
Received September 20, 2021, accepted September 29, 2021, date of publication October 4, 2021, date of current version October 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3117335

Development of Floating-Point MAC Engine
for 2-D Convolution of Image
AJAY KUMAR SAHU , VISHNUMURTHY KEDLAYA K. , AND
SUBRAMANYA G. NAYAK , (Member, IEEE)
Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Corresponding author: Subramanya G. Nayak (gs.nayak@manipal.edu)

ABSTRACT In the emerging trend of Graphics Processing Architecture, IEEE 754-2008 Floating point
numbers are being widely used. Convolution is one of the standard operations in image processing appli-
cations, and because of its computationally intensive nature, an appropriate and efficient image processing
architecture is of great need. This paper proposes a single-precision Floating Point MAC engine to accelerate
the sliding window algorithm for the 2-D convolution of image. The engine uses a modified algorithm for
virtual zero-padding that saves memory space, and it also provides configurable parameters to specify filter
and image size. A low power multiplier with reduced dynamic power, specifically when operating on pixels
and a faster increment by one circuit based on AND-EXOR gate structures, has been proposed to improve
the MAC architecture. Finally, the paper shows the post-synthesis power dissipation, area estimate, and the
quality comparison of the image obtained from the RTL Simulation of the proposed architecture.

INDEX TERMS 2-D image convolution, low-power multiplier, increment by one, convolution accelerator.

I. INTRODUCTION
Various imaging applications such as object detection, clas-
sification, and visual search requires image filtering. Among
these applications, visual search involves amassive amount of
calculations for feature detection in the input image. In such
scenarios, rather than using software (SW) implementations
that are not capable of providing real-time performance, hard-
ware (HW) implementations of image filtering can be more
performance optimized for real-time processing of higher
resolution images.

Over the years, several designs have been proposed but
are tailored for Gaussian kernels only. These methods and
designs cannot be used for applications that work on kernels
other than Gaussian kernels. The design presented in [1] is
compatible with such scenarios as it does not recur to the
separability property of the Gaussian kernels but requires a
complex arrangement of SRAM modules. This complexity
grows as the dimensions of the tile to be processed increase.
The HW convolution module in [2] is confined to only
3× 3 kernels. Its convolution operation relies on a tree-based
structure. However, it is not flexible to incorporate convolu-
tion of any other size; neither such structure is suitable for

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

parallelism in the convolution of an image. The architecture
proposed in [3] is designed for kernels of fixed coefficients
and fixed no. of input sets; it is well suited when processing
continuous data streams. Moreover, the implementation is in
FPGA, which does not reveal the design’s actual throughput
and power efficiency.

To address the challenges discussed above, it is crucial
to design an architecture that can support a parallel com-
putation of convolution operation while reducing the data
movement from off-chip and should support the different
sizes of the kernel. This paper contributes to the HW design
of the single-precision floating-point based MAC engine,
a hardware accelerator for image convolution. It is a stan-
dalone module that can be integrated into a microcontroller or
SOC system for image processing applications. The aim is to
develop an architecture that can independently perform 2-D
convolution without relying on the host system and operate
with kernels of any size rather than having a fixed-size kernel
buffer. The parallel arrangement of functional units and linear
indexing of the pixel data & kernel weights using a small
micro-code processor (MCP) has achieved this.

While being a separate unit, it allows overcoming the limi-
tations of SW-based image convolution. The 2-D convolution
is computed in a loop-wise manner to save power. We show
that the proposed sliding window algorithm can retain the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 138849

https://orcid.org/0000-0002-9991-0893
https://orcid.org/0000-0001-8266-1977
https://orcid.org/0000-0001-7720-4392
https://orcid.org/0000-0002-0917-2277

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 1. IEEE-754 single-precision floating-point format.

boundary pixels without the need for padding. The proposed
algorithm also addresses the additional local memory require-
ment for HW implementation of convolution, specifically
when trying to exploit parallelism in the filtering process.
The data movement is reduced by mapping the entire image
into the internal register files (RF) of the functional units
(FU). The hardware has configurable parameters that support
different shapes in convolution. Meanwhile, an application-
specific multiplier with reduced dynamic power and a faster
increment by one circuit has also been presented to optimize
the FU.

