximize the correlation
of the projections of ¢, onto w, and ¢; onto w; [16], [24].
The ¢, and ¢; mapping is achieved using kernel function
Koviv) = ¢ T and K1) = ¢t Tei(),
Thus, KCCA is to search for solutions of w,, and w; as a linear
combination of the training data:

N

wy = iy (v;) )
i=1
N

wi =Yy Bin(t) ®)
i=1

The objective of KCCA is thus to identify the weights
o, B € RV that maximize the objective function [24]:

a*, B* = argmax M )
wp JaTK2aBTK?B

where K, and K; denote the N x N visual and textual
kernel matrices over a sample of N pairs, respectively. The
solution yields top M eigenvectors Ay, = [og...ap] and
By = [B1...Bum] which form the projection matrix. Given
any image, we can project its visual feature v onto Ay, and its
textual label feature ¢ onto By. The new embedding feature
can be defined as follows:

VEEA = (v — Ay (10)
N = (¢ — By (11)

D. LABEL PROPAGATION BASED ON MULTI-LEVEL
SEMANTIC NEIGHBORHOODS

The image annotations (labels) always cover drastically
different levels of abstraction semantic concepts including
image categories, scenes, abstract concepts, and concrete
visual objects [9]. Currently, most methods based on the
nearest neighbor model measure the similarities between
the test image and training images only based on single-
level visual or semantic features, which fail to provide rich
representations at different abstraction scales and could not
depict multi-level semantic concepts. Consequently, many
noisy images, their content irrelevant to the test image, are
considered as neighbors and involved to labels propagation
based on neighbors. Since noisy images may worsen the
annotation performance, it is necessary to get rid of them.
In contrast with traditional annotation models based on single
neighborhood directly selected from the whole training image
dataset, we propose a novel annotation method based on
multi-level semantic neighbors.

Given an unlabeled test image, we proposed a pre-
annotation strategy before image annotation. The pre-
annotation strategy assumes several labels by propagating
visual neighbors’ labels to the test image by weighted
KNN, whose weights are visual similarities between the
image and neighbors. Similar to the label refinement method
(Equation 2-5), we can assign 5 labels to the test image.
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The only difference between the pre-annotation and the label
refinement is that the pre-annotation step determines neigh-
bors based on original visual features instead of textual label
features. We use the pre-annotation labels as the test image’s
labels in the following process until the final annotation labels
are predicted.

Our proposed method includes three KNN steps. First,
our proposed model computes image-category similarities
to determine certain categories semantically relevant to the
test image. The image-category similarity is the similarities
of label vectors between the test image and all categories’
centre. If the image-category similarity is larger than the
specified threshold, the category is considered as relevant
one. Second, compute multi-modal (including new visual
feature and new label feature) image-image similarity to
capture visually and semantically similar neighbors in each
relevant category. Third, combine KNN images of all relevant
categories into a single neighbourhood set including relevant
images. Finally, assign the N most relevant labels to the test
image based on visual similarities between the test image and
relevant images.

In the first KNN, given a test image, our goal is to select
the K 1 most relevant categories. We can define the similarity
between a test image (/) and a category (m) as follows:

simyext(I, C) = exp(—Distro(ti, Cn)) (12)

where C,, is the center of the category m. We consider the K 1
most similar categories as relevant categories. In the second
KNN, our goal is to pick the K2 most similar images from
each relevant category to combine relevant images, which are
visually and semantically similar to the test image. We define
the multi-modal similarity between the test image (/) and
training image (J) as follows:

KCCA V/KCCH)

SiMputi—modal (I, J) = 0 x cos(v; ",

+(1 = 0) x cos(tFH, (fC  (13)
and VJKCG4
image I and image J, respectively, are
their embedding textual label features. Finally, we can obtain
KNN images from each category and regard them as relevant
images.

In the third KNN, our goal is to find the K3 most visual
similar images and assign their labels to the test image.
To focus on depicting local visual features, we measure image
similarity based on the original visual feature rather than
embedding one, whose metric function is cosine similarity.
We choose K3 neighbor training images in original visual
feature space for each current image /; and rank the labels
for I; according to their probability scores of:

KCCA

where v; are embedding visual features of

tl.KCGA and (KCA

K3
P | w) =Y simyis(Li, 1)) x POw | Ij) (14)

j=1
where sim,;s(1;, I}) = cos(v;, v;), v; and v; are original feature
vectors, while P(w | [;) is a refined label feature. All labels’
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probability scores for the image 1;,(P(w | I;)),can be predicted
with Equation 4. After a group of images are automatically
annotated, we regularize these probability scores. First, the
probability score for each image /; is regularized using row-
normalization as follows:
P(wi | 1)
Plwi | 1) = ——— ——— (15)
maxg P(wg | ;)
Then, probability scores of for the group images are regu-
larized using column-normalization as follows:

P(wy | 1)
Pwi | I) = —————— (16)
max; P(wi | )
At last, the final annotations can be selected with
Equation ().

