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ABSTRACT The rapid development of technology in the past decades created a society heavily dependent
on electricity, where even short disturbances in the power supply can result in grave socio-economic
consequences. Therefore, assuring a safe and reliable operation of the power system has become of utmost
importance. False data injection attacks (FDIAs) represent a class of cyber-attacks targeting the power system
state estimation. FDIAs alter the perspective of the power system’s state which can lead to inappropriate
control actions. Thus, a reliable method for detecting FDIAs represents the main prerequisite to the safe
operation of the power system in the context of cybersecurity. Noticing the scarce literature analyzing the
detection of FDIAs in power systems with a high share of renewable energy sources, this paper demonstrates
that the performance of the existing methods deteriorates when faced with the volatile nature of renewable
energy sources. This paper presents a deep learning approach for detecting stealthy FDIAs concerning the
power systems with high penetration of renewable energy sources. The performance of the proposed method
is validated through different scenarios based on the modified versions of the IEEE 14-bus system and the
IEEE 118-bus system. The proposedmethod is able to detectmost of the attacks under different test scenarios,
outperforming the benchmark techniques with an average detection rate of 99% for the IEEE 14-bus system
and 97% for the IEEE 118-bus system.

INDEX TERMS False data injection attacks, cyber-attack detection, state estimation, renewable energy
sources, deep learning.

I. INTRODUCTION
Power systems are critical components in our modern infras-
tructure. Most of our daily activities depend on the security
of power systems [1]. Therefore, it is of utmost importance to
ensure both their physical and cybersecurity. Cybersecurity
stands for the security of Information and Communication
Technologies (ICT) that support the operation of electric
power systems [2]. Following the coordinated cyber-attack
that led to the Ukraine Blackout in 2015, cybersecurity of
electric power systems is recognized as one of the crucial
challenges facing power and energy authorities [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabio Mottola .

There are several reasons for the increasing importance of
cybersecurity. First, with advances in computing technology,
power systems have been upgraded with networking capabili-
ties that facilitate their monitoring and control, but also trans-
form them into cyber systems [4]. Second, smart grids require
sophisticated and decentralized control methods to ensure
their continuous and stable operation. Therefore, uninter-
rupted communication between physically separated entities
is required. Such reliance on communication technologies
makes smart grids more vulnerable to cyber-attacks [5].
Third, the addition of PhasorMeasurement Units (PMUs) that
rely on communication technologies has further increased the
potential for cyber-attacks in power systems [6].

Various types of cyber-attacks, such as reconnais-
sance attacks, packet injection attacks, denial-of-service
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TABLE 1. Related work.

attacks [19], energy thefts [20], [21] and False Data Injection
Attacks (FDIAs) threaten power systems. FDIAs represent a
new class of cyber-attacks that targets the power system state
estimation bymanipulating themeasurement data transmitted
over communication lines [4], [22]. In FDIAs, the adversary
compromises power system measurements aiming to alter
the estimated state of the power system. Ultimately, this can
lead to control actions that can compromise the secure and
economical operation of the power system [5]. FDIAs can
bypass the existing Bad Data Detection (BDD) techniques
and pose a serious threat to power system operation and
control [23]. In addition, FDIAs can disrupt deregulated
energy markets and cause severe economic and financial
losses [1].

A variety of different strategies have been proposed in
the literature to protect the power system from FDIAs.
They can be classified into two main categories, namely:
protection-based strategies and detection-based strategies.
The protection-based strategies are based on ensuring the
security of measurements through different mechanisms. Ide-
ally, the highest security could be achieved by protecting
all meter measurements. However, applying this approach
to large systems would entail significant investment costs.
Motivated by this problem, the authors proved in [24] that
it is necessary and sufficient to protect a set of basic mea-
surements that ensures that no undetectable FDIAs can be
launched. The main drawback of the proposed approach is
that the number of basic measurements is equal to the number
of variables in the state estimation problem. To overcome
this problem, the authors in [25] have proposed exact and
approximate methods to determine the minimum set of mea-
surements required to protect a given subset of state vari-
ables. This approach extends the protection-based scheme to
large-scale systems. While previous works are mostly based
on identifying the set of critical measurements, in [26] the
authors proposed a greedy algorithm for strategically placing

PMUs to defend against FDIAs. Apart from the high cost of
PMUs, their deployment is also associated with an increased
risk of another type of cyber-attacks, namely GPS spoofing
attacks [27]. Although efficient, protection-based strategies
require the expansion of information and communication
infrastructure, which imposes additional costs. Therefore,
the focus of this paper is on detection-based strategies. How-
ever, for a detailed overview of protection-based strategies,
the reader is referred to [28].

Extensive literature presents a wide variety of detection-
based strategies applied to detect FDIAs. These can be
broadly divided into three categories, namely: statistical,
machine learning, and deep learning methods. Table 1 fea-
tures some of the most notable papers from each category
summarizing the proposed detectionmethods, employed state
estimation approaches (DC, AC, or both), as well as the
test system used to validate the proposed method and the
employed evaluation metrics. Apart from these, Table 1 also
notes whether renewable energy sources (RES) have been
considered in the performed studies or not. The earliest
methods applied to detect FDIAs on the power system state
estimation were mostly statistical. In [7], the authors pro-
posed an efficient method based on the Kullback-Leibler
distance (KLD) between two probability distributions: distri-
bution of measurement variation from historical data, and dis-
tribution of measurement variation between two subsequent
time-steps. FDIAs lead to a sudden increase of distance index,
which makes it easy to distinguish from normal operating
conditions. In [8], the authors formulated the detection prob-
lem as a sparse optimization (SO) problem. The optimization
problem was solved using nuclear norm minimization and
low rank matrix factorization, where the latter is proven to
provide superior performance. In [9], the authors proposed a
generalized likelihood ratio test (GLRT) detector which was
proven to provide high accuracy in detecting sparse FDIAs.
In particular application, GLRT requires solving a nonconvex
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combinatorial optimization problem. Therefore, the authors
performed convex regularization of the optimization problem
which leads to higher computational efficiency, but also to
somewhat worse performance. In [10], the authors proposed
an anomaly detection (AD) method that employs an F-test to
compare the current state vector with its recent forms. After
determining a suspicious state vector, a residual vector is
formed by subtracting the average of the recent states from the
suspicious vector. Afterwards, various algorithms are applied
to the residual vector with the aim of detecting and localizing
the attack.

