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ABSTRACT Lightweight physical unclonable functions (LPUFs) exploit manufacturing process variations
of semiconductor integrated circuits (ICs) to protect IoT-based electronic and smart devices from new
cyberattacks. This paper proposes two novel security techniques to enhance the robustness of LPUFs
using configurable-based ring oscillator PUFs (CF-ROPUFs). These techniques are the intra-die frequency
aware (IFA) approach to improve PUF reliability and the logarithmic gamma function (Lnγ ) technique to
enhance PUF randomness. The lightweight CF-ROPUF design is realized on hardware, and data samples
are collected under varying temperatures and supply voltages over a population of 30 Spartan-3E FPGAs.
Experimental results of the IFA technique in terms of average Hamming Weight (HM) demonstrate that the
percentage of the reliable RO sample frequencies PUF output is 98.5%. For the analysis, PUF reliability
is evaluated in terms of accuracy, repeatability, and reproducibility, the international organization for
Standardization (ISO) standards. The results indicate that the RO samples are accurately measured from
the CF-ROPUFs mapped in all the chips. After using the proposed 1-out-of-r coding algorithm, the results
demonstrate high average repeatability of 98.2% and amagnified average reproducibility of 99.63%. It is also
shown that our CF-ROPUF design is immune from accelerated aging impacts reliability issues. Statistical
results show that Ln(Lnγ ) enhances the normality andmitigate the negative impacts of the systematic process
variations on RO sample frequencies. Randomness results show that CF-ROPUF binary response bits can
successfully pass the 15 NIST test suites for true randomness with an enhanced percentage, 93.3%, with the
application of the 1-out-of-r coding.

INDEX TERMS Lightweight hardware-assisted security, trusted Internet of Thing (IoT) consumer electronic
devices, configurable ROPUF, PUF reliability, PUF aging, ISO standards.

I. INTRODUCTION
The internet of things (IoT) devices have emerged for
many applications such as edge computing, intelligent
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and connected cities, implantable and medical devices,
smart power grid, and intelligent autonomous transportation/
aerospace systems [1]–[5]. These applications are increas-
ingly integrated into insecure physical environments and need
to be protected from the new cyber and physical system
attacks. The life-cycle of IoT-based electronic devices is
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FIGURE 1. Life-cycle of PUF-based IoT-based and smart consumer electronic devices.

illustrated in Fig. 1. The figure shows design specifications,
fabrication, and test and deployment of IoT-based consumer
electronic devices. As shown in the figure, the life cycle
involves multiple parties and facilities, and thus, diverse secu-
rity threats affect these devices. Further, the major security
threats associated with IoT-based and intelligent electronic
devices are also shown in Fig. 1. These emerged attacks
have seriously threatened the security, operability, and reli-
ability of IoT-based consumer electronic devices and their
wide applications [2], [3]. For instance, the increasing out-
sourcing demands of IC fabrication led to the emergence
of hardware/IP-based design flow imposed by an untrusted
foundry. As a consequence, cyber physical system attack to
steal a design IP, IP piracy, may be launched by an adver-
sary during the device manufacturing process at an untrusted
house or foundry. Also, an experienced adversary may mount
a hardware Trojan, perform side-channel attacks, physical
tampering, or reverse engineering to clone the design or
cause malfunction during operation. These attacks may lead
to disastrous consequences in critical operations or leaking
secret information from an IoT-based and intelligent elec-
tronic device.

Physical unclonable functions (PUFs) are new low-cost
hardware security primitive with a comparatively simple
design ideal for smart and energy-constrained IoT devices.
Recent research has proposed to use PUF for low-cost IoT
authentications and encryption schemes [4]–[6]. However,
the secret keys generated by the proposed PUF may suffer
from reliability issues that negatively impact the security
and trust in IoT applications. For that, the IoT and smart
devices will need to rely on finding robust security solutions
(reliable and cost-efficient) for the IoT nodes to securely
communicate over the internet and mitigate a wide range
of new security attacks. For that, the reliability shortcom-
ing of lightweight PUF needs to be addressed for trusted
and enhanced security of resources-constrained IoT devices.

