
Received August 19, 2021, accepted September 30, 2021, date of publication October 4, 2021, date of current version October 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117444

T2T-MAP: A PUF-Based Thing-to-Thing Mutual
Authentication Protocol for IoT
KARIM LOUNIS AND MOHAMMAD ZULKERNINE, (Senior Member, IEEE)
Queen’s Reliable Software Technology Lab, School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

Corresponding author: Karim Lounis (karim.lounis@queensu.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and in part by Canada
Research Chairs (CRC) Program.

ABSTRACT As security has always been an afterthought of innovation, the security of IoT (Internet of
Things), in general, and authentication, in particular, has become a serious research challenge. Although
many authentication protocols have been proposed in the literature during the past decade, most of them do
not fulfill the IoT security and performance requirements. Furthermore, only a very small number of these
protocols can be used in Thing-to-Thing (T2T) architectures, where Things autonomously authenticate each
other without involving any human intervention. In this paper, we propose a novel lightweight T2T mutual
authentication protocol (T2T-MAP) using PUFs (Physical Unclonable Functions). The protocol employs
PUFs technology to allow each Thing to uniquely identify and authenticate itself in an IoT infrastructure by
using the physical randomness of its circuitry.We design the protocol and perform a security analysis to show
that it is secure against known attacks. Also, we prove the security of the protocol using a security protocol
prover. Finally, we implement a prototype of the protocol on resource-constrained devices and then conduct a
performance analysis to demonstrate that the protocol allows fast authentication, reasonable communication
overhead, and low energy consumption.

INDEX TERMS PUFs, IoT security, Thing-to-Thing authentication, PUF-based authentication.

I. INTRODUCTION
IoT (Internet of Things) allows the interconnection of an
exponentially increasing number of heterogeneous devices,
called Things. This interconnection expands the classi-
cal network of the Internet from a Machine-to-Machine
(M2M) communication system to a Thing-to-Machine (T2M)
and Thing-to-Thing (T2T) communication system. This has
allowed the emergence of various smart applications and new
ubiquitous Internet services in various fields. However, this
important evolution of the Internet to a heterogeneous infras-
tructure has unfortunately invited cybercriminals to exploit
the new infrastructure and mount distributed and devastating
cyberattacks at large-scale as well as at local-scale [1]–[7].
These cyberattacks have demonstrated to the community how
catastrophic and diversified cybercrimes could be in a world
where everything is perceived as a connected computer [8].
Interestingly, most of these cyberattacks, if not all, are due
to security vulnerabilities in the adopted authentication pro-
tocols. In fact, as the service of authentication constitutes the

The associate editor coordinating the review of this manuscript and

approving it for publication was Fung Po Tso .

spine of all security properties,1 any weakness residing on the
adopted authentication mechanism will turn the system into a
brightening target for cybercriminals to conduct cyberattacks.
Moreover, it is important to note that in this new type of
heterogeneous networks, the impact of cyberattacks is not
limited to information being stolen as in classical systems but
may also include the loss of human lives [8]. Therefore, more
research is required to develop new authentication protocols
that are secure and reliable by-design and conform to IoT
security and performance requirements.

The challenge of designing and developing secure and
reliable authentication protocols for IoT has become mature
and well-known to the research community. Many research
works have been conducted for this purpose. In fact, ten
years after the emergence of IoT (i.e., early 2010), a large
number of authentication protocols, known as lightweight
protocols (sometimes ultra-lightweight), were designed and

1In most, if not all, security mechanisms, and during the execution of
the authentication protocol, cryptographic keys are generally established
and derived to provide confidentiality, data integrity, non-repudiation, and
availability. A vulnerable authentication protocol would result in security
breaches w.r.t. the confidentiality, data integrity, and availability of a system.

137384 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4197-4189
https://orcid.org/0000-0001-9366-8285

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

proposed for various IoT wired or wireless infrastructures
(e.g., Cloud, VANETs, MANETs, and WSNs [74]), and IoT
applications (e.g., smart healthcare, home automation, and
smart transportation) [67]. These protocols relied on the
application of classical cryptographic mechanisms, where
some of them adopted ECC (Elliptic Curve Cryptography),
while others employed lightweight cryptographic operations,
such as simple hash functions and bitwise logical operators.
However, these protocols suffer from some known vulner-
abilities that are related to the incorrect usage of classi-
cal cryptographic mechanisms, which has resulted in the
re-occurrence of known cyberattacks but with an IoT fla-
vor. In addition, as IoT aims to transform everything into
a connected computer, Things are most likely going to be
autonomously communicating with each other without any
human intervention. This form of communication, commonly
known as T2T, constitutes a fundamental communication
scheme that future IoT communications tend to adopt. Unfor-
tunately, we have observed that only a few authentication
protocols were proposed in the literature for this particular
communication scheme (i.e., T2T). The need for developing
T2T authentication protocols that conform to IoT security and
performance requirements has seriously increased.

There has been a noticeable convergence from the research
community to develop lightweight and secure-by-design
authentication protocols for IoT using PUFs (Physical
Unclonable Functions) [11]–[25]. In fact, PUFs are physical
one-way functions constructed from the unique nanoscopic-
structure of physical objects (e.g., integrated circuits, crystals,
magnets, lens, solar cells, or papers) and their reaction to
random events. This intrinsic uniqueness in the structure and
reaction is due to the idiosyncrasies in the manufacturing pro-
cess of the objects. It allows not only the unique identification
of an object but also its authentication. Furthermore, it is
assumed to be impossible to clone the PUF of an object (and
hence the object itself), which somehow can be perceived as
a security-by-design that will prevent any possible imperson-
ation and cloning attacks. Thus, PUFs are considered as a reli-
able and prominent physical security technology to develop
lightweight authentication protocols for IoT. Moreover, vari-
ous semiconductor companies have already adopted PUFs for
securing their integrated circuits [58], [59]. Although PUFs
are believed to have security-by-design, the feasibility of
some attacks based on machine-learning [28]–[36] and side-
channel [36]–[43] has been demonstrated.

In this paper, we adopt PUF technology to design and
implement a T2T lightweight mutual authentication protocol
that has security-by-design for IoT. For short referencing,
we attribute the name ‘‘T2T-MAP’’ (Thing-to-Thing Mutual
Authentication Protocol) for the protocol. We first design the
protocol and perform a security analysis to demonstrate the
resilience of the protocol against known attacks. Also, we use
a well-established security protocol verifier to automati-
cally prove some security properties of the protocol. Then,
we implement the protocol on low-cost devices, concretely,
on Arduino development boards. We show that the proposed

protocol performs efficiently in terms of execution time, com-
munication overhead, and energy consumption.

Compared to the existing PUF-based authentication proto-
cols [11]–[25], the proposed authentication protocol is secure
against the attacks that were reported on those protocols as
well as to known attacks [64]. Moreover, the proposed pro-
tocol adopts a new concept of extended challenge-response
pairs (eCRPs) to obfuscate the classical structure of CRPs
(cf. Section IV-A) and make the system resilient to CRPs
disclosure and malicious insider attacks. In addition to that,
the protocol uses the cryptographic concept of distributed
value [9] to allow the transmission of PUF response in a
secure way that prevents attackers from conducting modeling
attacks. Furthermore, the protocol imposes to each authen-
ticating party to use its embedded PUF circuit to establish
mutual authentication, which enforces the service of non-
repudiation. Last but not least, the proposed protocol is purely
lightweight (from a cryptographic perspective) by applying
simple hash functions and logical bitwise operators.

To summarize, the main contributions of this paper are as
follows:

1) We design T2T-MAP, a PUF-based mutual authentica-
tion protocol for IoT. We adopt the concept of eCRPs
to make the protocol secure against CRPs disclosure,
malicious insider, and modeling attacks.

2) We analyze the security of the protocol and discuss
the resilience of the protocol to some known attacks.
Moreover, we use Tamarin [65] to automatically prove
the security of the protocol.

3) We implement T2T-MAP on resource-constrained
devices and evaluate its performance with respect to the
execution time, communication overhead, and energy
consumption for different configurations.

The remainder of the paper is organized as follows.
In Section II, we provide a brief overview of PUFs and
the concept of PUF-based authentication. In Section III,
we review some recent PUF-based authentication pro-
tocols. In Section IV, we design a T2T PUF-based
authentication protocol for IoT. Section V discusses the pro-
posed protocol properties and analyzes its security against
attacks. Also, a formal security analysis using Tamarin is
conducted in the same section. In Section VI, we implement
the protocol and conduct a performance analysis on the pro-
tocol. We conclude the paper in Section VII.

II. PUFs (PHYSICAL UNCLONABLE FUNCTIONS)
PUFs (Physical Unclonable Functions)2 are physical one-
way functions constructed from the unique nanoscopic-
structure of physical objects (e.g., integrated circuits, crystals,
magnets, lens, or solar cells) and their reaction to random
events. It allows not only the unique identification of an
object but also its authentication. In fact, when a given PUF
is excited with a random event, called challenge, the function

2PUFs (Physical Unclonable Functions) are also known as POWFs (Phys-
ical One-Way Functions) [26] or PRFs (Physical Random Functions) [27].

VOLUME 9, 2021 137385

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

returns a unique, unpredictable, and reproducible response.
The set of all possible challenges and their correspond-
ing responses is often referred to as the CRPs (Challenge-
Response Pairs).

Since the emergence of PUFs, researchers have worked
on designing and implementing PUFs by exploiting the
physical characteristics of different materials, including sil-
icon, crystals, magnets, lens, solar cells, and papers. This
has resulted in a large variety of PUFs, including but
not limited to, delay-based PUFs (e.g., Arbiter-PUFs [27],
ring oscillator-PUFs [60], and glitch-PUFs [45]), memory-
based PUFs (e.g., SRAM-PUFs [46], DRAM-PUFs [47],
SR Latch PUF [57], and Rowhammer-PUFs [48]),3

acoustical-PUFs [50], coating-PUFs [49], optical-PUFs
(e.g., paper-PUFs [53], Compact Disc-PUF [52], and liquid
crystal-PUF [54]),4 and magnetic-PUFs [51]. These PUFs
differ from each other in their environmental application,
source of randomness (e.g., semiconductors, lens, crystals,
or magnets), excitation mechanisms (e.g., electronic signals,
beam of light or laser, or electromagnetic waves), or other
parameters. Interested readers are refereed to the work of
McGrath et al., [44], where a comprehensive taxonomy of
existing PUFs was extensively elaborated.

Among the recently explored security applications of
PUFs, the development of on-the-fly and lightweight authen-
tication protocols. These protocols would provide security for
resource-constrained devices without having the devices to
store any credentials on their limited non-volatile memories.
This for example makes them resilient against physical inva-
sive attacks [61]–[63].

To exploit the advantages of PUFs for integrated cir-
cuit authentication in general, and device authentication in
particular, a typical challenge-response-based protocol is
adopted [27]. The protocol consists of two main phases,
the registration phase (a.k.a., enrolment phase) and the verifi-
cation phase (a.k.a., authentication phase). During the regis-
tration phase, a device is enrolled in a database (a trust center)
by registering pairs of challenges and responses (CRPs),
generated from the PUF that is embedded in the device’s
circuit. Therefore, each registered device did will have its
proper set of challenge and response pairs in the database
0id = {(c0, r0), . . . , (cn, rn)}.

The authentication of a registered device dp (a.k.a., prover)
by another device dv (a.k.a., verifier) consists of having
device dv randomly select one CRP, e.g., (ci, ri) ∈ 0p, and
interrogate the device dp by sending the challenge value
ci and obtaining the corresponding response r ′i . Once the
response r ′i is received, dv compares it with the registered
response ri. If both responses are identical (or closely identi-
cal), i.e., r ′i 'ri, the device dp is authenticated, otherwise, it is
rejected.

3Delay-based and memory-based PUFs are often classified as electronic
CMOS (Complementary Metal Oxide Semiconductor)-PUFs.

4In some literature, coating-based and optical-based PUFs are often clas-
sified as MEMS (Micro-Electro-Mechanical Systems)-based PUFs.

III. RELATED WORK
There has been a considerable number of research work
aiming to develop PUF-based authentication protocols for
IoT (Internet of Things) applications. These protocols apply
different types of PUFs and aim to provide Things with a
secure-by-design authentication mechanism that is resilient
to classical attacks as well as to attacks that are par-
ticularly related to PUFs. In the following paragraphs,
we briefly review some recent PUF-based authentication pro-
tocols. Also, the detail of the attacks that we mention for each
related work is discussed in [64] and [71].