The idea of employing machine learning methods for the
detection of FDIAs is attributed to Ozay et al. [11]. In their
pioneering work, the authors investigated the performance of
several supervised and semi-supervised learning algorithms
for the detection of FDIAs. Through numerical experiments,
it was concluded that Support VectorMachine (SVM) outper-
forms k-Nearest Neighbor (KNN) and perceptron by a signif-
icant margin, especially for larger systems. In addition, it was
concluded that the performance of SVM is heavily dependent
on the selection of the kernel type. Superior performance of
SVM over KNN and its modified version, namely Extended
Nearest Neighbor (ENN) was later confirmed by analyzing
different test scenarios [13]. The employment of SVM was
also analyzed in [12], where it was concluded that computa-
tional complexity can be reduced by applying the principal
component analysis (PCA) to select the main sample fea-
tures. In [14], the authors proposed a semi-supervised learn-
ing approach based on a Gaussian mixture model (GMM).
Through numerical experiments, it was concluded that the
proposed method outperforms SVM and multi-layered per-
ceptron in terms of detection accuracy, training time, and
testing time.

With the availability of advanced computational resources
and their successful application in various fields, many
researchers have analyzed the possibility of using deep learn-
ing methods for the detection of FDIAs. In [15], the authors
developed a two-stage detection technique combining Con-
volutional Neural Networks (CNNs) with Long Short Term
Memory (LSTM) to detect FDIAs with high accuracy.
Although promising results were obtained, the proposed
method was only applied in simple scenarios. In partic-
ular, uncoordinated FDIAs were generated by introducing
random Gaussian noise into the measurements. Therefore,
it remains unclear whether the proposed method is appli-
cable to stealthy coordinated attacks. In [16], the authors
employed Conditional Deep Belief Networks (CDBNs) to
extract the behavioural features of stealthy FDIAs that evade
conventional BDD techniques. The extracted features were
then used to detect potential FDIAs that affect real-time mea-
surements. In contrast, Discrete Wavelet Transform (DWT)
was combined with Deep Neural Networks (DNNs) to extract
temporal features of system states [17]. The spatiotempo-
ral technique proved to be an efficient and scalable solu-
tion for detecting stealthy FDIAs. To address the scalability
issue, in [18], the authors employed an Invertible Automatic

Encoder (IAE) that reduces the dimension of the measure-
ment set. The set of characteristic measurements was further
processed using an LSTM network, which outperforms SVM
and Deep Belief Network (DBN).

Although high detection accuracy is shown when tested
on standard test scenarios, the literature does not answer
whether the existing detection methods can be applied to
power systems with a high share of RES. Recently, gov-
ernments have prioritized RES over fossil fuel-based power
generation aiming towards climate neutrality. It is expected
that by 2030, more than 35 percent of the total energy demand
will be met by RES [29]. Although the RES play an important
role in reducing the carbon footprint of the electricity sector,
their volatile nature leads to inevitable power and voltage
fluctuations. Apart from causing major technical challenges,
such fluctuations alter the underlying distribution of mea-
surements and system states. Therefore, it remains unclear
whether the performance of existing methods is affected by
the addition of RES. To the best of our knowledge, the detec-
tion of FDIAs in renewable power systems has been analyzed
only in [10]. Although the aforementioned work addresses
the addition of RES and topology changes, the research was
limited to DC state estimation. To test the performance of
the proposed method on AC state estimation, the authors
have only analyzed FDIAs targeting the voltage magnitudes.
As will be shown in the following sections, these types of
attacks are easily detected due to relatively small voltage
magnitude deviations under normal operating conditions.
Moreover, the authors considered only one integration sce-
nario where RES can account for only 5 percent of the peak
demand. Therefore, the correlation between different penetra-
tion levels and the performance indicators of FDIA detection
methods was not identified. Naturally, increasing the pene-
tration of variable RES leads to higher power and voltage
fluctuations, which increases the spatiotemporal complexity
of the system states. As will be shown in the following
sections, this heavily affects the performance of the existing
methods.

Considering the existing gap in the literature, this paper
focuses on investigating the impact of non-dispatchable
RES on the performance of the existing detection meth-
ods. As will be shown, the introduction of RES increases
the likelihood of FDIAs remaining undetected. Unfortu-
nately, this makes the existing methods unreliable. Therefore,
an advanced deep learning architecture is proposed that is
shown to outperform the existing methods in the detection of
FDIAs.

The main contributions of this paper are as follows:
1) This work pioneers in studying the effect of different

levels of renewable penetration on the accuracy of the
existing methods for the detection of stealthy FDIAs
affecting AC state estimation.

2) Instead of using Recurrent family models widely
employed in the literature, this paper analyzes the
possibility of using Auto-regressive models such as
WaveNet and TCN for the detection of FDIAs.
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3) The conventional architecture of WaveNet is modified
in order to offer an efficient and scalable method for the
detection of FDIAs.

The rest of the paper is organized as follows. Section II
presents a brief theoretical overview of FDIAs in the context
of power system state estimation. In addition, Section II also
features a simple test scenario justifying the existing gap in
the literature. Section III explains the proposed methodology
for the detection of FDIAs. Section IV illustrates the numer-
ical results and the validation of the proposed approach sim-
ulated on the modified versions of the IEEE 14-bus system
and the IEEE 118-bus system. Section IV also features the
correlation between the accuracy of the proposed method and
the severity of the attack scenarios. In the end, the conclusions
are drawn in Section V.

II. FALSE DATA INJECTION ATTACKS IN THE CONTEXT OF
POWER SYSTEM STATE ESTIMATION
In this section, a mathematical model of a weighted
least-squares state estimator is presented, and a mathe-
matical model of stealthy FDIAs that bypass conventional
residual-based bad data detection techniques is introduced.
Furthermore, the performance evaluation of existing detec-
tion techniques is also presented using a simple test scenario.

