
Received September 14, 2021, accepted September 24, 2021, date of publication October 4, 2021, date of current version October 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117337

Key Agreement Over Inter-Process
Communication
MANAMI SUZUKI 1, DAI WATANABE 1, TSUTOMU MATSUMOTO2, (Member, IEEE),
NAOKI YOSHIDA2, AND JUNICHI SAKAMOTO2
1Yokohama Laboratory, Hitachi Ltd., Kanagawa 244-0817, Japan
2Yokohama National University, Kanagawa 240-8501, Japan

Corresponding author: Dai Watanabe (dai.watanabe.td@hitachi.com)

ABSTRACT Today’s computer is often infected by malwares and conventional communication channels
such as inter-process communication (IPC) are attractive attack surface for attackers because important
information such as user’s personal data and passwords are transmitted between processes over IPC.
In addition, there is no other protection other than the access control mechanism provided by the underlying
OS, but it is not always sufficient. To improve the situation, this paper proposes a key agreement protocol
between processes using a network socket, which is one of the IPC methods. Our protocol provides a means
for legitimate processes to cryptographically communicate over the IPC. We use an uncertain channel for
secure key agreement over IPC and we found that the IPC channel behaves as the uncertain communication
channel due to the process scheduling of the OS. The proposed protocol is based on random number sharing
using the messages that the attacker probabilistically fails to obtain and attacker detection who interrupts
the protocol. Our protocol provides secure key sharing against an attacker that interrupts the protocol and
impersonates legitimate processes. We experiment on the behavior of the uncertain channel on an actual
device and confirm that our protocol achieves 128-bit security in a realistic execution time within 8.5 ms.
To our best knowledge, our proposal is the first countermeasure for IPC with cryptographic strength under
reasonable assumptions.

INDEX TERMS Inter-process communication, key agreement, socket hijacking, wire-tap channel.

I. INTRODUCTION
A. BACKGROUND
Today’s computer systems are composed of hardware such
as CPU, memory, and storage, and programs running on
them. A special program called an operating system (OS)
manages the entire computer so that multiple programs can
share a single hardware resource without confliction. The
kernel is a core program of the OS and manages the execution
and termination of programs (processes) other than itself,
the allocation of memory space to processes, and the order
of CPU usage of processes. The memory space allocated to
a process is isolated from one allocated to other processes by
an access control mechanism provided by the OS. In addition,
modern OSs enable event-driven execution of processes by
switching the execution of processes in a short time. In this
way, today’s computer has a stack structure consisting of a

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran Tariq .

hardware layer, an OS layer, and each layer works together to
perform complex tasks.

On the OS, there are usually multiple processes running in
parallel. General OSs provide the mechanisms called inter-
process communication (IPC) such as shared memory, named
pipe, and network socket [1]–[5]. They enable the running
processes to cooperate each other to perform a single task.
Multiple applications also exchange messages using IPC to
perform a single task. Typical example of the latter case is
a web browser application working with password manage-
ment applications, music applications, and document man-
agement applications.

B. RELATED WORKS
Although IPC is used in many applications, attacks aimed at
IPC have not been considered serious threats because data
transmissions within a local device were considered secure.
However, this is not true nowadays. Most of devices are
connected to the Internet and it makes easier to break into

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 137367

https://orcid.org/0000-0002-7504-9680
https://orcid.org/0000-0002-1758-0887
https://orcid.org/0000-0003-2787-8334


M. Suzuki et al.: Key Agreement Over IPC

FIGURE 1. IPC channel including attacker.

devices by exploiting vulnerabilities. McAfee reported that
COVID-19 increases the threat as the number of remote
workers increases [6]. Therefore, it is becoming essential to
consider the security of communications within the device in
recent years.

For the attacker in the device, IPC is attractive attack
surfaces because of two reasons. First, IPC is often used to
exchange critical data in many applications. For example,
in the password manager mentioned above, the password and
personal information are exchanged over the IPC channel.
Second, the security of IPC depends on access control mech-
anisms provided by general OSs (e.g., UNIX permission or
Windows ACL) and they are not always sufficient.

We describe the problem using Figure 1. Alice and Bob
are processes. Alice sends messages over an IPC channel
and Bob receives them. Mallory is an active attacker and
attempts to impersonate Alice or Bob by eavesdropping on
the IPC channel and tampering with the messages. One may
consider that the access control mechanism of OSs prevents
Mallory to access to the channel, but it is not always true
because the access control does not isolate a process from
the other, but only isolates a user from the other, or a user
group from the other. Interestingly, Android and iOS which
run each application on different VMs to isolate them, pro-
vide means to exchange messages between VMs using IPC.
However, Xing et al. reported the cases on Mac OS X and
iOS that the attacker can access resources owned by other
applications using IPC [7]. The paper reported the attacks
on applications with client-server architecture in cases where
access control does not work in IPC. Shao et al. reported
same kind of case on Android OS [8]. Succeeding researches
[8]–[12] focused on the impersonating attack to the client
process (client impersonation). These attacks assume that the
attacker runs with a general user privilege in the same user
session to server process and client process as the legitimate
process, or the attacker runswith a root privilege. The attacker
succeeds the client impersonation if the attacker starts com-
munication with the server earlier than the client. The attacker
can obtain messages from the server by this attack. The
attack is possible because the access control does not work
as a defense mechanism and the IPC mechanism does not
provide mutual authentication between the processes. Note
that it is easy for the attacker to start earlier than the client
in the client-server architecture, because the server always
waits for a process to start communication over IPC and
the client, by contrast, proceeds the communication only
when needed. This fact also indicates that it is practically
difficult for the attacker to start earlier than the server and
impersonate it.

However, Bui et al. proposed in [13] a socket hijacking
attack which enables the attacker to succeed the server imper-
sonation even if the attacker starts after the server. The attack
targets applications that use network sockets. The main idea
of the attack is to interfere with the server’s functionality by
occupying the socket opened by the server and then imper-
sonating it. The attacker can obtain data from the client by
server impersonation if the attack succeeds. Since the attack
is effective even if the server behaves as a daemon, the attack
has expanded the range of applications that can be attacked.
Their paper confirmed that the attack is effective against
several real applications such as password managers.

Although the socket hijacking attack is more powerful
than the previous attacks against IPC, the countermeasure
is still an open problem. Bui et al. showed that the access
control mechanism cannot be applied to a network socket in
Windows, macOS, and Linux. One possible mitigation is to
replace the implementation from using a network socket to
other IPC methods to which Access control can be applied.
However, Bui et al. suspect that it is practically difficult to
replace because the network socket has following advan-
tages over the other IPC methods: many OSs provide it,
the functional differences between OSs are small, and the
implementation of intra-process communication can be used
without major modifications.. As a countermeasure at the
OS layer, it is possible to use an OS to manage access
control on a per-process basis (e.g., SELinux [14]). However,
OSs provide such access control are not yet common, there-
fore countermeasures effective in common environment are
needed.

In [13], Bui et al. stated that cryptographic technology
can become the countermeasure at the application layer if
legitimate processes can share a cryptographic key. Crypto-
graphic communication between legitimate processes keeps
messages secret by encrypting them and message authentica-
tion prevents impersonation because the legitimate receiver
can verify the sender. The difficult point to realize this idea
is to share the cryptographic key between the processes.
Conventional key agreement protocols, such as PKI-based
key delivery and Diffie-Hellman key exchange, achieve a
session key sharing based on a public key certificate issued
by a certification authority or a pre-shared secret. Unfortu-
nately, the OS layer does not provide such a mechanism to
share the key between processes. Processes within a single
application may be able to share the key by using channels
that can only be used between processes in a parent-child
relationship (e.g., memory passing and anonymous pipe).
However, the way to share the key cannot be used between
processes in multiple applications (for example, between a
password manager process and a web browser extension
process).

While IPC has become an attractive attack target, andmany
attacks have been reported at the research level, the secu-
rity of IPC still has many challenges, and it is desirable
to establish countermeasures that can be used in general
environments.

137368 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

FIGURE 2. IPC encryption using KA-IPC.

C. CONTRIBUTION OF THIS PAPER
In this paper, we focus on encrypting the IPC channel and
propose a key agreement protocol over IPC between pro-
cesses, a problem to realize the IPC encryption. We call the
encrypting the IPC channel IPC encryption, and the proposed
key agreement protocol KA-IPC. Figure 2 shows schematic
diagrams of IPC encryption using the proposed KA-IPC.
Alice is one legitimate process that sends messages, and Bob
is the other legitimate process that receives the messages.
Mallory is an active attacker who attempts to impersonate
Alice or Bob by eavesdropping on the IPC channel or tam-
pering with the messages. Alice and Bob exchange key gen-
eration information to establish a key over the IPC channel
that is not protected by technology such as cryptography or
access control. After the KA-IPC, Alice and Bob encrypt the
messages with the key and then transmit them over the IPC
channel.