IV. EXPERIMENT

A. DATASETS

We conducted our experiments on three benchmark datasets
including Corel5k, ESP Game, and IAPR TC-12. The images
in these datasets are of various categories such as natural
scene, game, sketches, personal photos and so on, which
makes the annotation a challenging task.

Corel5K is the first and also the most widely used
dataset for evaluating image annotation. It was first used
by Duygulu ef al. in 2002, and since then it has become a
de facto evaluation benchmark for comparing the annotation
performance [2], [34]. It consists of 4500 training images
and 499 test images. Each image is either 192 x 128 or
128 x 192 pixels. Each image is annotated with up to 5 words
(labels), with 3.5 labels on average from a dictionary
of 260 labels.

ESP Game dataset was published by von Ahn and Dab-
bish in 2004. The dataset consists of 18689 training images
and 2081 test images. Each image is manually annotated with
up to 15 labels, with 4.7 labels on average from a dictionary
of 268 labels. The dataset images are annotated by game
player using an online game. The two mutually unknown
players are required to predict the same keyword(s) to score
points for a randomly given image, which makes this dataset
quite challenging and diverse.

IAPR TC-12 dataset was introduced by Grubinger for
cross-lingual information retrieval in 2007. Each image is ini-
tially associated with a long description. The English nouns
extracted from the descriptions by Makadia [4], [12] are
treated as annotations. The dataset consists of 17665 training
images and 1962 test images. Each images is 480 x 360
or 360 x 480 pixels. Each image is manually annotated up
to 23 labels, with 5.7 labels on average from a dictionary
of 291 labels. The dataset has been widely used for evaluating
image annotation models.

The famous large-scale datases include NUS-WIDE [35]
and Microsoft COCOMS-COCO). There are many works
on NUS-WIDE [29], [31], and all of them remove
some noisy tags and images to obtain clean image
dataset. However, the refined image datasets are differ-
ent. Therefore, we conduct experiments only on large-scale
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dataset MS-COCO. The MS-COCO dataset is used for
image recognition, segmentation, and captioning. It contains
123 thousand images of 170,339 user provided noisy tags and
80 expert-provided ground truth labels. Following previous
works [12], [36], we only keep 1,000 frequent tags and
remove the images without any expert label, which leaves
us with 123,286 images including 82,782 training images
and 40,504 test images; each image being annotated with
2.9 labels on average. The refined MS-COCO dataset is the
same as some research works [12], [36].

B. EVALUATION METRICS
The per-label evaluation metrics have been widely used
to evaluate image annotation approaches in the past two
decades. Today, the per-label evaluation metrics have been
considered as standard evaluation metrics. The per-label eval-
uation metrics include precision, recall, and F1-measure. For
each label, per-label precision is defined as the number of
images correctly predicted over the total number of images
predicted with this label, and per-label recall is defined
as the number of images correctly predicted over the total
number of images having this label in its ground-truth or
manual annotations. These values are averaged over all the
labels in the vocabulary to get average (percentage) per-
label precision (Pr) and average per-label recall (Ry ) respec-
tively. From these scores, we compute the average per-label
Fl-measure (F'1;), which is the harmonic mean of P; and
R; . The per-label precision is defined as,
TP
~ TP+ FP
where TP is the number of images that contain the label in
manual annotations and are correctly predicted the label by
annotation model. FP is the number of the images that do
not contain the label and are incorrectly predicted the label.
TP + FP equals to the total number of images predicted the
label by model. The per-label recall is defined as,
TP
~ TP+FN
where FN is the number of the images that contain the label
in manual annotations and are not predicted the label by the
model. TP + FN equals to the total number of the images
containing the label in the manual annotations. F1-measure
combines P with R, indicating the integrated result.
Fl1-measure is used for comprehensive performance eval-
uation by combing precision and recall. The per-label F1-
measure is defined as,

Py a7

Ry (18)

Flp = ——— 19)

We also consider the N+ metric, which counts how many
labels in the vocabulary are correctly predicted for at least one
on test images.