A. STATE ESTIMATION
Following the work of the pioneer of state estimation, Fred
Schweppe, a state estimator can be defined as a data process-
ing algorithm for converting redundant measurement data and
other available data on the power system into an accurate
estimate of the system state [30]. Based on the power flow
model used in the problem formulation, three main types of
state estimators have been developed in the literature: AC,
decoupled, and DC state estimators. As mentioned in the
previous section, most related work in the area of FDIAs
focuses on the DC state estimator. The DC state estimator
is widely used in daily power system operation due to its
low computational burden, however, the accuracy of the DC
power flow analysis is highly case-dependent and under cer-
tain conditions, it introduces alarmingly inaccurate results for
the critical power flows [31]. Moreover, with the increasing
computational power of modern computers, the advantages of
using DC over the AC state estimator may become negligible
in terms of computational burden. Therefore, a state estimator
based on AC power flow equations is used in this paper.

The AC state estimator is based on the nonlinear measure-
ment model:

z = h(x)+ e (1)

where z = (z1, z2, . . . , zm)T is the measurement vector,
x = (x1, x2, . . . , xn)T is the state vector, h is a nonlin-
ear vector function relating the measurements with the sys-
tem states, and e = (e1, e2, . . . , em)T is the vector of
random measurement errors following a Gaussian distribu-
tion with a 0 mean, and a corresponding variance matrix
Rz = diag(σ 2

1 , σ
2
2 , . . . σ

2
m).

The state estimation problem is usually solved as an
overdetermined (m > n) weighted least squares problem
which can be mathematically formulated as:

min
x
J (x) =

m∑
i=1

(
zi − hi(x)

σi

)2

(2)

After applying the first-order optimality condition to the
performance index J (x), an iterative Gauss-Newton scheme
arises, yielding the optimal estimate of the system state x̂.

B. BAD DATA DETECTION AND FALSE
DATA INJECTION ATTACKS
The weighted least squares approach assumes that the mea-
surement errors follow a Gaussian distribution. However,
since the power system represents a dynamic environment
with a large number of uncontrollable impacting factors,
the occurrence of large errors in the input data is not uncom-
mon. To cope with the occurrence of bad data, a wide range
of different BDD techniques have been developed. The most
commonly employed BDD techniques rely on the analysis of
the residual vector r . After determining the optimal estimate
of the system state, the residual vector r = (r1, r2, . . . , rm)T

can be determined as:

r = z− h(x̂) (3)

Themeasurements subject to high noise, inverse polarity or
meter failures are characterized by high values of the residual,
making them easy to identify and exclude from the process of
state estimation.

FDIAs can be defined as those in which the adversary alters
the readings of one or more meters, thereby changing the esti-
mated value of the system state variables. FDIAs can be either
random or targeted [24]. In random attacks, the adversary
injects arbitrary errors into the estimates of the state variables,
while in targeted attacks, specific errors are injected into the
estimates of specific state variables. However, a more signif-
icant categorization is based on the extent of the adversary’s
knowledge about the system prior to performing the attack.
As such, FDIAs can be either complete or incomplete [17].
As the name implies, in complete FDIAs, the adversary has
complete knowledge of the power system. Complete FDIAs
represent a critical scenario over the incomplete since they
lead to inaccurate estimates of the system states while bypass-
ing the conventional residual-based BDD techniques. This
may subsequently lead the system operators towards control
actions that may jeopardize the secure operation of the power
system. Due to their covert nature, this type of FDIAs is often
denoted as ‘‘stealthy’’.

While the assumptions regarding the knowledge and capa-
bilities of the adversary required in order to launch a stealthy
FDIA may seem strong, the 2015 Ukraine blackout states
otherwise. The coordinated cyber-attack leading to the black-
out was performed by orchestrating numerous attacks which
served as a decoy while the adversary group hijacked the
SCADA system. In [3], the authors employed this example
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to justify the feasibility of stealthy FDIAs. The necessary
conditions for launching complete FDIAs against DC state
estimation have been introduced to the literature in [32].
The same concept was later extended to AC state estimation
in [33]. The mathematical model of stealthy FDIAs against
AC state estimation is as follows.

Let x̂a denote the estimate of the system state deter-
mined by processing the compromised set of measurements
za = z + a. The attack vector a = (a1, a2, . . . , am)T

represents measurement deviations introduced by an FDIA.
Under FDIAs, the residual vector can be determined as:

ra = za − h(x̂a)

= z+ a− h(x̂a)+ h(x̂)− h(x̂)

= z− h(x̂)+ a− h(x̂a)+ h(x̂)

= r + a− h(x̂a)+ h(x̂) (4)

which in general differs from the normal residual vector.
However, if the attack vector is constructed as:

a = h(x̂a)− h(x̂), (5)

the residual vector remains unchanged in comparisonwith the
normal scenario (ra = r). In other words, when the nonlinear
vector function h(·) is known along with the system state
estimate x̂, the adversary can construct an attack vector which
leads to the false estimate of the system state x̂a, bypassing the
conventional residual-based BDD techniques.

C. TRADITIONAL AND DEEP LEARNING METHODS FOR
THE DETECTION OF FALSE DATA INJECTION ATTACKS
As introduced in the previous section, it remains unclear
whether the methods proposed in the literature can be used
to a high extent in power systems with a high share of RES.
As such, this section discusses the performance of two groups
of FDIA detection methods, namely machine learning and
deep learning methods on a simple, tailored case study. The
analyzed test system is a simple 2-bus system consisting of
a synchronous generator supplying the consumer through a
short power line. Apart from that, the consumer has installed
a wind generator for supplying a part of its load which varies
according to a realistic load profile. Furthermore, the wind
generator is assigned a realistic generation profile. The
3-month period was simulated on a 5-minute resolution lead-
ing to a dataset of around 25 thousand samples where each
sample represents a state vector arising from the state estima-
tion process. Throughout the 3-month period, stealthy FDIAs
are performed randomly with around 25% of the samples
being corrupted. From the group of machine learning meth-
ods, three techniques commonly used in the literature have
been considered, namely SVM, KNN, and Random Forest
(RF) [34]. The deep learning methods discussed in detail in
the previous section, namely [15], [17], and [18], have proven
to be of high complexity for a simple Proof-of-Concept as it
was extremely hard to train them due to a small number of fea-
tures in the dataset. Therefore, Gated Recurrent Unit (GRU)

and LSTM proposed in [17] and [18] respectively, have been
chosen from the category of deep learning methods.1

In the absence of wind generation, SVM, KNN, and RF
were able to detect the attacks with high accuracy, as shown
in Table 2. The same applies to the deep learning techniques
of LSTM and GRU. However, in the presence of wind gen-
eration which doesn’t exceed 40% of the load active power,
the performance of the machine learning detection methods
deteriorates significantlywhile deep learningmethods exhibit
superior performance.