TABLE 1 summarizes the difference between the reviewed
PUF-based authentication protocols. The protocols are com-
pared using six characteristics (Column 2 to 7): (1) Used PUF,
shows the type of PUF being used for the implementation of
the authentication protocol referred in Column 1. (2) Authen-
tication scheme, indicates the considered architecture to be
either a Thing-to-Thing, in the sense resource-constrained to
resource-constrained device, or a Thing-to-Machine, in the
sense resource-constrained device to a resourceful device
architecture. (3) Properties C1, C2, C3, andC4,meanwhether
the referred protocol uses PUFs on both parties, is lightweight
from a cryptographic perspective, scalable, and allows the
establishment of cryptographic keys, respectively. (4) Imple-
mentation platform specifies the type of hardware used to
implement the PUF and the communicating parties. (5) Eval-
uation, in terms of security C5, performance C6, and circuit
size C7. (6) Possible attacks indicate the different attacks that
can be generated on the referred protocol as demonstrated
in [64] and [71].

In [11], Boyapally et al., proposed a PUF-based authen-
tication protocol for smart meters in the context of smart
grid applications. The protocol allows a smart meter to be
authenticated to a server using PUFs. It adopts the DAPUF
(Double Arbiter-PUF) [10] augmented with a linear feedback
shift register (LSFR) module. They discussed the security
of the protocol and showed that it is resilient to man-in-the
middle attacks as well as to PUF-modeling attacks. Never-
theless, the security of this protocol can be easily breached
and the server can be impersonated. We showed in [76]
how the security of the protocol can be broken. In [12],
Bansal et al., proposed a PUF-based authentication protocol
with key establishment for vehicles-smartgrid infrastructures.
A formal security analysis was performed using Mao-Boyd
Logic to prove the security of their protocol. However,
the protocol was shown to be vulnerable to spoofing and
message forging attacks. Qureshi and Munir [13] proposed
a PUF-based identity-preserving authentication protocol for
T2M authentication scheme. The protocol uses shuffling
techniques to store obscured and uncorrelated information
about the registered devices’ PUFs instead of storing plain-
text CRPs (Challenge-Response Pairs). The authors showed
that the protocol is reliable and resilient to machine-learning
attacks. Unfortunately, the protocol was shown to be vul-
nerable to replay and DoS attacks. Also, the protocol has a
security single point of failure that allows the entire system to

137386 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

be compromised. Yanambaka et al. [14] proposed an FPGA
PUF-based authentication protocol for medical IoT devices.
It applies an obfuscation technique to perform authentication
without CRPs disclosure. Notwithstanding, the security of the
protocol was not assessed. The protocol contains vulnerabili-
ties that can be exploited to generate attacks, such asmachine-
learning, CRPs disclosure, and replay attacks.

In [15], Nozaki and Yoshikawa, proposed a XOR-arbiter
PUF-based one-way authentication protocol that is resistant
to machine-learning attacks. It adopts the notion of dis-
tributed value [9] to obfuscate the PUF responses when being
challenged and allow provers to store partial information
about the CRPs of others. Also, it reduces the prediction
rate for a successful machine-learning attack when a PUF is
challenged. However, no security evaluation was conducted.
The protocol is vulnerable to spoofing and CRPs disclo-
sure attacks. In [16], Chatterjee et al., proposed a PUF-based
authentication protocol for IoT. The protocol allows an IoT
device to get authenticated to a verifier by using its proper
PUF and applying elliptic curve operations, pairing oper-
ations, and a hash function. A prototype of the protocol
was implemented for a video surveillance application and
an informal security analysis was performed. Nevertheless,
the protocol is vulnerable to DoS and impersonation attacks.
In [17], Liang et al., developed a PUF-based authentication
protocol for RFID systems in the context of IoT. The pro-
tocol allows an RFID-tag to be authenticated to a back-end
server. The authors used BAN (Burrows-Abadi-Needham)
logic to prove the correctness of the protocol and per-
formed an informal security analysis of the protocol with
respect to modeling attacks, man-in-the-middle attack, replay
attack, CRPs exposure, and spoofing attacks. A performance
analysis was also performed. However, the protocol was
found to be vulnerable to de-synchronization, CRPs dis-
closure, and spoofing attacks. Kim et al. [18] proposed a
PUF-based authentication protocol for device-server authen-
tication. Nonetheless, the security of the protocol was not
evaluated. Also, it was shown that the protocol is vulnerable
to CRPs disclosure, key disclosure, and DoS attacks. In [19],
Mahalat et al., proposed a PUF-based authentication protocol
for secure Wi-Fi authentication of IoT devices. The protocol
is adapted for a T2M authentication scheme. Notwithstand-
ing, similar to other protocols, it has been demonstrated to
be vulnerable to spoofing, CRP disclosure, and DoS attacks.
In [20], Mughal et al., proposed a PUF-based authentication
protocol, called PAS (PUF-based Authentication Scheme),
for smart devices in IoT smart home applications. The pro-
tocol allows users, equipped with smartphones, to be authen-
ticated to a gateway so that they can send command-messages
to connected smart devices (e.g., a lightbulb or thermostat).
Notwithstanding, the protocol is vulnerable to message forg-
ing, key disclosure, and DoS attacks.

Barbareschi et al. [21] proposed the PHEMAP
(PUF-based Mutual Authentication Protocol), an SRAM
PUF-based mutual authentication protocol for T2T
authentication schemes. The protocol strongly relies on

synchronization to operate correctly. For that reason, it has
been shown to be vulnerable to desynchronization and DoS
attacks. In [22], Yilmaz et al. proposed an arbiter PUF-based
authentication protocol for T2M authentication scheme.
Based on the use of a neural network model of the PUF,
the protocol allows a verifier to authenticate a prover without
having to store the CRPs on the verifier’s memory. The
protocol makes use of a deviceMAC address and a timestamp
to obfuscate the PUF response by applying the RC5 cipher.
However, the security of the protocol was not evaluated. Also,
the protocol is vulnerable to insider spoofing attacks, CRP
disclosure, and RC5 cracking. Feng et al., [23] proposed a
PUF-based lightweight attestation and authentication proto-
col, called AAoT, for IoT and cyber-physical systems. The
protocol uses PUFs along with fuzzy extractors to derive
a secret key that is used to establish mutual authentication
between devices. However, the security of the protocol was
neither discussed nor assessed. The protocol was proven to be
vulnerable to spoofing, CRP disclosure, and replay attacks.
Idriss and Bayoumi [24] proposed a PUF-based authentica-
tion protocol with a key exchange for resource-constrained
systems, such as RFID systems. The protocol relies on a
challenge-challenge scheme to establish authentication. The
authors analyzed the security of the protocol against guessing
and challenge collection attacks. Nevertheless, the proto-
col was pointed out to be insecure against spoofing, man-
in-the-middle, and CRP disclosure. Clupek and Zeman [25]
proposed a PUF-based mutual lightweight authentication
protocol for T2T authentication schemes. It uses a third
trusty party (TTP) as a trusted authority to establish a robust
authentication between Things. It relies on the use of low-cost
PUFs, simple hash functions, and the binary eXclusive-OR
operator. The authors have claimed that the protocol is secure
and provides security services. However, it was demonstrated
that the protocol is vulnerable to certain secret disclosure,
message forging, and modeling attacks.

Some more recent work have proposed PUF-based authen-
tication solutions to solve the PUF-related challenge of not
exposing the CRPs during authentication or storage (a.k.a.,
AA protocols). For example, Chatterjee et al., [72] pro-
posed 3PAA, a private PUF-based protocol for anonymous
authentication. The protocol relies on the concept of zero-
knowledge and elliptic curve cryptography (ECC) to allow
k-times anonymous authentication of users to an applica-
tion provider (AP) through a trusted party (group manager,
or GM) without revealing the CRPs. This makes the system
more resilient to PUF modeling attacks. The protocol was
implemented and the security of the protocol was formally
verified. A performance evaluationwas also conducted. How-
ever, the protocol does not enforce mutual authentication
between a user and an application provider. The protocol only
allows the application provider to verify the authenticity of
the user, whereas the latter has no ability to verify that it is
communicating with the legitimate application provider and
not with an attacker. Hence, if the AP is compromised, it may
allow a particular user to authenticate and use the service

VOLUME 9, 2021 137387

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

more than k times. In T2T-MAP, the mutual authentication
and non-repudiation are guaranteed using PUFs. That is to
say, each party can verify that it is communicating with the
legitimate counterpart as we discuss in Section V. Addi-
tionally, the application provider is vulnerable to a spoofing
attack. In fact, an attacker can impersonate the application
provider and run the tracing phase to remove the access log
entry of a victim user from the GM. To that end, the attacker
intercepts an authentication session between the victim user
and the application provider and use the messages to initiate
the tracing procedure. In this procedure, the attacker does not
have to authenticate itself to the GM as the legitimate applica-
tion provider. The GM just checks the value of the parameter
that the attacker obtains after intercepting the authentication
session. As a consequence to this attack, the GM removes the
access log entry of the application provider for the user, which
would cause inconsistencies in the system.

Braeken [73] proposed another method to provide authen-
tication between two IoT devices using PUFs and a common
trusted cluster node, where the CRPs are not exposed. Nev-
ertheless, in the context of our paper, this research work as
well as the work in [72] are not lightweight from the crypto-
graphic perspective as they adopt elliptic curve cryptography
(ECC). Moreover, their protocols’ performance evaluation is
conducted using non-resource constrained hardware, such as
the Intel i5 processors, which we believe cannot be used to
conclude that a protocol would provide similar performance
on resource-constrained devices such as the ones we consider
in this paper (i.e., Arduino boards).

IV. THE PROPOSED PROTOCOL (T2T-MAP)
In this section, we propose T2T-MAP, a secure lightweight
T2T PUF-based authentication protocol for IoT (Internet of
Things). It allows two Things to mutually authenticate each
other through a central gateway. We start by introducing the
concept of eCRPs (extended CRPs) that T2T-MAP uses for
authentication. Then, we present the phases of T2T-MAP
for its establishment. Next, we discuss the security and per-
formance properties and analyze the security of T2T-MAP
against known attacks. TABLE 2 reports a summary of the
adopted notation in the T2T-MAP authentication protocol.

A. THE CONCEPT OF EXTENDED CRPs (eCRPs)
From the related work, we have learned that if the CRPs
(Challenge-Response Pairs) of registered Things are stored
on a verifier in plaintext, they are subject to physical invasion
attacks where they can be disclosed. Also, if for each reg-
istered Thing a verifier stores a large set of CRPs, the whole
system becomes less efficient and not scalable as Things have
limited storage capacity. Therefore, to thwart these security
and performance issues, we have adopted the following two
approaches:

1) FIRST APPROACH
We have transformed the classical CRP structure from a
2-tuple (c, r) to a 5-tuple (x1, x2, x3, α1, α2), which we have

called the extended CRP, or eCRP for short. We denote the
eCRP by the letter 0. For example, if a Thing Ti stores an
eCRP about Thing Tj, wewrite0i(Tj). The content of an eCRP
0i(Tj) consists of three challenge values, xi1, x

i
2, and x

i
3, and

two obfuscated response values αij1 and α
ij
2. These obfuscated

response values are computed using the challenges and the
PUF functions of both involved Things as expressed in the
following two equations, where 9i(·) and 9j(·) are the PUF
functions of Thing Ti and Tj, respectively.

α
ij
1 = 9j(9i(x

i
1))⊕9j(9i(x

i
2)) (1)

and

α
ij
2 = 9j(9i(x

i
1))⊕9j(9i(x

i
3)) (2)

Under this form, the obfuscated response values αij1 and α
ij
2

can only and exclusively be used by Thing Ti and Thing Tj,
and cannot be used by either of them to impersonate the other
(e.g., in case of a malicious insider). Also, if Thing Ti is
compromised, the values of αij1 and α

ij
2 cannot be used by Tk

to impersonate Thing Ti or Tj.
We note that this method of obfuscating the response by

combining two responses together into one single response
is inspired by the concept of distributed value used in cryp-
tography [9]. Also, the idea of using the PUF function of both
authenticating parties to construct responses is inspired by the
work of Yanambaka et al. [14].

2) SECOND APPROACH
Considering the limited storage-capacity of resource-
constrained devices, we only store one eCRP per Thing on
a Thing’s memory. That is, if a Thing T0 is configured to
authenticate n other Things Ti6=0, it only stores n extended
CRP. However, we note that the eCRP is constructed based
on three classical CRPs as we have used three challenges,
xi1, x

i
2 and xi3, and computed the obfuscated response values

of αij1 and α
ij
2 by combining their responses. In anyways, this

way of storing the eCRPs allows using a given challenge-
response pair more than once. In fact, it is not the case in
classical PUF-based authentication protocols, where a strong
PUF is required to generate a large number of CRPs, and each
CRP has to be used only once.

