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ABSTRACT In contrast to recent developments in online motion planning to follow a single target with a
drone among obstacles, a multi-target case with a single chaser drone has been hardly discussed in similar
settings. Following more than one target is challenged by multiple visibility issues due to the inter-target
occlusion and the limited field-of-view in addition to the possible occlusion and collision with obstacles.
Also, reflecting multiple targets into planning objectives or constraints increases the computation load and
numerical issues in the optimization compared to the single target case. To resolve the issues, we first develop
a visibility score field for multiple targets incorporating the field-of-view limit and inter-occlusion between
targets. Next, we develop a fast sweeping algorithm used to compute the field for the suitability of real-
time applications. Last, we build an efficient hierarchical planning pipeline to output a chasing motion for
multiple targets ensuring key objectives and constraints. For reliable chasing, we also present a prediction
algorithm to forecast the movement of targets considering obstacles. The online performance of the proposed
algorithm is extensively validated in challenging scenarios, including a large-scale simulation, and multiple
real-world experiments in indoor and outdoor scenes. The full code implementation of the proposed method
is released here: https://github.com/icsl-Jeon/dual_chaser.

INDEX TERMS Collision avoidance, cinematography, motion planning, trajectory optimization.

I. INTRODUCTION
Enhanced autonomy thanks to the advances in localiza-
tion [1], [2], tracking [3] and control [4] has widened the
utilization of drones equipped with a camera for vision-
based tasks such as videography and surveillance. Achieving
autonomy for those missions requires a reliable chasing plan-
ner reflecting obstacles. Regarding the motion generation,
a group of recent works has suggested real-time planning
algorithms [5]–[10]. They considered the key motion objec-
tives such as the actuation efficiency of the chaser drone
and the desired relative distance between the drone and the
target. Safety of the chaser drone and visibility of the target
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were also handled against obstacles based on non-convex
optimization [5], [6] or search-based methods [8], [9].

Still, there are various scenarios that can benefit from the
capability of a single drone to follow multiple targets among
obstacles and capture them in a single image frame (called
multi-shot in cinematography [11]). For example, in a filming
scene, a drone should capture multiple actors in a single
camera view to express the relationship between actors. Also,
sports events such as a marathon can deploy a camera drone
to broadcast multiple players. Concerning the multi-target
scenario among obstacles, the previousworks [5]–[10] are not
readily applicable due to the following reasons. First, in addi-
tion to the occlusion from obstacles, we should consider
the visibility issues coming from inter-occlusion between
targets and the field-of-view (FOV) limit when capturing all
the targets. Also, the real-time computation becomes more
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FIGURE 1. Outdoor experiment where a drone autonomously follows two
targets in a forest environment. We implemented the fully onboard
system, including target detection, prediction, obstacle mapping, planning
and flight control. Top: Experiment scene and the onboard camera view of
the drone. The camera view is overlaid with 3D detection boxes and a 2D
slice of the score field that measures the visibility of the two targets.
Bottom: Accumulated mapping from the onboard sensor and the history
of the two targets (red and blue) and the drone (green). The thin red and
blue arrows illustrate view vectors toward two targets from the chaser.

challenging due to the increased number of targets. The
increased number of targets can also attribute to numerical
issues in optimization, thus the increased conflicts between
objectives (e.g. increasing the visibility of one target might
degrade the others) if a single non-convex optimization is
adopted as [5]–[7] did.

In both academic research and commercial products
(e.g. DJI [12] or Skydio [13]), chasing multiple targets with
a single drone has not been discussed as much as the single
target case, especially in obstacle environments. The relevant
works [14], [15] produced the motion of observing cam-
era which minimizes the variance of projected target loca-
tions on the camera image. The authors of [16] considered
the sports filming where a drone is directed to focus the
areas of attention using context information. The work [17]
included the principles of the cinematography (e.g. rule of
the third) for a visually-pleasing video footage. Although the
research [14]–[17] considered the multi-target scenario with
a single camera setup, they did not address obstacle environ-
ments. Also, the practical considerations such as the inter-
occlusion, movement efficiency of the chasing agent, and the
desired relative distance to the targets were not discussed in
an integrated manner.

A. TECHNICAL CHALLENGES
Here, we mention the major technical issues in the context of
the motion planning, when building an autonomous system to

FIGURE 2. Infeasible cases when observing two targets with a single
chaser. The targets’ positions are written as xa

q and xb
q respectively. Chaser

drone is denoted as xp. (a) Both targets should not be occluded from
obstacles. (b) Occlusion of one target due to the volume of the other
target should not occur. (c) The angle of the two bearing vectors should
be smaller than the FOV of the camera of the chaser.

capture multiple targets on a single camera frame without pri-
ors of the environment and future movements of the targets.

First, the system should be able to reliably forecast the tar-
gets’ movement as it directly affects the quality of the chasing
motion planning. The prediction should appropriately reflect
the past motion of the target by minimizing the observation
error. In addition, we should consider the presence of the non-
traversal region for the applicability to obstacle scenarios.
Using the fact that the targets do not intersect with obstacles
can increase the accuracy of the prediction. If the targets are
erroneously predicted to be inside the obstacles, the chasing
planner might not reliably evaluate the visibility of the target.

Second, computing the chasing motion of the drone should
handle multiple objectives jointly. The smoothness of the
motion should be taken into account to reduce the input
actuation and blur of the image of the drone. For a better shot-
quality and the detection performance, the relative distance
between the targets and the drone should be maintained at a
desired level. Also, the collision of the drone with obstacles
or the targets should be avoided. Notably, capturing two tar-
gets simultaneously should resolve the three visibility issues:
occlusion from obstacles, inter-occlusion, and the FOV limit
of the camera sensor observing the targets (see Fig. 2). Incor-
porating the considerations, moreover, the motion planning
algorithm should be computed fast enough to respond to
sudden motion changes in the multiple targets and the newly
discovered obstacles.

B. CONTRIBUTIONS
This paper aims to build an efficient online system for a single
drone to chase two targets and capture them in a single frame,
which resolves the aforementioned issues in an integrated
manner. The proposed system develops two modules: predic-
tion and chasing.

The prediction module adopts an offline library contain-
ing candidate future trajectories of the targets. Among the
candidates, the prediction is chosen as the motion having
the minimum observation error and avoiding the intersection
with non-traversable region (obstacles). We discuss the target
forecasting algorithm and its performance in Section. III.
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FIGURE 3. Presented online chasing system. The whole system including target estimation, mapping, planning, and
control runs fully onboard. The code implementations of sensor data processing, prediction, and motion planning can
be found https://github.com/icsl-Jeon/zed2_client, https://github.com/icsl-Jeon/chasing_utils, and
https://github.com/icsl-Jeon/dual_chaser, respectively.

Regarding the chasing motion of the drone, the presented
planning module is composed of three steps: 1) computation
of the visibility score map reflecting two targets, 2) view-
point construction, and 3) generation of chasing corridors and
smooth trajectory. The first phase is explained in Section. IV
where we propose a visibility score field for two targets incor-
porating the inter-occlusion and the FOV limit (see Fig. 2).
Also, we introduce an efficient sweeping algorithm for the
computation of the field, achieving ten times faster compu-
tation than our previous work [8]. Based on the score field,
Section. V reveals the second and third phases. The second
phase uses a search algorithm on a topologically sorted graph
to compute a sequence of optimal viewpoints ensuring the
key objectives and constraints. Using the viewpoints and a
linearly-constrained quadratic programming (QP), the last
phase outputs a smooth chasing motion in a numerically
stable way. In Section. VI, we validate the online performance
of the proposed pipeline with a high-fidelity simulation and
multiple real-world experiments in four different scenes.