TABLE 2. False data injection attack detection rate.

FIGURE 1. Correlation between the level of renewable penetration and
the accuracy of the existing detection techniques.

The accuracy of the analyzed methods would be further
compromised since realistic power systems are characterized
by higher complexity and frequent topology changes. Fur-
thermore, it was found that the performance of the analyzed
methods is dependent on the level of installed RES capacity.
Figure 1 leads to an important conclusion: increasing the
level of variable renewable generation decreases the accuracy
of both machine learning and deep learning methods aimed
at the detection of FDIAs. Following the renewable energy
transition and the global targets to reduce the carbon footprint
of the electricity sector, it becomes clear that the existing
machine learning methods represent an unreliable solution

1The experiments were conducted with the following sets of parameters:
SVM: Kernel type = Polynomial; KNN: number of neighbours = 1; RF:
10 Trees, Depth of 2;GRU: 128 hidden unit size followed by 1 feedforward
layer of 64 hidden units; LSTM: 2 Layers of 32 hidden unit size followed
by 1 Feedforward layer of 32 hidden units.
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for the detection of FDIAs in modern power systems while
deep learning methods seem to be more robust. As such,
the next section features a deep auto-regressive method pow-
ered with residual blocks personalized for the detection of
FDIAs.

III. PROPOSED METHOD
This paper introduces an architecture modification of
WaveNet, a deep neural network previously used in audio
processing, to make it suitable for the detection of FDIAs.
WaveNet was originally used to generate raw speech signals
which took the probabilistic form of predicting the next wave-
form given k previous ones as:

p(x) =
t+1∏
i=t−k

p(xt+1|xt−k , xt−k+1, . . . , xt ) (6)

Generation is always perceived as a harder task than classi-
fication as a continuous distribution conditioned on previous
time steps needs to be generated. Following WaveNet’s orig-
inal formulation [35], the task was divided into next sample
prediction (regression) and frame classification. To leverage
WaveNet’s architecture to make it suitable for the detection
of FDIAs, the problem can be reformulated as follows: given
a sequence of k readings, predict the presence of the attack.
The new formulation leads to the following equation:

p(yt ) = p(yt |xt−k , xt−k+1, . . . , xt ) (7)

where y indicates the probability of an attack.
The following subsections will elaborate on the performed

architecture modifications enabling WaveNet’s use in the
field of FDIA detection.

A. CAUSAL AND DILATED CONVOLUTION
The dilated causal convolution is the backbone operation of
WaveNet. It performs both spatial and temporal information
extraction through the dilated use of standard convolutions
kernels (1 × 1). Dilated convolution increases the convolu-
tion operation’s receptive field allowing the learning process
to capture long-term dependencies without an increase in
computation. Stacked dilated convolutions enable networks
to have very large receptive fields with just a few layers
while preserving the input resolution throughout the network
as well as computational efficiency. This work employs the
same dilation factor used in the original architecture while
increasing the depth up to 10 layers. In other words, the dila-
tion is doubled for every layer up to a certain limit and
then repeated (e.g. 1,2,4,. . . ,512,1024; 1,2,4,. . . ,512,1024;
1,2,4,. . . ,512,1024). The intuition behind this configuration
is that exponentially increasing the dilation factor results
in an exponential growth of the receptive field with depth
[35], [36]. Second, stacking these blocks further increases the
model capacity and the receptive field size [35]. Furthermore,
the dilated convolutions capture a compact representation in
a hierarchy rather than the normal convolution operations.

FIGURE 2. Dilated Convolution with kernel size = 3.

As shown in Figure 2, each input passes through a differ-
ent hidden unit in each dilation layer, giving the model a
diversified representation of learning. As shown in Figure 2,
the filters skip a step every layer allowing parallel computa-
tion of past time steps and modeling both short and long-term
dependencies as the dilation rate in powers of two increases
the layer depth.

On the other hand, causal convolution makes sure the
network does not violate the input order as the output pre-
diction depends solely on previous time steps. In this paper,
the causal convolution is applied to each time step separately
with 32 filters to create a dense representation of each time
step in a higher-dimensional space. In addition, each compact
sequence is treated as either an attacked sequence or nor-
mal sequence, where the prediction p(yt |xt−k , xt−k+1 . . . , xt )
emitted by the model at time step t with sequence length
equaling k .

The hierarchy structure of dilated causal convolutions
mimics the sequence processing power in RNNs, LSTMs,
and GRUs as the output has a quite large receptive field with
no extra computations [37]. The original version of WaveNet
is quite similar to LSTMs and GRUs as the dilated con-
volutions are followed by two gates, namely one activation
gate and one binary gate similar to the two gates in LSTM.
The ‘‘Tanh’’ gate is similar to the Input Update Gate, and
the ‘‘Sigmoid’’ gate is similar to the Forget Gate. However,
the dilated convolutions are considered better, as LSTMs
have to back-propagate through a large number of steps
which leads to the problem of vanishing gradients among
other problems [38]. As such, training dilated convolutions
is incomparably simpler. Furthermore, a major difference
between RNNs and dilated convolutions is the shared param-
eters in RNN architecture, where the same parameters are
used in each time step. In dilated convolutions, a set of
parameters change throughout different intervals of the input
time-series data. Accompanied with different filters, this can
be understood as having different representations for the same
time intervals which aid the network in capturing different
variations of attacks.

B. RESIDUAL BLOCKS
Vanishing gradients represent a major issue in deep neural
networks, where gradients of earlier blocks in the network
die out as more blocks are stacked after it. In [35], the authors
used residual blocks to solve the issue of vanishing gradients
by feeding the output of the causal convolution layer deeper
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FIGURE 3. Overview of the residual block and the architecture of the proposed method.

into the network. This shortcut connection allows the input
to bypass the dilated convolution operation, where both the
shortcut connection and the dilated convolution output are
then added together to form the output of the whole residual
block, facilitating gradient backpropagation throughout the
network. Residual blocks mitigate the vanishing gradient
problem, accelerating and stabilizing training. In addition,
the Residual connection passes the raw input information,
which aids the convergence of the training process for a deep
network.