B. T2T-MAP PHASES
Similar to all other PUF-based authentication protocols,
T2T-MAP consists of two phases: the enrolment and the
authentication phase. In this subsection, we present how the
enrolment phase occurs in T2T-MAP, then show the veri-
fication and authentication. It is important to note that in
addition to performing authentication, T2T-MAP allows the
establishment of a symmetric cryptographic key between two
Things once mutually authenticated.

1) ENROLMENT PHASE
This setup phase is conducted in a secure environment,
where two Things (here the gateway is represented by a

137388 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

TABLE 1. This table summaries the differences between the reviewed PUF-based authentication protocols. Due to space limitation, we have entitled
some columns with a numbered letter Ci , where C0: Authentication scheme (T2M or T2T), C1: Mutual authentication using PUFs (from both authenticating
parties), C2: lightweight (no asymmetric cryptography and no pre-established keys), C3: Scalability, C4: Key establishment (for message authentication,
confidentiality, and data integrity), C5: Security evaluation, C6: Performance evaluation, C7: PUF-circuit size evaluation. The details of possible attacks are
discussed in Section III of [64]. In this table, the symbols 3, 7, and •, indicate Yes, No, and Possible, respectively.

VOLUME 9, 2021 137389

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

TABLE 2. Summary of the notation adopted in T2T-MAP authentication protocol.

Thing, e.g, Tj), Ti and Tj, are brought next to each other
to exchange 3 challenges and reveal 2 obfuscated responses
each. Both Things, Ti and Tj, start by generating random

challenges, xi|j1 , x
i|j
2 and xi|j3 , then use their local PUF functions,

9i(·) and 9j(·), to compute the responses 9i|j(x
i|j
1), 9i|j(x

i|j
2),

and 9i|j(x
i|j
3). Once computed, these responses constitute

the new challenges to be sent to the other Thing. Each
Thing Ti|j sends the new challenges to the other Thing Tj|i.
Upon receiving the challenges, each Thing uses its proper
PUF to compute 3 response values over the received chal-

lenges, i.e., 9j|i(9i|j(x
i|j
1)), 9j|i(9i|j(x

i|j
2)), and 9j|i(9i|j(x

i|j
3)).

These responses are then used to compute two values αij|ji1
and αij|ji2 . By xoring the first response with the second one,
the value of αij|ji1 is computed. Also, the value of αij|ji2 is
computed by xoring the first response with the third one,
as expressed in Equation 1 and 2. Finally, both Things send
to each other the values of αij|ij1 and αji|ij2 so that each one of
them constructs the extended CRP as follows:

0i|j(Tj|i) = (xi|j1 , x
i|j
2 , x

i|j
3 , α

ij|ji
1 , α

ij|ji
2) (3)

2) AUTHENTICATION PHASE
This phase is illustrated by the MSC5 of FIGURE 2, where
we have set i = 1 and j = 2 for simplicity. The gateway
is generally assumed to have more resources than Things.
Although the gateway is also a Thing in the context of IoT,
we rather prefer to explicitly call it a gateway instead of a
Thing to make a difference in the resource-capabilities. The
steps of the authentication are as follows:
Step 1. T2T-MAP assumes that a Thing Ti|j starts the pro-

tocol by sending a direct request for authentication to another
Thing Tj|i. This step is not illustrated in FIGURE 2. Then,
Things Ti and Tj use the eCRP that is related to the gateway

5MSC (Message Sequence Chart) is a graphical language for the descrip-
tion of the interaction between different components of a system. This
language is standardized by the ITU (International Telecommunication
Union) [75].

to retrieve the challenges xi|j1 , x
i|j
2 , and x

i|j
3 and apply their local

PUF to produce the responses 9i|j(x
i|j
1), 9i|j(x

i|j
2), and 9i|j(x

i|j
3),

which are then sent to the gateway as challenges along with
a nonce Ni|j.
Step 2. The gateway G receives the challenges from both

Things and applies its local PUF to compute the values of

β
i0|j0
1 and β i0|j02 for each Thing, as follows:

β
i0|j0
1 = 90(9i|j(x

i|j
1))⊕90(9i|j(x

i|j
2)) (4)

and

β
i0|j0
2 = 90(9i|j(x

i|j
1))⊕90(9i|j(x

i|j
3)) (5)

The gateway generates a nonce N0 and then takes the

first value β i0|j01 and hashes it along with the xor of its
nonceN0 and the corresponding Thing’s nonceNi|j, i.e., com-
putes H(β i0|j01 ,Ni|j ⊕ N0). This hash is again hashed along
with the nonces to compute the obfuscated response value
H(H(β i0|j01 ,Ni|j⊕N0),Ni|j,N0). This value is the response of
the gateway to the challenges.
Step 3. The gateway uses the extended CRP that is related

to each Thing to retrieve the challenges x01, x
0
2, and x

0
3 and

applies the local PUF function to produce the responses
90(x01), 90(x

0
2), and 90(x

0
3), which are the challenges to be

sent to Things. The gateway then constructs and sends two
messages m1 and m′1 that contain the identities of Things
along with its identity, the nonces, the three challenges,
the computed obfuscated response, and a hash value, denoted
by H(∗), that is computed over the entire message for mes-
sage integrity protection.
Step 4. Things receive the gateway’s messages and start

by verifying its integrity, i.e., H(∗).6 Then, the extended

6For the sake of efficiency, we have decided to start the verification of the
integrity of the messages before their authenticity. Our decision is based on
the principle of fast decision with less computation. In fact, integrity verifica-
tion consists of 1 hash operation and 1 comparison, whereas the verification
of the authenticity consists of 2 hash operations and 1 comparison. In the
worst case, the order does not matter as both orderings end up performing 3
hash operations and 2 comparisons.

137390 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 1. The enrolment phase of T2T-MAP. During this phase Things Ti (∀i ∈ N∗) and the
gateway G exchange challenges and responses to construct each an extended CRP (a 5-tuple),
denoted by 0i (T0) (00(Ti), respectively). The 5-tuple 0i (T0) (00(Ti), respectively) stores 3 challenges,
xi

1, xi
2 and xi

3 (x0
1, x0

2 and x0
3, respectively), and 2 authentication values, αi0

1 and αi0
2 (α0i

1 and α0i
2 ,

respectively). These two values are computed using the locally generated challenges and the PUF
functions of each authenticating party, i.e., 9i (·) of Thing Ti and 90(·) of the gateway G.

CRP is used to retrieve the value of αi0|j01 which is hashed
along with the xor of the nonces and then hashed again
with the nonce of the concerned Thing Ti|j and the nonce
of the gateway N0. For authentication, the result of hashing
α
i0|j0
1 , i.e., H(H(αi0|j01 ,Ni|j ⊕ N0),Ni|j,N0), is compared to

the received value H(H(β i0|j01 ,Ni0|j0 ⊕ N0),Ni|j,N0). If both
values are equal, the gateway is authenticated by both Things.
Step 5. Both Things then use the received challenges to

apply their local PUF function and compute the correspond-
ing responses, 9i|j(90(x01)), 9i|j(90(x

0
2)), and 9i|j(90(x03)).

Using the computed values, both Things compute the values

of β0i|0j1 and β0i|0j2 , as follows:

β
0i|0j
1 = 9i|j(90(x01))⊕9i|j(90(x

0
2)) (6)

and

β
0i|0j
2 = 9i|j(90(x01))⊕9i|j(90(x

0
3)) (7)

Once computed, the value of β0i|0j1 is hashed along with
the xor of the nonces and then hashed again with the nonces,
i.e.,H(H(β0i|0j1 ,Ni|j⊕N0),Ni|j,N0). Amessagem2 (andm′2) is
constructed using the identities of the authenticating parties,
the nonces, the hashed response, and the hash of the entire
message H(∗) for integrity protection. The message is then
sent to the gateway.
Step 6. The gateway receives the messages m2 and m′2

from Thing Ti and Tj, respectively. It uses the stored value

α
0i|0j
1 to compute the value ofH(H(α0i|0j1 ,Ni|j ⊕N0),Ni|j,N0)

and compare it to the received obfuscated response value

H(H(β0i|0j1 ,Ni|j ⊕ N0),Ni|j,N0). If they are equal for both
Things, then both Things are authenticated.
Step 7. The gateway generates a secret random nonce L0

and computes two additional values α0i3 and α0j3 using the
following equation:

α
0i|0j
3 = α

0i|0j
1 ⊕ α

0i|0j
2 (8)

Also, the gateway computes the values L0 ⊕H(α0i|0j3) and
H(α0i|0j2) ⊕ α0j|0i2 , and then sends two messages m3 and m′3
to Thing Ti and Tj, respectively. These messages contain the
identity of the authenticating parties, the nonces, the value

L0⊕H(α0i|0j3), the valueH(α0i|0j2)⊕α0j|0i2 , and the hash of the
entire message.
Step 8. Things receive the gateway’s messages and start

by verifying its integrity, i.e., H(∗). The extended CRP is
used to retrieve the value of αi0|j02 which is then hashed along
with the xor of the nonces (Ni0|j0 = Ni|j ⊕ N0) and then
hashed again with the nonce so that it can be compared
with the received value H(H(β i0|j02 ,Ni|j ⊕ N0),Ni|j,N0) to
authenticate the source of the message. Once authenticated,
Things compute the value of β0i|0j3 as follows:

β
0i|0j
3 = β

0i|0j
1 ⊕ β

0i|0j
2 (9)

VOLUME 9, 2021 137391

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

Using the previously computed valueβ0i|0j2 in Step 5 (Equa-
tion 7) and the value of β0i|0j3 (Equation 9), Things compute
the value of α0i|0j2 = (H(α0j|0i2) ⊕ α0i|0j2) ⊕ H(β0j|0i2) and the

value of L0 = (L0⊕H(α0i|0j3))⊕H(β0i|0j3). At this stage, both
Things have a shared secret nonce L0 as well as a part of the
extended CRP of the other Thing. These two information will
be used to establish a T2T authentication between Ti and Tj.
Step 9. In this step, both Things start authenticating each

other. To that end, Thing Ti|j that first initiated the protocol
generates a key K then xores the key with the hash of the

xor of the obfuscated response α0j|0i2 of Thing Tj|i and the
secret nonce L0, to compute the value K ⊕ H(α0j|0i2 ⊕ L0).
This value allows to securely send and share the key with the
other Thing. Then, it uses the nonces and the secret nonce

L0 to compute the value ofH(H(α0j|0i2 ,Nij),Ni,Nj,L0). This
value allows authenticating the source of the message to be
sent as well as to link this second part of the authentication
to the first part that was performed with the gateway (through
the use of the secret nonce L0). These values are sent to the
other party along with a message integrity code, i.e.,H(∗).
Step 10. Upon the reception of the message from Ti|j,

Thing Tj|i checks the integrity of the message, i.e., H(∗),
and then uses the previously computed value β

0j|0i
2 in

Step 5 (Equation 7) to check the authenticity of the source
of the message as well as its linkability to the previous
authentication part with the gateway. This consists of com-

paring the received value H(H(α0j|0i2 ,Nij),Ni,Nj,L0) with
H(H(β0j|0i2 ,Nij),Ni,Nj,L0). If the values are equal, then Tj|i
authenticates Ti|j. In this case, Tj|i extracts the key K by
computingK= (K⊕H(α0j|0i2 ⊕L0))⊕H(β0j|0i2 ⊕L0). Once the
key is computed, Thing Tj|i hashes the obfuscated response
α
0i|0j
2 of Thing Ti|j along with the key K to prove the correct

key computation to Thing Ti|j. Also, it computes the value
H(H(α0i|0j2 ,Nij),Ni,Nj,L0) for message source authenticity
and sends these values along with the message integrity code.
Step 11. Thing Ti|j receives the message of Thing Tj|i

(i.e., m5) and starts by checking its integrity code, i.e., H(∗).
Then it uses the previously computed value β

0i|0j
2 in

Step 5 (Equation 7) to check the authenticity of the
source of the message as well as its linkability to the
previous authentication part with the gateway by com-
paring the received value H(H(α0i|0j2 ,Nij),Ni,Nj,L0) with
H(H(β0i|0j2 ,Nij),Ni,Nj,L0). If the values are equal, then Ti|j
authenticates Tj|i. Also, Thing Ti|j checks that the received
value H(K ⊕ α0i|0j2 ⊕ L0) is equal to H(K ⊕ β0i|0j2 ⊕ L0) to
confirm that Thing Tj|i has correctly computed the key.

This second part of the protocol is illustrated by the MSC
of FIGURE 3, where we have set i=1 and j=2 for simplicity.