Motivated by this, in this paper, we propose robust, secure and
trusted, lightweight Configurable ROPUFs (CF-ROPUFs)
that utilize dedicated FPGA resources more efficiently for
area-critical designs [1], [7].

The proposed CF-ROPUF enhances PUF entropy, allow-
ing a small ROPUF design to generate a large number
of challenge-response pairs for secure and trusted IoT
applications that require robust and lightweight secret and
cryptographic key generation [1], [8], [9], [15], [16]. For
the application of the technique, the CF-ROPUF design is
implemented on 30 Xilinx Spartan-3E FPGA chips. Our
lightweight PUF design is a low-cost and efficient hardware
security design intended to generate low-cost secret keys for
IoT security, including IoT encryption and robust authentica-
tion. A large set of RO frequency measurements are collected
under varying temperature and supply voltage values for the
reliability analysis. The CF-ROPUF reliability is evaluated
based on the standards of both International Organization
for Standardization (ISO) [1], [10]–[13] and the National
Institute of Standards and Technology [1], [14], [17].
The main contributions in this paper can be summarized as
follows:
• A novel approach, intra-die frequency aware (IFA),
is proposed to ensure a reliable lightweight CF-ROPUF
operation for secure and trusted IoT applications.

• A new security technique based on logarithmic gamma
fornication, Lnγ , is proposed to enhance the normality
and mitigate the impact of the systematic variations to
enhance ROPUF randomness.

• Inspired by 1-out-of-K [1], [19], the 1-out-of-r coding
algorithm is proposed to enhance PUF reliability at
varying temperatures and supply voltages based on ISO
standards, as well as PUF randomness based on the
15 NIST test suites for true randomness.

The rest of this paper is organized as follows. The related
works are provided in Section II. The proposed techniques are
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detailed in Section III. The experimental setup and detailed
implementation are explained in Section IV. The analysis
and discussion of the experimental results are presented in
Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK
A. SILICONE PUFs
Silicon physical unclonable functions (sPUFs) are one-way
physical functions that exploit manufacturing process vari-
ation parameters of semiconductor integrated circuits (ICs)
to relate an input challenge (ci) to an output response (ri)
for device authentication and secret key generation [1],
[19]–[23]. Different types of sPUFs designs have been pro-
posed as lightweight hardware-based security solutions for
IoT applications, detection of physical attacks, i.e. physi-
cal tampering and reverse engineering, and hardware Trojan
attacks [1]–[6], [15], [24]–[29]. Further, sPUFs have recently
emerged as promising hardware-based security primitive to
protect consumer electronic devices against invasive and
non-invasive attacks. Such attacks include counterfeit parts
in electronics consumer manufacturing, physical tampering
and reverse-engineering attacks used by an adversary for
design cloning and/or overbidding, detection of IC devices
fault-injection attacks (attacks on SRAM and EEPROM
based devices), detection of malicious circuitry like hardware
Trojans [1]–[6], [15], [24]–[29].

The concept of using silicon SRAMPUF as one of the state
of the art topics in hardware security primitives is interesting
for many reasons. First, SRAM PUFs are simple to realize
on hardware and useful for resource-constrained applications,
including IoT devices [1], [30]–[33]. SRAMPUF do not need
hardware overhead as they use SRAM memory cells that can
be integrated in the IoT memory design. The manufactur-
ing imperfections of the CMOS transistors impose random
process variations delay or random mismatch of SRAM
memory cells. As the SRAM is powered up, process varia-
tions influence the power-up state of the associated CMOS
transistors. When powered-up, SRAM PUF stores unique
binary secret keys influenced by the manufacturing process
variationmismatches associatedwith their CMOS transistors.
Some SRAM cells can have a reliable power-up state set
to a ‘1’ or ‘0’ state. The research shows that some SRAM
cells can be impacted by transistor noise (noisy SRAM PUF)
with a non-reliable power-up state. In this case the SRAM
cells are considered neutral with unreliable power-up state,
that are not suitable for reliable secret key generation [30].
SRAM-PUF based authentication scheme is proposed for
resource-constrained IoTDevices [31]. The proposed scheme
applies re-ordered SRAM memory addresses (challenges)
to extract the corresponding responses from the SRAM
cells’ startup binary output (‘0’ or ‘1’). The results illus-
trate that the scheme can be used to uniquely authenticate
resources-constrained IoT devices with a low computation
overhead and small memory capacity [31]. The reliability
factor determines how often a PUF can generate the same
response to a given challenge. Therefore, to obtain the same