By proposing the mentioned online pipeline for the dual-
target chasing among obstacles, our contributions are sum-
marized as follows:
• We propose a fast prediction method for the targets with
consideration of the observation error and obstacles.

• We propose a metric to encode the visibility for dual-
target, taking into the FOV limit of the drone and inter-
occlusion between the targets.

• We propose an efficient algorithm to compute the visi-
bility score field using recursion and interpolation.

• We build and validate a hierarchical motion pipeline to
chase two targets with a large-scale simulation and mul-
tiple real-world experiments including indoor and out-
door scenes, where the targets move in three dimensions.

To the authors’ best knowledge, this work is the first to
address the chasing of multiple targets using a single drone
in dense obstacles. Although the proposed method can be

extended to targets with more than two, this paper considers
only two targets, as it is extremely difficult for a standard
sensor setup to find a feasible solution which resolves all the
technical issues for three or more targets.

C. ONBOARD SYSTEM OVERVIEW
Here, we briefly overview the proposed dual-target chasing
system. The drone is equipped with an inertial measurement
unit (IMU) and a vision sensor from which we can obtain
RGB and depth images (e.g. a stereo camera). Using the IMU
and the vision sensor output, visual odometry runs to estimate
the state of the drone. We detect the targets from the RGB
image and estimate their locations based on the depth image.
We also use depth images to build the pointcloud filtering out
the points on the targets. The remaining pointcloud is used
for the obstacle mapping.

For the prediction of the targets, an offline motion library
is built with the targets’ candidate future trajectories. Also,
the library associates each trajectory with the region the
trajectory passes. Using observed targets’ locations and the
library, we obtain the candidate future movements. Then,
based on the obstacle mapping, we test the feasibility of each
candidate in terms of the collision with obstacles and select
an optimal prediction concerning the observation error.

For a set of discrete points along the prediction, we now
build a sequence of visibility score fields measuring how
much a location can observe the targets in terms of the key
objectives in Section. I-A. After spawning a set of candidate
viewpoints on the fields, a graph search computes an optimal
sequence of viewpoints satisfying essential constraints. Next,
we obtain the corridors connecting the viewpoints, inside
which the safety of the chaser is guaranteed. Last, a smooth
chasing motion for the drone is planned inside the corridors,
and the controller of the flight management unit (FMU) of
the chaser drone executes the motion until the prediction is
reliable. We replan the chasing trajectory when the planned
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motion or the prediction becomes infeasible due to newly
discovered obstacles.

II. PRELIMINARY
In this section, we overview the measures which quantify the
safety of a location and its visibility toward a target against
obstacles, based on our previous work [8]. Next, as a newly
introduced concept in this paper, we define the visibility of
a chaser position toward two targets considering the inter-
occlusion and the FOV limit. Then, we state the assumptions
and the problem to be solved in this paper.

A. SCORING FIELDS FOR SAFETY AND VISIBILITY
First, let us assume that the local map information can be
representedwith a 3D occupancy grid using amapping frame-
work such as Octomap [18]. Based on the grid, we quantify
howmuch a position is safe against obstacles using Euclidean
distance field (EDF) [19]. For a position x ∈ R3, we measure
the safety with the value of EDF φ(x) ≥ 0 where φ(x) = 0
corresponds to the collision with obstacles and the positive
value encodes the distance from the occupied cells. From this,
x with a larger φ(x) is measured to be safer.

Next, we quantify how visible a target’s position xq ∈ R3

is from a chaser position xp ∈ R3 based on the field φ(x).
Letting L(xp, xq) ⊂ R3 denote the set of points on the line-
of-sight (LOS) connecting xp and xq, the visibility of xp is
defined as ψ(xp; xq) ∈ R based on the EDF value φ(x):

ψ(xp; xq) = min
x∈L(xp,xq)

φ(x) (1)

As discussed in our previous work [8], a larger value
of ψ(xp; xq) is interpreted to be more robust against the
unknown movement of xq. Also, ψ(xp; xq) = 0 indicates
the occlusion of xq. We call the grid field where ψ(x; xq) is
evaluated for all the centers of the cells x ∈ R3 as the visibility
score field (VSF) of xq.

B. VISIBILITY OF TWO TARGETS
The previous section discussed the visibility score of a single
target. Here, we state the necessary conditions to observe
two targets xaq ∈ R3 and xbq ∈ R3 from a chaser posi-
tion xp. The conditions introduced are the major difference
from the single-target problem. For both targets to be visible
simultaneously, the following three conditions should be first
satisfied as illustrated in Fig. 2:
Condition 1: Necessary conditions for the visibility of

dual-target
(a) None of L(xp, xaq) and L(xp, x

b
q) intersects with obstacles.

(b) The LOS toward one target does not intersect with the
volume of the other target.

(c) The bearing angle formed by L(xp, xaq) and L(xp, x
b
q) is

smaller than FOV limit.

C. PROBLEM SETUP
We set up the assumptions and the problem to be solved.
In this work, the chaser is assumed to have a standard vision

sensor with a FOV of less than 120◦ for observing the targets.
The maximum acceleration of the chaser is assumed to be
larger than the targets. The two targets are assumed to be
visible when Condition 1 is satisfied and the optical axis
of the drone heads to the center of the targets (xaq + xbq)/2.
For the targets of interest, they are allowed to move in three
dimensions. To focus on the scope of this paper, let us assume
that the targets of interest can be detected reasonably in
the image, adopting algorithms such as [3], [20] when the
targets are observed within a visible range. Also, we assume
that the location of the targets can be estimated by combining
the depth image and detection output from the RGB image.
The future movements of them are unknown to the chasing
drone, and we actively forecast the targets ensuring the pre-
diction not to intersect with obstacles. Regarding the obsta-
cles, we address 3D unstructured objects without presuming
their shape or height. The obstacles are unknown initially and
discovered with the depth sensor of the drone.

On top of the settings, we aim to build an online receding
horizon planner (RHP) for a single drone to chase the dual-
target, ensuring its own safety and the visibility conditions
Condition 1 along with key objectives in Section. I-A.

III. FORECASTING TARGET MOVEMENT
This section proposes a library-based forecasting algorithm,
incorporating the obstacles and the past observations. After
describing the motivations, we discuss the construction of the
offline library and the online prediction process.

Most of the recent works on the chasing task [5]–[7]
[9], [10] adopted a prediction algorithm which considers only
minimization of the past observation error without reflecting
the presence of obstacles. Although our previous work [8]
introduced the prediction algorithm considering obstacles,
via-points of the target and the obstacles should be known
a priori, which has limited online applications. Also, the pro-
posed prediction could not guarantee the non-intersection
with obstacles because the collision avoidance was included
as a cost of a non-convex optimization. In addition, the gra-
dient computation involving a distance field was not efficient
for a fine discretization level, and the iteration until a reliable
solution was uncertain.

As an effort to extend the online applicability of our pre-
diction algorithm, the recent works [21], [22] on the motion
planning to reach a static goal are noteworthy. They consider
feasible motion candidates of the drone in an offline library
and pre-compute the region which each candidate passes
through. These methods do not require the gradient compu-
tation of the non-convex objectives, and the online collision
checking for a candidate takes only tens of microseconds.
They achieved a high-speed flight of a drone in unknown
environments represented with voxels. Inspired by the works,
we predict the target motion with the following two steps:
first, we generate an offline library which has a candidate
primitives of the future motion of the targets. Also, the library
encodes the relation of each candidate and a set of vox-
els it passes, given 3D discretization of the local space.
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Second, based on the library, we perform online collision
checking for the prediction candidates against the newly
mapped obstacles. Last, the prediction is selected with a
candidate having the lowest error on the past observations.