A. CHALLENGES IN IMAGE PROCESSING HW DESIGN
Several workloads, such as Image Processing, require spe-
cialized hardware to meet expected performance. However,
such responsive hardware comes at the cost of flexibility, and
sometimes power is sacrificed. There is a need to create a
specialized HW that offers reasonable performance, power
efficiency, and flexibility. Image processing calls for such
specialized HW since CPUs are not optimized for such a high
level of data parallelism. The traditional solution followed to
exploit this data parallelism is an implementation using SIMD
Units which is highly flexible but way slower. The alternative
solution to this is using GPUs which provide great flexibility
and are more performant than SIMD units; however, they
consume too much power. Another alternative solution is
deploying ASIC accelerators which will be very performant
and power-efficient at the cost of flexibility since ASIC can
implement only one algorithm. An Engine is an architecture
with reasonable performance, flexibility, and power for a
specific algorithm.

B. FLOATING POINT FORMAT
Floating-point data is commonly used in scientific images,
representing measurements using 32 or 64 bits per pixel.
In the rest of literature 32-bit Floating Point (FP32) is used
which is a IEEE-754 standard format [4] comprised of a
sign bit (S), 8 exponent bits (E) and 23 mantissa bits (M).
Figure 1 shows the internals of FP32 and its equivalent value
is calculated as shown in equation (1)

Value = (−1)S × 2E × (1.M) (1)

C. INTEGER VS FLOATING POINT FUNCTIONAL UNIT FOR
IMAGE PROCESSING
Several works have been dedicated to integer functional units
for image processing that processes 8-bit grayscale channel,
24b-bit RGB channels, and 32-bit RGBA channels. However,

very few pieces of literature are available related to floating-
point image processing hardware. Floating-point pixels have
application in HDR Imaging in mobile cameras, satellite
imaging as elevation of the land surface has different dynamic
ranges. The filter being used can also be categorized into
integer-order and fractional-order filters. Fractional order fil-
ters collect more image details in their high-frequency region
than integer ones and provide better noise sensitivity. Due
to this very advantage, floating-point image processing is
also considered a suitable option for biomedical applications.
Floating-point images can use 32-bit floats or 16-bit half-
precision format, but half-precision does not have as much
dynamic range as required in practical applications. Floating-
point pixels have some advantages over Integer pixels but
have extra memory overhead.

II. RELATED WORKS
Image features and weights can be compressed and stored
in 16 bit Floating Point (FP16) [5]; however, for optimum cal-
culation error, it is always suitable to perform computation in
single-precision floating-point (FP32) rather than half preci-
sion (FP16) [6] by decompressing FP16 to FP32. FPGAbased
Fixed point Convolution accelerator [7] gives a compari-
son among Strassen, Winograd, Strassen–Winograd, which
requires fewer computation resources to accelerate convo-
lution. The algorithm uses tree-based convolution, which is
more power efficient than the conventional algorithm but
compromises with CNN’s flexibility. Another FPGA based
Floating point convolution module [2] also uses tree based
structure. The module processes FP32 features and weights
by quantizing them to BF16, which is generally used in
machine learning and the convolution module achieves bet-
ter error distribution than computation in FP16. However,
BF16 based system has lesser precision. Convolution on
a SIMD architecture based on a smart-tiling scheme that
uses four accumulator registers in PE instead of one is pro-
posed [8]. The architecture deals with fixed-point data type
and showcases the implementation of 4 layer CNN-based
detection. FPGA based implementation of a convolution sys-
tem for floating-point pixels and fractional order filter is
shown in [9]. It uses a line buffer to hold the consecutive rows
of pixels in an image.