FIGURE 2. Working principle of a ring oscillator PUF circuitry.

response at a specific operating condition, PUFs should only
utilize SRAM cells with strongly reliable power-up states to
a ‘0’ or ‘1’. Also, a reliable SRAM PUF needs to generate the
same response to a given challenge at all operating conditions,
e.g. temperatures and voltage variations.

B. RING OSCILLATOR PUFs
Ring oscillator (RO) PUF implementations are widely used
in many secure applications due to the simple design require-
ment and high-performance [1], [19], [23]. The working
principle of a ROPUF is illustrated in Fig. 2 [1], [19].
Owing to its high performance and simple design require-
ments, ROPUF can be easily realized on both field pro-
grammable gate arrays (FPGAs) and application specific
integrated circuits (ASICs) to protect these devices from such
type of attacks [1], [7]–[9], [19]–[23], [29], [34], [36], [38].
A ROPUF structure is implemented on silicon chips, i.e.
FPGA or ASICs, but the behavior of its challenge-response
pairs (CRPs) are difficult to be cloned.Mathematically speak-
ing, a ROPUF is a one-way probabilistic function that relies
on random process variations in mapping m challenge bits
to n response bits. The response bit ri is determined by the
manufacturing variations during fabrication that lead to slight
changes in the frequency of each RO. Based on the input
challenges (challengei and challengej), two ROs are selected
by the two multiplexers (Mux1 and Mux2) to compare their
relative frequencies (fi and fj) by counting the number of clock
cycles for a specific duration. A one-bit PUF response ri is
generated based on the frequency comparison.

ri =

{
1, if fi ≥ fj
0, otherwise

(1)

There are several algorithms proposed to evaluate the secu-
rity of the ROPUF response [14], [17], [19], [23], [38]–[41].
For example, fFor n ROs, the chain-like neighbor coding
algorithm is used to form (n− 1) unique RO frequency pairs
as

Fi = {(f0, f1), (f1, f2), . . . , (fn−1, fn)} (2)

ri = {r0, r1, . . . , rn−1} (3)

A total of r = (n − 1) response bits, one response bit
‘0’ or ‘1’ for each pair, are obtained using the chain-like
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neighbor coding algorithm. The chain-like neighbor coding
algorithm has a correlated frequency pair issue where one
frequency is used in two pairs. This issue causes a correlation
in the generated PUF-based secret key, making it vulnerable
to potential cyberattacks aiming to predict the PUF output.
To remove such correlation in the generated PUF response
bits, an improved version of the chain-like neighbor coding
algorithm, known as the decoupled chain-like neighbor cod-
ing algorithm, is proposed [1], [8]. This algorithm breaks the
RO frequency chain by allowing each RO frequency to appear
one time in one frequency pair to mitigate the dependency in
RO frequency pairs. This will degrade the number of gener-
ated frequency pairs as well as the generated PUF response
bits by half, or r = ( n−12 ) as

ri = {r0, r1, . . . , r( n−12 )} (4)

Configurable ROPUFs have been initially proposed to
improve PUF reliability and overcome area inefficiency of
the 1-out-of-k scheme [1], [7], [19]. An improved version
of a configurable PUF that generates larger secret keys
within the same area has been proposed in [1], [8], [9]. The
1-out-of-k masking coding scheme with k = 8 is proposed to
improve the reliability of the simple and configurable ROPUF
design [1], [7]–[9], [19]. In this scheme, nRO frequency pairs
are generated from a total of n ROs implemented on a silicon
chip. The 1-out-of-k scheme divides the implemented n ROs
into m groups, each with a size of k = 8 ROs. Two groups
(i, j) are used to obtain k frequency pairs. For the obtained
k frequency pairs, only the pair (fi, fj) with the maximum
frequency difference is selected, where fi and fj represent two
frequencies generated by group i and group j, respectively.
The disadvantage of this technique lies in the chip area inef-
ficiency since k times area is used when implemented on
real hardware. In addition to the area overhead, this scheme
requires the generation of response bits that are k times longer
than the desired secret key length, adding a considerable
computational overhead to PUF output generation time.