A. OFFLINE LIBRARY FOR TARGET MOTION
We explain the construction of the offline library to predict
a single target xq(t) for a considered horizon 0 < t ≤ T
(superscripts a and b are omitted here). The offline target
library consists of motion primitives representing possible
future trajectories and a set of voxels encompassing the entire
primitives as shown in Fig. 4-(a). In the library, the tar-
get is assumed to move at a constant acceleration for the
horizon. The initial position of the target is set to the ori-
gin of the reference frame and the direction of the initial
velocity is aligned to +x axis of the frame. For the horizon
(0,T ], the below model is used to describe the motion of the
target:

ẍq(t) = a,

subject to xq(0) = 0 and ẋq(0) = v ∈ R3 where the
element of v is a non-negative value along the x axis and zeros
for other two axes. The constant acceleration is denoted as
a ∈ R3. Integrating it leads to the below motion primitive:

xq(t) = a
t2

2
+ vt.

To generate a set of candidate primitives, we sample feasi-
ble a and v based on lattice discretization similar with [23].
Let us write the set of the primitives xq(t) as L. An example
of L is shown in Fig. 4-(a) when the 20 values of ‖v‖ were
sampled from uniform discretization between [0.1, 1.5] m/s
while x and y elements of a chosen from [0.0, 0.2] m/s2

(10 samples) and [−0.4, 0.4] m/s2 (7 samples), respectively.
Now, let us consider a set of voxels denoted as V , which
encompasses all the generated primitives with a defined
resolution (see the transparent cubes in Fig. 4-(a)). In this
work, the voxels are set to have the same resolution with the
octomap. For a voxel v ∈ V , we can identify the primitives
in L that intersect with v, and the offline library encodes this
information in the form of bitset in a similarmannerwith [22].

B. COMPUTING FEASIBLE PREDICTION
Here, we describe how to utilize the offline library to output
a suitable prediction from online updates on obstacles and
observations. Let us define a primitive not intersecting with
obstacles to be a feasible prediction. The overview for online
prediction is as follows: we first transform the motion prim-
itives in L and voxels in V with respect to a new reference
frame based on the latest observations. Then, we fast check
whether each element of the transformedL intersects with the
new obstacles, exploiting the traverse information encoded in
the library.

To define a new reference frame of the library when predic-
tion is requested, we assume thatNo observations of the target
were gathered over past time steps {t1, t2, . . . , tNo} ⊂ R−
and write them as {x̄q,1, x̄q,2, . . . , x̄q,No} where x̄q,n ∈ R3

FIGURE 4. (a) An exemplary offline library for the target prediction.
Assuming the direction of the velocity is aligned with the reference frame,
a set of motion primitives L is sampled as the candidate future target
trajectories. The voxels V passed by the primitives are also visualized in
the transparent cubes. (b) An real-world result of the proposed prediction
method. The target is detected, tracked, and predicted, considering the
observation error and obstacles. The voxels in the gray scale denotes the
inflated obstacles. The rainbow colormap of the cells in the library shows
the distance value from the EDF and the set of black curves are the
feasible prediction candidates.

(1 ≤ n ≤ No) is the observation at the nth past step, and
the larger value of the subscript corresponds to the older
observation. For the current state estimation of the target
x̄q,0 ∈ R3 at the time of prediction t = 0, the following
pose Tq,0 ∈ SE(3) is defined as the new reference frame for
transforming the offline library:

Tq,0 =
[
Rq,0 x̄q,0
0 1

]
, (2)

where Rq,0 =
[
e1, e2, e3

]
∈ SO(3) is a rotational matrix

with e1 ∈ R3 aligned with the currently estimated velocity of
the target e1 = ˙̄xq,0/‖˙̄xq,0‖. Assuming the major rotational
motion of the target is yawing and pitching, we set e2 =[
e21, e22, 0

]T subject to e1 · e2 = 0 and ‖e2‖ = 1. The
last component of Rq,0 is set with e3 = e1 × e2 ∈ R3.
To obtain possible subsequent motions from the current target
observation (x̄q,0, ˙̄xq,0), we transform the set of primitives L
and encompassing voxels V with respect to the frame Tq,0.
We denote the transformed library as (Lt ,Vt ). An example
of past observations and corresponding (Lt ,Vt ) is visualized
in Fig. 4-(b).
Using the local EDF φ(x) built from online mapping,

we can now check the collision states of all vt ∈ Vt . Based
on the offline bitset association between V and L, we prune
out the trajectories in Lt which are associated with vt inside
the obstacle region, and collect feasible prediction primitives.
The final prediction xq(t) is chosen among them, which min-
imizes the following observation error:

E(xq(t)) =
1
No

No∑
n=1

‖xq(tn)− x̄q,n‖2 (3)

Fig. 4-(b) illustrates the feasible candidates and the final
prediction xq(t) in a set of black curves and a red curve,
respectively.
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FIGURE 5. The set of target trajectories for testing prediction accuracy.

TABLE 1. Test result for prediction accuracy (mean/max) [m].

C. ANALYSIS
Before combining the proposed forecasting algorithm with
the chaser motion planning module, we perform a trial test on
a target with the unicycle model in an obstacle environment
shown in Fig. 5. The linear velocity and angular velocity
of the unicycle model are randomly actuated with Gaussian
distributions whose standard deviations are σv ∈ R+ and
σw ∈ R+ respectively. Let us write the pair as σvw =
(σv, σw). The prediction algorithm is provided with No past
observations of the position with a Gaussian noise N (0, σ 2

n )
for both x and y elements where σn ∈ R is the deviation of
the noise.

As Fig. 5 shows, the initial location of the target as [0, 5] m
with the heading direction of π/4. Then, we consider four dif-
ferent levels for σvw: {(0.1, 10), (0.5, 12), (0.7, 13), (0.9, 14)}
(the units are m/s for σv and s−1 for σw) and sample 25 non-
colliding target trajectories from each level of randomness,
totalling 100 trajectories. The individual trajectory is inte-
grated over 50 s, and we repeatedly predict the target motion
over 2 s using No = 10 noisy observations whose standard
deviations σn are chosen among {0.01, 0.1, 0.2, 0.3}m. From
this, we have 4×4 combinations of the actuation randomness
σvw and the observation noise σn as shown in the Table. 1. For
the offline library, we used the same setup in Section III-A,
which produced the example in Fig. 4-(a).
To evaluate the local accuracy of the prediction over short

horizon 2 s, we average the difference between the true
position of the target and the predicted position. To evaluate
the global accuracy over the entire duration 50 s, we take
another average for the accumulated evaluations of the local
accuracy. Each cell of Table. 1 summarizes the mean and max

value of the global accuracy obtained from 25 test trajectories
for a given actuation randomness and the observation. The
average computation time for the setting was less than 20 ms
in a standard i7 computer with 32 GB RAM.

IV. VISIBILITY SCORE FIELD FOR DUAL-TARGET
In the previous section, we discussed how to predict the
motion of the targets. Now, we develop a metric to encode
how stably the visibility toward two targets is maintained for
an chaser position. The rationale in proposing themetric is the
robust satisfaction of Condition 1 against uncertain factors
(e.g. inaccuracy in control and localization of the targets or
the chaser), rather than a binary checking for the constraints.
Also, by presenting a fast sweeping algorithm, we reduce
the computation of the score (1) for a single target, which
is used in the evaluation of visibility score for the dual-target.
The algorithm is one of the major improvements from our
previous work [8].