The main contribution of this paper is to disclose the way
to secure the key agreement over the IPC against the socket
hijacking attacker discussed in [13]. First, we find that the
IPC channel can be regarded as an uncertain channel whenwe
assume the attacker with a general user privilege. and verify
this fact experimentally. Then we propose a key agreement
protocol KA-IPC using the uncertain channel and evaluate
its security on UDP socket. With KA-IPC, Alice and Bob can
establish a secure communication channel over the IPC even
though they do not have public key certificates nor pre-shared
secret in advance. To our best knowledge, this is the first
proposal of a key agreement protocol that focuses on the
uncertainty channel with IPC. In the following, we roughly
sketch their ideas.

First, we discovered the IPC channel, which has been
regarded as a public channel, behaves as an uncertain channel
due to a process scheduling mechanism in a general OS when
processes repeatedly exchange messages over the IPC chan-
nel. We use this fact for KA-IPC. In the proposed KA-IPC,
legitimate processes transmit random numbers repeatedly
over the uncertain channel, and then generate a key using
shared random numbers and detect the attacker. Since the
attacker who tries to impersonate the server can only obtain
this random number probabilistically, KA-IPC makes it

probabilistically difficult for the attacker to obtain the key.
KA-IPC is a countermeasure at the application layer, so it can
be implemented using any IPCmethod other than the network
socket.

As for the security of public channels such as the Internet,
Shannon indicated in [15] that if an attacker can eavesdrop
on all messages, i.e., if the attacker can obtain the same
messages as a legitimate message receiver, the legitimate
message sender and receivers cannot communicate securely
without sharing a secret key in advance. On the other hand,
Wyner proposed awiretap channelmodel inwhich an attacker
eavesdrops on a noisy channel [16]. Wyner’s wiretap channel
model assumes that the attacker cannot obtain all messages
received by the receiver because of the noise. Wyner showed
that when the attacker’s noise is larger than the legitimate
receiver’s noise, it is information-theoretically possible to
share messages between only legitimate entities due to the
uncertainty of the noise channel, even if the legitimate sender
and receiver do not share a secret key in advance. Later,
Maurer proposed a key sharingmethod over the wiretap chan-
nel using a capability difference between legitimate entities
and the attacker, which is effective even when the attacker’s
noise is less than the legitimate receiver’s noise [17]. The
proposed key sharing consists of random number exchange
over awiretap channel and information reconciliation and pri-
vacy amplification over a public channel. Such key sharing,
which consists of random number exchange over an uncertain
channel and information reconciliation [18], [19] and privacy
amplification [18], [20] over a public channel, can be seen in
many studies [21]–[23].

Though the attacker in wiretap channel model is weaker
than that in Dolev-Yao model or Cannetti-Krawczyk model,
it also captures the real world communication channel and
many studies from both theoretical and applied aspects
have been done since seminal works by Wyner and
Maurer. As theoretical studies, Aggarwal et al. [24] and
Wang et al. [25], [26] extended the wiretap channel model
and proposed a new model that assumes active attacks such
as message loss and message transmission as well as eaves-
dropping. In recent years, there has been a lot of applied
studies, especially in the field of wireless communication
channels [27]–[29].

The security of KA-IPC is based on the fact that IPC
is not an ideal environment for the attacker. When multi-
ple processes repeatedly send and receive messages over
the IPC channel, the order of process execution is deter-
mined only by the process scheduler in the OS, and the
order causes for the attacker to fail to receive some of the
messages. Therefore, the IPC channel can be regarded as
an uncertain channel. The main idea of the KA-IPC is as
follows: First, the legitimate processes repeatedly exchange
pairs of a random numbers and an index number as messages
for key generation over this channel. As mentioned above,
the attacker trying to impersonate the server probabilistically
fails to obtain some of them. Then, the legitimate processes
repeatedly exchange only the index numbers associated with

VOLUME 9, 2021 137369



M. Suzuki et al.: Key Agreement Over IPC

the acquiredmessages over the uncertain channel. This allows
the legitimate processes to know obtained random numbers
by each other, i.e., they can share the random numbers.
The legitimate processes use random numbers to generate
a key, which the attacker cannot generate. In addition, even
if the attacker sends index numbers to the legitimate pro-
cesses to impersonate, the legitimate processes can detect
the attacker probabilistically because the legitimate receiver
receives different index numbers from both the legitimate
sender and the attacker. In this way, KA-IPC can make it
probabilistically difficult for the attacker, who tries to suc-
ceed in sharing the key with the client, to impersonate the
server.

Contrary to PKI-based key agreements, KA-IPC is not
a perfect countermeasure against arbitrary impersonating
attacks. In fact, KA-IPC does not provide a cryptographic
means an entity to authenticate the other process to commu-
nicate with. This is because IPC does not have functions for
authentication and thus cannot inherently prevent imperson-
ating. However, KA-IPC can reduce the success probability
of the server impersonation attack to almost zero by correctly
setting the number of exchanging messages as a security
parameter. This paper examines server impersonating attack
scenarios in KA-IPC and shows the security parameter to be
secure against these attack scenarios based on experimental
evaluations.

In this paper, we assume that the attacker’s target is an
application that consists of client-server architecture and uses
a network socket as IPC. We evaluate KA-IPC under the
assumption that the attacker runs in a different user session
than the targets in the same manner as in [13]. However,
the proposed KA-IPC can be implemented not only with a
network socket but also with other IPC methods in prin-
ciple and effective against the server impersonating attacks
targeting other IPC methods. In addition, we can relax the
assumption for the attacker’s privilege. For example, KA-IPC
is effective if it can be guaranteed that the IPC channel has
an uncertainty for the attacker. This may be true even when
the attacker runs in the same user session as the targets,
or the attacker has a root privilege. Note that KA-IPC is
not effective against an attacker with powerful attack capa-
bilities such as forcibly rewriting the execution orders of
processes. In this paper, we exclude such cases to simplify the
discussion.

D. ORGANIZATION
The rest of this paper is organized as follows: Section II
introduces terms and attacks that we focus on. Section III
focuses on properties of the OS and the network socket that
are essential to KA-IPC, and Section IV defines our attack
model. Section V proposes the KA-IPC protocol. Section VI
discusses the attack scenarios. Section VII experimentally
characterizes the communication channel used in KA-IPC
and shows the recommended security parameters in terms of
security. Finally, Section VIII summarizes this paper.

II. PRELIMINARY
A. NETWORK SOCKETS AS IPC
This section describes network sockets as IPC. We explain
it using an example of an application with the client-server
structure. The client and server create sockets using socket
information consisting of an IP address and a port, and they
must share the socket information before starting communi-
cation via the network socket. The server creates a socket
bound to socket information and then waits for the client
to connect to the socket. If the server uses the loopback
interface, i.e., localhost addresses 127.0.0.0/8 or ::1/128when
the server creates the socket, only processes running on the
same OS can connect to the server’s socket. The client also
creates a socket bound to the same socket information, con-
nects to the server’s socket, and exchanges messages with the
server.

The network sockets mainly use TCP or UDP as a transport
layer protocol. We call network sockets using TCP TCP
sockets and one using UDP UDP sockets.

In the TCP socket communication, two processes estab-
lish the connection and communicate one-to-one. Another
process cannot interrupt and communicate with these pro-
cesses after the connection has been established. In addition,
the received message is stored in a receive buffer associated
with the receiver’s socket, and the OS requests resending
of a lost message when the OS finds the lost message by
confirming the received buffer. Therefore, there is no mes-
sage loss in TCP connection in principle, i.e., all messages
sent by the sender are received by the receiver. Because of
these features, the TCP socket communication used within
many applications. However, if a process already takes a port,
another process cannot use this port to create the socket.
To avoid a process cannot communicate by the socket col-
lision, the process using the TCP socket often has more than
one port candidate.

On the other hand, UDP uses a connection-less communi-
cation. At the beginning of the communication, the receiver
goes into a ‘‘waiting’’ state. The receiver only can receive
the message sent during the waiting state. After receiving
a message, the receiver is automatically released from the
waiting state. If the receiver wants to receive the message
again, the receiver needs to go into the waiting state again.
Because the receiver can receive messages only when it is in
the waiting state, in the UDP socket communication, the sent
messages may not be received by the receiver. Therefore,
the UDP socket channel can be regarded as a communication
channel where message loss occurs. Since no process can
basically occupy a port all the time, each process is not
necessary to have several port candidates as TCP communica-
tion. Another important property of UDP socket is that when
multiple receivers receive a message using the same socket,
the receiver who accesses the socket first occupies the socket.
Another receiver can receive a message using the same socket
after the socket is released. Note that a message is received by
only one receiver.

137370 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

B. POTENTIAL VULNERABILITIES OF NETWORK SOCKETS
AS IPC
This section describes potential vulnerabilities of network
sockets as IPC. Any process that knows the port of the target
socket can send to the target socket and receive messages
to the target socket by creating a socket with the same port
as the target. The port can be easily obtained even by a
non-legitimate process through static analysis [13], [30] (e.g.,
examining an application documentation and a source code)
or dynamic analysis (e.g., using a system call ‘‘netstat’’ and
a port scan).

One thinks that an access control mechanism and authen-
tication mechanism are naïve countermeasures. However,
the network socket as IPC provides neither. Another possi-
ble countermeasure could be to establish an authentication
mechanism for processes at the application layer. For that,
processes must have a public key certificate issued by a
certification authority or pre-shared secret, but the OS does
not provide the mechanisms for them.