C. MODELING ATTACKS AGAINST SILICON PUFs
Modeling attacks are an example for the emerging cyberat-
tacks that aim to replicate the behavior of PUF’s challenge
and response for cloning the secret keys generated by a
PUF design [42]. According to recent research, model-
ing attacks against lightweight PUF-based schemes for IoT
authentication and security are classified into three main
categories: (a) ML software-based attacks, (b) side-channel
hardware-based attacks at the hardware level, and (c) hybrid
ML and side-channel attacks [42]. Even though ML attacks
are considered one of the most successful software-based
attacks to clone the behavior of PUF design, the efficiency
and predictability of these ML algorithms decrease with the
increase of the complexity of the PUF design, i.e., strong PUF
with a large number of nonlinear logical component used to
build the PUF structure [43], [44]. Therefore, the time needed
to model or clone the PUF behavior will not be feasible.

Side-channel attacks are hardware-based attacks that
exploit different side-channel parameters like current
leakage, voltage variations, and power and time consump-
tion, electromagnetic fields to launch an attack against
semiconductor integrated circuit (IC) devices. Typical side
channel hardware attacks include power analysis side channel
[45], time consumption side channel [46], electromagnetic
side challenge [47], differential fault analysis side channel
and photonic emission side channel analysis [48], [49].
Even though side-channel analysis attacks take advantage
of the side challenge parameters to model a robust PUF
design, sometimes it is difficult for the attacks to obtain
a high accuracy PUF attack model [50]. To enhance the
modeling time of ML attacks and improve the accuracy
of side-channel hardware attacks, recent research proposes
to use hybrid (software-based/hardware-based) cyberattacks
that apply the side channel parameters as inputs to ML
algorithms for enhancing both the PUF modeling time and
accuracy [51].

Recent research proposes a novel voltage over-scaling
(VOS) as a lightweight PUF-based authentication technique
for resource-constrained IoT applications [15], [54]. The pro-
posed approach employs adders to extract the manufacturing
process variation to create a two-factor authentication pro-
tocol. The paper also presents new machine learning (ML)
attacks to hack the proposed authentication protocol. The
proposed approach obfuscates the PUF challenge for the
VOS-based authentication technique to resist ML attacks.
This paper is the extension of two interesting conference
papers proposed by the author [53]. The paper deliver
an excellent obfuscation ability for strong PUFs. Exper-
imental results demonstrate that different ML algorithms
can successfully clone the VOS-based authentication with
up to 99.65% accuracy. The results also show that the
prediction accuracy is less than 51.2% after deploying
the proposed ML resilient technique. The overall conclu-
sion is that the VOLtA is vulnerable to ML modeling
attacks.

The same article also evaluates the reliability of volt-
age over-scaling-based lightweight authentication (VOLtA),
a two-factor authentication protocol based on lightweight
PUF design [53]. The results show an intra-Hamming dis-
tance (intra HD) value of approximately 0.47%, when the
temperature decreases from 25◦C , the room temperature,
to 23◦C . This value (0.47%) indicates that the reliability of
the response bits is decreased from 100%, the optimal value,
to about 99.53%. The results also show that the intra HD
value is approximately 0.62%when the temperature increases
from 25◦C to 27◦C . This value (0.62%) indicates that the
PUF response bits’ reliability also decreases from 100% to
99.38%. By computing the average value between 99.53%
and 99.38%, we can see that the average reliability is about
99.46%, which is an excellent value. As shown in Table 4,
our proposed Cf-ROPUF has an average reliability value
of 99.63%, which is slightly better than the average reliability
of the PUF used in VoLtA [52], [53].
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III. PROPOSED SECURITY TECHNIQUES
This section discusses the two primary proposed secu-
rity techniques to enhance the robustness of lightweight
CF-ROPUF, the Intra-die frequency aware (IFA) reliability
technique and the logarithmic gamma (Lnγ ) randomness
technique.