An ultra-low-power fused multiply-add unit has been pro-
posed in [10], which uses a multi-speculative kogge-stone
adder and presents new digital logic circuits for 2’s com-
plement. The multi-speculative adder divides the addition
into fragments and assumes carry-in is ‘0’ to each section
and later corrects any possible mispredictions using the new
CCTA. The convolution engine proposed in [11] enables data
reuse and works on reducing data transfer overheads. It uses
a line buffer and several convolution slices to accelerate the
algorithm.

Some existing work [12], [13], and [14] has proposed
methods and techniques to reduce the dynamic power con-
sumption of multiplier core; however, these methods use

138850 VOLUME 9, 2021

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 2. Sliding window algorithm based 2-D convolution.

modified gate structures, which are not compatible with a
semi-custom ASIC design.

III. ARCHITECTURE
A. CONVOLUTION OPERATION
A 2-D convolution collects necessary data from image pix-
els; mathematically, it is an element-wise multiplication of
image kernel (filter weights) and input feature map (pixel
data). This process of extracting essential features in image
pixels is called Convolution, a fundamental building block
of any Convolutional neural network. Convolution operator
is denoted by ‘∗’, equation (2) & (3) expresses the entire
convolution operation.

y [m, n] = x [m, n] ∗ h [m, n] (2)

y [m, n] =
∞∑

j=−∞

∞∑
i=−∞

x[i, j]× h[m− i, n− j] (3)

where x is function from image location to pixel value, h is
filter applied to the image, and y is filtered image.

There are multiple ways to compute image convolu-
tion, such as sliding window transform, shift-multiply add
Fourier transform. A pictorial representation of the Sliding-
window algorithm is shown in Figure 2. The stencil of kernel
matrix slides over the image matrix so that the target pixel
appears precisely in the center and then performs multiply-
accumulate for that particular region; this goes on till the
whole image area is covered.

The convolution is indeterminate at the boundaries of
the image, an i × i image, and k × k kernel produces an
(i − k + 1) × (i − k + 1) image. These can be prevented
by padding the image with a layer of zeros or sometimes any
arbitrary value. To prevent the loss of pixels at the boundary
of the image, the Algorithm in Algorithm 1 is modified to
incorporate virtual zero padding. It does not actually use
zeros for padding; instead arranges the remaining pixels of

the zero-padded [I]k×k matrix with its corresponding kernel
coefficients for the current window.

Algorithm 1 Sliding Window for 2-D Convolution
With an Image matrix [I]i×i and Kernel Matrix [K]k×k

for cr in range (0, orows-1)
for cc in range (0, ocols-1)

for i in range (cr, krows + cr-1)
for j in range (cc, kcols + cc-1)

op[cr][cc] + = ip[i][j] ×kernel[i-cr][j-cc];

where, orows = irows - krows + 1;
ocols = icols - kcols + 1,

irows, icols, krows, kcols are the configurable parameters

Now the convolution of i× i images and k× k kernel with
p level of padding produces an (i − k + 2p + 1) × (i − k +
2p+ 1) image. A typical HW implementation of convolution
with padding would require storing this padding value as
we use image partitioning; the no. of padding values that
need to be stored increases. The proposed modified algorithm
shown in Algorithm 2 brings power saving as well since
there is no need for storing zeros for padding and wasting the
operation cycle in the calculation of redundant element whose
value is going to be zero. Table 1 shows the memory depth
required in different scenarios; from Table 1, it is evident that
Algorithm 2 can save significant local memory space for HW-
based convolution.

B. FLOATING MAC UNIT (FPMAC)
FPMAC composes the data path of the engine. It is respon-
sible for performing a two-stage pipelined multiplication &
accumulation and producing an output pixel. A signal from
controller controls the magnitude of this accumulation, and
it has two accumulator registers to support continuous mul-
tiplication & accumulation also shown in Figure 3. The use
of a second accumulator allows the accumulation of the new
incoming window data without breaking the flow of MAC
operation. The MAC is fed with the kernel weights and the
input pixel data coming from the register file. After each
k × k cycle, the target pixel surrounded by k2 − 1 pixels is
produced into a filtered pixel. FU performs convolution in
a multiplication and accumulation manner till it covers every
element of the current window, the result is saved in one of the
accumulation registers, and for the next target pixel, the other
accumulator register becomes active.