For these reasons, the attacker can easily impersonate
legitimate processes. Many applications adopt TCP socket
more than UDP socket because of the reliable communica-
tion. However, in such applications, an attacker once estab-
lishes the connection with a legitimate process before another
legitimate process does; the attacker succeeds receiving and
sending all messages between the process with the connec-
tion. If the applications have a client-server architecture,
the attacker can impersonate the client process easily because
the client runs only when necessary. On the other hand,
most of the server process behaves as a daemon. In such an
application, it is difficult for the attacker to start earlier than
the server, i.e., the attacker cannot impersonate the server
easily.

C. SOCKET HIJACKING IN NETWORK SOCKETS
Bui et al. proposed a socket hijacking attack that allows
the attacker to impersonate the server even if the attacker
starts after the server [13]. The attack can be a threat to
many applications because the attack is effective even against
applications where the server runs as a daemon. In this
attack, the attacker interrupts the protocol and impersonates
the server by taking advantage of the fact that it occupies
the socket after the TCP communication establishment and
that the legitimate processes have multiple candidate ports.
In this paper, we focus on the attack and describe the details
below.

First, we describe the attack model assumed in [13]. The
attacker’s goal is to obtain the client’s data by impersonating
the server. The attacker’s target is the application that has the
client-server structure and uses the TCP sockets. The client
and server have at least two port candidates (a primary and
secondary port). The attacker is a non-privileged process. The
server and client run in a same user session and the attacker
runs in a different user session. In addition, the attacker does
not start before the server.

Next, we explain the way that the attacker impersonates the
server by the socket hijacking. At the beginning, the server
starts and then creates a socket with the primary port and
waits for a connection from the client. The attacker starts
after the server and then connects to the primary port where
the server is waiting. The attacker establishes the connection
with the server. The attacker also creates a socket with the
secondary port and waits for a connection from the client.
After that, the client starts and then tries to connect to the
primary port, but the client cannot because the attacker has
taken the primary port. Therefore, the client connects to
the secondary port where the attacker is waiting to connect.
In this way, the connection between the attacker and client
is established, and the attacker can impersonate the server.
In [13], Bui et al. reported that the server impersonating attack
is effective in real applications (e.g., a password manager
and music streaming service) to obtain important information
(e.g., user information).

III. FUNCTIONS OF UNDERLYING OS AND CHANNELS
REQUIRED FOR KA-IPC
We assume the underlying OS employs preemptive mul-
titasking as same as general OSs such as Linux, macOS
and Windows. KA-IPC uses two communication channels,
an uncertain channel and a multiple sender detecting channel,
that can be constructed by IPC, taking advantage of features
of preemptive multitasking. Section III-A describes the fea-
tures of preemptive multitasking to construct communication
channels for KA-IPC. Sections III-B and III-C describe the
way to construct the uncertain channel and multiple senders
detecting channel using IPC, respectively.

A. PREEMPTIVE MULTITASKING
Most of the current OSs run multiple processes in parallel.
There are two mechanisms for this: cooperative multitasking
and preemptive multitasking. General OSs such as Linux,
macOS, and Windows employ the latter in which the OS
manages the executions and interrupts of running processes.
For preemptive multitasking, the OS uses the CPU’s interrupt
functions to switch between executing and stopping processes
in a short time on the CPU. The execution order of processes
is controlled by a process scheduler built into the OS kernel.
The scheduler periodically determines the order of execution
of processes using CPU information such as a hardware timer,
process priorities, and CPU utilizations.

Note that in preemptive multitasking, when processes
repeatedly access hardware and software resources, the order
in which the processes access the resources varies. For exam-
ple, in the UDP socket communication, we consider the case
where multiple senders repeatedly send messages via a fixed
UDP socket channel and a receiver receives them. In this
case, the order of sent messages means the order of access
to the socket by the senders, which is determined only by the
OS. Therefore, each sender cannot know the order in which
the messages were sent and whether the sent messages were

VOLUME 9, 2021 137371



M. Suzuki et al.: Key Agreement Over IPC

received. In addition, the receiver cannot identify the sender
from the received message.

B. COMMUNICATION CHANNEL WITH UNCERTAINTY
Here we describe the way to construct an uncertain com-
munication channel with UDP sockets. The uncertainty is
realized by taking advantage of preemptive multitasking. Let
us consider the following communication using the UDP
sockets: The sender repeatedly sends different messages each
time without disconnecting the socket. The receiver repeats
to disconnect and reconnects to the socket for each message
reception, not to occupy the socket for a long time. Under this
setting, the receiver can receive only messages sent when the
receiver is in the waiting state and the execution order of the
process is receiver-then-sender because of the characteristic
of UDP socket. In addition, neither the sender nor the receiver
can know which messages are sent or received by the other.
It is because the execution order of processes is determined
only by the OS, and the order information is stored in the
kernel memory. Therefore, in this case, the communication
channel can be regarded as a channel where the receiver
receives the message probabilistically, i.e., the communica-
tion channel with uncertainty. This is true even when multiple
processes, including the attacker, are sending, or receiving
messages. We call the channel IPC1. Note that it is also
possible to construct IPC1 using other IPC mechanisms in
the same way.

C. COMMUNICATION CHANNEL THAT
PROBABILISTICALLY DETECTS MULTIPLE SENDERS
We describe the way to construct a communication chan-
nel that probabilistically detects multiple senders with UDP
sockets. The channel can be realized by taking advantage
of preemptive multitasking, just like IPC1. Let us consider
the following communication using the UDP sockets: The
sender and receiver repeatedly send and receive messages.
The difference from IPC1 is that the sender always sends
the same message. Due to features of preemptive multi-
tasking when multiple senders repeatedly send messages on
the same socket, the receiver probabilistically receives the
message from each sender. The higher the number of times
the receiver receives the message, the higher the probability
that the receiver receives at least one message from each
sender. If multiple senders send messages with different val-
ues, the receiver can probabilistically detect multiple senders.
Therefore, we can regard this communication channel as a
channel that the receiver can probabilistically detect multiple
senders.We call the channel IPC2. Note that it is also possible
to construct IPC2 using other IPC mechanisms in the same
way.

IV. ATTACK MODEL
In this section, we describe the assumed environment and
model the communication channel used for KA-IPC, which
is proposed in Section V. We also describe an assumed attack
model in this paper, which is the same as in [13]. According

FIGURE 3. Assumed environment and entities.

to the attack model, we organize attack scenarios on KA-IPC
and theoretically calculate attack success probabilities in each
scenario in Section VI, and experimentally determine the
probabilities in Section VII.

A. SECURITY GOAL
Current cryptography is considered secure for general use
if the computational complexity of any attack is at least
2128. This is simply called ‘‘the security level is at least
128 bits.’’ We discuss the security in terms of the attack
success probability. In this paper, we consider that KA-IPC
achieves 128-bit security when the attack success probability
is less than 2−128 for all possible attack scenarios under the
attack model described in this section.We describe the details
of the attack scenarios in Section VI.

B. ASSUMED ENVIRONMENT
In the following, we describe the communication channel
as the abstraction of UDP socket. In Figure 3, among the
legitimate processes, Alice plays as the sender process and
Bob as the receiver process. We assume that Mallory plays as
an active attacker, who exchanges messages with the client
to impersonate the server. Mallory runs with a non-privileged
user in a different user session than Alice and Bob. Mallory
only does what a process with a non-privileged user running
on the OS can do, i.e., Mallory cannot access memory spaces
used by other processes. Mallory creates a socket with the
same socket information as Alice and Bob. Note that Mallory
cannot eavesdrop directly on the UDP socket channel because
of characteristic of the UDP socket channel. Instead, Mal-
lory can receive a message sent by Alice to Bob, and then
resend the received message to Bob. It can be regarded as
eavesdropping, so we call this behavior eavesdropping in this
paper. Mallory can also behave tampering with a message by
sending a different message after receiving a message like
eavesdropping. However, tampering is not an effective for the
server hijacking in KA-IPC, so we consider the attacker who
receives, sends (inserts), and eavesdrops. We assume that the
attacker does not start earlier than the server. It is a realistic
assumption, assuming that the server is running as a daemon.

C. COMMUNICATION CHANNEL USED IN KA-IPC
1) MODELING COMMUNICATION CHANNEL
In Section III, we explained that the UDP socket channel
could be regarded as IPC1 (Communication channel with

137372 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

FIGURE 4. Sent data by sender.

uncertainty) and IPC2 (Communication channel that proba-
bilistically detects multiple senders) when the receiver and
sender transmit messages repeatedly. The only difference
between IPC1 and IPC2 is the content of messages, and the
essential nature of these channels is the same: both these
channels take advantage of the uncertainty of the execution
order of processes. In the following, we model the uncertain
communication channel.

The UDP socket channel between the sender Alice and the
receiver Bob is denoted by C(A,B). We divide the time by an
execution of Bob and call the interval a period. Alice sends
n(t) messages during a period t and they are denoted by xi(t)
(1 ≤ i ≤ n(t)). Bob certainly receives one of the messages
xi(t) during the period t . The probability of Bob’s receiving
the i-th message xi(t) in the period is denoted by

{pC(A,B)
xi(t)

= probC(A,B)(A→xi(t) B)}i.