A. VISIBILITY SCORE FOR DUAL-TARGET
For the stable satisfaction of Condition 1-(a) and (b), it is
preferable to have a larger distance between LOSs and
obstacles (including the volume of the targets). Regarding
Condition 1-(c), a smaller angle between two LOSs is advan-
tageous. Reflecting the two, the below equation defines the
visibility score ψab(x) of a chaser location x for the positions
of two targets xaq and x

b
q.

ψab(x) = ψa(x)ψb(x)+ κωab(x), (4)

where ψa(x) = ψ(x; xaq), ψb(x) = ψ(x; xbq), and κ is a
positive weight. In order to reflect the inter-occlusion, each
target is considered as an obstacle with a volume when scor-
ing another target (e.g. xbq is treated as an occluder with a
volume when computing ψ(x; xaq)). In this work, we model
the volume as a spheroid with themajor axis along z direction.
ωab(x) is defined asmax{θmax−θab(x), 0}where θmax denotes
the FOV limit of the drone, and θab(x) is the angle of two lines
L(x, xaq) and L(x, x

b
q). We call the scoring field derived from

(4) dual visibility score field (DVSF).
An example DVSF and its construction are illustrated in

Fig. 6-(b). In the first and second rows of the column, ψa(x)
andψb(x) treated xbq and x

a
q as part of obstacles (black circles)

respectively. Due to this, for a position x s.t. ψa(x) 6= 0 and
ψb(x) 6= 0, there exist LOSs toward the two targets which
are not occluded either from obstacles or the other target.
The third row shows the bearing score ωab(x) when FOV is
120◦. The dark regions correspond to ωab(x) = 0 where the
angle of two LOSs to the targets becomes larger than the FOV.
In the contrary case where the Conditions 1-(c) is satisfied,
ωab(x) > 0 holds.
From the Fig. 6-(b), we can observe the trade-off between

the two score terms in (4), which is governed by κ . To increase
the second term (reducing the bearing angle), it is advan-
tageous for the chaser to observe both targets aligned in
a straight line (see the white region of the third row).
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FIGURE 6. Proposed planning algorithm to chase two targets. Given the predictions of the targets and the local map
information, we investigate the visibility field for dual-target (DVSF) by reflecting Condition 1. Based on the field, we search
optimal viewpoints and output a smooth chasing motion based on the viewpoints.

However, the region with higher ωab(x) is more vulnera-
ble to the inter-occlusion, resulting in a smaller value for
ψa(x)ψb(x). Thus, for the construction of DVSF, higher κ
is preferable if the two targets are to be closely captured in
the center of the image. On the contrary, setting a smaller
value for κ is more advantageous when we give more impor-
tance to the inter-occlusion. Putting all the considerations into
together, we construct DVSF ψab(x) as shown in the last row
of Fig. 6-(b) so that the score (4) have a larger value for the
location where the three terms inCondition 1 are more stably
satisfied.

B. FAST COMPUTATION FOR A SINGLE VISIBILITY FIELD
Now, we focus on the efficient computation of DVSF on
a local gridmap where EDF φ(x) is computed. The scor-
ing (4) involves evaluations of VSFs ψa(x) and ψb(x) for
a single target. In our previous work [8], we evaluated the
visibility score (1) with respect to a single target xq and
a chaser xp by finding the minimum of φ(x) traversing all
the cells included in L(xp, xq). Although the method in our
previous work can obtain the accurate VSF associated with
the gridmap, the approach might not be fast enough for the
online application when multiple VSFs should be computed
for DVSF. For the multi-target setting, this section introduces
an algorithm based on recursion and interpolation. We first
derive the following relation for the visibility score (1) with
EDF φ(x):
Lemma 1: For a target of interest xq, EDF φ(x)with a grid

resolution1x, and a chaser location xp on the center of a grid
cell,

ψ(xp; xq) = min{φ(xp), ψ(xp′; xq)} (5)

FIGURE 7. (a) The illustration for the recursion (5) in Lemma 1.
(b) Interpolation of ψ(xp′; xq) with ancestors A(xp; xq).

holds for xp′ = xp + (xq − xp)1l where 1l is a small
perturbation s.t 0 < 1l < 1x / (2‖xq − xp‖).

Proof: Let us parameterize a point on L(xp, xq) as x(l) =
lxp + (1 − l)xq ∈ R3 where l ∈ [0, 1]. For a small positive
number 0 < 1l < 1x / (2‖xq − xp‖), a point xp′ = x(1 −
1l) ∈ R3 exists on the cell whose center is xp as ‖xp′−xp‖ <
1x/2 holds. Since EDF φ(x) has a homogeneous value inside
a cell defined by the resolution 1x, φ(x) = φ(xp) holds for
all the points x ∈ L(xp, xp′), giving us φ(x(l)) = φ(xp) for
1−1l < l < 1. Due to this,

min
l∈[0,1]

φ(x(l)) = min{φ(x(1)), min
l∈[0,1−1l]

φ(x(l))}

holds. Recalling the definition (1), we have min
l∈[0,1]

φ(x(l)) =

ψ(xp; xq) and min
l∈[0,1−1l]

φ(x(l)) = ψ(xp′; xq). Thus,

ψ(xp; xq) = min{φ(xp), ψ(xp′; xq)}. �
An example of xp′ for the pair xq and xp is shown

in Fig. 7-(a).
In order to use the recursion of Lemma 1 in comput-

ing ψ(xp; xq) where xp exist on the center of the cells in
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FIGURE 8. The graphical illustration of the proposed sweeping for a 2D
gridmap. We compute the visibility field ψ(x; xq) while maintaining the
order of evaluations for ancestors (dark gray cells) always to precede the
currently evaluated cell (thick black-edged cell).

a gridmap, we need ψ(xp′; xq) at xp′. As we operate on grid
cells from the mapping, we interpolate ψ(xp′; xq) from a set
of neighboring cells of xp which intersect with L(xp, xq).
We define those cells as the ancestors of xp written as
A(xp; xq) ⊂ R3. The example of ancestors is given in
Fig. 7-(b). Assuming that the visibility scores are precom-
puted on the ancestors A(xp; xq), we interpolate the score
ψ(xp′; xq) as below.

ψ(xp′; xq) =
∑

x∈A(xp;xq)

w̃(x)ψ(x; xq), (6)

where w̃(x) = w(x) /
∑

x∈A(xp;xq) w(x) with w(x) =
(x− xp) · (xq − xp)
‖x− xp‖‖xq − xp‖

. The weight w̃(x) has a larger value as

the direction from the chaser to the ancestor is more aligned
with L(xp, xq).

If we compute the visibility field for a grid region from
(5) and (6), we can observe that visibility evaluation of the
ancestors A(xp; xq) should precede the xp, which requires a
sweeping method that maintains the order of evaluations. For
this purpose, we adopt the sweeping method summarized in
Algorithm 1 and Fig. 8.