C. FLOATING POINT ADDER
The following are the steps to be pursued to add two single
precision floating point numbers, block diagram of FP Adder
is show in Figure 4. Let X and Y be the two numbers to be
added.

i. First, the exponents exand ey are compared and the
tentative exponent is the larger of these two.

VOLUME 9, 2021 138851

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

Algorithm 2 Modified Sliding Window With Virtual Zero
Padding
With an Image matrix [I]i×i and Kernel Matrix [K]k×k

for cr in range (0, irows-1)
for cc in range (0, icols-1)

for i in range (cr-p×b, krows + cr-p-a-1)
for j in range (cc -p×d, kcols + cc-p-c-1)

op[cr][cc]+ = ip[i][j]×kernel[i-cr+p][j-cc+p];

Where p is number of padding level

a =
{
1, cr == irows− 1
0, otherwise

}
, c =

{
1, cc == icols− 1
0, otherwise

}
b =

{
0, cr == 0
1, otherwise

}
, d =

{
0, cc == 0
1, otherwise

}

TABLE 1. Memory Space requirement for image with padding and
without padding.

ii. The mantissa with smaller exponent is shifted right
by ‘ex - ey’ position and set as 2nd operand to addi-
tion/subtraction while the other mantissa is set as 1st

operand.
iii. The residual mantissa bits left out due to shifting are

used for guard bit, rounding bit and sticky bit (GRS)
computation.

iv. The aligned mantissas are added or subtracted depend-
ing upon the sign of both operands and sign of result is
set to the sign of largest exponent operand.

v. The sum is normalized in two cases:

- When there is carry out of significand addition,
then the mr is shifted right by one position through
the GRS bits and the tentative exponent is incre-
mented by one.

- When there is cancellation in significand, in this
case the number leading zeros ‘z’ in the tentative
significand is counted or anticipated and the tenta-
tive significand is shifted left by ‘z’ position where
as tentative exponent is set to er – z. Accordingly
G, R, S bits also gets modified.

vi. The guard bit, rounding bit and sticky bit changes
during normalization based on carry out bit of addition.
And at last rounding logic decides the rounding status
of mantissa.

FIGURE 3. Architecture of floating point MAC unit.

The component honors overflow and underflow, and
accordingly settles the output value. One of the common
operations in floating-point arithmetic is increment by one
used for normalization or rounding purposes. Increment by
One is part of the critical path and hence should be fast.
A typical way to increment a binary number is to use a carry
look-ahead adder but it offers a great amount of delay.

Nevertheless, there is a more efficient way to do this.
One way to accomplish increment by one is to use binary
to the excess-1 converter, but it only works for fewer bits
and will face higher propagation delay for many bits. The
design in [4] suggests using a carry-propagate adder for this.
Another way is trailing one detection of the input word,
then special encoding followed by partial complementing.
Special encoding encodes the results of trailing one detector
to generate a string ‘S’. All the bit positions in ‘S’ which
follows trailing zero along with trailing zero position itself
are set to one. This work proposes a new method that works
by producing a mask string ‘S’ at first, without the need
of trailing one detector and then passing it through ex-or
gates along with input bits for partial complementing. This
complete method of incrementing a 24-bit binary number by
one is shown in Figure 5.

A string expression to determine the one-hot representation
is mentioned in [15], where only those bits in string expres-

138852 VOLUME 9, 2021

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 4. Single precision floating point adder.

FIGURE 5. Proposed increment by one circuit.

sion that follow the leading one are set to ‘1’. To derive the
string S required for proposed circuit, the logical expression
illustrated in [15] is modified, the ith bit of S denoted as Si, 0
≤ i ≤ n-1 is defined as follows:

Si = An−1 • An−2 • • Ai+2 • Ai+1 • C0 (4)

where • denotes the logical AND operation. Ai is the input to
increment by one circuit. The string S thus can be defined as:

S0 = C0

Si = 1, if i ≤ R

0, otherwise (5)

FIGURE 6. Proposed 24-bit string generator for increment by one circuit.