2) VALIDITY OF OUR CHANNEL MODEL
The model in Section IV-C1 implicitly assumes that Alice
never occupies the communication channel over the long time
and Bob receives a message within a certain time period.
In this paper, we experimentally confirm that this assump-
tion holds on Linux. We show the environment used in the
experiment below.
• CPU: BROADCOM BCM2837 ARMv8 4core 1.2GHz
• OS: Raspbian 4.9.2 64bit
• RAM: 1GB
• Language: C
• Compiler: gcc 4.9.2

We used Raspberry Pi3 model B [31] for hardware and soft-
ware. We explain this reason in Section VII-A.

We run two processes, a sender and a receiver in a same
user session. The sender sends 1, 2, 3, . . . as messages and
the receiver iterates to receive messages. In the experiment,
the receiver receives 1,000messages in a trial, and we execute
100 trials. Figure 4 picks up a part of experimental results.
It does not only support the assumption, but also shows that
the UDP socket is definitely uncertain.

D. ATTACKER’S ABILITY
1) BASIC ACTIONS
This section describes what the attacker Mallory can do.
As described in Section IV-B, Mallory can access the chan-
nel and send and receive messages, like Alice and Bob.

FIGURE 5. Attacker’s action.

We denote the channel between the sender Alice and the
receiver Bob with Mallory by C(A,B;M ). Here, Mallory is
considered as a noise factor in the channel C(A,B). In the
consideration of success probability of attacks, we also use
the notations C(A,M;B) and C(M ,B;A) to specify the cor-
respondence between the entities and the rolls. For example,
we use C(A,M;B) when we consider the event that the mes-
sages sent by Alice are not received by Bob, but by Mallory.

Figure 5 (a) shows the schematic of the communication
channel when Mallory acts as Alice. Mallory sends n′(t)
messages, zj(t) (1 ≤ j ≤ n′(t)), during the period t , and at
this time, Alice also sends n(t) messages xi(t) (1 ≤ i ≤ n(t)).
Bob receives a message y(t) sent by either Alice or Mallory
in period t , i.e., xi(t) or zj(t). Let PM (s)[A] and P[M (s)] be
the probabilities that Bob receives a message from Alice and
Mallory during t , respectively. They are given by

PM (s)[A] =
∑
i

PC(A,B;M )(xi(t)),

P[M (s)] =
∑
j

PC(M ,B;A)(zj(t)),

where M (s) means Mallory acting as a sender. We omit the
notation if the roll of Mallory is obvious from the context
Then the following relationship holds: P[A]+ P[M (s)] = 1.
P[A] and P[M (s)] can be calculated by the sum of the prob-
abilities that Bob receives the message xi(t) sent by Alice
and the message zj(t) sent by Mallory, respectively. Figure 5
(b) shows the schematic of the communication channel when
Mallory acts as Bob. Mallory receives message z′(t) = x ′i (t)
(1 ≤ i′ ≤ n(t)) according to the probability distribution
pC(A,M;B)
x ′i (t)

(t) in the same manner as in Section IV-C. Note
that the period t is defined as the execution of Bob, there-
fore Mallory may not receive any message or may receive
more than a message in the period t . In addition, one mes-
sage is received by only one receiver, therefore messages
received by Bob and Mallory are always different in this
channel.

2) SPECIFIC ATTACK METHODS
Here, we describe the specific attack methods by Mallory.
As mentioned in Section IV-B, Mallory can eavesdrop,
which is equal to ‘‘receive then resend,’’ insert (send), and

VOLUME 9, 2021 137373



M. Suzuki et al.: Key Agreement Over IPC

receive messages. We denote their success probabilities by
peve, pins = P[M (s)], and precv = P[A], respectively.
If Bob receives the resent message, it can be considered
as the success of eavesdropping. Thus, peve is given by∑n

i=1 prob
C(A,B;M )(A →xi(t) M ) · probC(A,B;M )(M →xi(t)

B|A →xi(t) M ). To simplify the discussion, we consider
eavesdropping as a one of message sending. Let P[A] and
P[M (e)] be the probabilities that Bob receives a message
from Alice and Mallory during t , respectively. The following
relationship holds: P[A] + P[M (e)] = 1. P[A] and P[M (e)]
are the sum of the probabilities that Bob receives the message
xi(t) sent by Alice and the message x ′i (t) resent to eavesdrop
by Mallory, respectively.

3) CONSTRAINTS ON ATTACKS
As described in Section IV-B, an attacker cannot access
information stored in the memory allocated to each pro-
cess such as intermediate and resulting values of encryption
or decryption function during cryptographic communication
after KA-IPC, and a cryptographic key generated in KA-IPC.
It is because processes with a non-privileged user, includ-
ing the attacker, cannot access the memory space used by
other processes. In addition, we do not assume message
leakage by side-channel attacks such as timing attacks and
row-hammer attacks as in [13]. We do not either assume that
DoS attacks interfere with the protocol execution since the
attacker’s goal is to obtain the client’s data by impersonating
the server. We also assume that the attacker starts after the
server, like the assumption in the socket hijacking attack [13].
The attacker interrupts the protocol and impersonates the
server by inserting messages or eavesdropping, as described
in Section IV-D2.

E. RELATIONSHIP WITH CONVENTIONAL
COMMUNICATION CHANNEL MODELS
We explain the differences between our channel model and
the conventional one. Although there is no physical noise
on the UDP socket channel, the channel is regarded as a
channel where a message probabilistically is lost as described
in Section II-A. A remarkable difference between UDP
socket and precedent studies is that a message is received
by only one receiver when there are multiple receivers.
Therefore, our communication channel model is neither
compatible with the wiretap channel model [16] where
the attacker only eavesdrops nor the broadcast model [17]
where multiple entities probabilistically receive broadcasted
messages.

V. KEY AGREEMENT OVER IPC CHANNEL
We propose a key agreement protocol over an IPC channel,
KA-IPC. This paper describes KA-IPC over a UDP socket
channel; note that the socket hijacking [13] does not occur
in the UDP socket communication. KA-IPC enables cryp-
tographic communication over a TCP socket channel (or a
UDP socket channel) using a key, and it enables IPC between
processes while keeping messages secret from the attacker

FIGURE 6. Protocol diagram of proposed key agreement (KA-IPC).

trying to impersonate the server. This section describes the
basic concept of KA-IPC and then explains details of each
step of KA-IPC.

A. BASIC CONCEPT
KA-IPC uses two channels, the uncertain communication
channel IPC1 and the channel that can detect multiple
senders IPC2. These channels realizes that the client and
server share random numbers to generate a key and detect
the attacker. KA-IPC make it probabilistically difficult for
an attacker to share a key with the client for the server
impersonation. KA-IPC has security parameters, the numbers
of sent and received messages, which can be increased to
reduce the success probability of the server impersonation
attack.

Figure 6 shows a protocol diagram of KA-IPC. KA-IPC
consists of the following six steps:
• Step 1: Start
• Step 2: Random number exchange
• Step 3: Index exchange
• Step 4: Key generation
• Step 5: Key verification
• Step 6: Attacker detection

In the following, we describe each step in detail. We denote
the numbers of receivingmessages over the IPC1 channel and
IPC2 channel asmIPC1 andmIPC2, respectively, and similarly,
the number of sending messages over the IPC1 channel and
IPC2 channel as nIPC1 = n(t) · mIPC1 and nIPC2 = n(t) ·
mIPC2, respectively. Here, n(t) is the number of sent mes-
sages during t . These numbers of sending and receiving mes-
sages are determined as the specification of the protocol in
advance.

137374 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

B. STEP 1: START
After starting, the server waits until it receives a start signal
‘‘HELLO’’, (s, c) over the IPC2 channel. The client starts and
then sends the start signal.

C. STEP 2: RANDOM NUMBER EXCHANGE
The client and server each repeatedly send and receive a pair
of a random number and index over the IPC1 channel. The
client sends a pair of a random number r (c)i and index i,
(r (c)i , i), similarly, the client sends a pair of a random number
r (s)i and index i, (r (s)i , i). In this step, the client and server
each receive mIPC1 random numbers. If the client and server
cannot receive mIPC1 random numbers, they sent an attacker
detection signal in Step 6.

D. STEP 3: INDEX EXCHANGE
The client and server each repeatedly send and receive
indexes received in Step 2 as index information Index(c),
Index(s) over the IPC2 channel, respectively. The client and
server send an attacker detection signal in Step 6 if they
receive different values more than once or cannot receive
mIPC2 index information in this step. The client and server
can identify random numbers associated with received index
information, i.e., they can know random numbers that were
successfully shared in Step 2. The client and server share
2mIPC1 random numbers through Steps 2 and 3.

E. STEP 4: KEY GENERATION
The client and server each generate a cryptographic key
from a key derivation function (KDF) using 2mIPC1 random
numbers shared between them. For example, HKDF based on
hash-basedmessage authentication code (HMAC) [32] can be
used for KDF. When the client and server successfully share
random numbers in Steps 2 and 3, the keys generated by each
client and server have the same value.