Due to the complexity of the dataset, the original WaveNet
architecture is adjusted as shown in Figure 3. The proposed
model has three different internal branches inside the residual
block to capture different inter-feature dependency ranges.
Each branch has dilated convolution kernels with varying
sizes as follows: 3, 6 and 9, respectively. Figure 2 shows the
dilated causal convolution with a kernel size of 3, which is
different from the one used in the original paper.

C. HYPERPARAMETER TUNING
In order to efficiently train the proposedmodel, several hyper-
parameters were considered, namely: optimizer type, learn-
ing rate, batch size, model depth and the sequence size. The
tuning process was started by initializing the weights with a
Glorot Uniform Distribution [39]. Based on the convergence
of the training process and the probability of overfitting,
the optimal number of epochs was set to 30. Five different
optimizers were considered in the tuning process, namely:
Adam [40], AdaGrad [41], AdaDelta [42], RMSprop [43],
and SGD [44]. The possible learning rates were set to 10−2,
10−3, 10−4 and 10−5, while the batch sizes of 16, 32, 64,
128 and 256 were considered. Model depths ranging from
9 to 16 with the step size of 1 were considered. Candidate
sequence sizes were given as 4, 8, 16, 32 and 64. After
defining the search space, the Random Search method [45]
was used to create possible combinations and select the best
combination of hyperparameters for training and validating
the model. This is both time- and memory-efficient and more
controllable than using grid search to test each combination
of hyperparameter values. The best performing optimizer was
found to be Adam, with a learning rate of 10−4, batch size

of 128, sequence size of 32, and depth (number of blocks)
of 10.

IV. TEST RESULTS
In order to show the effectiveness of the proposed method,
three additional methods were trained: a machine learn-
ing algorithm, SVM [46], along with three deep learn-
ing algorithms namely Bidirectional Long Short-Term
Memory (BLSTM) [47], Temporal Convolutional Network
(TCN) [48], and the original WaveNet often denoted as the
Vanilla WaveNet. SVM is known as one of the most efficient
supervised machine learning algorithms. The main disad-
vantage of SVM is that it completely neglects the temporal
dependencies in the input data. On the other hand, BLSTM
has the ability to capture long and short-term dependencies
in sequential data. BLSTM has proven to be a successful
choice and a strong baseline for time series problems and it
was previously employed in the literature for the detection
of FDIAs [15]. TCN is another version of Auto-regressive
models which shares many characteristics with WaveNet,
such as causal and dilated convolutions. However, as will
be shown in the forthcoming case studies, both, the original
WaveNet and the proposed method proved superiority over
TCN.

To validate the proposed approach and compare it with
the benchmark methods, four different case studies based
on the modified versions of the IEEE 14-bus system are
analyzed in this section. As will be seen, in the base sce-
nario with no renewable generation, all of the employed
algorithms exhibit excellent performance in terms of their
ability to detect FDIAs. However, with the addition of RES,
the situation changes drastically, leading to low detection
rates depending on the analyzed scenario. This section also
features the correlation between the magnitude of FDIAs and
the accuracy of the proposed method. Furthermore, to prove
its scalability, the performance of the proposed method is
analyzed on a modified version of the IEEE 118-bus system.

A. TEST SYSTEM
The test system used to validate the proposed method repre-
sents a modified version of the IEEE 14-bus system shown
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FIGURE 4. IEEE 14-bus system.

in Figure 4. Originally, the IEEE 14-bus system represents
a simple approximation of the American power system as
of February 1962, consisting of 14 buses, two synchronous
generators, three synchronous condensers, and 11 loads [49].
Following the approach outlined in [7] and [10], the original
version of the IEEE 14-bus systemwasmodified by assigning
each load a specific zone of the New York Independent Sys-
tem Operator (NYISO) [50]. This modification aims to create
a realistic environment for validating the proposed model by
assigning a realistic variation pattern to each load.

NYISO provides the zonal load data at a 5-minute reso-
lution, resulting in 288 samples for 24 hours. Unlike in [10]
where the 7-day cycle was used for validation, the deep learn-
ing models used in this paper require a larger training dataset
to achieve peak performance. Therefore, the zonal load data
for the first three months of 2019 was used for training and
validation, resulting in 25920 samples, with 80% of the data
used for training and 20% of the data used for validation. The
dataset was split to ensure that the model is tested on unseen
data to prove its generalization ability and to ensure that no
overfitting occurs. In addition, the amount of data generated is
sufficient to prevent overfitting that can occur when training
complex models. The zonal load data was normalized using
the peak load for each zone and scaledwith the nominal active
and reactive power demand of each load to keep the system
close to its nominal operating regime. The load data and their
characteristics are summarized in Appendix A.

Apart from the above modification, RES will be added
to different buses in the upcoming case studies to analyze
the impact of renewable generation on the detection rate and
accuracy of the developed models. The renewable generation
profiles for the three-month period were extracted from the
generation mix also provided by NYISO with a 5-minute
resolution. Some of the key features of the renewable gen-
eration profiles are also summarized in Appendix A. The
locations for connecting RES are determined based on the
impact that the generator connection has on the rest of the
system. Specifically, buses introducing the highest variabil-
ity in the system states following the connection of RES

are selected. The justification for this approach is that the
introduction of fluctuating wind and solar generation leads to
higher variability in system states. As a result, the expected
range of the system states increases, which means that the
state subjected to a FDIA may still be within the expected
range of values, making it difficult for existing models to
detect the attack. In other words, RES are connected in a way
that increases the spatiotemporal complexity of the system
states. Sensitivity analysis is used to identify the buses that
have the greatest impact on the power system. The analysis
has highlighted buses 8, 11, 12 and 14 as the critical buses,
so they will be used as the connection points of the RES in the
upcoming case studies. The procedure behind the sensitivity
analysis and its detailed results are presented in Appendix B.