It is important to note that the protocol has actually
been designed to operate on two types of configurations:
(1) Thing-to-Thing authentication through a gateway, and
(2) Thing-to-Thing authentication without a gateway. The
first configuration is the one proposed in this paper, whereas
the second has been discussed in details in [71].

The reason for having two possible configurations is to
make the authentication protocol suitable for a number of
applications that require heterogeneous architectures and
typologies. Here are some key differences between the two
configurations: (1) In T2T without gateway configuration
(Configuration 2), Things have to locally store authenti-
cation information about each other, whereas in T2T with
gateway (Configuration 1), they only store authentication
information about the gateway (the gateway stores authen-
tication information about the Things). Therefore, Config-
uration 2 is suitable for scenarios where Things have the
ability to locally store authentication information. It is also
suitable in a scenario where the presence of a gateway is
impossible (e.g., WSNs in hostile environment, jet fighters
at higher altitudes, etc,). (2) Configuration 2 is more suit-
able for architectures that involve a higher mobility, whereas
Configuration 1 is more appropriate for architecture with
less mobility. (3) Configuration 1 allows a greater scalability
than Configuration 2 due to the fact that Things do not store
authentication information locally about all other Things.
However, the current version of Configuration 1 uses one
single gateway that may constitute a bottleneck when the
number of Things increases. (4) Configuration 2 can be con-
sidered less risky than Configuration 1. In fact, the gateway
is a third party that may constitute a security risk in the case
where it is compromised (e.g., insider attack). (5) Configu-
ration 2 is convenient for network paradigms where Things
directly communicate and authenticate each other without a
third party (e.g., a vehicle authenticating a road sign), whereas
Configuration 1 is suitable for Things that communicate
through a third party (e.g., in a smart homes application,
a user uses its smartphone to authenticate with a smart ther-
mostat through a Wi-Fi access point and regulate the room
temperature).

V. T2T-MAP PROPERTIES AND SECURITY ANALYSIS
In this section, we discuss some security as well as perfor-
mance properties of T2T-MAP. Next, we perform a secu-
rity analysis on the protocol by discussing the resilience of
T2T-MAP against some known attacks and then by formally
proving its security using Tamarin security protocol prover.

A. PROTOCOL PROPERTIES
T2T-MAP provides a set of security and performance
properties that conform to IoT security and performance
requirements. In the following paragraphs, we present these
properties:

1) LIGHTWEIGHT
From the cryptographic perspective, T2T-MAP is consid-
ered as a lightweight, if not an ultra-lightweight, authen-
tication protocol for the following reasons: The protocol
is based on the use of PUFs (Physical Unclonable Func-
tions) to prove device identities. Moreover, it uses simple
hash functions as well as the bitwise logical exclusive OR
operator (XOR) to establish authentication and secret key

137392 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 2. Message sequence chart of T2T-MAP. This first part of the protocol allows only a mutual authentication of two
Things to a gateway. The notation Mx→y denotes a message M sent from x to y (where x, y ∈ {0,1,2}, 0 refers to the
gateway G, 1 refers to Thing T1, and 2 refers to Thing T2). The PUF of G, T1, and T2, are 90(·), 91(·), and 92(·), respectively.
Also, N0, N1, and N2, are three nonces generated by G, T1, and T2, receptively, ⊕ is the bitwise eXclusive OR operator, Nij is
the XOR of the two nonces Ni and Nj (Nij = Ni ⊕ Nj), and H(·) is the hash function. The variables x i

1, x i
2, and x i

3, where

i ∈ {0,1,2}, are challenges generated by a Thing Ti , whereas αjk
i and βjk

i , where i ∈ {1,2,3}, j ∈ {0,1,2}, and k ∈ {0,1,2},
are values that are computed using the PUF of two parties j and k over specific challenges. Finally, the notation H(∗)
refers to the hash of an entire message (i.e., its message integrity code, or MAC). This value is verified upon the reception
of each message mi .

establishment. In case encryption is needed, the protocol can
adopt a lightweight encryption algorithm such as ChaCha.7

7ChaCha (RFC7905) is a lightweight stream cipher proposed by
D. J. Bernstein in 2008. It is a more efficient version of the Salsa20 cipher.

Furthermore, the lightweight property of the protocol covers
the fact that the protocol allows a relatively low storage
overhead (see scalability below), low communication over-
head and energy consumption, as we will demonstrate in
Section VI-B.

VOLUME 9, 2021 137393

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 3. The second part of T2T-MAP, where both Things, T1 and T2,
authenticate each other and agree on a symmetric cryptographic key K to
be used to secure future communications.

2) MUTUAL AUTHENTICATION
T2T-MAP provides mutual authentication. In fact, to estab-
lish authentication between three entities, each entity is
required to use its own PUF function to generate authenti-
cation responses that will prove its identity.

3) SCALABILITY
The protocol can be qualified as scalable for the following
reason. In terms of storage overhead, each individual Thing
Ti has to store 2n + 3 values, where n > 0 is the number of
Things Tj6=i registered on Thing Ti’s memory. For instance,
each Thing Ti stores only 5 values when n= 1. Each Thing
will only store the eCRP of the gateway (the challenges x1, x2,
and x3, are the same for all Things). Hence, if the variables
are expressed in 32 bytes, each Thing will permanently have
to store only 160 bytes, which is a reasonable overhead.
This overhead grows linearly following the function f (n) =
2n+ 3, where n > 0 is the number of registered eCRPs on a
Thing.

4) KEY ESTABLISHMENT
T2T-MAP allows the establishment of a secret key at the
end of the authentication. This key can be used for encryp-
tion (e.g., using ChaCha) and data integrity. The key is ran-
domly generated during the authentication and immediately
destroyed at the end of the session.

5) FRESHNESS AND LIVENESS
T2T-MAP protocol uses nonces for each authentication ses-
sion, which makes, to some extent, each authentication ses-
sion fresh and unique. This would prevent any replay attack
using messages from a previous authentication session. Also,
the protocol uses the nonce L0 to allow Things Ti and Tj
verify that the current communication is part of the previous
communication with the gateway. This would prevent any
session hijacking attempts.

6) AVAILABILITY
For the authentication protocol to be available at all times,
each authenticating party has to have its authentication infor-
mation, i.e., eCRPs, up-to-date. In the current version of
T2T-MAP, the stored eCRPs are static and not updated, which
would make the protocol always available (no desynchro-
nization). However, following the security principles, these
eCRPs need to be updated at some point. Thus, we assume the
existence of a secure and frequent eCRP-updating procedure
to allow Things to store and use new eCRPs. For example,
this eCRP-updating procedure may consist of storing one
additional eCRP per device during the enrolment phase and
particularly use these additional eCRPs for the update proce-
dure. This would prevent the possibility of forward security-
related attacks as well as brute force attacks as discussed in
the next paragraph.

7) FORWARD SECURITY
This property is strongly related to the lifetime of the used
authentication information (e.g., the lifetime of an eCRP).
If the lifetime is too long, an attacker would have enough
time to brute force and disclose authentication information to
perform the impersonation. For example, through a session
hijacking attack (cf., next subsection), an attacker would be
able to learn 50% of the eCRP of a given Thing Ti (i.e., α0i2).
Then, through brute-forcing and one single XOR-operation,
the attacker will be able to learn the remaining part of the
eCRP (i.e., α0i1 and α0i3). Using this information, the attacker
can completely impersonate Thing Ti during a future authen-
tication session. Therefore, to mitigate this attack and provide
forward security, we assume the existence of a secure eCRP-
updating procedure that will allow Things to frequently and
securely update the stored eCRPs.

8) NON-REPUDIATION
As PUFs are widely assumed to be unclonable functions and
the authentication in T2T-MAP relies on the use of PUFs,
we can claim that the security service of non-repudiation is
guaranteed and enforced in T2T-MAP. Thus, no authenticat-
ing party can deny having participated in an authentication
session.

B. SECURITY ANALYSIS
In what follows, the security strength of T2T-MAP against
known attacks is discussed:

137394 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

1) MACHINE LEARNING ATTACKS
These attacks are prevented by not exchanging the responses
in plaintext during an authentication. T2T-MAP adopts a

combination of two challenges, e.g., β j|i1 = 9i|j(9j|i(x
j|i
1)) ⊕

9i|j(9j|i(x
j|i
2)), and sends the response double hashed along

with nonces, e.g., H(H(β j|i1 ,Nij),Ni,Nj). This obfuscation
technique prevents eavesdroppers from collecting challenges
and their corresponding responses during authentication to
build a prediction model. Also, the base value of the chal-
lenges is not sent during authentication. In fact, what is being
sent is the response from the local PUF for a challenge
that is never revealed. For example, when Thing T1 tries to
authenticate the gateway, it sends the value 91(x11) and keeps
x11 confidential.

2) REPLAY ATTACK
A replay attack is prevented through the use of nonces.
For example, throughout the authentication, three nonces
are used: N0 (generated by the gateway), N1 (generated by
Thing T1), and N2 (generated by Thing T2). The obfuscated

responses (i.e., β ij|ji1 , β ij|ji2 , and β ij|ji3) are never sent in plain-
text. They are first hashed along with the xor of the nonces
(Nij=Nji=Ni ⊕ Nj) and then hashed again with the nonces,
e.g.,H(H(β j|i1 ,Nij),Ni,Nj). This makes the responses linked
to the current session and cannot be reused in another session.
An attacker may think of intercepting some messages and
using the same nonce Ni|j to replay the messages and spoof
Thing Ti|j. This would be difficult, or impossible, for the
attacker as the latter cannot force the other party, Tj|i, to reuse
the same nonceNj|i, used in a previous authentication session.

3) COMPROMISING GATEWAY/THING
If an attacker manages to gain access to the gateway or a
Thing, it will not be able to infer and learn the eCRP of any
other Thing. In fact, the eCRP, 0i|j(Tj|i), which is stored on
Thing Ti|j about Thing Tj|i is information that is used by Thing
Ti|j to only verify the authenticity of Thing Tj|i. It cannot be
used in anyways by Thing Ti|j to prove that it is Thing Tj|i.
Furthermore, an eCRP, 0i|j(Ti|j), is tightly-coupled to the two
Things Ti|j and Tj|i, and cannot be used by another Thing Tk
(k 6= i 6= j).

4) SESSION HIJACKING
In this attack scenario, a malicious insider Thing, let us
say Tk , performs a legitimate authentication with Thing Ti
through the gateway and obtains the value α0i2 . As previously
discussed, this value is used by Thing Ti to prove its identity to
another Thing Tj. Then, after some time, the malicious Thing
Tk eavesdrops another authentication between the gateway
and Things Ti and Tj. At the stage where the authentication
with the gateway is achieved and both Things Ti and Tj have
received from the gateway the information α0i|0j2 about the
counterpart Tj|i, the malicious Thing Tk spoofs Thing Ti and
blocks its messages so that they do not reach Thing Tj. At this

point, the malicious Thing Tk , can prove to Tj that it is Ti as it
has the value α0i2 that it has learned from a previous legitimate
authentication session. Therefore, to prevent such an attack,
we have used the nonce L0 of the gateway as an indicator of
the current session. The value of L0 is secretly shared among
the legitimate parties. It will be used by the communicating
Things, in this case Ti and Tj, to verify whether the received
messages are somehow related to the authentication session
that occurred with the gateway (liveness). Therefore, without
the knowledge of L0, the malicious Thing Tk will not be able
to hijack the session.

5) INSIDER SPOOFING
Amalicious Thing, say Tk , could operate a legitimate authen-
tication with another Thing, say Ti, and obtain the response
information α0i2 to spoof Ti later on. In this situation, the mali-
cious Thing will not be able to spoof Ti as it has only one
obfuscated response out of two obfuscated responses to prove
that it is Ti. In addition, the initial part of the authentication
with the gateway requires the attacker the knowledge of the
information α0i1 , which Tk cannot obtain. Also, the value α

0i
1

is never sent in plaintext but always double hashed along with
nonces.

6) BRUTE FORCING PUF-RESPONSES
As the nonces, Ni and Nj, are sent in plaintext during the
authentication, an attacker may try to brute force the hash
function H(·) to find the obfuscated response value that was
generated by an authenticating party. This would depend on
the size of the response. If the response is in n bits, the attacker
has to try at most 2n values before finding the response.
To make this attack difficult and infeasible, instead of using
the obfuscated response as the first parameter for the hash

function, i.e., H(β ij|jiv ,Ni,Nj), where v ∈ {1, 2}, we send the
hash along with nonces of the hash of the obfuscated response
along with the xor of nonces, i.e., H(H(β ij|jiv ,Nij),Ni,Nj),
whereNij=Ni⊕Nj. If the attacker brute forces the transferred
hash, it will find the value of H(β ij|jiv ,Nij), which needs to
be brute-forced again to find the value of β ij|jiv . In this case,
the attacker will face a time complexity of O(2n+2) to be
able to disclose the eCRP of a particular Thing Ti. Also,
if the attacker (compromised Thing Tj) applies the session
hijacking approach to learn the value of α0i2 of Thing Ti6=j,
the attacker will have to brute force a time complexity of
O(2n+1). Therefore, we recommend the use of a bit-length
of at least 64-bit (i.e., 8 bytes) for the response values so that
the brute force attack on the hash function will be infeasible.
This would eventually prevent the replay attack.