TABLE 2. Power dissipation of increment by one circuit.

where R-1 is the position of trailing one in binary word A
and C0 is carry-in (control bit). Translating the equation (4)
& (5) into the gate-level circuit will result in a long chain of
AND gates. It can be avoided when the AND gate chain is
broken into identical blocks, each generating 4-bits of string
S as shown in Figure 6, and the output of each block is isolated
using the MSB from the previous block.

The advantage of the latter method is that it buffers the
input word when the incremented value is not desired and
eliminates the need for a multiplexer in the normalization or
rounding section. Table 2 shows proposed method is signifi-
cantly faster than the other suggested method in [4].

D. FLOATING POINT MULTIPLIER
Below are the steps to be followed to multiply two single pre-
cision floating point numbers, block diagram of FP multiplier
is shown in Figure 7. Let X and Y be the two numbers to be
multiplied.

i. The exponents of both operands are added and then
subtracted with bias ‘127’.

ii. The significand 1.mx and 1.my are multiplied and the
product of two significands will be less than ‘4’. The
lower 23-bits are forwarded as pre-normalized man-
tissa and rest of the bits (residual products) are used
for sticky bit computation. Few bits are used for guard
and round bits.

iii. As the step of normalization the Least Significant
Bit (LSB) of product is checked for bit ‘1’and if so pre-
normalized mantissa is shifted right by one position.
In parallel of Normalization, rounding logic decides the
rounding status of mantissa.

iv. The carry out bit from rounding of normalized man-
tissa, along with LSB of product decides whether to
increment the tentative exponent or not.

v. The value is also checked for overflow before normal-
ization and rounding while it is checked for underflow
after rounding.

VOLUME 9, 2021 138853

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 7. Single precision floating point multiplier.

The significand multiplication itself is fixed-point multipli-
cation and has a significant share in the power consumption
of MAC. The relatively close elements in the image matrix
are almost equal in value and do not require to be fully
multiplied again and again. Based on this observation, this
work proposes a low power multiplier (LPM) specific to the
image processing application.

From the population graph of the 7×7 pixel matrix shown
in Figure 8(c), it can be observed that the consecutive pixels
have a small dynamic range, and the upper bits of these pixels
toggle infrequently; the flat line curve in the graph depicts this
exactly. This infrequent change gives an opportunity where
the ith pixel is checked for its dynamic range with respect
to the i+1th pixel. If the upper bits of these pixels are equal,
the multiplier disables switching in the higher section of the
multiplier using operand isolation. The block diagram of this
method is shown in Figure 9. The structure of the Vedic
Multiplier based on Urdhva Triyakbhyam consists of several
sections, each working independently on the multiplication
of different bit combinations of two operands; this allows dis-
abling the unused section of multiplier dynamically, thereby
saving significant power without affecting the working of the
rest of the multiplier.

The block diagram in Figure 9 depicts the implemen-
tation of LPM using the Vedic Multiplication method,
where a 2-stage line buffer for both the operands compares
the two consecutive operands and saves significant power

FIGURE 8. (a) A 7 × 7 pixel matrix, (b) A grayscale Image, (c) Graph of
consecutive image pixels of a small region.

FIGURE 9. Proposed low power vedic multiplier.

TABLE 3. Power dissipation of 24-bit vedic multiplier for mantissa.

as shown in Table 3 without affecting the delay of the
data path.

E. ENGINE ARCITECTURE
The engine uses FPMAC as the basis of the functional Unit
whose operation is controlled by the controller. The MAC
Engine architecture is shown in Figure 10. To accelerate the

138854 VOLUME 9, 2021

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 10. Architecture of FP MAC engine.

sliding window algorithm, the architecture employs an array
of 2n functional units, each working in parallel, where ‘n’ is
the scalable factor for the array. The parallelism of the 2-D
convolution on an image is based on a basic approach of
partitioning the image [17] into blocks of rows and columns,
each of these blocks forming a square matrix. The architec-
ture shown in Figure 10 partitions the image into 4 blocks.
For a given image, each FPMAC out of 2n functional units
performs the 2-D convolution only on a single block, thereby
exploiting parallelism and acceleration of image convolution.