F. STEP 5: KEY VERIFICATION
The client and server each exchange amessage authentication
code (MAC) value calculated using the key generated in Step
4 over the IPC2 channel and check whether they succeed in
generating the same key. In this step, they detect the attacker
in the same way as in Step 3. The client and server repeatedly
send and receive a pair of nonce, nonce(c) and nonce(s),
and calculated MAC value MAC (c)

= MAC(nonce(c), key)
and MAC (s)

= MAC(nonce(s), key), respectively, i.e., they
exchange MAC value information (MAC (c), nonce(c)) and
(MAC (s), nonce(s)). After receiving MAC value information,
the client and server calculate a MAC value from received
nonce and own key, and check whether the MAC value is the
same as the received MAC value. If the client or server finds
that any of the following is true, the client or server detects
an attacker and sends an attacker detection signal in Step 6.

• The values of received mIPC2 MAC value information
are not all the same.

• The received MAC value and the calculated MAC value
are different.

• mIPC2 MAC value information are received.

G. STEP 6: ATTACKER DETECTION
The client and server each repeatedly send and receive
attacker detection signals Detect (c) and Detect (s) over the
IPC2 channel. They send the attacker detection signal to
inform whether an attacker is detected in Step 3 and Step 5.
The client and server terminate KA-IPC as the key sharing
failed when they detect the attack.

VI. SECURITY OF KA-IPC
In this section, we discuss the security against the server
impersonation attack in KA-IPC and estimate the attack
success probability. we first define what success in the
server impersonation in KA-IPC is. Then, we describe pos-
sible attack scenarios based on the attack model defined in
Section IV and explain their success probabilities. We do not
describe trivial attacks such as brute force attack on the shared
key and focus on most likely scenarios for simple discussion.
We neither consider the attacks using vulnerabilities outside
of KA-IPC, such as to obtain a seed for random number gen-
eration by privilege escalation attacks, or similarly to obtain
the client’s key by side-channel attacks. As described in Sec-
tions IV-C1 and IV-C2, the attacker can eavesdrop, receive,
and insert messages. In the following, we use ‘‘obtain’’ to
indicate that the attacker uses these actions to obtain a specific
message.

A. DEFINITION OF SUCCESSFUL SERVER IMPERSONATION
IN KA-IPC
We define the success of the server impersonation attack
as the attacker generating the same key as the client’s key
without the client detecting the attacker in KA-IPC. The
attacker must satisfy following two conditions to success the
attack.

Condition 1: Random number sharing
The attacker obtains random numbers used by the
client for key generation in Step 2 (Random number
exchange) and identifies exactly those used for key
generation in Step 3 (Index exchange).

Condition 2: Detection avoidance
The client does not detect the attacker in Steps 3, 5
(Key verification), and 6 (Attacker detection).

Note that even if the server detects the attacker, the server
impersonation attack succeeds if the client does not obtain
the attacker detection signal from the server. We describe the
details of this case in Section VI-B2.

B. ATTACK SCENARIOS
Next, we investigate the attacker’s possible actions con-
cerning the conditions described in Section VI-A and
the resulting client’s and server’s states. Sections VI-B1
and Section VI-B1 describe details about Condition 1 and

VOLUME 9, 2021 137375



M. Suzuki et al.: Key Agreement Over IPC

FIGURE 7. Flow of information used for key generation.

Condition 2, respectively. Section VI-B3 describes details of
attack scenarios as their compositions.

1) RANDOM NUMBER SHARING
Here, we describe the way that the attacker obtains ran-
dom numbers, which are used to generate the client’s key
(Condition 1). First, we explain the random numbers used
by the client for key generation. Figure 7 shows the flow
of information related to key generation when KA-IPC is
performed only by the client and server. To share the random
numbers between the client and server, it is necessary to
exchange the random number information in Step 2 (Random
number exchange) and the index information in Step 3 (Index
exchange). In Fig. 7, the same color means the same value,
and arrows means show the flow of information in Step 2 and
Step 3. We focus on the client’s key. The key is generated
by 2mIPC1 random numbers. Half of them, mIPC1 random
numbers, are received in Step 2. The remaining are a subset
of random numbers sent by the client in Step 2 and then
identified using received index information in Step 3. Let Rr
be the random numbers received in Step 2, and Rs be the
remaining.

Next, we explain the way for the attacker to share all
random numbers used for a key generation with the client,
i.e., to obtain Rr and Rs. In the following, we do not consider
whether the attacker shares random numbers with the server.
As described in Section IV-C1 and Section IV-C2, the attacker
can receive, eavesdrop, and insert messages in Step 2 and Step
3 to obtainRr andRs with the client. Here, the messages mean
random number information in Step 2 and index information
in Step 3.

First, we describe the attacker’s actions and the client’s and
server’s states caused by the attacker’s actions to obtain Rr
and Rs in Step 2.
Obtaining Rr :
The attacker only can ‘‘eavesdrop’’ and ‘‘insert’’ random

number information to obtain Rr . This paper only considers
that the attacker performs either ‘‘eavesdropping’’ or ‘‘inser-
tion’’ in an attack scenario, but not both. For each action,
the following Cases (1-1) or (1-2) must be satisfied.

(1-1): The attacker ‘‘eavesdrops.’’ The attacker obtains at
leastmIPC1 random number information sent by the
server, and the client obtainsmIPC1 random number
information eavesdropped by the attacker.

(1-2): The attacker ‘‘inserts’’ random number informa-
tion. The client obtains mIPC1 random number
information from the attacker.

TABLE 1. Attacker’s action in Step 2.

Obtaining Rs:
The attacker must obtain at least mIPC1 random number

information sent by the client in Step 2 to obtain Rs. The
attacker can ‘‘eavesdrop’’ or ‘‘receive’’ to obtain random
number information. For each action, the attackermust satisfy
the following Cases (2-1) or (2-2).

(2-1): The attacker ‘‘eavesdrops.’’ The attacker obtain at
least mIPC1 random number information sent by
the client, and the server obtains mIPC1 from the
random number information eavesdropped by the
attacker.

(2-2): The attacker ‘‘receives’’ mIPC1 random number
information sent by the client.

Table 1 shows these attacker’s actions in Step 2 for the
attacker to obtain Rr and Rs. The attacker must perform either
of Cases (1-1) and (1-2), and either of Cases (2-1) and (2-2)
in Step 2. Therefore, the attacker’s actions in Step 2 can be
classified into Cases (a) - (d).

Next, we describe the attacker’s actions, and the client’s
and server’s states caused by the attacker’s actions necessary
to obtain Rr and Rs in Step 3. The attacker decides the
next action in Step 3 under the assumption that he succeeds
on the action in Step 2. In the following, we describe the
attacker’s actions in Step 3 and the client’s and server’s
states caused by the attacker’s action for each action case in
Step 2.
Obtaining Rr :

(1-1): The attacker ‘‘receives’’ index information sent by
the client once.

Since the attacker assumes to have obtained the random
number information, including the one obtained by the client
in Step 2, the attacker tries to obtain the index information
sent by the client to identify Rr . Unlike the client and server,
the attacker does not need to perform attacker detection, so it
is sufficient if the attacker obtains the index information
once. The possible attacker’s actions to obtain the index
information are ‘‘eavesdropping’’ and ‘‘receiving.’’ Due to
the characteristics of IPC2, even if the attacker ‘‘receives’’
one index information, the server can obtain mIPC2 index
information as if there was no attacker. In the following,
we do not consider that the attacker ‘‘inserts’’ an obtained
message (i.e., ‘‘eavesdrops’’), but only consider the case of
the attacker ‘‘receives.’’

(1-2): The attacker repeatedly ‘‘inserts’’ index informa-
tion associated with the random number obtained
from the client in Step 2, and the client obtains
mIPC2 index information sent by the attacker.

137376 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

TABLE 2. Possibility of detecting attacker.

Rr is the random numbers associated with the index infor-
mation in Step 3, among the random number information
received by the client in Step 2. Therefore, the attacker
must repeatedly insert index information, and the client must
obtain mIPC2 index information from the attacker for the
avoidance of the attacker detection by the client. Otherwise,
the client receives at least index information from the server
so that the client detects the attacker. We discuss the avoid-
ance of the attacker detection in detail in Section VI-B2.
Obtaining Rs:
(2-1), (2-2): The attacker ‘‘receives’’ index information

sent by the server once.
It is the same as Case (1-1) when the attacker obtains Rr .

In the above, we have discussed the cases that the attacker
shares random numbers with the client without considering
that the attacker shares random numbers with the server, but
in Case (a), the attacker shares random numbers with both.

2) DETECTION AVOIDANCE
One of the conditions for the attacker to generate the same
key as the client’s key is that the attacker avoids attacker
detections by the client (Condition 2). Here, we assume that
Condition 1 is satisfied and describe the way the attacker
avoids the detections in Steps 3, 5, and 6. The following
events are possible for the client to detect the attacker in
KA-IPC.

(3-1): The client receives multiple index information with
different values in Step 3 (Index exchange).

(3-2): The client receives multiple MAC values with dif-
ferent values in Step 5 (Key verification).

(3-3): The received MAC value does not equal to that
calculated by the client in Step 5 (Key verification).

(3-4): The client receives the attacker detection signal
from the server in Step 6 (Attacker detection).