7) SECRET KEYS DISCLOSURE ATTACK
During the authentication, the protocol allows the commu-
nicating parties to establish a secret key to be used for
encryption and/or data integrity. This key is immediately
destroyed at the end of the communication. Therefore, the key
is generated only when needed and erased once the session

VOLUME 9, 2021 137395

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

is terminated, which means that no secret keys are present
permanently on the devices. This allows the devices to be
resistant to any physical key disclosure attacks.

In addition to the above informal security analysis, we have
used Tamarin [65], a well-established software tool for secu-
rity protocol verification and theorem proving, to formally
prove the security of T2T-MAP. To that end, we have imple-
mented T2T-MAP in Tamarin’s protocol specification lan-
guage. This basically consists of writing rules of facts and
lemmas. In fact, Tamarin models protocol’s set of executions
as a labeled transition system (LTS). The states of the LTS are
multisets of facts formalizing the local states of the authenti-
cating party running the protocol, the attacker’s knowledge,
and the exchanged messages. The transitions of the LTS are
formalized using rules. Lemmas however, are used to express
security properties, e.g., secrecy, to be verified by the tool
in order to claim the security property for the protocol. The
specification code of the protocol (a.k.a., the security protocol
theory in Tamarin) consists of +/−216 lines of code. It can
be accessed online at [66].

Next, based on the design of the protocol as well as on
the above security analysis, we can observe that the security
of T2T-MAP strongly relies on the secrecy of the following
variables: (1) The challenges x ji , where i, j ∈ N. (2) The
obfuscated responses, αjki and β jki , where i, j, k ∈ N. (3) The
shared nonce L0 (generated by the gateway). (4) The shared
key K . Therefore, we can claim that if these variables are
kept secrete and not disclosed to the attacker in anyways,
then the protocol cannot be compromised. To verify this claim
using Tamarin prover, we have written lemmas to express the
secrecy of the aforementioned variables and prove whether
the lemmas are always true. After executing the verification
of the lemmas on Tamarin (which took around+/−3 seconds
on a DELL Precision T7500 having an Intel Xeon E5507 at
2.27GHz CPU and 6GB of RAM, and running Linux Ubuntu
LTS 20.04 Operating System), the tool proved the lemmas
to be always true. This means that there exist no possible
execution for the protocol that leads to the disclosure of any
of those variables.

VI. PROTOCOL IMPLEMENTATION AND EVALUATION
In this section, we present the implementation detail of
T2T-MAP and then evaluate its performance w.r.t. different
protocol configurations.

A. PROTOCOL IMPLEMENTATION
To implement T2T-MAP, we have used Arduino develop-
ment boards as low-cost and resource-constrained devices.
We have specifically used two types of Arduino boards,
namely, the Arduino Mega 2560 (R3) and the Arduino
DUE. These two boards embed different microcontrollers
of different processing and storage capacity as illustrated
in TABLE 3. Also, we have used different configurations
for the protocol with respect to the size of the challenges,
the responses, the nonces, and the hash outputs. In this

TABLE 3. Arduino boards used to implement T2T-MAP.

subsection, we present how we have implemented the PUF
function, the eCRPs (extended CRPs), the communication,
and the protocol code.

1) PUF IMPLEMENTATION
As there exist many types of PUFs, in this paper, we do not use
a particular PUF. Also, we do not design or implement a new
one either. We rather consider the use of an abstract PUF and
keep the protocol as generic as possible. For the sake of this
implementation, we have adopted the BLAKE8 hash function
that is available in the Arduino Cryptographic Library9 to
emulate the abstract PUF as well as the hash function H(·)
used in the protocol.We emphasize that the abstraction is only
to implement a generic prototype of T2T-MAP so that perfor-
mance analysis can be performed. Researchers can use any
type of PUF to build their own version of the authentication
protocol.

Nevertheless, to use a hash function instead of a PUF to
implement the protocol and perform a performance evalu-
ation (in particular, in terms of execution time and energy
consumption). We need to verify that the execution time
of a PUF as well as its energy consumption are negligi-
ble w.r.t. a hash function execution time and energy con-
sumption. This has been verified w.r.t. the results reported
in [55]–[57]. In anyways, a hash function will be used to
provide the desired output size and allow the use of a PUF
function that requires a small area size and produces outputs
of smaller sizes.

2) eCRPs IMPLEMENTATION
We have used random nonces as challenges and the hash of
the nonces as their corresponding responses. Also, we have
used different sizes, namely, 8 bytes, 16 bytes, and 32 bytes,
for the challenges and responses, so that we can study the
performance of the protocol when the sizes are changed
(e.g., when upgrading the security level). The Arduino Cryp-
tographic Library provides a random number generator to
generate nonces of arbitrary sizes. Thus, for an n-bit con-
figuration, we have used the random number generator to

8BLAKE is a cryptographic hash function based on ChaCha cipher.
9https://rweather.github.io/arduinolibs/crypto.html.

137396 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 4. T2T with gateway configuration using Arduino Mega
2650 boards. The transmission (TXD) GPIO pin of a board (Thing T1) is
connected to the receiving (RXD) GPIO pin of another board (Thing T2)
and vice-versa. Also, their ground pins (GND) have to be connected to
each other.

TABLE 4. The size, in KB, of the protocol’s code, compiled for both
Arduino boards and for different sizes of the variables.

generate nonces in n bits and feed the BLAKE hash function
to produce their corresponding responses, which are also
in n bits.

3) COMMUNICATION IMPLEMENTATION
To allow different boards to communicate with each other,
we have used the embedded serial communication medium,
which is also known as the URAT (Universal asynchronous
receiver-transmitter) system. In fact, on each program-
ming board, there exist some GPIO (General Purpose
Input/Output) pins that are dedicated for communication,
namely, TXD for transmission and RXD for reception.10

Thus, to connect two development boards through the serial
medium, the TXD pin of one board has to be connected to
the RXD pin of the other board and vice-versa. Additionally,
their ground pins (GND) have to be connected to each other.
Such wiring is illustrated in FIGURE 4. Furthermore, for the
communication speed, we have set the serial communication
rate to 200000 baud, which is around 200kbps.

4) PROTOCOL CODE
For the protocol to run over an Arduino board, the protocol
has to be first written using C/C++ programming language
and then compiled for a specific Arduino board (e.g., Arduino
Mega 2560 R3) using the Arduino IDE v1.8.13. The protocol,
as well as the firmware, are then uploaded and written into the

10Note that other GPIO pins (e.g., from 2 to 13) can also be configured to
be used for communication through a software library, e.g., SoftwareSerial.

FIGURE 5. The experimental setting: An oscilloscope, model Tektronix
MSO3014, three Arduino DUE boards (from left to right: Thing T1,
Gateway, and Thing T2), and 10� resistor wired in series on the power
cable of an arbitrary board (Thing T1 in this figure). The oscilloscope’s
voltage probe is connected to both resistor’s extremities to measure the
voltage drop between the resistor.

flashmemory of the board (i.e., flashing the board). TABLE 4
reports the size, in KB, of the sketch (code) of the protocol for
each Arduino development board, node (Thing T1, Thing T2,
andGateway), and for different size of the variables, i.e., chal-
lenges, responses, nonces, and message integrity codes.11 We
have noticed that the code of the gateway is larger than the
code of Things (T1 and T2). This is because the gateway
has to communicate with two different Things during a given
authentication session. The size of the programs should not
necessarily increase by increasing the size of the variables.
In fact, the impact of increasing the size of the variables
is related to the amount of SRAM (central memory) that
will be used to execute the program, which will increase by
increasing the size of the allocated variables.

B. PROTOCOL EVALUATION
In this subsection, we evaluate the performance T2T-MAP in
terms of execution time, communication overhead, and power
consumption, in the ideal case, i.e., no attackers.

1) EXECUTION TIME AND ENERGY CONSUMPTION
To evaluate the execution time of T2T-MAP, we use a dig-
ital oscilloscope and plot the voltage/current variation over
time on a given development board. Having the plot of
voltage/current over time, we can identify the portion of
the signal that represents the execution of the protocol and
measure its time duration. This would give us the execution
time of the protocol on themeasured board. However, we note
that measuring the execution time using the oscilloscope can

11In the Arduinoplatform.txtfile, the compiler can be optimized (by
specifying an optimization option: -Os, -O0, -O1, -O2, or -O3) to reduce
the code size which would generally result in faster execution. We left the
compiler on its default settings (i.e., option -Os).

VOLUME 9, 2021 137397

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

be performed as part of the energy consumption evaluation
process. Therefore, in the next paragraphs, we present the
energy consumption evaluation process and perform the exe-
cution time measurements at the same time.

To compute the electrical energy consumed by each Thing
(or board) during t seconds, we apply the Joule’s law as
follows, where E is the energy in Joule, V is the supplied
voltage in Volt, I is the intensity of the current flowing to the
board in Ampere, and t is the time in Second:

E(Joule) = V(Volt) × I(Ampere) × t(Second) (10)

Hence, to calculate the energy that is consumed during the
execution of T2T-MAP, we need to know the voltage that
is being supplied to the board, the intensity of the electric
current flowing within the board during the execution of
T2T-MAP, and the execution time of the protocol. The sup-
plied voltage is the operating voltage of the boards. According
to the boards’ specifications, it is 5V for the Arduino Mega
and 3.3V for the Arduino DUE. The execution times of
T2T-MAP, for different configurations, can be determined
from the voltage/current plot over time as we will see later.
The intensity of the electrical current, however, needs to be
measured during the execution of T2T-MAP. To that end,
we use the Tektronix MSO3014 digital storage oscilloscope
to measure the intensity of the current.

To measure the intensity of the electrical current flowing
within the board during a period of time using an oscillo-
scope, we can apply one of the following two approaches:
(1) We connect a resistor in series to the power cable of
the board. Then, we connect the oscilloscope’s voltage probe
cable to both resistor’s extremities to measure the voltage
drop between the resistor. Having the measured voltage drop
V and the known resistor’s capacity R, we apply the Ohm’s
law (V = R × I) to calculate the intensity of the electrical
current I . (2) We connect the oscilloscope’s current probe
cable directly to the power cable of the board and measure
the intensity of the electrical current that is flowing through
it. Although the second approach is straightforward, we have
adopted the first approach due to the unavailability of the
oscilloscope’s current probe cable in our laboratory. Thus,
we have used the oscilloscope to measure the voltage drop
over a 10� resistor and set up the oscilloscope to automat-
ically apply the Ohm’s law. This visualizes the current flow
instead of the voltage drop (viz., FIGURE 5).
Practically, to measure the intensity of the current during

the execution of T2T-MAP with high precision, we need to
identify the part of the signal, i.e., the signal of I (t), during
which the authentication protocol is executing. To that end,
we have reprogrammed each Thing (board) in such a way so
that the board performs the following operations: (1) Booting.
(2) Stay idle for τ ms. (3) Turn an LED light ON for τ ms and
then turn it OFF. (4) Execute the protocol. (5) Turn the LED
light ON for τ ms then turn it OFF. For the Arduino Mega
board the duration of τ is 1000ms, whereas for the Arduino
DUE it is 200ms. This is due to the considerable difference
in the execution speed of T2T-MAP on both boards. In this

way, we can identify the portion of the signal during which
the protocol is executing.

FIGURE 6 and FIGURE 7 illustrate the execution of the
protocol’s code on the Arduino Mega and Arduino DUE
boards for variable sizes 8 bytes, 16 bytes, and 32 bytes,
respectively. We note that these figures have been generated
using a sampling rate of 100 samples per second. We can
observe in FIGURE 6 that the Arduino Mega board draws an
M-shaped current intensity during its boot phase (approx-
imately within the first 1 second). Then the current inten-
sity drops down for another 1 second during the board idle
state. The current intensity jumps up when the LED light is
turned ON for a duration of 1 second. Then, it drops down
during the protocol execution. Once the protocol terminates,
the current intensity jumps up again due to the lighting of
the LED for another 1 second before it turns OFF. At this
point, we can easily identify that the part of the signal that
represents the execution of the authentication protocol is the
part of the signal where the current intensity has dropped
down between two consecutive lightings of the LED. The
same can be observed in FIGURE 7, except that the Arduino
DUE board draws aV-shaped current intensity during its boot
phase instead of M. Schematically, the part of the signal
that represents the execution of the authentication protocol is
situated within the two dashed vertical lines on both figures.