C. ANALYSIS
Here, we analyze the proposed visibility field sweeping
method in Algorithm 1 in terms of computation speed com-
pared to previous work [8] and the accuracy. Concerning the
accuracy, we assume the visibility map computation of [8]
to be the ground truth in a given grid setting. For the sake
of simpler discussion, we use a 40 m ×40 m 2D obstacle
map depicted in Fig. 9 where the target is positioned at
xq = [20, 20] m. In Fig. 9-(a) and (b), we can find two
maps derived from our previous work [8] and Algorithm 1
when the resolution is 0.4 m. With respect to 9-(a) and (b),
Fig. 9-(c) shows the error of the score computation e(x) at
each cell x versus distance from the target ‖x − xq‖ where

Algorithm 1 Visibility Sweeping
Input : target cell index (iq, jq, kq)

bound (imin, jmin, kmin), (imax , jmax , kmax)
Initial: ψiqjqkq = φiqjqkq

1 for 1i = {−1, 1} do
2 for 1j = {−1, 1} do
3 for 1k = {−1, 1} do
4 i = iq, j = jq k = kq
5 while (i, j, k) in bound do
6 ψijk =compute(φijk ,Aijk)
7 i← i+1i, j← j+1j, k ← k +1k
8 end
9 end
10 end
11 end

FIGURE 9. (a) and (b): exemplary VSFs for a single target (black dot)
obtained from the previous work and the newly proposed method.
(c): the score error e(x) defined in (7) versus the distance from the target
position. (d): the average error of the VSF obtained from the proposed
method and the computation time ratio compared to the previous
method, versus the grid resolution.

e(x) is defined as below.

e(x) = |ψ(x; xq)− ψgt (x; xq)| (7)

where ψ(x; xq) is the score obtained from the proposed
method and ψgt (x; xq) is from the previous work [8]. As can
be seen, the error increases as a cell is farther from the target,
while remaining below 1.2 m. The decrease in the error from
‖xq − x‖ = 8 m corresponds to the occluded region where
the score values were evaluated to zeros in both methods.

Fig. 9-(d) analyzes the accuracy and the computation speed
from 50 cases of resolutions varying from 0.5 m to 0.02 m
on the same settings with (a) and (b) of the figure. As can be
observed, the average error of the proposed method decreases
for the smaller grid resolution, while the computation time of
the proposed algorithm becomes almost 10 times faster than
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the previous work [8] from the resolution 0.3 m. The test was
performed on a standard i7 laptop computer with a single-
thread implementation.

V. CHASING TRAJECTORY GENERATION
In the previous sections, we introduced the DVSF ψab(x)
to reflect the Condition 1 and the efficient sweeping
Algorithm 1. Based on these, this section presents a hierar-
chical planning structure to output the chasing motion of the
drone, while optimizing the visibility with other objectives
and constraints. As the increased number of the targets and
the conflicts between objectives can entail numerical issues
such as local-minima, we decompose the optimization into
multiple stages as illustrated in Fig. 6, rather than relying on a
single non-convex optimization. We first compute a sequence
of viewpoints from a graph search algorithm, then we gener-
ate a smooth motion using QP. Although the basic concept
of the structure is similar to our previous [8], we improve
the graph search process based on our another work [24] and
additionally consider the collision between the targets and the
drone.

A. OPTIMAL VIEWPOINT SKELETON
We assume that the local map information and initial drone
position xp,0 ∈ R3 are given. Setting uniform time steps tn ∈
R+ (n = 0, . . . ,N ) on the horizon [0, T ], we focus on the
optimal viewpoints of the chaser σ = {xp,n}Nn=1 with respect
to the known future target positions xaq,n = xaq(tn) and x

b
q,n =

xbq(tn). To ensure the key objectives and essential conditions in
section II-C, we compute σ with the following optimization:

min
σ

N∑
n=1

c(xp,n−1, xp,n),

subject to Group1


max{‖xp,n−xaq,n‖,‖xp,n−x

b
q,n‖}<rmax ,

ψa,n(xp,n) > εv,

ψb,n(xp,n) > εv,

ωab,n(xp,n) > 0,

Group2


‖xp,n−1 − xp,n‖ < dmax ,
φ(x) ≥ εs for ∀x ∈ L(xp,n−1, xp,n),
L(xp,n−1, xp,n)∩L(xaq,n−1, x

a
q,n)=∅,

L(xp,n−1, xp,n)∩L(xbq,n−1, x
b
q,n)=∅,

(8)

where the cost between two viewpoints xp,n−1, xp,n is
defined as

c(xp,n−1, xp,n)

= ‖xp,n−1 − xp,n‖︸ ︷︷ ︸
Travel distance

+λv (ψab,n(xp,n))−1︸ ︷︷ ︸
Visibility

+λd (|‖xp,n − xaq,n‖ − rdes|︸ ︷︷ ︸
Relative distance with A

+ |‖xp,n − xbq,n‖ − rdes|︸ ︷︷ ︸
Relative distance with B

).

(9)

In the above equations (8) and (9), time step index n was
attached to the terms ψa(x), ψb(x), ψab,n(xp,n), and ωab(x),
which are associated with xaq,n and x

b
q,n. λv and λd are positive

importance weights. The objective function (9) efforts to
minimize the total distance of σ and maximize the visibility
scores. Also, the desired relative distance rdes toward the
targets is to be maintained.

In the constraints of (8), Group 1 denotes the conditions
imposed to the viewpoint xp,n at a single time step, while
Group 2 corresponds to the conditions along two consecutive
time steps. The first constraint in Group 1 confines the rela-
tive distances toward both targets below rmax . The second and
third prevent the occlusion of the targets at the corresponding
step with a margin εv. The last imposes the FOV limit at each
step. In Group 2, the first constraint bounds the maximum
distance between two consecutive viewpoints below dmax .
The second constraint ensures the safety along σ with a
margin εs, while the last two prevent the collision between
the targets and the chaser.

We obtain the optimal σ of (8) by choosing a set of discrete
cells on the 3D grid where φ(x) is computed. For this purpose,
we leverage the graph search on a directed-acyclic-graph
(DAG) G = (V ,E). The set of nodes V is composed of
subsets Vn along time steps tn where Vn has only feasible cells
around the targets with respect to theGroup 1 constraints (for
t0, V0 has a sole element xp,0). The edges of E are created
by connecting nodes from xn ∈ Vn to xn+1 ∈ Vn+1 once
Group 2 is satisfied. Then we assign a weight to each edge
according to the cost function c(xp,n−1, xp,n). From the graph
construction, every node and edge satisfies the constraints
in (8), and the graph search on G from V0 to every node
in VN is equivalent to finding the optimal σ . The DAG
shares the same structure introduced in our another previous
work [24] where we can immediately find the topological
sorting on V without iteration. Thus, only edge-relaxation
step [25] is required for the graph search, allowing us a fast
computation of (8). For a more detailed discussion, we refer
the reader to [24].

B. SMOOTH CHASING TRAJECTORY
In the previous section, we computed the high-quality view-
points σ = {xp,n}Nn=1 which satisfy the essential conditions
and optimize the key objectives. Given the initial state of
the chaser xp,0, ẋp,0, ẍp,0, we now finalize the chasing
motion of the drone enjoying the features of the viewpoints.
We plan the translation and yaw (xp(t), y(t)) ∈ R4 based
on the differential flatness of quadrotor dynamics [26]. The
translation xp(t) is parameterized with piece-wise polynomial
curves written as the below:

xp(t) =



∑K

k=0
p1,k tk (t0 ≤ t < t1)∑K

k=0
p2,k tk (t1 ≤ t < t2)

. . .∑K

k=0
pN ,k tk (tN−1 ≤ t < tN )

(10)

143112 VOLUME 9, 2021



B. F. Jeon et al.: Autonomous Aerial Dual-Target Following Among Obstacles

where pn,k ∈ R3 denotes the polynomial coefficient for order
k defined over time interval [tn, tn+1) (the same time steps in
the previous section are used). The piece-wise polynomial is
computed from the following optimization:

min
4∑

d=2

∫ tN

t0
ρd‖x(d)p (t)‖2dt

subject to x(d)p (0) = x(d)p,0 (d = 0, 1, 2)

− εw � xp(tn)− xp,n � εw

−
φ(x̃p(t))
√
3
� xp(t)− x̃p(t) �

φ(x̃p(t))
√
3

(11)

where x̃p(t) is the linear interpolant of the points (xp,0, σ )
over time steps (t0, t1, . . . , tN ) evaluated at t . The symbol �
denotes the element-wise inequality (less than or equal to).
ρd is a positive weight corresponding to the derivative of the
d th order.