Table 2 shows the possibility of detecting the attacker by
these events in each case. Case (3-1) occurs probabilistically
when the attacker ‘‘inserts’’ index information in Step 3,
i.e., in Cases (b) and (d). In addition, Cases (3-2) - (3-4)
are probability occur when the client and server share dif-
ferent random numbers, i.e., in Cases (b) - (d). Therefore,
the attacker is probabilistically detected by the client, exclud-
ing in Case (a).

Next, we describe the attacker’s actions to prevent to be
detected by the client, and the client’s and server’s states
caused by the attacker’s actions. Case (3-2) is the event
that the client receives both the MAC information sent by
the server and attacker, and Case (3-3) is the event that the
client receives only the MAC information sent by the server.

In addition, Case (3-4) is the event that the client receives
the attacker detection signal sent by the server. Therefore,
the necessary and sufficient condition for the attacker not
to be detected is that the client does not receive any of the
messages sent by the server in Steps 3, 5 and 6. To achieve
this, the attacker must perform and succeed in at least one
action among the following two actions: the first one is that
the attacker repeatedly obtains messages sent by the server
to prevent the client to receive any message from the server
until the server stops to send messages. Then the attacker
repeatedly inserts a message over the IPC2, and the client
receives the mIPC2 messages from the attacker. The second
is that the attacker starts the steps earlier than the server and
repeatedly inserts a message on IPC2, and the client receives
the mIPC2 messages inserted by the attacker before receiving
those sent by the server. Here, the former always fails because
the attacker obtains the message from the server over the
IPC2 channel under our assumed attack model, as described
in Section IV-C. Therefore, we consider only the latter. The
following is a summary of the attacker’s actions to avoid
detection in each detection event.

(3-1): In Step 3 (Index exchange), the attacker repeatedly
inserts index information, and the client receives
mIPC2 index information from the attacker.

(3-2), (3-3): In Step 5 (Key verification), the attacker
repeatedly inserts a MAC value, and the client
receives mIPC2 MAC values from the attacker.

(3-4): In Step 6 (Attacker detection), the attacker repeat-
edly inserts the attacker detection signal to inform
the client that there is no attacker, and the client
receives mIPC2 attacker detection signals from the
attacker.

3) ATTACK SCENARIOS IN EACH CASE
We summarize the specific attack scenarios in
Sections VI-B1 and VI-B2 below.
Attack Scenario in Case (a):

• In Step 2 (Random number exchange):

(a-1): The attacker ‘‘eavesdrops.’’ The attacker obtains at
leastmIPC1 random number information sent by the
server, and the client obtainsmIPC1 random number
information eavesdropped by the attacker.

(a-2): The attacker ‘‘eavesdrops.’’ The attacker eaves-
drops on at leastmIPC1 of the random number infor-
mation sent by the client, and the server obtains the
mIPC1 random number information eavesdropped
by the attacker.

• In Step 3 (Index exchange):

(a-3): The attacker ‘‘receives’’ index information sent by
the server once.

(a-4): The attacker ‘‘receives’’ index information sent by
the client once.

Attack Scenario in Case (b):

• In Step 2 (Random number exchange):

VOLUME 9, 2021 137377



M. Suzuki et al.: Key Agreement Over IPC

(b-1): The attacker ‘‘inserts’’ random number informa-
tion. The client obtains mIPC1 random number
information from the attacker.

(b-2): The attacker ‘‘eavesdrops.’’ The attacker eaves-
drops on at leastmIPC1 of the random number infor-
mation sent by the client, and the server obtains the
mIPC1 random number information eavesdropped
by the attacker.

• In Step 3 (Index exchange):

(b-3): The attacker ‘‘receives’’ index information sent by
the server once.

(b-4): The attacker repeatedly ‘‘inserts’’ index informa-
tion associated with the random number obtained
from the client in Step 2, and the client obtains
mIPC2 index information sent by the attacker.

• In Step 5 (Key verification):

(b-5): The attacker repeatedly inserts MAC value, and the
client receivesmIPC2 MACvalues from the attacker.

• In Step 6 (Attacker detection):

(b-6): The attacker repeatedly inserts the attacker detec-
tion signal to inform the client that there is no
attacker, and the client receives mIPC2 attacker
detection signals from the attacker.

Attack Scenario in Case (c):

• In Step 2 (Random number exchange):

(c-1): The attacker ‘‘eavesdrops.’’ The attacker obtains
at least mIPC1 random number information sent
by the server, and the client obtains mIPC1 ran-
dom number information eavesdropped by the
attacker.

(c-2): The attacker ‘‘receives’’ mIPC1 random number
information sent by the client.

• In Step 3 (Index exchange):

(c-3): The attacker ‘‘receives’’ index information sent by
the client once.

(c-4): It is the same as (b-4).

• In Step 5 (Key verification):

(c-5), (c-6): These are the same as (b-5) and (b-6),
respectively.

Attack Scenario in Case (d):

• In Step 2 (Random number exchange):

(d-1): The attacker ‘‘inserts’’ random number informa-
tion. The client obtains mIPC1 random number
information from the attacker.

(d-2): It is the same as (c-2).

• In Step 3 (Index exchange):

(d-3), (d-4): These are the same as (c-3), (b-4), respec-
tively.

• In Step 5 (Key verification):

(d-5), (d-6): These are the same as (b-5), (b-6),
respectively.

C. ATTACK SUCCESS PROBABILITY
This section explains the attack success probabilities of attack
scenarios in Section VI-B3 based on the communication
channel model defined in Section IV.
Remind thatPM (e)[A] andP[M (e)] are probabilities that the

receiver Bob receives a message from the sender Alice and
the attacker Mallory when Malory eavesdrops, respectively.
Similarly, PM (s)[A] and P[M (s)] are probabilities that the
receiver Bob receives amessage from the sender Alice and the
attackerMallory whenMalory inserts messages, respectively.
We denote the attack success probabilities in Cases (a) -
(d) using these probabilities in the following. Note that we
neither use PM (e)[A] nor PM (s) in practice because PM (e)[A]+
P[M (e)] = 1 and PM (s)[A]+ P[M (s)] = 1 hold.
Attack Scenario in Case (a):
The success probabilities of each event are given as

follows:

(a-1): P[M (e)]mIPC1

(a-2): P[M (e)]mIPC1

(a-3): 1
(a-4): 1

Therefore, the attack success probability is

PCase (a) = P[M (e)]2mIPC1 .

Attack Scenario in Case (b):
The success probabilities of each event are given as

follows:

(b-1): P[M (s)]mIPC1

(b-2): P[M (e)]mIPC1

(b-3): 1
(b-4): P[M (s)]mIPC2

(b-5): P[M (s)]mIPC2

(b-6): P[M (s)]mIPC2

Therefore, the attack success probability is

PCase (b) = P[M (e)]mIPC1 · P[M (s)]mIPC1 · P[M (s)]3mIPC2 .

Attack Scenario in Case (c):
The success probabilities of each event are given as

follows:

(c-1): P[M (e)]mIPC1

(c-2): 1
(c-3): 1
(c-4) - (c-6): These are the same as (b-4) - (b-6), respec-

tively.

Therefore, the attack success probability is

PCase (c) = P[M (e)]mIPC1 · P[M (s)]3mIPC2 .

Attack Scenario in Case (d):
The success probabilities of each event are given as

follows:

(d-1): P[M (s)]mIPC1

(d-2) - (d-6): These are the same as (c-2), (c-3),
(b-4) - (b-6), respectively.

137378 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

Therefore, the attack success probability is

PCase (d) = P[M (s)]mIPC1 · P[M (s)]3mIPC2 .

These attack success probabilities can be reduced by
increasingmIPC1 andmIPC2, i.e., it indicates that KA-IPC has
a trade-off between execution time, which increases propor-
tionally to the number of exchanging messages, and security.

VII. EVALUATION OF KA-IPC IMPLEMENTATION
As described in Sections IV and VI, this paper evaluates the
security of KA-IPC in terms of the attack success probability.
KA-IPC can set the numbers of sending and receiving as secu-
rity parameters, respectively. The attack success probabilities
are calculated based on the behaviors of the communication
channels using KA-IPC and the security parameters. Since
the communication channels used in KA-IPC are based on the
characteristics of an actual OS, the behavior of the channel
is likely to be highly dependent on the OS. In this paper,
we experimentally examine the behavior on Linux and esti-
mate the security parameters to perform KA-IPC securely,
i.e., to satisfy 128-bit security.

A. EVALUATION ENVIRONMENT
As in Section IV-C2, we chose Raspberry pi 3 and Rasp-
bian [31] as the experimental environment. Raspbian is one
of Linux with a full-function like PC Linux, and Raspberry
pi 3 and Raspbian are widely used in IoT devices. By exper-
imentally verifying that the overhead of KA-IPC is small on
the environment, we demonstrate that the applicable scope
of this technology is larger than such a scope of [13], which
includes high-end devices such as servers andmulti-user PCs.

We run three processes: a sender that repeatedly sends
messages, a receiver that repeatedly receives messages, and
an attacker that repeatedly eavesdrops or inserts messages.
The sender and receiver run with a non-privileged user in the
same user session. This is based on the assumption that an
actual application using IPC, such as the password manager
using IPC, denoted in Section I. The attacker runs with a
non-privilege user in a different user session as the sender
and receiver.