We have performed at least 50 consecutive executions to
compute the average time for the protocol to execute on each
board. We have measured the time length of the parts of
the signal that represents the execution of T2T-MAP with the
help of the oscilloscope’s cursors. FIGURE 8 illustrates the
average execution time of T2T-MAP for different variables
sizes (8, 16, and 32 bytes), and for both the development
boards, i.e., Arduino Mega 2650 and Arduino DUE. Also,
it is important to note that the execution time of the entire
authentication protocol is expressed by the execution time
of Thing T1 as the latter is the last Thing that finishes the
execution of T2T-MAP.

In the case of the Arduino Mega 2650 (R3), the entire
protocol (authentication and key derivation confirmation)
requires an average execution time of 214.20ms, 270.20ms,
and 348.40ms, when the variables size is 8, 16, and 32 bytes,
respectively. It is important to bear in mind that T2T-MAP
involves the mutual authentication of three communicating
parties, i.e., Thing T1, Thing T2, and gateway G, as well as
the establishment of a symmetric key.

Also, the authentication of Thing T1 and T2 with respect to
the gateway is processed sequentially (T1 then T2). Although
the authentication execution would run faster if the authenti-
cation requests are processed in parallel, we decided to keep
the processing sequential for simplicity. More importantly,
the hardware platform on which the protocol is running is an
8-bit microcontroller that runs at a speed of 16MHzwith 8KB
of SRAM. Thus, for a resource-constrained platform like
this one, the obtained execution time is reasonably accept-
able. In the case of the Arduino DUE, however, the pro-
tocol runs faster. It requires an average execution time of

137398 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 6. The electrical current (in Ampere) drawn by Thing T1 (a), Gateway G (b), and Thing T2 (c), during
the execution of T2T-MAP on Arduino Mega boards when the 8-byte (Row 1), 16-byte (Row 2), or 32-byte
(Row 3) configuration is adopted for the size of the variables.

14.76ms, 27.58ms, and 65.00ms, when the variables size
is 8, 16, and 32 bytes, respectively. In this second experi-
ment, the protocol runs faster as the hardware platform is a
32-bit microcontroller that operates at a speed of 84MHz
with 96KB of SRAM. Although this hardware configuration
is still not that powerful, the average execution time of the
protocol is excellent. In both cases (i.e., Arduino Mega 2650
and Arduino DUE), the execution time has increased when
we have increased the size of the variables from 8 bytes to
16 bytes, and then to 32 bytes. This is totally normal as each
board on a given configuration has to process more bytes than
in a previous configuration.

If we consider Arduino Mega 2650 board, we can observe
that the 16-byte configuration is around 26% slower than
the 8-byte configuration, but 100% more secure. Hence, it is
worth to sacrifice around 56ms more time for the execution
of the protocol to guarantee double security. Moreover, the
32-byte configuration is around 29% slower than the 16-byte
configuration, but 100% more secure. For double security,
the choice of a 32-byte configuration would be straightfor-
ward. Also, although the 32-byte configuration is around
62% slower than the 8-byte configuration, it offers a security
strength that is four times stronger than the security of the
8-byte configuration (200% more secure), which confirms

our previous choice. Nevertheless, on Arduino DUE board,
we can see that by doubling the size of the variables, the exe-
cution time doubles. Hence, the choice of a configuration
will depend on the application constraints. Although, the
8-byte and the 16-byte configurations are 200% and 100%,
respectively, slower than the 32-byte configuration, the latter
offers a stronger security with an acceptable execution time
(∼65ms).

Next, we have measured the intensity of the electrical
current during the execution of T2T-MAP as follows: We
have recorded the current intensity values during the proto-
col execution phase using a sampling rate of 500k samples
per second. Then, we have computed the average value of the
current intensities.

We have found that that the average electrical current
intensity used by Thing T1, Gateway G, and Thing T2,
is 87mA, 75mA, and 79mA, respectively, when the Arduino
Mega board is being used. However, it is 57mA, 61mA,
and 58mA, when the Arduino DUE board is being used.
At this stage, knowing the average current intensity used
by each Thing (board) during the execution of the proto-
col, and knowing the amount of time needed to execute the
protocol, we have computed the amount of energy that is
consumed by each Thing during the execution of the protocol

VOLUME 9, 2021 137399

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 7. The electrical current (in Ampere) drawn by Thing T1 (a), Gateway G (b), and Thing T2 (c), during
the execution of T2T-MAP on Arduino DUE boards when the 8-byte (Row 1), 16-byte (Row 2), or 32-byte
(Row 3) configuration is adopted for the size of the variables.

TABLE 5. The amount of energy (mJ) consumed during the execution of
T2T-MAP on Thing T1, Gateway G, and Thing T2, on both Arduino boards
(i.e., Mega and DUE), and for different sizes of the variables (i.e., 8, 16,
and 32 bytes).

by applying the Joule’s law (viz., Equation 10). TABLE 5
reports the energy consumed by each Thing during the exe-
cution of the protocol, on both boards, and for different vari-
able sizes. These results express a low power consumption
that is reasonably suitable for resource-constrained devices.
On the Arduino DUE board, we can clearly observe a low
power consumption, which does not go upper than 13mJ,
when the maximum variable size configuration is adopted
(i.e., 32 bytes).

2) COMMUNICATION OVERHEAD EVALUATION
In this subsection, we analyze the communication overhead
of T2T-MAP during its execution for different variable sizes.

TABLE 6 reports the size, in bytes, of the messages that are
exchanged during T2T-MAP execution for both platforms
and for different variable sizes. The size of the messages
doubles along with the size of the variables. For example,
message m0 that is sent from Thing T1 to the gateway has
a total size of 40 bytes when the variables are expressed in
8 bytes. This size doubles to 80 bytes when the variables are
expressed in 16 bytes, and to 160 bytes when the variables
are in 32 bytes. FIGURE 9 illustrates the number of bytes
each authenticating party sends during the authentication.
The number of bytes sent by Thing T1 and Thing T2 is equal.
The gateway, however, needs to send almost the double of
what both Things send during the execution of the protocol
as the gateway needs to communicate with both Things.
Overall, the protocol requires 432 bytes (3456 bits), 864 bytes
(6912 bits), and 1728 bytes (13824 bits), when the size of
the variables is 8 bytes, 16 bytes, and 32 bytes, respectively.
These amounts of bytes are reasonably acceptable for a
resource-constrained environment where the network band-
width is limited. In fact, as we aim to implement the protocol
in an IoT application that uses a short-range wireless technol-
ogy (e.g., Wi-Fi, Bluetooth, or ZigBee), the communication
overhead would not be affected by the adopted technology.
For example, if we consider the application of the 16-byte
configuration on wireless networks such asWi-Fi, Bluetooth,

137400 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

FIGURE 8. The execution time (ms) of T2T-MAP measured using the
oscilloscope for Thing T1, Thing T2, and Gateway G, on both Arduino
boards (i.e., Mega and DUE), and for different size configurations,
i.e., 8, 16, and 32 bytes.

FIGURE 9. The number of Bytes (all messages) sent by each
authenticating party, i.e., Thing T1, Thing T2, and Gateway G, during the
authentication for different variable sizes (i.e., 8, 16, and 32 bytes).

or ZigBee, then each individual message of the protocol will
fit within the payload of these technologies. Moreover, it is
important to note that we have arbitrarily chosen that all
fields (i.e., nonces, challenges, and hash function outputs) in
a given message have the same size, either 8 bytes, 16 bytes,
or 32 bytes. It is possible to express these fields in different
sizes, which would certainly reduce the size of certain mes-
sages and improve the communication overhead.

3) DISCUSSION
In the following paragraphs, we discuss the security and
performance features of T2T-MAP and compare them with
protocols of the related work.

TABLE 6. The size of the exchanged messages (bytes) during T2T-MAP
execution for each authenticating party and for each variable size
configuration.

T2T-MAP provides security as well as performance prop-
erties. For security, the protocol allows the mutual authen-
tication of devices using their embedded PUF circuits. This
important feature makes T2T-MAP more secure than the
reviewed related work protocols, where the PUF is used
only by one authenticating party. For example, by imposing
the use of PUFs on each authenticating party, T2T-MAP
enforces the service of non-repudiation. Also, the protocol
allows the establishment of a secret key that will be used
to provide message confidentiality and integrity. In addition,
the protocol provides forward security and prevents replay
attacks through the use of an eCRP-update procedure and
fresh nonces, respectively. Furthermore, we have shown that
most of the reviewed protocols (9 out of 15) are vulnerable to
CRPs disclosure (e.g., during their storage or transmission)
and PUF impersonation by malicious insiders. T2T-MAP
thwarts these attacks by adopting the concept of extended
CRPs along with the cryptographic concept of distributed
value (cf., SectionVI-A).Moreover, in SectionVI-B, we have
discussed its resilience against machine learning attacks,
replay attacks, node compromising attacks, session hijacking,
malicious insider spoofing, brute force attacks, and secret
key disclosure. Additionally, we have used Tamarin secu-
rity protocol verifier to automatically prove the security of
T2T-MAP by proving the property of secrecy.

In terms of performance characteristics, T2T-MAP is a
lightweight protocol that uses PUFs, simple hash functions,
and the bitwise exclusive logical OR operator (XOR). Also,
in the case where an encryption is used to secure the commu-
nications, lightweight ciphers, such as ChaCha, can be used to
maintain the property of lightweightness. Also, we emphasis
that the latter property expresses the low storage overhead,
low communication overhead, and low energy consumption
of the protocol. These important features allow the protocol
to be adopted by resource-constrained devices. In addition,
the protocol is considered to be scalable as it theoretically
allows a large number of Things to be mutually and securely
authenticated without any constraints.

We have implemented the protocol on resource-
constrained devices and evaluated the performance of the
protocol w.r.t. execution time, energy consumption, and

VOLUME 9, 2021 137401

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

communication overhead, for three different configurations
and under two different hardware platforms. T2T-MAP
allows a mutual authentication of three parties (e.g., Thing
T1, Thing T2, and gateway) to be performed in 214.20ms,
270.20ms, and 348.40ms, when variables (i.e., nonces, PUF’s
challenges, PUF’s responses, and hash outputs) are expressed
in 8 bytes, 16 bytes, and 32 bytes, respectively, on Arduino
Mega boards. This authentication is even faster on Arduino
DUE boards, where it takes around 14.76ms, 27.58ms, and
65.00ms, for its completion for the respective variable sizes.
The execution times are within the range that is reasonably
acceptable for resource-constrained applications. Also, com-
pared to the execution times reported by the related work on
resourceful hardware, we can claim that our protocol is highly
competitive and provides fast authentication.

With respect to energy consumption, T2T-MAP shows rea-
sonable results. Depending on the device (i.e., being Thing
T1, Thing T2, or gateway), the energy consumption varies
between 53.32mJ and 93.18mJ, 71.61mJ and 117.54mJ, and
91.32mJ and 151.55mJ, for the respective variable sizes on
Arduino Mega boards. However, energy consumption is con-
siderably lower on Arduino DUE boards as it varies between
1.35mJ and 2.77mJ, 1.89mJ and 5.19mJ, and 9.07mJ and
12.22mJ, for the respective variables sizes. These values are
reasonably low for resource-constrained devices, such as the
ones used in IoT infrastructures.

During the protocol communication, the bandwidth con-
sumption reveals an acceptable overhead. In fact, the protocol
requires the transmission of 208 bytes, 416 bytes, 832 bytes,
for the respective variable sizes. This communication over-
head is reasonably suitable for networks with limited band-
widths. It is possible to distribute the size of the variables in
a non-uniform way where the different fields are expressed
in unequal sizes. This would certainly improve the commu-
nication overhead as certain messages will have a smaller
size.

To appraise the efficiency of our authentication proto-
col, we wanted to compare our performance results with
the results of the related work. Nevertheless, we found that
it was a very challenging task that may end up drawing
unfair conclusions. In fact, we were not able to perform
any consistent comparison due to the following reasons:
(1) Many implementations from the related work use power-
ful devices that are not resource-constrained devices, which
makes it unfair to compare with an implementation that is
fully resource-constrained. (2) Most of the related work does
not provide enough information about the configurations
and the results. This leads to an incomplete comparison.
(3) Most of, if not all, related work, do not provide the
complete structure of the messages that are exchanged dur-
ing the execution of the protocol. Making random assump-
tions on the structure of the messages results in an unfair
comparison.

Finally, we report in the first row of TABLE 1 the features
and properties of T2T-MAP so that it can be compared to the
ones of the related work PUF-based authentication protocols.