B. DATA GENERATION AND SIMULATION OF FALSE DATA
INJECTION ATTACKS
The procedure used to create a realistic environment for the
training and validation of the detection methods is shown
in Figure 5. In the first step, using the system data alongside
the demand and generation profiles, a power flow analysis
is performed to determine the measurements required for
the state estimation. After determining the measurements,
a vector of Gaussian noise with a zero mean and a standard
deviation of 0.02 is added to the measurements to mimic the
occurrence of inevitable measurement errors. The noisy mea-
surements are sent to the state estimator, providing the final
estimation of the system states. As described in Section II,
to alter the perspective of a certain state, the adversary needs
to be able to manipulate all the measurements dependent on
that state. Assuming this to hold true, a FDIA can be simu-
lated by simply changing the value of a certain state after the

FIGURE 5. Data generation flowchart.
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state estimation is performed. In this paper, we have analyzed
the ability of the discussed methods to detect the attacks
manifested by a 10% decrease in one of the system states
(θ2, θ3, . . . , θN ,V1,V2, . . . ,VN ) along with several scenarios
of multiple simultaneous attacks [7], [10]. The same attack
scenarios are considered in all of the case studies where
FDIAs are performed every fifth day. In order to confirm
that both peak and off-peak load conditions are considered,
attacks are performed between 1-6 am, between 12-5 pm,
or on the whole day randomly. The complete dataset consist-
ing of 25920 observations of the system states is used to train
and validate the performance of the analyzed methods. The
power system simulations including the power flow analysis,
state estimation, and the simulation of FDIAs have been
performed in MATLAB. On the other hand, the benchmark
detection techniques and the proposed method were imple-
mented using Keras, a top-level library built on top of Ten-
sorFlow. All experiments were conducted on a workstation
with Nvidia K-80 GPU and 16 GB of RAM.

C. EVALUATION METRICS
In compliance with the related work, the most commonly
noted evaluation metrics have been employed to test the
performance of the proposed method, namely:

1) F1-score (F1), which provides more insight into the
ability of the model to classify each sample as normal
or attacked. F1 represents a suitable measure for mod-
els tested on imbalanced datasets [51], and it can be
calculated as:

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1 =
2 · Precision · Recall
Precision+ Recall

(10)

where TP denotes the number of true positives rep-
resenting the number of correctly detected attacked
samples, FP denotes the number of false positives or
the number of normal samples falsely classified as
attacked, and FN denotes the number of false negatives
or the number of the attacked samples not detected by
the model.

2) Detection rate (DR), which represents the number of
attacks detected by the model divided by the total num-
ber of the performed attacks, shows the model’s ability
to recognize the attacked samples.

3) False Positive Rate (FPR), which represents the ratio
between the number of normal samples falsely catego-
rized as attacked and the total number of actual normal
samples.

D. CASE STUDY I: POWER SYSTEM WITHOUT
RENEWABLE ENERGY SOURCES
As the title suggests, the first case study analyzes the perfor-
mance of the employed detection algorithms in a traditional

power system without RES. In all of the analyzed scenarios,
all of the deployed algorithms were able to detect the attacks.
Furthermore, in all of the case studies analyzed in this paper,
when the attacks are performed to the voltage magnitudes,
all of the deployed algorithms are able to detect the attacks
with an accuracy of almost 100%. The main reason for that is
that under normal operating conditions, voltage magnitudes
are close to their nominal values with small fluctuations
throughout the day, meaning that any significant deviation
due to FDIAs is easily detected. On the other hand, as will be
seen, FDIAs affecting voltage phase angles are more likely to
remain undetected. As such, in the forthcoming case studies,
the test results will be shown only when the FDIAs affect the
voltage phase angles.

E. CASE STUDY II: POWER SYSTEM WITH
A SOLAR POWER PLANT
In the second case study, the effect of one solar power plant
on the accuracy of the detection methods is analyzed. The
solar power plant with 100MW of capacity is connected to
the 8th bus, which proved to have the largest effects on the
whole system. The detection rate and the F1 score of different
methods for all of the test scenarios are shown in Table 3.
As can be seen, the addition of the solar power plant with
a variable output power severely affects the performance of
SVM, while BLSTM, TCN, and original WaveNet experi-
enced a slight deterioration in the performance, based on the
analyzed scenario. Table 3 leads to an important conclusion:
a FDIA has the biggest chance of staying undetected if it
indirectly targets the phase angle corresponding to the bus
representing the connection point of variable RES. In this
case, when the attacks are performed to the phase angle
of the 8th bus, SVM shows the worst performance, being
able to detect only 59.86% of the attacks. BLSTM, TCN,
and Vanilla WaveNet were able to detect 95.78%, 97.47%,
and 97.98% of the attacks, respectively, while the proposed
method demonstrated the highest detection rate.

F. CASE STUDY III: POWER SYSTEM WITH
A WIND POWER PLANT
In the third case study, the performance of the detection meth-
ods is analyzed when faced with high variability of wind gen-
eration. Similar to the second case study, thewind power plant
with 100MW of capacity is connected to the 8th bus. Table 4
features the evaluation metrics for the selected techniques
under different test scenarios. As can be seen, the addition
of the wind power plant of the same capacity leads to an even
higher deterioration of the performance of SVMandBLSTM,
while TCN, Vanilla WaveNet, and the proposed method are
only slightly affected. The reason for this lies in the fact
that wind generation is characterized by frequent turbulent
changes in the output power leading to turbulent changes
in the system states. As a consequence, when the attacks
are performed on some of the system states, the reference
methods attribute these state fluctuations to the variable wind
generation rather than to the attacks. As in the second case
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TABLE 3. Summary of test results - Case Study II.

TABLE 4. Summary of test results - Case Study III.

study, when the attacks are performed to the phase angle
of the 8th bus, SVM exhibits the worst performance, being
able to detect only 38.47% of the attacks. BLSTM, TCN,
and Vanilla WaveNet are outperforming SVM; however, their
performance is also affected up to a certain extent by the
addition of the wind power plant. In the end, the perfor-
mance of the proposed method is only slightly affected by
the addition of the wind power plant, proving its superi-
ority over the reference methods in most of the analyzed
scenarios.

G. CASE STUDY IV: POWER SYSTEM WITH A HIGH
PENETRATION OF RENEWABLE ENERGY SOURCES
Power system scenarios analyzed in the first three case
studies represent realistic scenarios that can be found in

present power systems. However, aiming to reduce the carbon
footprint of the electricity sector, it is expected that the
power systems will reach extremely high levels of renew-
able penetration. Therefore, it seemed appropriate to analyze
the performance of the proposed algorithm in such an envi-
ronment. In this case study, two wind power plants with a
nominal capacity of 50MW are connected to buses 8 and 12,
along with two solar power plants with a nominal capacity
of 50MW connected to buses 11 and 14. Since the peak
load in the system is around 250MW, the installed renewable
capacity can account for almost 80% of the power supply,
depending on the availability. The results for all of the test
scenarios are shown in Table 6. As can be seen, SVM is unre-
liable in a highly volatile environment. Similarly, the high
penetration of RES poses problems to the performance of
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TABLE 5. Summary of test results - Case Study IV.