B. PARAMETERS FOR EXPERIMENT
In KA-IPC, the process priority and the frequency of
exchanging messages intuitively seem to influence the attack
success probabilities. In Raspbian and other Linux OSs,
the process priority can be determined by a nice value set by
nice command [33], and the frequency can be set by insert-
ing sleep function [34]. We experimentally examined that
whether the priority and frequency affect the attack success
probabilities. As a result, we confirmed that the process prior-
ity does not essentially affect the attack success probabilities,
but whether the insertion of the sleep function does. When
the sleep function is not inserted, the values of P[M (e)] and
P[M (s)] are smaller, i.e., the number of messages sending
and receiving messages in each step can be reduced so that
the execution time of KA-IPC can be shortened. For this

reason, it is better not to insert the sleep function in KA-IPC.
Appendix A shows the details of the experimental results.
This section describes the experimental results when the fol-
lowing parameters are used, and then we estimate the security
parameters to satisfy 128-bit security under the execution
environment using the result.

Process priority:
The sender, receiver, and attacker are 0.

Frequency of exchanging messages:
The sender, receiver, and attacker do not insert sleep
function.

C. EXPERIMENTAL DETAILS
The attack success probabilities in Section VI can be calcu-
lated using the security parameters (the numbers of receiving
mIPC1 andmIPC2) and the probabilities P[M (e)] and P[M (s)].
These probabilities are dependent on the behavior of the
communication channels. In this section, we experimentally
obtain these probabilities.

KA-IPC must be decided both the number of receiving
and sending messages as a protocol specification. The num-
bers of sending nIPC1 and nIPC2 over each communication
channel IPC1 and IPC2 can be calculated from the numbers
of receiving mIPC1 and mIPC2 and the number of sending
messages during t , n(t), as follows: nIPC1 = n(t) · mIPC1
and nIPC2 = n(t) · mIPC2. Since n(t) is dependent on the
communication channel, we experimentally obtain n(t) in
this section. We explain the details of experiments. We fin-
ished the measurement in each experiment when the receiver
receives 1,000 messages, and we measured 100 trials.
Experiment 1 (Measurement of P[M (e)]): The attacker

repeatedly eavesdropped. The attacker created the same UDP
socket as the receiver and eavesdropped on the UDP socket
channel. The attacker and the receiver each recorded the
received messages. By comparing each received message,
we calculated the probability that the receiver’s messages
contain attacker’s messages contains, as P[M (e)].
Experiment 2 (Measurement of P[M (s)]): The attacker

repeatedly inserted messages to the receiver. The receiver
recorded the received messages. We calculated the probabil-
ity that the receiver’s messages contain the messages sent by
the attacker, as P[M (s)].
Experiment 3 (Measurement of n(t)): The attacker repeat-

edly inserted a message to the receiver. The sender sent a
value as a message to the receiver while counting the value.
The receiver recorded the received messages. We calculated
the total number of messages sent by the sender from the
received messages, and then calculated the number of sent
messages until the receiver receives one message, as n(t).

D. EXPERIMENTAL RESULTS
Table 3 and Figure 8 show the results of each experi-
ment. In Section VII-E, we estimate the security parameters
of KA-IPC using the worst values of P[A(e)] and P[A(s)]

VOLUME 9, 2021 137379



M. Suzuki et al.: Key Agreement Over IPC

TABLE 3. Probabilities obtained from experiments 1-3 in UDP socket.

FIGURE 8. Histogram of experimental results.

obtained from each experiment and the smallest integer above
the worst value of n(t), n(t) = d3.88e = 4.

E. SECURITY PARAMETERS
The security of KA-IPC depends on the behaviors of the
communication channels and the security parameters, mIPC1
and mIPC2, which are the numbers of receiving over the
IPC1 channel and IPC2 channel. We estimate the appro-
priate security parameters using the experimental results in
Section VII-D. This section considers the security param-
eters for KA-IPC to achieve 128-bit security, as described
in Section IV. For simple discussion, we assume that the
random numbers are 128 bit in Step 2 and that the attacker
fails the attack if the attacker does not know all the random
numbers used for the client’s key generation. For KA-IPC to
achieve 128-bit security, the attack success probability shown
in Section VI must satisfy the following inequality.
• PCase (a) ≤ 2−128

• PCase (b) ≤ 2−128

• PCase (c) ≤ 2−128

• PCase (d) ≤ 2−128

When we focus on the exponential parts of the above equa-
tions, they are simultaneous linear inequalities. We consider
the way to select security parameters that satisfy the above
inequalities while reducing the execution time of the proto-
col. Since the bottleneck in the execution time is repeatedly
exchanging messages, the approximate execution time can be

estimated as 2mIPC1+ 6mIPC2. Therefore, selecting the opti-
mal security parameters can be regarded as a linear program-
ming problem to find the minimum value of 2mIPC1+6mIPC2
(and mIPC1 and mIPC2 that gives it) after satisfying the above
inequalities. We calculated mIPC1 and mIPC2 using the exper-
imental values in Section VII-D. As a result, mIPC1 is 12,
mIPC2 is 40, nIPC1 is 48 and nIPC2 is 160. The execution time
for 2mIPC1 + 6mIPC2 in this experimental environment was
about 8.5 ms. From the results, we confirmed that KA-IPC
could be implemented in a sufficiently realistic time.

VIII. CONCLUSION
This paper showed that it is possible to construct an uncertain
communication channel using UDP sockets as IPC and pro-
posed a key agreement protocol KA-IPC using this channel.
We also experimented on a Raspberry pi, which is not a
rich environment, and showed that KA-IPC could realize
secure key sharing within 8.5 ms. This result suggests that
KA-IPC can be used not only in rich environments but also
in mid-range devices such as IoT devices and smartphones.
KA-IPC is expected to be useful for applications that work in
conjunction with a web browser, such as password managers,
where real-time is not essential. Although the way to share
a key for cryptographic communication between processes
has not been established, KA-IPC has shown it. Using TCP
sockets (or UDP sockets) for cryptographic communication
between processes using a cryptographic key shared using
KA-IPC, it is possible to protect communication messages
from the attacker who interrupts the protocol and imperson-
ates the server, such as the socket hijacking attack.
The basic concept of KA-IPC is to utilize the uncertainty

of the communication channel caused by a general OS’s
characteristics for the key agreement. Although this paper
describes the implementation of KA-IPC using UDP sockets,
it can be applied to any IPCmethod. KA-IPCmay be effective
in situations where access control mechanisms cannot be used
for IPC protection. The specific implementation of KA-IPC
under other IPC mechanisms and attack models and its eval-
uation are future works.
This paper suggests the possibility of using various crypto-

graphic techniques in IPC rather than simply enabling crypto-
graphic communication. It is necessary to adjust the security
parameters for each OS to use KA-IPC in practice. Future
work includes evaluation under more diverse environments
to clarify the recommended parameters.

APPENDIX A
PARAMETERS FOR EXPERIMENTS
This section shows the results of some preliminary experi-
ments to investigate an uncertain channel with UDP sockets.
We experimentally investigate the influence of the parameters
described in Section VII, which are process priority and
frequency of exchanging messages, and we reveal whether
these parameters affect the security of KA-IPC. From the
experiments, we found that only the frequency of exchanging
messages affects the security of KA-IPC. In the following,
we describe the outline and results of each experiment.

137380 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

TA
B

LE
4.

A
tt

ac
ke

rs
an

d
co

un
te

rm
ea

su
re

s.

VOLUME 9, 2021 137381



M. Suzuki et al.: Key Agreement Over IPC

FIGURE 9. Effect of process priority on communication channel.

A. PROCESS PRIORITY
The process priority is one of the parameters that an
attacker can set, and may affect the security of KA-IPC by
affecting the execution order of the processes. Although a
non-privileged user does not control most of the parameters
that affect the execution order of processes, the user can
set a process priority as a nice value of process using the
nice command in Linux OSs. The range of nice value is
from −19 to +19, and the smaller value indicates the higher
process priority. The default nice value is 0. A non-privileged
user can set the nice value of processes, which run in their
user session, from 0 to +19, i.e., lower the process priority.
We experimentally investigated the effect of the

process priority on the behavior of the uncertain communi-
cation channel with a UDP socket. We performed Experi-
ments 1 and 2 in Section VII under conditions where the
attacker varied his process priority from 0 to +19, and the
sender and receiver are default nice value 0. Figure 9 shows
the experimental results. From Fig. 9, we confirmed that the
process priority does not affect the behavior of the uncertain
communication channel. Therefore, there is no need to con-
sider the process priority for the security of KA-IPC under
the environment used in this experiment.