The above optimization minimizes the high-order deriva-
tives from the second to the fourth order. The first constraint
imposes the initial condition of the chaser, and the second
bounds the deviation from viewpoints obtained from (8) to
take advantage of their optimized visibility with a toler-
ance εw. The last constraint ensures the collision avoidance of
the entire trajectory xp(t) by confining it inside the obstacle-
free space along x̃p(t). As an extension of our previous
work [8], we modified the safe bound from the constant
εs to φ(x̃p(t)) so that minimization of the objectives can
benefit from a wider feasible space. Note that, for the linear
interpolant x̃p(t), EDF value φ(x̃p(t)) is ensured to be larger
than εs due to the second constraint in (8).
The above optimization can be rearranged to a constrained

QP concerning to pn,k in a similar way with our previous
work [8]. The formulation into QP provides the numerical
stability in finding the global optimal, leveraging the algo-
rithm such as [27]. For the yaw motion y(t), we decide it in a
myopic way so that the optical axis heads to the center of the
targets (xaq(t)+ xbq(t))/2.

C. PIPELINE
As a summary, we combine the proposed modules from the
previous sections. First, we obtain the local (or global if avail-
able) voxel map from the sensor of the drone and compute
EDF φ(x). Based on observations and the map, we predict the
future movement of the targets xaq(t) and x

b
q(t) over t ∈ (0,T ].

Then, we calculate the sequence of DVSFs ψab(x) for the
predicted points at time steps tn ∈ (0,T ]. The DVSF at a time
step is computed inside a 3D bounding volume that encloses
the two targets with a enough margin larger than rmax in (8).
From the information, a graph search on the DAG obtains

viewpoints σ from (8) ensuring the travel efficiency, safety,
visibility, and relative distance. On top of the optimal view-
points toward the dual-target, we finalize the efficient motion
of the chaser with QP (11), which strictly ensures the safety
and uses the advantages of the skeleton σ . We repeat the
described process to update the chasing motion when either

TABLE 2. Simulation result.

the chasing motion becomes unreliable due to the newly
discovered obstacles or the prediction error grows more than
a defined level.

VI. VALIDATIONS
In this section, we extensively validate the online perfor-
mance of the proposed algorithm from a high-fidelity simu-
lation and multiple real-world experiments including indoor
and outdoor scenarios.

A. HIGH-FIDELITY SIMULATION
A realistic simulation is performed using Unreal engine and
AirSim [28] where a drone with a camera operates in a large-
scale warehouse environment (120 m×160 m) to follow two
targets autonomously. The targets move for 357 m and 373
m respectively at 2 to 3 m/s. The simulation includes the 3D
scenarios where the targets move along stairs and one of them
jumps down to the ground from the second floor.

In the simulation, the chasing drone is assumed to have the
information on the entire map and the future movement of
the targets over the planning horizon T = 8. The settings are
intended to examine the proposed planning algorithm when
enough information is given, and this will be relaxed in the
outdoor experiments with a real drone. The effective FOV
of the drone was assumed to 100◦. The maximum pitching-
down of the camera gimbal was limited to 45◦, which disables
the vertical downward view from the drone. The resolution
of the field was set to 0.4 m, and the desired relative distance
was set to rdes = 4.5 m for both targets. The resolution for the
octomap and DVSF were set to 0.2 m and 0.4 m respectively.
The simulation was performed on an Intel i7 desktop with
32GB RAM.

The planning result is shown in Fig. 10 and Table. 2. Fig. 10
shows the position history of the two targets and the planning
output of the chaser and the LOSs toward the targets. The
dashed box (a) highlights when the targets entered a dense
indoor, and (b) showswhen the targets are on the stairs and the
male target jumps down (target B in the blue curve).When the
targets ascended and then descended along stairs, the drone
adjusted its altitude and preceded the targets to prevent the
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FIGURE 10. Simulation results in a warehouse environment (video can be found at https://www.youtube.com/watch?v=27f4tEpAIpw).
The position history of the chaser (green) and two targets (red and blue) and bearings toward two targets from the chaser drone are
plotted. The two targets and the chaser drone start from the north-east. The small figures a1-a3,b1-b3, and c1-c3 are the snapshots
taken in dashed-box regions (a), (b), and (c) in the top-down view.

inter-occlusion from the height difference of the targets. The
dashed box (c) corresponds to the scene where two targets
start to diverge from each other. In order to maintain the
bearing angle below the FOV limit, the drone moved near
target A (red curve) to observe target B in the rear as well
as target A.

Table. 2 analyzes the performance quantitatively in terms
of the objectives and conditions, where A and B represent
the values corresponding to the two targets, respectively.
In the row corresponding to the key objectives, we can
observe the travel distance was close to 1 and the ratio of
average accelerations of the chaser and the targets was less
than 1, showing the translation efficiency of the chaser. Also,
the desired relative distance toward two targets was achieved
in 20 percent error on average. The next row of the table
shows the result of essential conditions. As seen in the first
and the second column (Occu. Obst.), the safetymeasure φ(x)
and visibility ψ(x; xaq), ψ(x; x

b
q) of the two targets remained

positive with a margin (the radius of the collision volume of
the drone was set to 30 cm, and the volumes of the targets
weremodeled as ellipsoids with the additional 20 cmmargin).
The third column (Occu. Inter.) denotes the closest distance
of the LOS to one target from the ellipsoid volume of the other
target, showing that the inter-target occlusion was prevented
during the simulation. As seen in the last column (Bearing.),
the maximum bearing angle of the proposed planning was
1.4 rad, which is less than the FOV limit. The average com-
putation was faster than 10 Hz even while the Unreal engine
ran with the high CPU and RAM usage. From the simulation,
we confirmed that the aimed performance was achieved in a
long-range mission among dense 3D obstacles.

B. INDOOR EXPERIMENT
Here, we present the key results of a real-world experiment
where a chaser drone autonomously follows other two drones
in an indoor environment without an external motion capture
system. The targets traverse space with 5 m × 15 m scale
at a speed 0.4 m/s. As shown in Fig. 11-(d), the chaser
drone has a firmly attached vision sensor whose FOV is less
than 100◦. Intel NUC7i7BNH was mounted on the chaser
for the onboard computation. All the drones utilized Intel
realsense T265 camera for the visual odometry (VO). For
the experiment, the grid resolution was set to 0.2 m, and the
future step size N = 3 was set for the skeleton generation.
The quintic polynomials were used to generate the smooth
trajectory. The desired relative distance to targets was set
to rdes = 3.5 m. The obstacles were mapped before the
mission using realsense D435i. The two target drones flew
autonomously along the predetermined trajectories which
are shown in red and blue curves in the right columns of
Fig. 11-(a) and (b), which are not known to the chaser drone.
The chaser drone receives only the partial information over
the horizon of 5 s at each planning trigger, as depicted in the
thick segments of the targets’ trajectories in the figure.