Besides per-label metrics, more and more researchers
adopt per-image metrics (also including precision, recall,
and Fl-measure) to evaluate annotation performance
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[9]-[11], [20], [30], [37], the per-label metrics are biased
toward infrequent labels because making them correct could
have a very significant impact on final accuracy [10]. These
values are averaged over all the images in the test dataset
to get average (percentage) per-image precision (P;) and
average per-image recall (Ry), respectively. The per-image
precision is defined as,

TP
~ TP+ FP

where TP is the number of the labels that are contained in
the image and are correctly predicted the label by annotation
model. FP is the number of the labels that are not contained
in the image and are incorrectly predicted the label. TP + FP
equals to the total number of labels that are predicted by the
model.The per-image recall is defined as,

TP
TP+ FN

where FN is the number of the labels that are contained in the
image and are not predicted the label by the model. TP + FN
equals to the total number of the labels that is contained
in the image. F1-measure combines P; with R, indicating
the integrated result. The per-image Fl-measure (F1;), the
harmonic mean of P; and R;. The per-image F1-measure is
defined as,

Py (20)

R 2D

Fl; ="+ (22)

The mean average precision (MAP) is a widely used
metric in the field of image retrieval [11], [12], [38]. The
MAP includes per-label MAP (MAPy) and per-image MAP
(MAP;), which take into account all labels for every image,
and evaluate the full ranking. MAP;, measures image-ranking
quality corresponding to labels, whiles MAP; measures label-
ranking quality corresponding to images. MAP measures the
full ranking of images instead of only the top labels for
each image as traditional evaluation metrics [11]. Therefore,
MAPy is less noisy and preferable to other per-label metrics.
Recently, more and more works use MAP as image annota-
tion evaluation metrics [12], [39]-[41]. To more comprehen-
sively evaluate annotation performance, we also use MAPy,
and MAP; as supplementary evaluation metrics for image
annotation.

C. IMPLEMENTATION DETAILS

For a fair comparison, visual features of all methods except
MBRM are extracted from the same deep learning net-
work architecture (VGG-16), while MBRM is performed
using a handcraft feature due to the model itself. For the
PLSA method, we first extract convolutional features from
Conv5_2 of VGG-16, and generate a 1000-dimension visual
feature vector for each image by the k-means algorithm.
For other methods, we use FC7 of VGG-16 to extract
4096-dimensional vector as a visual feature vector. The
VGG-16 network used in this paper is pre-trained on the
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ImageNet2012 dataset [22] without retraining or fine-tuning
on target datasets to demonstrate our model generality.

For nearest-neighbor based models, the number of nearest
neighbors K is set to the optimum value for each model, such
as JEC, TagProp, and ours setting as 15, while 2PKNN as 3.
K of Equation 3 is set to 100. 6 of Equation 13 is set to 0.8.
The neighbor number K of our three-pass KNN is set to 3,
30, and 30, respectively.

D. RESULTS AND COMPARISON

For a fair comparison, we carry out our experiments on the
same three benchmark datasets (Corel5k, ESP Game and
IAPR TC-12) and predict a fixed length of annotations (five
labels) for each test image. We compare our method and some
representative methods using per-label metrics (precision,
recall, F1-measure), per-image metrics, and MAP. Further-
more, we use the hybrid F1-measure (called H-F1) combining
per-label F1-measure and per-image F1-measure with the har-
monic mean [9]. We compare our method with state-of-the-
art models, including classical probabilistic model MBRM,
classical topic model PLSA-WORDS, classical CCA model
CCA-KNN, two nearest-neighbor models JEC and TagProp,
classical discriminative model SVM-DMBRM [14], and
the state-of-the-art nearest neighbour based model 2PKNN.
We also compare with GAN based D?IA annotation method.
Only part of metrics of CCA-KNN, SVM-DMBRM and
D?IA are compared in the following, whose performances are
quoted from [7], [14], [24].

The experiment results on CorelSk, ESP Game, and IAPR
TC-12 are summarized in Tables 1, 2, and 3, respectively.
From Tables 1-3, we can see that our proposed method sig-
nificantly outperforms all methods but D’IA on three bench-
mark datasets in terms of almost all metrics. Our performance
improvement largely benefits from label refinement, multi-
level semantic neighborhood.