B. FREQUENCY OF EXCHANGING MESSAGES
In KA-IPC, the client and server can set the interval between
sending and receiving messages by inserting the sleep
function. We experimentally investigate the effect of the fre-
quency of exchangingmessages on the uncertain communica-
tion channel. We inserted the sleep function for each sending
and receiving a message by the sender and receiver, respec-
tively, and performed Experiments 1 and 2 in Section VII
while varying the sleep time from 0 ms to 5 ms in 1 ms

FIGURE 10. Effect of frequency of exchanging messages on
communication channel.

increments. The sleep function was not inserted for the
attacker at this time. We also experimented with the case
where the sender and receiver did not insert the sleep function.
Figure 10 shows the results of the experiments. From Fig. 10,
we confirmed whether inserting sleep function affects the
communication channel; without the insertion of the sleep
function, P[A(e)] and P[A(s)] are smaller. In other words,
the values of the security parameters in Section VII can be
made smaller to satisfy 128-bit security, and thus the execu-
tion time of KA-IPC can be shortened. Therefore, it is better
not to insert the sleep function under the environment used in
the experimental environment.

APPENDIX B
USEFULNESS OF KA-IPC
In this section, we describe the usefulness of KA-IPC for real
applications. Table 4 shows the applications have vulnerable
to impersonating attacks in [13]. While the conventional
countermeasure, access control, are effective in few cases,
proposed KA-IPC is effective in many cases.

REFERENCES
[1] W. R. Stevens, UNIX Network Programming, Volume 1, Second Edi-

tion: Networking APIs: Sockets and XTI. Upper Saddle River, NJ, USA:
Prentice-Hall, 1998.

[2] W. R. Stevens, UNIX Network Programming, Volume 2, Second Edi-
tion: Interprocess Communications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1999.

[3] Named Shared Memory. [Online]. Available: https://docs.microsoft.com/
ja-jp/windows/win32/memory/creating-named-shared-
memory?redirectedfrom=MSDN

[4] Named Pipes. [Online]. Available: https://docs.microsoft.com/
ja-jp/windows/win32/ipc/named-pipes

[5] Message Queues. [Online]. Available: https://docs.microsoft.com/
ja-jp/windows/win32/winmsg/about-messages-and-message-
queues?redirectedfrom=MSDN

137382 VOLUME 9, 2021



M. Suzuki et al.: Key Agreement Over IPC

[6] McAfee Labs COVID-19 Threats Report. [Online]. Available:
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-july-2020.pdf

[7] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao, ‘‘The misuse of Android
unix domain sockets and security implications,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2016, pp. 80–91.

[8] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and X. Han,
‘‘Cracking app isolation on apple: Unauthorized cross-app resource access
on MAC OS X and iOS,’’ in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2015, pp. 31–43.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ‘‘Analyzing inter-
application communication in android,’’ in Proc. 9th Int. Conf. Mobile
Syst., Appl., Services, 2011, pp. 239–252.

[10] G. Cohen, ‘‘Call the plumber you have a leak in your (named) pipe,’’ in
Proc. CON, 2017, pp. 1–50.

[11] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, ‘‘CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,’’ in Proc. ACM
Conf. Comput. Commun. Secur., 2012, pp. 229–240.

[12] B. Watts. Discovering and Exploiting Named Pipe Security Flaws for Fun
and Profit. Accessed: Dec. 9, 2019.

[13] T. Bui, S. P. Rao, M. Antikainen, V. M. Bojan, and T. Aura, ‘‘Man-in-the-
machine: Exploiting ill-secured communication inside the computer,’’ in
Proc. 27th USENIX Secur. Symp., 2018, pp. 1511–1525.

[14] SE Linux. [Online]. Available: https://www.nsa.gov/what-we-do/research/
selinux/

[15] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[16] A. D. Wyner, ‘‘The wire-tap channel,’’ Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, 1975.

[17] U. M. Maurer, ‘‘Secret key agreement by public discussion from com-
mon information,’’ IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742,
May 1993.

[18] C. H. Bennett, G. Brassard, and J.-M. Robert, ‘‘Privacy amplification
by public discussion,’’ SIAM J. Comput., vol. 17, no. 2, pp. 210–229,
Apr. 1988.

[19] G. Brassard and L. Salvail, ‘‘Secret-key reconciliation by public discus-
sion,’’ in Proc. Workshop Theory Appl. Cryptograph. Techn. Adv. Cryptol.
Berlin, Germany: Springer-Verlag, 1994, pp. 410–423.

[20] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, ‘‘Gener-
alized privacy amplification,’’ IEEE Trans. Inf. Theory, vol. 41, no. 6,
pp. 1915–1923, Nov. 1995.

[21] C. H. Bennett and G. Brassard, ‘‘Quantum cryptography: Public key dis-
tribution and coin tossing,’’ Theor. Comput. Sci., vol. 560, pp. 7–11, 2014.

[22] A. K. Ekert, ‘‘Quantum cryptography based on Bell’s theorem,’’ Phys. Rev.
Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991.

[23] N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, ‘‘Quantum cryptography,’’
Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, Mar. 2002.

[24] V. Aggarwal, L. Lai, A. R. Calderbank, and H. V. Poor, ‘‘Wiretap channel
type ii with an active eavesdropper,’’ in Proc. IEEE Int. Symp. Inf. Theory,
Feb. 2009, pp. 1944–1948.

[25] P. Wang and R. Safavi-Naini, ‘‘A model for adversarial wiretap channels,’’
IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 970–983, Feb. 2016.

[26] P. Wang, R. Safavi-Naini, and F. Lin, ‘‘Erasure adversarial wiretap chan-
nels,’’ in Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2015, pp. 1061–1068.

[27] R. Liu andW. Trappe, SecuringWireless Communication at Physics Layer.
Springer, 2009.

[28] A. A. Hassan, W. E. Stark, J. E. Hershey, and S. Chennakeshu, ‘‘Crypto-
graphic key agreement for mobile radio,’’ Digit. Signal Process., vol. 6,
no. 4, pp. 207–212, 1996.

[29] T. Aono, K. Higuchi, T. Ohira, B. Komiyama, and H. Sasaoka, ‘‘Wireless
secret key generation exploiting reactance-domain scalar response of mul-
tipath fading channels,’’ IEEE Trans. Antennas Propag., vol. 53, no. 11,
pp. 3776–3784, Nov. 2005.

[30] A. Niakanlahiji, J. Wei, MR. Alam, Q. Wang, and B. T. Chu, ‘‘Shadow-
move: A stealthy lateral movement strategy,’’ in Proc. 29th Secur. Symp.,
2020, pp. 559–576.

[31] Raspberry. [Online]. Available: https://www.raspberrypi.org/
[32] H. Krawczyk, ‘‘Cryptographic extraction and key derivation: The HKDF

scheme,’’ in Advances in Cryptology, T. Rabin, Ed. Berlin, Germany:
Springer, 2010, pp. 631–648.

[33] Nice Command. [Online]. Available: https://man7.org/linux/man-
pages/man1/nice.1p.html

[34] Usleep Command. [Online]. Available: https://man7.org/linux/man-pages/
man3/usleep.3.html

MANAMI SUZUKI received the B.E. degree
in information engineering and the M.S. degree
in information sciences from Tohoku University,
Sendai, Japan, in 2016 and 2018, respectively. She
is currently with Yokohama Research Laboratory,
Hitachi Ltd. Her research interests include hard-
ware security and physically unclonable functions.

DAI WATANABE received the B.S. and M.S.
degrees from Tohoku University, Sendai, Japan,
in 1994 and 1996 respectively, and the Ph.D.
degree from Tokyo University of Science, in 2007.
Since 1999, he has been engaged in research
on information security, cryptography and cryp-
tographic protocol with the Research and Devel-
opment Group, Hitachi Ltd. He is a member of
the Information Processing Society of Japan (IPSJ)
and The Institute of Electronics, Information and

Communication Engineers (IEICE).

TSUTOMU MATSUMOTO (Member, IEEE)
received the Doctor of Engineering degree from
The University of Tokyo, in 1986. He is cur-
rently a Professor with the Faculty of Environment
and Information Sciences, Yokohama National
University, and the Director of the Cyber Phys-
ical Security Research Center, National Institute
of Advanced Industrial Science and Technology.
He has been interested in research and education
of embedded security systems, such as the IoT

devices, cryptographic hardware, in-vehicle networks, instrumentation and
control security, tamper resistance, biometrics, artifact-metrics, and counter-
measure against cyber-physical attacks. He received the IEICE Achievement
Award, the DoCoMo Mobile Science Award, the Culture of Information
Security Award, the MEXT Prize for Science and Technology, and the Fuji
Sankei Business Eye Award. He serves as the Chair for the Japanese National
Body for ISO/TC68 (Financial Services) and the Cryptography Research and
Evaluation Committees (CRYPTREC) and as an Associate Member for the
Science Council of Japan (SCJ).

NAOKI YOSHIDA received the M.S. and Ph.D.
degrees in informatics from Yokohama National
University, in 2014 and 2017, respectively. He is
currently a Specially Appointed Assistant Pro-
fessor with the Institute of Advanced Sciences,
Yokohama National University. His research inter-
ests include embedded system security, artifact
metrics, and instrumentation security.

JUNICHI SAKAMOTO received the M.I.S. and
Doctor of Informatics degrees from Yokohama
National University, Japan, in 2017 and 2020,
respectively. He is currently working as a Post-
doctoral Researcher with YokohamaNational Uni-
versity. He has engaged in various researches
regarding information security, including the
methodology of secure implementation of the
cryptographic algorithms, side-channel attacks to
pairing computation, and laser-based fault attacks.

VOLUME 9, 2021 137383