FIGURE 6. Summary of test results - Case Study V.

BLSTM and TCN. In contrast, both the Vanilla WaveNet
and the proposed method represent a reliable tool for the
detection of FDIAs, with slight superiority of the proposed
method.

H. CASE STUDY V: CORRELATION BETWEEN ATTACK
MAGNITUDE AND EVALUATION METRICS
For simplicity, the previous case studies employed an
approach widely used in the literature where FDIAs are man-
ifested in a 10% decrease in one or multiple system states at
a time. In practice, having the ability to manipulate multiple
meters at the same time, the adversarywill slowly increase the
magnitude of the attack over time in order to avoid turbulent
change in the system states which can be easily detected
under certain conditions. As such, it is necessary to determine
the threshold of the attack magnitude at which the proposed
method fails to detect most of the attacks. To demonstrate the
performance of the analyzed methods under different attack

magnitudes, the estimated states obtained in the previous case
study were used to generate 10 attack scenarios with attack
magnitudes ranging from 1% to 10%. The attacks with a
random duration of up to 2 hours (24 samples) are performed
randomly affecting the phase angle of the 8th bus. The test
results containing the detection rate and the F1-score are
shown in Figure 6. As can be seen, as the magnitude of
the attack decreases, the performance of SVM deteriorates
significantly. As the magnitude of the attack approaches 2%,
SVM is not able to differentiate between normal and attacked
samples. BLSTM follows a similar pattern, however, it’s still
outperforming SVM by a significant margin. On the other
hand, decreasing the magnitude of the attack even up to
1% doesn’t affect TCN and WaveNet at all, with WaveNet
slightly outperforming TCN. Since FDIAs with attack mag-
nitudes lower than 1% aren’t regarded as severe threats,
it is safe to conclude that the proposed method presents
an efficient solution for the detection of realistic stealthy
FDIAs.
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TABLE 6. Summary of test results - Case Study VI.

I. CASE STUDY VI: SCALABILITY ANALYSIS
Modern power systems are large-scale dynamic systems
consisting of up to several hundreds of buses. Although
providing promising results on a simple 14-bus test system,
the proposed method needs to be tested for its scalability.
As such, this case study features the performance analy-
sis of the proposed method on an extended version of the
IEEE 118-bus system proposed in [52]. Two characteristic
scenarios have been analyzed, namely the scenario without
renewable generation, where the total demand in the system
is supplied by conventional generation capacities, and the
test system version explicitly proposed in [52]. The test sys-
tem incorporates 54 buses with installed different types of
generation capacities. The publicly available database pro-
vides time-synchronized data for active and reactive power
demand, wind, solar, and hydro generation on an hourly level.
For the purpose of the analysis, the time-synchronized data
were downscaled to a 5-minute interval, and a 6 month period
was simulated leading to more than 50 thousand samples
of 235 states. During the observed period, multiple simulta-
neous FDIAs of different magnitude (ranging from 1 to 10%)
have been performed to randomly selected states. The test
results are shown in Table 6. As can be seen, the trend from
the previous case studies continued regardless of the different
attack scenarios and a larger system. SVM is proven to be
an inferior technique for the detection of FDIAs in con-
trast with employed deep learning techniques. The proposed
method has proven superior performance over the benchmark
techniques in terms of its high accuracy. In terms of its
performance after the addition of RES, TCN and WaveNet
are proven to be more robust since they experienced only a
slight performance drop.

V. DISCUSSION AND CONCLUSION
With the rapid development of smart grids and their depen-
dence on communication technologies, cybersecurity of
power systems is becoming increasingly important. FDIAs
represent a class of cyber-attacks that targets the power sys-
tem state estimation. Many recent studies present a variety
of statistical, machine learning, and deep learning methods
aimed at detecting FDIAs. However, the literature does not
answer whether the existing methods can be applied to power
systems with a high share of variable renewable energy
sources.

In general, the output power of variable renewable energy
sources is subject to uncertainty and it is usually difficult to

predict in advance with high accuracy. This uncertainty leads
to inherent power and voltage fluctuations that alter the under-
lying distribution of measurements and system states. In other
words, the addition of variable renewable energy sources
increases the spatiotemporal complexity of the system states.
Therefore, methods aimed at detecting FDIAs must show
robustness to the unpredictable nature of renewable energy
sources.

By performing numerical simulations, a strong correla-
tion between the level of installed renewable capacity and
the accuracy of existing methods was found. Specifically,
the accuracy of existing methods decreases as the installed
renewable capacity increases. To overcome this problem, this
paper proposed the use of an Auto-regressive model called
WaveNet for achieving accurate detection of FDIAs in renew-
able power systems. In addition, an architecture modifica-
tion of WaveNet is introduced which further improves its
performance.