To further evaluate the annotation performance, we varied
the number of annotation labels from 2 to 20 and compared
our method with competitive methods. Both per-label and
per-image precision-recall curves of MBRM, JEC, TagProp,
PLSA-WORDS, 2PKNN, and our method are visualized in
Figure 2 based on three benchmark datasets. Both per-image
and per-label precision/recall values are the mean values
calculated over all the test images and all the labels, respec-
tively. As can be seen from Figure 2, our model remarkably
outperforms the others for almost any number of annotation
labels. These again confirm the effectiveness of our method.

To compare with deep learning based image annotation
models on large-scale datasets, we also carry out our exper-
iments on MS-COCO dataset and predict a fixed length
of annotations (three labels) for each test image. We com-
pare our method with state-of-the-art models, including
CNN-+WARP, CNN-RNN, and MangoNet. We annotate
images based on multi-modal (deep visual features and tex-
tual tag features) embedding features mapped by KCCA. The
experiment results on MS-COCO is summarized in Table 4.
As can be seen from Table 4, our method significantly
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TABLE 1. Performance evaluation on Corel5k dataset.

Model Visual PL RL FlL N+ PI R[ FlI H-F1 MAPL MAPI
MBRM [5] HC 24 25 2490 122 32 45 37.10 29.80 26.31 44.23
JEC [6] CNN 30 33 31.38 137 41 58  48.12  37.98 35.32 53.69
TagProp [12] CNN 31 40 3497 149 44 61 5096 4148 38.01 59.67
PLSA-WORDS [16] CNN 20 30 2387 129 35 50 41.07 3020 27.43 46.03
2PKNN [2] CNN 38 46  41.67 179 38 54 4485 43.20 46.73 48.95
CCA-KNN [24] CNN 39 51 4420 192 - - - - - -
SVM-DMBRM [14] CNN 42 45 4345 186 - - - - - -
Ours CNN 44 55 49.18 198 47 67 5521 52.02 50.02 64.95
TABLE 2. Performance evaluation on ESP Game dataset.
Model Visual PL RL FlL N+ PI RI FII H-F1 MAPL MAPI
MBRM [5] HC 18 19 1880 209 25 28 26.83 21.89 20.34 28.11
JEC [6] CNN 32 23 2695 228 35 39  36.87 31.14 21.05 39.99
TagProp [12] CNN 36 28 31.61 234 38 42 3987 3526 25.82 40.73
PLSA-WORDS [16] CNN 20 24 2178 201 25 27 2594 22.68 19.00 27.93
2PKNN [2] CNN 33 34 3345 255 35 39  37.03 35.15 30.70 40.99
D2IA [7] GAN 31 49 38.10 - - - - - - -
CCA-KNN [24] CNN 44 32 37.05 254 - - - - - -
SVM-DMBRM [14] CNN 51 26 3544 251 - - - - - -
Ours CNN 49 35 40.89 259 45 50 47.32 43.87 37.92 53.35
TABLE 3. Performance evaluation on IAPR TC-12 dataset.

Model Visual Py, Rp Flg, N+ P;r Rp F1; H-F1I MAP;, MAP;
MBRM [5] HC 24 23 2354 223 29 27 28.06 25.53 25.27 28.35
JEC [6] CNN 34 22 2630 218 43 41 41.88 3231 26.26 46.75
TagProp [12] CNN 43 35 38.83 257 48 46 47.05 4255 39.76 53.40
PLSA-WORDS [16] CNN 23 25 2372 207 33 32 32119 2731 21.99 33.47
2PKNN [2] CNN 49 32 3874 274 42 41 4192 4026 39.09 47.78
D?1A [7] GAN 33 45 3773 - - - - - - -
CCA-KNN [24] CNN 41 34 37.17 273 - - - - - -
SVM-DMBRM [14] CNN 58 27 36.84 268 - - - - - -
Ours CNN 51 37 42779 278 52 50 50.78 46.44 41.88 58.20

outperforms the other methods (non-deep as well as deep
learning based methods) on large-scale datasets in terms of
most evaluation metrics, which mainly benefits from high-
level semantic features and accurate neighbors. MangoNet
outperforms our method in terms of percision or recall met-
rics, which might largely benefit from the co-attention and
GCN model, as it can capture high-quality visual features
and accurately model the correlations between each target
image and its neighbors by metadata neighborhood graph.
As far as the most important metric per-label F1 and com-
prehensive metric H-F1 are concerned, our method generally
outperforms MangoNet.