F. MEMORY SYSTEM
The primary concern of Algorithms 1 & 2 is that the degree
of data replication of input pixels is very high, which leads
to complex and costly memory access patterns when the
image pixels are stored off-chip. Inside the functional unit,
a deep internal memory (register file) is merged directly
with FPMAC to avoid the frequent data travel from the host
memory; this will reduce the interconnect power related to
multiple memory access of the overlapped data when pixels
are stored off-chip. This tight coupling of register file with
FU will come alive at the physical design of the architecture.
And the power reduction in data access will be achieved
without the need for data/pixel reuse but at the cost of a larger
internal storage unit. However, various existing designs also
have large on-chip/internal memory to minimize the enrgy.

To support the image partitioning within the engine, pixel
transfer from external memory to the engine and within the
engine plays a crucial role. The data written into the external
DRAM by the host CPU is collected one by one at the engine
via a buffer. The pixel data distribution among the functional
units analogous to time division de-multiplexing (TDDM).
Using this method helps eliminate the data hindrance to
the other functional units, which otherwise would occur if
other functional units are written into only after the writing
of image block into the first functional unit has finished.
Respective data to each functional unit are transferred one by
one in consecutive cycles via data handlers that monitor each
register file’s write addresses. To implement the TDDM like
data distribution, a four-level nested for-loop as mentioned in
proposed Algorithm 3 is used which can also be viewed as

Algorithm 3 Image Partitioning Algorithm
Ina Image matrix [I]i×i

for p in range (0, t-1)
for q in range (0, t-1)

for fu_r in range (0, log2(fu)-1)
for fu_c in range (0, log2(fu)-1)

read = (rows× (t×fu_r + p)) + (t×fu_c + q);

Where t =
i

log2 (fu)
,

fu is number of functional units/ no. of blocks of partitioned
image. ‘fu’ should be 4 or 16 or 64.

FIGURE 11. Pixel data distribution of 4 × 4 matrix using Algorithm 3.

image partitioning algorithm. Figure 11 shows how the pixel
data for a 4 × 4 image is partitioned and distributed among
the functional units using the mentioned algorithm.

Each element of the incoming image block is flattened
into a single row vector and stored sequentially into vertical
register file, also shown in Figure 12; this makes indexing the
desired pixel easier. The other advantage of this method is
that the convolution is not fixed to particular kernel size but
instead it can support convolution with any size of the kernel.
The maximum size of the kernel will be decided at the design
time by describing the depth of the register file for storing the
kernel. The data access pattern of content stored in this RF
follows the modified sliding window algorithm mentioned
in Algorithm 2. As discussed in Section III.A this algorithm
does not require padding values to be stored,. Each processed
pixel value from the 2n units is picked up and multiplexed out
to the external memory via a data handler.

G. MICROCODE PROCESSOR
The host processor can implement the modified convolution
algorithm presented in Section III.A. Rather than relying on
the host processor to compute memory addressing offsets
for register files, the MAC Engine exploits a microcode

VOLUME 9, 2021 138855

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

FIGURE 12. Matrix storage.

TABLE 4. PSNR comparison of images.

processor similar to one presented in [18]. The microcode
processor (MCP) is built as a part of this image convolution
system. Information related to image size & kernel size is
received from the host system, and its sets various flag to
indicate completion of the image read operation and convo-
lution. The microcode processor architecture is based on a
small set of Instructions that implements the nested loops of
the algorithm.