VII. CONCLUSION
IoT (Internet of Things) is a networking paradigm that allows
billions of heterogeneous devices, called Things, to be con-
nected to the Internet. This important evolution has and
still expanding the classical network of the Internet from
a Machine-to-Machine (M2M) communication system to a
Things-to-Machine (T2M) and Things-to-Things (T2T) com-
munication system. However, on the downside, it has invited
cybercriminals to exploit the new heterogeneous infrastruc-
ture and mount catastrophic and diversified cyberattacks.
Interestingly, most of these cyberattacks, if not all, are due
to security vulnerabilities in the adopted authentication pro-
tocols. This has turned the attention of many researchers and
industrial companies to invest a large amount of efforts to
come up with new authentication protocols that are suitable
for IoT.

Although many IoT authentication protocols have been
proposed in the literature during the past decade, most of
them, if not all, do not have a security-by-design and do
not fulfill the IoT security and performance requirements.
Furthermore, most of these protocols were not designed to
be used in T2T architectures, where Things are supposed to
autonomously and securely authenticate each other without
any human intervention. This has turned our attention to
investigate in this research direction to analyze the current
advancement and propose possible improvements.

Therefore, in this paper, we have proposed T2T-MAP,
a lightweight mutual authentication protocol for T2T archi-
tectures in the context of IoT. The protocol applies PUFs
(Physical Unclonable Functions), as a physical security-by-
design technology, to allow Things to efficiently authen-
ticate each other with the lowest cost. Compared to
the existing PUF-based authentication protocols from the
literature [11]–[25], we claim that T2T-MAP is more
resilient to various attacks, such as CRPs (Challenge-
Response Pairs) disclosure, malicious insider, replay,
session hijacking, brute force, secret disclosure, machine-
learning, and node compromising attacks. Also, it provides
mutual authentication, non-repudiation, forward-security,
and liveness. Furthermore, besides being resilient to var-
ious attacks, T2T-MAP is scalable, lightweight, fast, and
energy-efficient.

To summarize, the main contributions of this paper are as
follows:

1) We have designed a lightweight secure-by-design
authentication protocol for IoT. The protocol uses
PUFs technology to allow resource-constrained
devices to mutually authenticate each other without
involving any human intervention.We have adopted the
concept of extended CRPs (eCRPs) to make the proto-
col secure against CRPs disclosure, malicious insider,
and modeling attacks. These attacks were shown to
be possible on many authentication protocols from the
related work.

2) We have discussed the resilience of T2T-MAP w.r.t.
machine-learning, replay, node compromising, session

137402 VOLUME 9, 2021

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

hijacking, insider spoofing, brute force, and secret
disclosure attacks. In addition, we have employed,
Tamarin, a security protocol verification tool to verify
the security of the protocol.

3) We have implemented the protocol on resource-
constrained devices and on different platforms using
three different configurations. These configurations
differ by the size of the variables (i.e., nonce, PUF’s
challenges, PUF’s responses, and hash function out-
puts) that may bemanipulated by the protocol.We have
evaluated and discussed the performance of T2T-MAP
with respect to the execution time, communication
overhead, and energy consumption. We have shown
that T2T-MAP runs at a fairly acceptable speed, has a
reasonable communication overhead, and consumes a
negligible amount of energy.

Despite all the advantageous features that T2T-MAP pro-
vides, the protocol still has some limitations as nothing is per-
fect. First of all, the protocol is designed in such a way so that
each device, i.e., Thing, stores only one eCRP about any other
device. We have assumed (in Section VI-A) the existence
of an eCRP update procedure so that devices can renew the
stored eCRPs and maintain the property of forward-security
aswell as the resilience against brute force attacks. This eCRP
update procedure may consist of storing one additional eCRP
per device during the enrolment phase and particularly use
these additional eCRPs for the update procedure. We plan to
investigate and integrate this procedure on a future version of
the protocol. Furthermore, along with all related work proto-
cols, T2T-MAP is vulnerable to race condition-based attacks
discussed in [67]–[70]. We plan to improve the security of
T2T-MAP with respect to these attacks. We also plan to use
an existing PUF, e.g., an SRAM-PUF, to deploy the protocol
on a real-life IoT application that adopts short-range wireless
technologies, such as Wi-Fi, Bluetooth, ZigBee, or RFID,
and mitigate some of the recently reported attacks on these
technologies.

DISCLAIMER
This work is part of a Ph.D. thesis [71] that was pub-
lished at Queen’s University in January 2021. In the thesis,
a PUF-based authentication protocol was designed and devel-
oped for two configurations: (i) Thing-2-Thing authentica-
tion through a gateway and (ii) Thing-2-Thing authentication
without a gateway. The first configuration is presented in this
paper. Thus, the reader would find high similarity between the
content of this work and the part of the thesis that discusses
the protocol in terms of structure and content.

REFERENCES
[1] The-Guardian. (Accessed: Sep. 25, 2020). DDoS Attack That

Disrupted Internet Was Largest of Its Kind in History, Experts
Say. Accessed: 2016. [Online]. Available: https://www.theguardian.
com/technology/2016/oct/26/ddosattack-dyn-mirai-botnet

[2] NewYork-Times. (Accessed: Sep. 25, 2020). Stuxnet Worm Attack
on Iranian Nuclear Facilities. Accessed: 2011. [Online]. Available:
https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html

[3] K. Zetter. (Accessed: Sep. 25, 2020). Inside the Cunning, Unprecedented
Hack of Ukraine’s Power Grid. Accessed: 2016. [Online]. Available:
https://www.wired.com/2016/03/inside-cunning-unprecedented-
hackukraines-power-grid

[4] TheRegister. (Accessed: Sep. 25, 2020). Finns Chilling as DDoS Knocks
Out Building Control System. Accessed: 2016. [Online]. Available:
https://www.theregister.com/2016/11/09/finns_chilling_as_ddos_knocks
_out_building_control_system/

[5] The-Guardian. (Accessed: Sep. 25, 2020). Fiat Chrysler Recalls 1.4m
Vehicles in Wake of Jeep Hacking Revelation. Accessed: 2015. [Online].
Available: https://www.theguardian.com/business/2015/jul/24/fiat-
chrysler-recalljeep-hacking

[6] BleepingComputer. (Accessed: Sep. 25, 2020). BrickerBot Dev
Claims Cyber-Attack That Affected Over 60,000 Indian Modems.
Accessed: 2017. [Online]. Available: https://www.bleepingcomputer.
com/news/security/brickerbotdev-claims-cyber-attack-that-affected-over-
60-000-indian-modems

[7] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, ‘‘IoT goes
nuclear: Creating a ZigBee chain reaction,’’ IEEE Secur. Privacy, vol. 16,
no. 1, pp. 54–62, Jan. 2018.

[8] B. Schneier, Click Here to Kill Everybody: Security and Survival in a
Hyper-Connected World. New York, NY, USA: 2W. Norton & Company,
2018, ch. 5, p. 2.

[9] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[10] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, ‘‘A new mode
of operation for arbiter PUF to improve uniqueness on FPGA,’’ in Proc.
Federated Conf. Comput. Sci. Inf. Syst., Sep. 2014, pp. 871–878.

[11] H. Boyapally, P. Mathew, S. Patranabis, U. Chatterjee, U. Agrawal,
M. Maheshwari, S. Dey, and D. Mukhopadhyay, ‘‘Safe is the new smart:
PUF-based authentication for load modification-resistant smart meters,’’
IEEE Trans. Dependable Secure Comput., early access, May 6, 2020, doi:
10.1109/TDSC.2020.2992801.

[12] G. Bansal, V. Chamola, B. Sikdar, N. Kumar, and M. Guizani,
‘‘Lightweight mutual authentication protocol for V2G using physi-
cal unclonable function,’’ IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7234–7246, Jul. 2020.

[13] M. A. Qureshi and A. Munir, ‘‘PUF-IPA: A PUF-based identity preserving
protocol for Internet of Things authentication,’’ in Proc. IEEE 17th Annu.
Consum. Commun. Netw. Conf. (CCNC), Jan. 2020, pp. 1–7.

[14] V. Yanambaka, S. Mohanty, E. Kougianos, D. Puthal, and L. Rachakonda,
‘‘PMsec: PUF-based energy-efficient authentication of devices in the Inter-
net of Medical Things (IoMT),’’ in Proc. IEEE Int. Symp. Smart Electron.
Syst. (iSES) (Formerly iNiS), Dec. 2019, pp. 320–321.

[15] Y. Nozaki and M. Yoshikawa, ‘‘Secret sharing schemes based secure
authentication for physical unclonable function,’’ in Proc. IEEE 4th Int.
Conf. Comput. Commun. Syst. (ICCCS), Feb. 2019, pp. 445–449.

[16] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay,
R. S. Chakraborty, D. Mahata, and M. M. Prabhu, ‘‘Building PUF
based authentication and key exchange protocol for IoT without explicit
CRPs in verifier database,’’ IEEE Trans. Depend. Sec. Comput., vol. 16,
no. 3, pp. 424–437, May/Jun. 2019.

[17] W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, and K. Li, ‘‘A double PUF-
based RFID identity authentication protocol in service-centric Internet of
Things environments,’’ Inf. Sci., vol. 503, pp. 129–147, Dec. 2019.

[18] B. Kim, S. Yoon, Y. Kang, and D. Choi, ‘‘PUF based IoT device authentica-
tion scheme,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2019, pp. 1460–1462.

[19] M. H.Mahalat, S. Saha, A.Mondal, and B. Sen, ‘‘A PUF based light weight
protocol for secure WiFi authentication of IoT devices,’’ in Proc. 8th Int.
Symp. Embedded Comput. Syst. Design (ISED), Dec. 2018, pp. 183–187.

[20] M. A. Muhal, X. Luo, Z. Mahmood, and A. Ullah, ‘‘Physical unclon-
able function based authentication scheme for smart devices in Internet
of Things,’’ in Proc. IEEE Int. Conf. Smart Internet Things (SmartIoT),
Aug. 2018, pp. 160–165.

[21] M. Barbareschi, A. D. Benedictis, and N. Mazzocca, ‘‘A PUF-based
hardware mutual authentication protocol,’’ J. Parallel Distrib. Comput.,
vol. 119, pp. 107–120, Sep. 2018.

[22] Y. Yilmaz, S. R. Gunn, and B. Halak, ‘‘Lightweight PUF-based authenti-
cation protocol for IoT devices,’’ in Proc. IEEE 3rd Int. Verification Secur.
Workshop (IVSW), Jul. 2018, pp. 38–43.

[23] W. Feng, Y. Qin, S. Zhao, and D. Feng, ‘‘AAoT: Lightweight attestation
and authentication of low-resource things in IoT and CPS,’’Comput. Netw.,
vol. 134, pp. 167–182, Apr. 2018.

VOLUME 9, 2021 137403

http://dx.doi.org/10.1109/TDSC.2020.2992801

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

[24] T. Idriss and M. Bayoumi, ‘‘Lightweight highly secure PUF protocol for
mutual authentication and secret message exchange,’’ in Proc. IEEE Int.
Conf. RFID Technol. Appl. (RFID-TA), Sep. 2017, pp. 214–219.

[25] V. Clupek and V. Zeman, ‘‘Robust mutual authentication and secure trans-
mission of information on low-cost devices using physical unclonable
functions and hash functions,’’ in Proc. 39th Int. Conf. Telecommun. Signal
Process. (TSP), Jun. 2016, pp. 100–103.

[26] P. S. Ravikanth, ‘‘Physical one-way functions,’’ Ph.D. dissertation, School
Archit. Planning, Massachusetts Inst. Technol., Cambridge, MA, USA,
2001.

[27] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, ‘‘Silicon physical
random functions,’’ in Proc. 9th ACM Conf. Comput. Commun. Secur.
(CCS), 2002, pp. 148–160.

[28] J. Zhang, L. Wan, Q. Wu, and G. Qu, ‘‘DMOS-PUF: Dynamic
multi-key-selection obfuscation for strong PUFs against machine
learning attacks,’’ 2018, arXiv:1806.02011. [Online]. Available:
http://arxiv.org/abs/1806.02011

[29] J. Delvaux, ‘‘Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF–FSMs,’’ IEEE Trans. Inf. Forensics Security, vol. 14,
no. 8, pp. 2043–2058, Aug. 2019.

[30] U. Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, ‘‘PUF modeling
attacks on simulated and silicon data,’’ IEEE Trans. Inf. Forensics Security,
vol. 8, no. 11, pp. 1876–1891, Nov. 2013.