The main reason of our proposed model performance
improvement can be summarized as follows 1) We propose
label refinement to alleviate the weak-labeling. 2) We address
the issues of semantic gap and different levels of abstrac-
tion by our proposed multi-level semantic neighborhoods.
3) Our method outperforms most methods in terms of per-
label metrics by a large margin, which mainly contributes
to our addressing the issue of label-imbalance. In contrast
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to the traditional NN models that pay more attention to fre-
quent labels, our method pays more attention to the same
category and relevant images rather than rare labels, which
gives equal importance to all labels of the relevant images.
As a consequence, our method can improve the annotation
performance of infrequent labels without sacrificing frequent
labels, thus improving performance in both per-label and per-
image metrics.

E. QUALITATIVE ANALYSIS

Table 5 shows several examples of annotations produced by
JEC, 2PKNN and our method on the three datasets. The
example images in the first three rows are from Corel5k, the
second three rows from ESP Game, the third three rows from
IAPR TC-12, and the last two images are from ESP Game
and TAPR TC-12. As for most images,we can see that our
method can correctly predicate the ground-truth annotations,
although there are some extra labels. By checking the extra
labels (with blue font), we find that most of them are all
consistent with the content of the images but not included in
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Model Visual PL RL FlL PI RI FlI H-F1 MAPL MAPI
JEC [6] CNN 49.12 4135 4490 4939 61.10 54.63 4929 41.63 67.34
TagProp [12] CNN 5643 56.15 5629 5678 69.59 62.54 59.25 63.14 77.67
2PKNN [2] CNN 62.21 4581 5276 5127 61.88 56.08 54.37 55.66 69.20
CNN+WARP [10] CNN 57.09 5531 56.19 5754 70.03 63.18 59.48 58.11 78.93
CNN-RNN [29] CNN 66.00 5560 6040 6920 6640 67.80 63.89 - -

MangoNet [31] GCN+Co-attention ~ 87.10 5790 67.60 89.50 61.90 7320 70.29 717.50 84.30
Ours CNN 76.11 7041 7315 6835 8201 7456 71.81 73.37 86.54

ground-truth labels. Our method can consider category-level,
semantic information, and visual information in different
steps so as to find visually and semantically similar images
and predicate the correct annotation labels.

As for the tenth image, any method has not correctly pred-
icated the ground-truth annotations. Both JEC and 2PKNN
improperly predict “white”, while our proposed method
improperly predict “mountain”, “hill” and “lake”. As for
JEC and 2PKNN, the relevance between the test image and
training images completely depend on their visual similari-
ties. Hence, they can predict ““white’” according to the visual
feature of the sky. As for our proposed method, it first identify
the image as scene category, and predict “mountain’, “hill”,
and “lake”. As for the eleventh image, only our method
improperly predict “skirt” rather than ‘“wall”, while the
others correctly predicated the ground-truth annotations. This
is possibly because our method tends to the foreground object
rather than the background.

F. EFFICIENCY ANALYSIS

To verify the efficiency of the proposed model, as shown in
Table 6, we compare the time costs among MBRM, JEC,
TagProp, 2PKNN, PLSA, and our model. The experiments
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are mainly performed using Matlab on a computer of Intel
Corei7-9750H CPU with 2.6GHz and 16 GB RAM, running
Windows 10 OS, but some components of Tagprop is based
on C language. As shown in Table 6, the time costs of two
models (TagProp and PLSA) can be separated the training
stage and the testing stage, while those of JEC, LL-PLSA,
and 2PKNN can not be separated.

As shown in Table 6, our proposed model can dramatically
reduce time cost in contrast to any other model. The time
costs of annotating all test images on CorelSk by our model
is 0.57 seconds. The time costs of annotating all test images
on Corel5k by MBRM, JEC, and 2PKNN are 34.28, 5.09 and
9.57 seconds, respectively. The time costs of training model
from training images on Corel5k for TagProp and PLSA are
43.74 and 17.61 seconds, respectively, while the time costs of
annotating all test images are 0.49 and 4.34 seconds, respec-
tively. The experiments on ESP Game and IAPR TC-12 show
similar results.

In contrast to all nearest-neighbor models, the time over-
head of our model is proportional to the number and the
size of categories rather than the size of the entire training
image database. Mostly, the number of categories is small and
constant; therefore, our time cost is much smaller than others.