The implementation of this ISA is a single cycle execution
architecture that has 8-bit instructions such as MOV, ADD,
INCREMENT, JUMP, and COMPARE. The corresponding
opcodes related to Algorithms 2 & 3 are stored in the two
separate ROMs. Two different processors fetch these opcodes
each cycle and perform desirable operations to obtain the
address values for the external and internal memory. The
whole operation of the MAC engine is orchestrated by these
twoMCPs. MCP 1 controls the data flow from external mem-
ory to internal memory and maps the partitioned image block
to its respective functional unit, whereas MCP 2 controls data
flow in the internal engine, from RF to FPMAC.

IV. EXPERIMENTAL RESULTS
To experiment with the engine’s image processing, the engine
has been subjected to RTL simulation. The pixels of a
128× 128 single-channel image and 3× 3 kernel for emboss
operation are initialized into a RAM. The engine takes all the
pixels along with kernel weights and write backs the filtered
pixels to the RAM. Figure 13 shows the different versions of
an image obtained to analyse the quality of processed pixels.
The quality metric comparison is done in Table 4, PSNR of
the sample obtained from Verilog RTL simulation is 4.2013,
and the PSNR of one obtained from MATLAB is 3.7156.
The embossed image obtained from the RTL simulation has
better PSNR and detail compared to the one obtained from
MATLAB.

Table 5 reports the area and power estimate of the design
synthesized in a generic gpdk-45nm technology library in

FIGURE 13. (a) Original image, (b) Image obtained from RTL simulation,
(c) Image obtained from MATLAB.

TABLE 5. Power dissipation of MAC engine.

the slow corner where the compared work has been syn-
thesized in 90nm technology. For this purpose we instanti-
ated the design with four functional units each having four
64K × 4B memory for image and a 32 × 4B of memory
for kernel. Architecture with these resources can process any
image of size up to 512 × 512 with any of filter of size up
to 5× 5.

V. CONCLUSION
A convolution module modified at the algorithmic and archi-
tectural level is presented in this paper to improve the HW-
based convolution. The previous works related to HW imple-
mentation of convolution do not show the image results for a
floating point pixel data. Those literatures also do not discuss
the padding in image convolution. The overall architecture
of MAC engine is asynchronous and can work in complete
autonomy when given Direct Memory Access to the main
memory by the host system. The image can be stored either
off-chip or directly mapped into internal memory (register
files); this can save a lot of transaction power and demonstrate
better utilization of internal memory.

The advantage of this approach in this work is that exploit-
ing parallelism becomes easy, and significant dynamic power
can be saved using the low power multiplier proposed in
Section III.D. This paper shows how the 2-D image convo-
lution can be virtually padded with zeros, partitioned, accel-
erated at the HW level, and that the resulting image will have
better noise performance when using floating-point image
data.

REFERENCES
[1] F.-C. Huang, S.-Y. Huang, J.-W. Ker, and Y.-C. Chen, ‘‘High-performance

SIFT hardware accelerator for real-time image feature extraction,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 3, pp. 340–351,Mar. 2012.

[2] Y. Zhao, D. Wang, and L. Wang, ‘‘Convolution accelerator designs using
fast algorithms,’’ Algorithms, vol. 12, no. 5, p. 112, May 2019.

[3] G. Licciardo, C. Cappetta, and L. Di Benedetto, ‘‘Design of a convolu-
tional two-dimensional filter in FPGA for image processing applications,’’
Computers, vol. 6, no. 2, p. 19, May 2017.

138856 VOLUME 9, 2021

A. K. Sahu et al.: Development of Floating-Point MAC Engine for 2-D Convolution of Image

[4] J.-M. Müller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefévre, G. Melquiond, N. Revol, and S. Torres,Handbook of Floating-
Point Arithmetic. Basel, Switzerland: Birkhäuser Science, 2018.

[5] C. Manders, F. Farbiz, and S. Mann, ‘‘A compression method for arbitrary
precision floating-point images,’’ in Proc. IEEE Int. Conf. Image Process.,
Oct. 2007, pp. IV-165–IV-168.

[6] M. Seznec, N. Gac, A. Ferrari, and F. Orieux, ‘‘A study on convolution
using half-precision floating-point numbers on GPU for radio astronomy
deconvolution,’’ in Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS),
Oct. 2018, pp. 170–175.