WaveNet is a deep neural network previously used in
audio processing to generate raw speech signals. The core
concept of WaveNet is the use of dilated causal convolutions,
allowing the spatiotemporal features of the input data to be
captured by expanding the receptive field without increas-
ing the number of parameters of the model. In this study,
we have explored how depth and width in the architecture
of WaveNet affect the performance of the model. In this
regard, the depth of the model was varied between 9 and
16 residual blocks, and the width of the model was varied
between 1 and 3 branches inside each block respectively.
In general, increasing the depth and width of the model
improves its performance. However, as the depth/width of
the model increases, the complexity of the model increases
as well. Therefore, finding the optimal architecture is cru-
cial in order to avoid overfitting, which may occur in the
early epochs unless a stronger regularization is used. From
numerical experiments, it was concluded that increasing the
depth of the model improves its performance only up to the
point where the receptive field exceeds the size of the input
sequence. The best sequence size was found to be 32 samples
in which 10 residual blocks are enough to cover the input
field. Further increasing the depth of the model does not
improve its performance. On the other hand, it was concluded
that widening consistently improves the performance of the
model across different depths. Therefore, it is more efficient
to increase the width of the model upon reaching the depth
of 10 residual blocks. This is in compliance with recent
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research in which width has shown better performance than
depth in many applications [53]. Increasing the depth or
the width of the model inherently increases its complexity.
Nevertheless, increasing the complexity of the model for even
a slight improvement in its performance is worth it from the
perspective of cybersecurity, because if there exists a prob-
ability of launching a successful stealthy FDIA, the power
system is exposed to a constant threat. To demonstrate that
the proposed architecture modification does not impose any
practical limitations, the average recorded computation time
for training and testing the proposed method are reported
in Table 7. The time required to train the proposed model is
not an important indicator, because the model can be trained
offline and later used real-time to detect the presence of
FDIAs. On the other hand, the computation time of the model
needs to be significantly lower in comparison with the update
rate of state estimation. Considering the update rate of the
practical SCADA systems, the proposed method can be used
to a high extent to ensure the cybersecurity of state estimation
in real-time. Furthermore, the recorded results suggest that
the computation time is almost independent of the size of the
test system, meaning that the proposed method can be used
for large-scale systems.

TABLE 7. Computation time of the proposed method.

The proposed method was tested on the modified ver-
sions of the IEEE 14-bus system and the IEEE 118-bus
system, and its performance was compared with machine
learning and deep learning models, namely SVM, BLSTM,
TCN, and the Vanilla WaveNet. Using benchmark techniques
in six different case studies, the superiority of the proposed
method was confirmed in terms of the highest detection rate,
highest F1-score and lowest false positive rate. The proposed
method was able to detect most of the attacks under dif-
ferent test scenarios with an average detection rate of 99%,
outperforming the benchmark techniques due to its capabil-
ity of capturing long-term dependencies in the input data.
In order to examine how uncertainty affects the performance
of the suggested architecture, real-time generation profiles of
renewable energy sources have been used. The results show
that the proposed method is robust to the unpredictable nature
of renewable energy sources due to its power to extract more
abstract features and obtain a higher receptive field. Even
though the accuracy of the proposed method would decline
due to the existence of uncertain renewable energy sources,
this accuracy drop is not significant enough to make the
prediction unreliable. In fact, the reported results prove the
reliability of the proposed method in various energy supply
structures.

Since the analysis laid down in this paper assumes a fixed
system topology, further work will focus on adapting the pro-
posed method to accommodate frequent topology changes.
Moreover, like other detection-based strategies, the proposed
method is not intended to identify the compromised mea-
surements. Therefore, further work will involve extending
the proposed method with this functionality to provide accu-
rate estimates of the system states even under FDIAs. The
proposed method will also be extended to different types of
cyber-attacks to develop an efficient solution that ensures the
security of power system state estimation.

APPENDIX A
Since the subject of this paper is data classification in the
context of FDIAs targeting the power system state estimation,
it seemed appropriate to mention the characteristics of data
used for training and validation of the employed models.
Therefore, Appendix A contains a brief summary of the
main characteristics of regional loads and renewable energy
sources.

As mentioned in Section 4, to create a realistic environ-
ment for the training and validation of the employed models,
the standard version of the IEEE 14-bus system was modified
by assigning each load a certain region of the New York
Independent System Operator. Table 8 summarizes the main
characteristics of each region and their corresponding buses
in the system. As can be seen, the largest portion of the system
load is concentrated in the central region related to the third
bus in the system. As a consequence of a large number of
consumers, the central region is also showing the highest
variability during the observed three-month period leading
to a relatively high standard deviation. The regional load
profiles described here are employed in all of the presented
case studies.

TABLE 8. Main characteristics of the regional loads.

Case Studies II and IV feature the addition of solar power
plants to different system buses. Since different levels of
solar penetration were used, Figure 7 presents the normal-
ized solar generation profile in the analyzed period. The daily
solar generation profiles follow the typical Gaussian curve
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FIGURE 7. Solar generation profile.

with different peak values for each day. It can be seen that
the available solar generation increases towards the end of
the observed period. Mathematically, since solar generation
is available only during the day, the solar generation profile
is characterized by a relatively low mean power of only
0.098 [p.u.] and a standard deviation of 0.18 [p.u.].

Apart from solar power plants, Case Studies III and IV
feature the addition of wind power plants with the normal-
ized wind generation profile shown in Figure 8. In contrast
with solar generation, wind generation is characterized by
more turbulent changes, with some days having almost no
wind generation at all. As shown in the case studies, this
variability of wind generation poses serious challenges to the
existing methods employed for detecting FDIAs. Mathemat-
ically, the employed wind generation profile is characterized
by a mean power of 0.4 [p.u.] and a standard deviation
of 0.28 [p.u.], also proving the higher variability of wind in
contrast with solar generation.

FIGURE 8. Wind generation profile.

APPENDIX B
To further justify the reasoning behind the bus-selection
approach used in this paper, Appendix B summarizes the
procedure behind the conducted sensitivity analysis and its
results. The sensitivity analysis is an iterative procedure
which can be described through 4 simple steps:

1) Perform the power flow analysis for the modified
power system with renewable generation connected at
the k-th bus.

2) After normalizing the system states with respect to their
temporal variations, the variance of the state vector at
each time step i is calculated as:

σi =

n∑
j=1

(xj − µi)2 (11)

where xj represents the jth state in the state vector, and
µi represents the average value of the system states at
current time-step. Completing this procedure for every
time step, the average variance of the state vector σ kavg
is calculated.

3) The same procedure described in steps 1 and 2 is
performed for every bus k=1,2,. . . ,N, yielding their
respective average variances of the state vector.

4) The location providing the highest average variance of
the state vector is chosen as the critical location for the
connection of renewable energy sources.

The results of the sensitivity analysis are shown in Figure 9,
where it can be seen that buses 8, 12, 11 and 14 exhibit the
highest influence on the power system, respectively. Further-
more, this influence is reflected to the accuracy and the detec-
tion rate of employed methods for the detection of FDIAs,
which is demonstrated using SVM. Figure 9 leads to an
important conclusion: buses exhibiting the highest influence
on the variance of the state vector after the connection of
renewable energy sources lead to the lowest detection rate of
FDIAs.

FIGURE 9. Detailed results of the sensitivity analysis.
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