135751



IEEE Access

H. Li et al.: AIA by Sequentially Learning From Multi-Level Semantic Neighborhoods

TABLE 5. Example images and annotation predicted by various methods.
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Test Image

Manual Label

JEC

2PKNN

Ours

tree, flowers, garden,
tulip

water, hills, coast,
lighthouse

forest, cat, tiger,
bengal

couple, man, people,
red, shirt, woman

brown, horse, man

man, show, tie, tv

fruit, man, table

dog, grass, horse,
landscape, mountain, people

bottle, hand, man

city, cloud, green, sky,
tree

floor, front, jersey, team,
wall

flowers, house, garden,
window, tree

water, sky, coast,
island, mountain

cat, tiger, forest,
bengal, water

white, blue, woman,
sky, yellow

man, horse, black,
woman, white

man, picture, tie,
tv, hair

tree, people, house,
table, lawn

man, front, wall,
woman, clothes

man, fable, glass,
bottle, woman

white, green, sky, tree,
cloud

front, wall, jersey, floor,
team

blooms, flowers, garden,
house, window

lighthouse, coast, island,
water, rocks

tiger, cat, forest,
bengal, rocks

beard, group, glasses,
arrow, man

horse, grass, hat,
man, animal

tie , tv, man,
picture, show

table, couch, restaurant,
house, cup

house, dog, tourist,
front, man

glass, hand, man,
bottle, tee-shirt

cloud, sky, green, tree,
white

jersey, team, floor,
front, wall

flowers, tulip, garden,
tree, landscape

coast, lighthouse, waves,
hills, water

cat, forest, tiger,
bengal, head

man, people, shirt,
smile, woman

horse, grass, man,
brown, tail

tie, tv, show,
man, suit

cloth, table, chair,
fruit, man

cape, horse, meadow,
people, dog

couple, bottle, man,
glass, hand

sky, cloud, mountain,
hill, lake

floor, team, jersey,
front, skirt

VOLUME 9, 2021



H. Li et al.: AlA by Sequentially Learning From Multi-Level Semantic Neighborhoods

IEEE Access

TABLE 6. Time costs of various models (in seconds).

Model CorelSk
MBRM [5] 34.28
JEC [6] 5.09
TagProp [12]  43.74+0.49
2PKNN [2] 9.57
PLSA [16] 17.61+4.34
Ours 0.57

ESP Game IAPR TC-12
512.21 678.72
9.97 9.56
161.41+2.01 164.63+2.13
113.81 111.01
66.73+26.62  205.92+23.59
4.89 4.41

All in all, compared with other nearest-neighbor models,
our proposed model is more fit to real-world online image
repository or large-scale social image database.

V. CONCLUSION AND FUTURE WORK

We present a novel image annotation based on multi-level
semantic neighborhood. Our proposed method has several
advantages. 1) To our knowledge, this is the first published
work that proposes a pre-annotation strategy to determine the
test image’s category for promoting semantic level. 2) Our
proposed method refines labels before image annotation
for alleviating the issue of weak-labeling. 3) Our proposed
method is based on multi-level semantic neighborhoods,
which can provide rich representations at different abstraction
scales. As a consequence, this model is suitable for image
annotation task because it can address the issue of wider range
labels. 4) Our proposed method is a three-pass variant of
the traditional KNN, with each pass using a different feature
vector. Our method can find visually and semantically similar
neighbor images, which can reduce the semantic gap and
improve the performance. 5) In contrast to the traditional NN
models paying more attention to frequent labels and classical
2PKNN paying more attention to rare labels, our method
can improve performance in both per-label and per-image
metrics.

Extensive experiments demonstrate that our method can
achieve significantly outperforms competitive methods in
terms of almost all evaluation metrics. Even though near-
est neighbors based annotation models are concept-clear,
structure-intuitive, and effective, there are several shortcom-
ings. First, these methods will be time-consuming and space-
consuming if the number of the training image dataset is
huge. Second, the performance of nearest neighbor model-
based AIA methods may be influenced by the size of training
datasets.

In the future, we will explore a new modeling strategy
based on the existing model combining the merits of discrimi-
native and generative models so as to further reduce modeling
complexity. In addition, we are interested in exploring the
new technology in attention models into feature extraction
and Graph Neural Network into representation learning of
multi-modal information.
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