The experiment includes the following scenarios: 1) cor-
nering of the targets at an obstacle and 2) passing through a
narrow space between two obstacles as shown in (a) and (b)
of Fig. 11 respectively. When the two targets were corner-
ing right (−y direction in the reference coordinate shown
in the dashed circle in the Fig. 11-(a)), the chaser drone
detoured a longer distance to capture both targets against the
obstacle. The increased velocity along x and y elements is
shown in Fig. 11-(c). When the two targets passed the gap
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FIGURE 11. (a) and (b) The left column describes the trails of the chaser drone (green LED) and two target drones (red and blue LED).
We highlighted the obstacles as yellow, which affect the planning outcome the most. In the right column, the algorithm views are shown.
The black-dashed circle in (a) denotes the reference coordinate. DVSF of the last step of the future horizon is drawn in jet-colormap
where the red scale corresponds to the high visibility zone. The thick curve segments of the targets (red and blue) denote the partial
future trajectories known to the chaser. The thick green curve shows the planning result of the chaser over the considered horizon. The
LOSs toward the targets are also stamped as red and blue arrows. (a) depicts the cornering of two targets at an obstacle while
(b) corresponds to the narrowing of the targets between two clusters of obstacles. (c) The history of the velocity of the chaser drone (top)
and the distance between the targets and the chaser (bottom). The grayed regions are matched with the scenes in (a) and (b). (d) The
hardware setup and the EDF of the experiment scene.

TABLE 3. Onboard computation time.

between two close-by objects, the obstacles could occlude
the targets or inter-occlusion could occur due to the small
distance between the targets. The drone moved further to
the right (−x direction) to prevent the possible occlusions,
rather than staying directly behind the targets. Throughout
the experiment, the two targets were visible to the camera
of the chaser drone, and the chaser avoids the collision with
obstacles. The algorithm ran at nearly 40 Hz and onboard
computation times are summarized in Table. 3, running in
total. The averaged speed ratio of the chaser to each target
was 1.56 and 1.39 respectively.

C. OUTDOOR EXPERIMENT
Now, we present the result of the outdoor experiment, imple-
menting the whole onboard system in Fig. 3 where the sensor
data processing and the prediction are fully included. The
hardware setup for the chaser drone is illustrated in Fig. 12.
We used two onboard computers: 1) NUC8i7BEH for the
motion planning and the prediction, and 2) Jetson Xavier
NX to run the sensor data processing. Jetson Xavier Nx
is connected to a ZED2 stereo camera to obtain the visual
odometry of the drone, the RGB image, and the depth image.

For the flight controller, Pixhawk4 was used to obtain IMU
data and run as an FMU. Another ZED camera is used
to map the obstacles on the opposite side of the frontal
ZED2 camera. ZED SDK [29] is used to detect the bounding
box for human objects in the images and 3D coordinate.
We also obtain 3D positions and velocities of the objects from
the SDK. Then, we compute the dominant HSV colors for
the detected objects, using the RGB pixels of 2D bounding
boxes. At the start of the mission, the targets were set as
the two closest objects from the chaser drone. To update
the observation on the targets, the newly detected objects
were matched with the previously tracked targets based on
the similarity of the position, the velocity, and the dominant
HSV color. The observed targets’ positions are collected in
the prediction module to compute the reference frame of (2)
and the observation error of (3).

FIGURE 12. The hardware setup for the outdoor experiment.

Regarding online obstacle mapping, the pointcloud built
from the original depth images can include the points from
the targets and the bleeding artifacts [30] around the border
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between the targets and the background. As illustrated in
the top row of Fig. 13, mapping these points as obstacles
can degrade the performance of the motion planning for the
chaser, as prediction becomes infeasible and visibility evalu-
ation (1) becomes incorrect. To prevent this, we first crop the
target region of the depth image using the detection box in
the RGB image (see the second row of Fig. 13), and use only
the uncropped region for the generation of the pointcloud.
When a target is not updated in the RGB image, we crop
the 3D bounding box around the last-tracked position. Next,
the radius outlier removal algorithm [31] is used to remove the
bleeding from the intuition that the bleeding region generally
forms a thin string of noisy points with fewer neighbors than
the cluttering obstacle region. The example of the removed
bleeding region is visualized as red points in the bottom
of Fig. 13. The processed pointcloud is used for building
octomap and its EDF. Based on the sensor data processing for
targets’ positions and the obstacle mapping, we thoroughly
demonstrate the online performance of the chasing system in
three outdoor scenes: a rooftop, a stair, and a forest. As will
be discovered, each of them contains a distinct challenge in
terms of the target movements and the environments. For the
experiments, the drone was not given any prior information
of the target movements and the operation space (e.g. slope,
the height range of the obstacles). They are predicted and
mapped on-the-fly, respectively.

For all the cases, the same parameter setting was used,
showing that our algorithm does not require a sophisticated
parameter tuning. For the octomap and the distance field,
the resolution was set to 0.2 m and the distance field is com-
puted until 2.0 m. We set the resolution of the DVSF as 0.4 m
and the maximum connection as dmax = 4.5 m. The horizon
for the prediction and the planning was set to T = 2.0 s
and the step number N = 3 was used for the sequence of
DVSFs. For the constraints of the preplanner, the maximum
bearing angle was chosen as θmax = 1.25 considering the
lens specification of the ZED2 camera. The desired relative
distance toward the targets was rdes = 3.5 m where the
performance of the object detectionwas observed to be stable.
The maximum raycast range for building octomap was set to
8 m form the camera position. Our system runs faster than
30Hz on the onboard computer during the mission.

1) SCENE 1: ROOFTOP
This experiment site includes walls and multiple pillars,
where the two targets sequentially undergo the following
phases of relative movements: 1) walking side by side and
2) following each other in a circular path. This scene is
challenging as the chaser should simultaneously consider the
collision with pillars and inter-occlusion when the targets are
circling. For the scenario, we performed two experiments
with different chaser setups where one fully considers the
inter-occlusion while the other does not (setting the occlusion
volumes of the targets to zero). For the ease of discussion,
let us call the former proposed chaser while the latter base-
line chaser. For the baseline chaser setup, we increased the

FIGURE 13. Processing pointcloud for obstacle mapping. To remove the
pointcloud of the targets, we first crop the target region from depth image
and remove the points around the targets’ positions. Then, radius outlier
removal is used to filter out the bleeding points on the border between
the targets and the background (shown in red points in the bottom row).

importance of the distance minimization with smaller λv and
λd in (9). All the other parameters were set as mentioned
previously.

The comparative result is shown in Fig. 14 where the
key snapshots and the planning history are included. Both
proposed and the baseline setup yielded a similar motion
when the targets were initially walking side-by-side. When
the targets started to circle, however, the two setups showed
different behaviors as highlighted in the yellow boxes of
Fig. 14-(b). In the case of baseline, the drone remained in
the yellow boxed region depicted in the top of Fig. 14-(b)
and kept almost identical relative distance to targets without
much yawing or translation. This motion led to repeated inter-
occlusions whenever the two targets and the chaser drone
are aligned in a line (see three snapshots in Fig. 14-(a)).
In contrast, the proposed setup first makes the drone stride
into the region where the targets are circling and then the
drone arcs around to the direction of two targets as shown in
the bottom row of Fig. 14-(b). Due to this motion, the drone
was able to safely keep the sight into both targets without
inter-occlusions as seen in the last row of Fig. 14.
Both strategies produced a safe motion for the drone with-

out collision with obstacles or the targets. For two cycles of
the circular motion of the targets, inter-occlusion occurred
four times for the baseline while the proposed setup had no
instance. During the mission, the averages of the magnitude
of accelerations of the drone was 1.5 m/s2 and 1.92 m/s2

for the baseline and the proposed respectively. The average
speeds was 0.42 m/s and 0.7 m/s while the maximums was
2.23 m/s and 4.32 m/s for the baseline and the proposed.
From the experiments, the proposed construction of DVSF
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FIGURE 14. Rooftop scenario. (a) The three snapshots taken from the experiments when the targets are circling. Red and blue colored
curves denote the movement of the targets while the drone’s movement is colored in the green. The upper two rows show the result of
the chasing motion when inter-occlusion was not considered. The lower two rows correspond to the setup where inter-occlusion was
fully considered. (b) The green curve shows the history of the planning motion. The red and the blue curves are the history of the tracked
positions of the targets. The voxels represent the local distance field truncated at 0.3 m when the mission ends. The gray scale
corresponds to the height along z axis where white color corresponds to the higher value of z . The thin black grid on the plane
is 1 m× 1m.