[7] J. Li, X. Zhou, B.Wang, H. Shen, and F. Ran, ‘‘Design of efficient floating-
point convolution module for embedded system,’’ Electronics, vol. 10,
no. 4, p. 467, Feb. 2021.

[8] T. Geng, L. Waeijen, M. Peemen, H. Corporaal, and Y. He, ‘‘MacSim: A
MAC-enabled high-performance low-power SIMD architecture,’’ in Proc.
Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2016, pp. 160–167.

[9] O. H. Moustafa and S. M. Ismail, ‘‘FPGA-based floating point fractional
order image edge detection,’’ in Proc. 15th Int. Comput. Eng. Conf.
(ICENCO), Dec. 2019, pp. 91–94.

[10] A. A. Del Barrio, N. Bagherzadeh, and R. Hermida, ‘‘Ultra-low-power
adder stage design for exascale floating point units,’’ ACM Trans. Embed-
ded Comput. Syst., vol. 13, no. 3s, pp. 1–24, Mar. 2014.

[11] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, ‘‘Convolution engine: Balancing efficiency & flexibility
in specialized computing,’’ in Proc. 40th Annu. Int. Symp. Comput. Archit.,
Jun. 2013, pp. 24–35.

[12] R. Mudassir, M. Anis, and J. Jaffari, ‘‘Switching activity reduction in
low power booth multiplier,’’ in Proc. IEEE Int. Symp. Circuits Syst.,
May 2008, pp. 3306–3309.

[13] T. Ahn and K. Choi, ‘‘Dynamic operand interchange for low power,’’
Electron. Lett., vol. 33, no. 25, pp. 2118–2120, Dec. 1997.

[14] J.-F. Lin, C.-Y. Chan, and S.-W. Yu, ‘‘Novel low voltage and low power
array multiplier design for IoT applications,’’ Electronics, vol. 8, no. 12,
p. 1429, Nov. 2019.

[15] G. Dimitrakopoulos, K. Galanopoulos, C. Mavrokefalidis, and D. Nikolos,
‘‘Low-power leading-zero counting and anticipation logic for high-speed
floating point units,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 16, no. 7, pp. 837–850, Jul. 2008.

[16] A. Deepa and C. N. Marimuthu, ‘‘Design of a high speed vedic multiplier
and square architecture based on Yavadunam Sutra,’’ Sādhanā, vol. 44,
no. 9, pp. 1–10, Aug. 2019.

[17] D. G. Bailey, ‘‘Image processing,’’ in Design for Embedded Image Pro-
cessing on FPGAs, vol. 8. Hoboken, NJ, USA: Wiley, 2011, ch. 1, sec. 1,
pp. 14–17.

[18] F. Conti, P. D. Schiavone, and L. Benini, ‘‘XNOR neural engine: A
hardware accelerator IP for 21.6-fJ/op binary neural network inference,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2940–2951, Nov. 2018.

AJAY KUMAR SAHU received the B.E. degree
in electronics and telecommunication engineering
fromMIT,Manipal, where he is currently pursuing
the M.Tech. degree in microelectronics. He has
published one paper during his B.E. His research
interests include digital logic design, processor
architecture, and ASIC design.

VISHNUMURTHY KEDLAYA K. received the
B.E. degree in electronics and communication
engineering and the M.Tech. degree in dig-
ital electronics and advanced communication
engineering. He is currently working as an
Assistant Professor—Selection Grade with the
Department of Electronics and Communication
Engineering, Manipal Institute of Technology,
Manipal. His research interests include digital sys-
tems and application.

SUBRAMANYA G. NAYAK (Member, IEEE)
received the B.E. degree in electronics and com-
munication engineering, the M.Tech. degree in
biomedical engineering, and the Ph.D. degree in
electrical and electronics engineering. He is cur-
rently working as a Professor with the Department
of Electronics and Communication Engineering,
Manipal Institute of Technology, Manipal. His
research interests include digital systems and pro-
cessor architecture design and applications.

VOLUME 9, 2021 138857