[31] J. Tobisch and T. B. Georg, ‘‘On the scaling of machine learning attacks on
PUFs with application to noise bifurcation,’’ in Proc. Int. Workshop Radio
Freq. Identificat., Secur. Privacy Issues. Cham, Switzerland: Springer,
2015, pp. 17–31.

[32] F. Ganji, T. Shahin, and J. P. Seifert, ‘‘Why attackers win: On the learnabil-
ity of XOR arbiter PUFs,’’ in Proc. Int. Conf. Trust Trustworthy Comput.
Cham, Switzerland: Springer, 2015, pp. 22–39.

[33] U. Rührmair and J. Sölter, ‘‘PUF modeling attacks: An introduction and
overview,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014,
pp. 1–6.

[34] M. Yoshikawa and Y. Nozaki, ‘‘Helper data aware cloning method for
physical unclonable function,’’ in Proc. IEEE Int. Conf. Smart Cloud
(SmartCloud), Nov. 2017, pp. 47–51.

[35] M. S. Alkatheiri and Y. Zhuang, ‘‘Towards fast and accurate machine learn-
ing attacks of feed-forward arbiter PUFs,’’ inProc. IEEEConf. Dependable
Secure Comput., Aug. 2017, pp. 181–187.

[36] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar, ‘‘Combined
modeling and side channel attacks on strong PUFs,’’ Cryptol. ePrint Arch.,
TU München, Munich, Germany, Tech. Rep. 2013/632, 2013. [Online].
Available: https://eprint.iacr.org/2013/632

[37] S. Wei, J. B. Wendt, A. Nahapetian, and M. Potkonjak, ‘‘Reverse engineer-
ing and prevention techniques for physical unclonable functions using side
channels,’’ in Proc. 51st Annu. Design Autom. Conf. Design Autom. Conf.
(DAC), 2014, pp. 1–6.

[38] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar,
and W. Burleson, ‘‘Efficient power and timing side channels for physical
unclonable functions,’’ in Proc. Cryptograph. Hardw. Embedded Syst.
(CHES), 2014, pp. 476–492.

[39] J. Delvaux and I. Verbauwhede, ‘‘Side channel modeling attacks on 65 nm
arbiter PUFs exploiting CMOS device noise,’’ in Proc. IEEE Int. Symp.
Hardware-Oriented Secur. Trust (HOST), Jun. 2013, pp. 137–142.

[40] R. Kumar and W. Burleson, ‘‘Side-channel assisted modeling attacks on
feed-forward arbiter PUFs using silicon data,’’ in Proc. 11th Int. Workshop
Radio Freq. Identificat., vol. 9440. Cham, Switzerland: Springer, 2015,
pp. 53–67.

[41] Y. Nozaki and M. Yoshikawa, ‘‘Power consumption aware machine learn-
ing attack for feed-forward arbiter PUF,’’ in Proc. Int. Conf. Comput. Inf.
Sci., 2019, pp. 49–62.

[42] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, ‘‘Semi-invasive EM attack
on FPGA RO PUFs and countermeasures,’’ in Proc. Workshop Embedded
Syst. Secur. (WESS), vol. 2, 2011, pp. 1–9.

[43] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, ‘‘Side-channel analysis of
PUFs and fuzzy extractors,’’ in Proc. Conf. Trust Trustworthy Comput.
(TRUST), vol. 6740, 2011, pp. 33–47.

[44] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, ‘‘A PUF
taxonomy,’’ Appl. Phys. Rev., Rev., vol. 6, Mar. 2019, Art. no. 011303.

[45] J. H. Anderson, ‘‘A PUF design for secure FPGA-based embedded sys-
tems,’’ in Proc. 15th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2010, pp. 1–6.

[46] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, ‘‘FPGA intrinsic
PUFs and their use for IP protection,’’ in Proc. 9th Int. Workshop Crypto-
graph. Hardw. Embedded Syst., 2007, pp. 63–80.

[47] F. Tehranipoor, N. Karimian, K. Xiao, and J. Chandy, ‘‘DRAM based
intrinsic physical unclonable functions for system level security,’’ in Proc.
25th Ed. Great Lakes Symp. VLSI, May 2015, pp. 15–20.

[48] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and J. Szefer, ‘‘Intrinsic rowhammer
PUFs: Leveraging the rowhammer effect for improved security,’’ in Proc.
IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), May 2017, pp. 1–7.

[49] P. Tuyls, G. J. Schrijen, B. Skoric, J. V. Geloven, N. Verhaegh, and
R. Wolters, ‘‘Read-proof hardware from protective coatings,’’ in Proc.
Cryptograph. Hardw. Embedded Syst. (CHES), 2006, pp. 369–383.

[50] S. Vrijaldenhoven, ‘‘Acoustical physical uncloneable functions,’’
M.S. thesis, Dept. Math. Comput. Sci., Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, 2004.

[51] R. S. Indeck and M. W. Müller, ‘‘Method and apparatus for fingerprinting
magnetic media,’’ U.S. Patent 53 65 586 A, Nov. 15, 1994.

[52] G. Hammouri, A. Dana, and B. Sunar, ‘‘CDs have fingerprints too,’’ in
Proc. 11th Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES),
2009, pp. 348–362.

[53] National-Research-Council, Counterfeit Deterrent Features for the Next-
Generation Currency Design. National Academies Press, 1993, pp. 1–144,
doi: 10.17226/2267.

[54] G. Lenzini, S. Ouchani, P. Roenne, P. Y. A. Ryan, Y. Geng, J. Lagerwall,
and J. Noh, ‘‘Security in the shell: An optical physical unclonable function
made of shells of cholesteric liquid crystals,’’ in Proc. IEEE Workshop Inf.
Forensics Secur. (WIFS), Dec. 2017, pp. 1–6.

[55] S. Khoshroo, ‘‘Design and evaluation of FPGA-based hybrid physically
unclonable functions,’’ M.S. thesis, Dept. Elect. Comput. Eng., Western
Univ., London, ON, Canada, 2013, pp. 1–107, vol. 1281.

[56] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
‘‘Extracting secret keys from integrated circuits,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2005.

[57] L. Lin, D. Holcomb, D. K. Krishnappa, P. Shabadi, and W. Burleson,
‘‘Low-power sub-threshold design of secure physical unclonable func-
tions,’’ in Proc. 16th ACM/IEEE Int. Symp. Low Power Electron. Design
(ISLPED), 2010, pp. 43–48.

[58] NXP. (2018). Secure Storage With SRAM PUF on NXP LPC54S0xx.
AN12292. [Online]. Available: https://www.nxp.com/docs/en/application-
note/AN12292.pdf

[59] Microsemi, ‘‘Using SRAM-PUF system service in SmartFusion2—Libero
SoC v11.7,’’ Appl. Note AC434, 2016, pp. 1–19.

[60] G. E. Suh and S. Devadas, ‘‘Physical unclonable functions for device
authentication and secret key generation,’’ inProc. 44th ACM/IEEEDesign
Autom. Conf., Jun. 2007, pp. 9–14.

[61] R. Anderson and M. Kuhn, ‘‘Tamper resistance: A cautionary note,’’ in
Proc. 2nd USENIX Workshop Electron. Commerce, vol. 2, 1996, p. 1.

[62] R. J. Anderson and M. G. Kuhn, ‘‘Low cost attacks on tamper resistant
devices,’’ in Proc. 5th Int. Workshop Secur. Protocols. Berlin, Germany:
Springer, 1998, pp. 125–136.

[63] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, ‘‘Invasive
PUF analysis,’’ in Proc. Workshop Fault Diagnosis Tolerance Cryptogr.,
Aug. 2013, pp. 30–38.

[64] K. Lounis and M. Zulkernine, ‘‘Security analysis of PUF-based authenti-
cation protocols for Internet of Things,’’ ACM, Digit. Threats, Res. Pract.,
pp. 1–33, 2021, doi: 10.1145/3487060.

[65] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, ‘‘The TAMARIN
prover for the symbolic analysis of security protocols,’’ in Proc. 25th Int.
Conf. Comput. Aided Verification, 2013, pp. 696–701.

[66] K. Lounis and M. Zulkernine. (2020). Tamarin Specification
Code for the Proposed PUF-Based T2T Authentication Protocol.
Github. [Online]. Available: https://github.com/KarimLounis/
T2T_protocol/blob/master/T2TC1.spthy

[67] K. Lounis and M. Zulkernine, ‘‘Attacks and defenses in short-range wire-
less technologies for IoT,’’ IEEE Access, vol. 8, pp. 88892–88932, 2020.

[68] K. Lounis and M. Zulkernine, ‘‘WPA3 connection deprivation attacks,’’
in Proc. 14th Int. Conf. Risks Secur. Internet Syst., vol. 12026, 2019,
pp. 164–176.

[69] K. Lounis and M. Zulkernine, ‘‘Bad-token: Denial of service attacks on
WPA3,’’ in Proc. 12th Int. Conf. Secur. Inf. Netw. (SIN), 2019, pp. 1–8.

[70] K. Lounis and M. Zulkernine, ‘‘Exploiting race condition for Wi-Fi denial
of service attacks,’’ in Proc. 13th Int. Conf. Secur. Inf. Netw., İstanbul,
Turkey, Nov. 2020, pp. 1–8.

137404 VOLUME 9, 2021

http://dx.doi.org/10.17226/2267
http://dx.doi.org/10.1145/3487060

K. Lounis, M. Zulkernine: T2T-MAP: PUF-Based T2T-MAP for IoT

[71] K. Lounis, ‘‘Security of wireless short-range technologies and an authen-
tication protocol for IoT,’’ Ph.D. dissertation, School Comput., Queen’s
Univ., Kingston, ON, Canada, 2020, pp. 1–323. [Online]. Available:
https://qspace.library.queensu.ca/handle/1974/28649

[72] U. Chaterjee, D. Mukhopadhyay, and R. S. Chakraborty, ‘‘3PAA: A private
PUF protocol for anonymous authentication,’’ IEEE Trans. Inf. Forensics
Security, vol. 16, pp. 756–769, 2021.

[73] A. Braeken, ‘‘PUF-based authentication and key exchange for Internet of
Things,’’ in IoT Security: Advances in Authentication. Hoboken, NJ, USA:
Wiley, 2020, ch. 10, doi: 10.1002/9781119527978.ch10.

[74] C. Benzaid, K. Lounis, A. Al-Nemrat, N. Badache, and M. Alazab, ‘‘Fast
authentication in wireless sensor networks,’’ Future Gener. Comput. Syst.,
vol. 55, pp. 362–375, Feb. 2016.

[75] S. Mauw and V. Bos, ‘‘Drawing message sequence charts with LATEX,’’
TUGBoat J., vol. 22, nos. 1–2, pp. 87–92, 2001.

[76] K. Lounis, ‘‘PUF security: Reviewing the validity of spoofing attack
against safe is the new smart,’’ Cryptol. ePrint Archive, 2021. [Online].
Available: https://eprint.iacr.org/2021/985.pdf

KARIM LOUNIS received the first master’s
degree in networks and distributed systems from
the University of Science and Technology Houari
Boumediene (USTHB), Algeria, in 2013, the sec-
ond master’s degree in security of information
systems from the University of East-Paris Creteil
(UPEC), France, in 2014, and the Ph.D. degree
in computer science from Queen’s University,
Canada, in 2020. After completing his secondmas-
ter’s degree, he worked as a Research Assistant on

information security with the system security group (CISPA—Center for
IT-Security, Privacy and Accountability), Saarland University, Germany,
from 2014 to 2015, and then with the security and trust of software systems
group (SnT—Interdisciplinary Centre for Security, Reliability and Trust),
University of Luxembourg, Luxembourg, from 2015 to 2017. He is currently
an Assistant Researcher in network security at the School of Computing,
Queen’s University. His research interests include information security, net-
works security, and the IoT security.

MOHAMMAD ZULKERNINE (Senior Mem-
ber, IEEE) is currently a Professor and Canada
Research Chair with the School of Computing,
Queen’s University, Canada, where he leads the
Queen’s Reliable Software Technology (QRST)
Research Group. In 2003, he joined Queen’s and
spent his sabbatical as a Visiting Professor at
the University of Trento, Italy, and a Researcher
at Irdeto Canada. His current research interests
include building reliable and secure software sys-

tems and he has extensive publications in this area. He has led major
research projects supported by a number of provincial and federal agen-
cies and industry partners. He is a Senior Member of ACM and a
Licensed Professional Engineer in the province of Ontario, Canada. He has
been at leadership positions, such as the general chair, the organiz-
ing chair, and the program chair of many major research conferences
and workshops (More information about Dr. Zulkernine are available at
https://research.cs.queensu.ca/home/mzulker/).

VOLUME 9, 2021 137405

http://dx.doi.org/10.1002/9781119527978.ch10