FIGURE 15. Stair scenario. (a) Experiment result of the three sequences. (b) Top: the positional history of the targets (red and blue) and
the chaser drone (green) from a top view toward x − y plane. Here the shading of three sequence is associated with the target positions.
Middle: side view of the position histories. The gray color scale is associated with the height along z axis. Bottom (the last two columns):
the key objectives along the mission time.

was found to effectively handle the inter-occlusion despite
of the imperfect information on the targets’ motions and the
obstacles.

2) SCENE 2: STAIR
Here, the proposed system is tested in a scenario where the
two targets climb up a wide stairway. As mentioned, no prior
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information of the slope is given and the environment (stair)
is mapped online. As illustrated in seq1, seq2, and seq3
of Fig. 15, the relative movement between the two targets
involves three phases: 1) walking side by side, 2) crossing
each other, and 3) diverging. When the targets suddenly
change their relative motions from the first to the second
phase, inter-occlusion can interrupt the chasing of the drone
if it keeps observing the targets from the backside. The sub-
window of the image view of the seq2 in Fig. 15-(a) shows
an example of such poor view. The transition from the second
to the third phase involves diverging motion between the tar-
gets. As the vision sensor observing the targets has a limited
field of view, the targets can leave the image view of the
drone. In this experiment, we observe the resultant motions
in response to the two transitions.

As can be seen from seq1 of the bottom two sub-
figures in Fig. 15-(b), the planned chasing motion first
increased the velocity to keep the desired relative distance
rdes = 3.5 m as the drone started around 6 m behind
the targets. In seq2, the chaser moves to the right side of
the targets’ heading, reducing the occlusion of the target
with the black T-shirt from the target with the white T-shirt.
In seq2, the chaser drone increased only its height and
reduced its x − y translation as shown in the second row of
Fig. 15-(b). From this, the chaser was able to capture both
targets in the limited FOV, sacrificing the desired relative dis-
tance toward the targets. This can be seen quantitatively from
the red and blue curves in the bottom of Fig. 15-(b). In this
experiment where the targets maneuver in three-dimensions,
we observed that the proposed chasing system was able to
overcome the cases (b) and (c) of Fig. 2 while mapping the
terrain on-the-fly.

3) SCENE 3: FOREST
Now, we validate the proposed system in a forest environment
where multiple unstructured obstacles can occlude the targets
and the chaser drone should handle the collision with the
obstacles. During 2.5 minutes, the two targets move in a
three-dimension following the slope of the terrain. In this
setting, we predict the target while planning an online chasing
motion that jointly handles safety and visibility of the targets
considering Condition 1. The top-down view and the per-
spective view of four key sequences (seq1 to seq4) are shown
in Fig. 16-(a) and Fig. 1, respectively. Their snapshots can be
found in Fig. 17.

The first sequence Seq1 in Fig. 17 shows the two targets
passing through a tree whose trunk and foliage can hamper
the safety of the drone and the visibility of the targets (see two
yellow regions in the snapshot view). To handle the foliage,
the proposed algorithm outputs a descending motion for the
drone to maintain the safety and the visibility. After passing
the tree, the second sequence (seq2) highlights how the drone
prevents the possible inter-occlusion of the targets. As can be
seen in Fig. 17, the drone takes a circling motion, showing a
similar result with the proposed chaser of the rooftop scenario

FIGURE 16. (a) Forest scenario is illustrated in a top down view of the
planning history and the octomap at the end of the mission. The green
curve denotes the history of the chaser drone while the red and blue
curves show the targets’ histories. The grid size is 5 m. (b) The history of
key objectives and constraints is shown in the matching color with (a).
In the middle row, the dotted line is the desired relative distance
rdes = 3.5 m, and the dashed line is the maximum bearing angle
θmax = 1.25. In the bottom row, the dotted line is the safety margin
εs = 0.8 m, and the dashed line is visibility margin εv = 0.3 m.

shown in the bottom of Fig. 14. From the motion, the chaser
was able to stay in the region with high value of ψab(x) as
illustrated in the red-colored area of the planning view. The
low-scored region due to the occlusion between the targets is
also shown in the black-dashed box. As shown in the camera
view, the drone keeps observing the target without the inter-
occlusion in contrast to the poor view obtained from the same
baseline parameter setting used in the rooftop scenario.

In the third sequence (seq3), targets climb up a slope.
In response, the chaser is ascending to keep the visibility
of the targets, while avoiding the tree highlighted as yellow.
As can be seen in the planning view, the chaser circumvents
the tree (the black dashed box) to the right side rather than the
left side (poor view in the green circle) to avoid the occlusion
of targets (see poor view in the camera view). The chasing
mission ends at the last sequence (seq4) where the chaser
could avoid the tree thanks to the safe corridor (cyan boxes in
the planning view) that maintains the safety margin. During
the experiment, as shown in Fig. 16-(b), the chaser drone
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FIGURE 17. Forest scenario. For each sequence, the first row shows the
experiment snapshot where the yellow regions are the obstacles in the
corresponding local planning. The second row is the planning view.
It includes the 2D-slice of DVSF ψab(x) (jet-colored field) at the first time
step t1 and the planning result (thin green curve). The chasing corridors
are drawn in cyan boxes. The traces of the chaser (thick green curve) and
the two targets (red and blue curves) are also represented. The truncated
EDF φ(x) around the chaser is drawn in the gray scale cubes, and the
black-dashed boxes correspond to the yellow regions of the first row.
In seq2 and seq3, the example poor views are marked as green circles.
The third row of each sequence shows the camera view of the drone. EDF
φ(x) and DVSF ψab(x) are overlaid on the camera image. The poor views
are obtained from the green-circle-location in the planning views.

was able to maintain its safety and the visibility toward both
targets, satisfying the Condition 1 without prior information
of the environment and the targets’ movement.

VII. CONCLUSION
In this paper, we proposed online chasing system which
forecasts the motions of the targets and outputs the chasing
motion in obstacle environments considering key objectives

such as safety, visibility, motion efficiency, and the desired
relative distances to the targets. The forecasting algorithm
was able to predict the future trajectories of the targets not to
intersect with the obstacle region and reflect the past observa-
tions. For the planning, the visibility metric was introduced to
reflect Condition 1 which is essential to capture the two tar-
gets with a single camera. The hierarchical planning structure
was presented to optimize the key objectives in a numerically
stable way. We also validated the online performance of the
algorithm in challenging scenarios where the targets move in
the three-dimensions among unknown obstacles. Especially,
we implemented the fully autonomous system with a real
drone, showing the wide applicability in various scenes. For
future work, we plan to incorporate the artistic objectives
for filming multiple actors where we consider the relative
location between the targets and the background.
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