A. INTRA-DIE FREQUENCY AWARE (IFA)
RELIABILITY TECHNIQUE
Integrating reliability in IoT lightweight PUF designs plays a
critical role in ensuring robust trusted and secure operation
for IoT-based and smart consumer electronic devices. The
intra-die frequency aware (IFA) reliability approach basically
states a PUF design exhibits reliability if and only if its
output (RO frequencies) can be regenerated when applying
the same input challenge for n times. A flowchart explaining
the calculations of the Intra-die frequency aware (IFA) value
is depicted in Fig. 3. As seen in the figure, after parameter
initialization, the frequency value, fi,j,k , of the (k th) RO that
is mapped on the (jth) FPGA region of the (ith) FPGA is
calculated as follows:

fi,j,k =
(CCi,j,k × refclock )

CCref
(5)

Equation 1 is essential to estimate the value of frequency
generated by each ring oscillator. The CCi,j,k represents the
number of clock cycles of the activate ROs. To avoid the
negative impact of self-heating on the frequency of the active
RO, the on-chip heating imposed by neighbor ROs, a deac-
tivation period of 0.1 ms is allowed before a new RO is
activated. Also, each RO is only activated for a short period
of 0.1 ms. The refclock is the default generated clock by
Spartan-3E FPGA family (reference clock of 50MHz),CCref
is the number of clock cycles used by the reference clock
during the activation period of the RO (0.1 ms) which equal
to 10,000 clock cycles of the 50 MHz FPGA clock (reference
clock). For all the ROs mapped on the FPGA chip, each RO
has a fixed average delay (dRO). Each RO also has a process
variation (dPV ) component that is supposed to be constant
(neglecting the impact of aging and other temporal on the
RO process variation). Note that the average RO delay and
process variation delay are both fixed and unique to each RO.
Each Ro also has another delay component (dNOISE ) due to
the local noise factor. This is a dynamic delay and can change
over time.

Assuming that fi,j,k and f ′i,j,k are two RO frequencies gener-
ated by the sameRO, the deviation (i.e., frequency difference)
D = fi,j,k − f ′i,j,k should be theoretically zero when obtain-
ing the frequency again from the same RO. However, in a
real hardware implementation, due to RO local loop noise
variations (dNOISE ), these frequencies (fi,j,k and f ′i,j,k ) differ
slightly, and thus, the D value is equal to or less than a finite
value x such as

|D = fi,j,k − f ′i,j,k | ≤ x (6)

FIGURE 3. The IFA reliability technique flowchart.

The optimum value of x is the smallest value that can be
tolerated without degrading ROPUF repeatability in terms
of the ability of each RO to regenerate the same sample of
RO frequencies for n times (the closer repeatability value
to 100%). After empirically trying many values (ranging
from 0 to 2 MHZ), we found that the bigger the value of
x, the closer the repeatability to 100%, which is the desired
reliability. Decreasing the value of x results in degraded
reliability value, i.e., the repeatability starts to degrade from
100%. After extensive experiments with different empirical
values, we found that intra-die frequency (IFAi,j,k in MHZ) is
the smallest possible numeric value that achieves the highest
possible repeatability. The IFA value is calculated based on
the average RO frequency Favg of the n generate frequencies
as follows:

Favg =
1
n

n∑
i=1

fi,j,k (7)

IFA =
1

n− 1

n∑
i=1

(Favg − fi,j,k ) (8)

Based on the calculated IFA value, the below steps are then
followed:

1) The same input challenge (C) is applied for n times
to the same RO to generate n RO sample frequencies.
The IFA values (n values) of the generated RO fre-
quencies are then calculated using the above equations
of IFA.
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FIGURE 4. 4(a) Implementation of CF-ROPUF on single CLB; 4(b) Measurement of RO frequencies in a single CLB.

2) IFA PUF response bits (r) are generated as

r =

{
1, if (fi,j,k − f ′i,j,k ) ≤ IFA

0, if (fi,j,k − f ′i,j,k ) > IFA
(9)

3) The length of the generated response bits (m) can be
calculated using the following equation:

m = Cn
r =

n!
r !(n− r)!

. (10)

4) The percentage of the reliable frequencies generated
by one RO, where HW is the Hamming Weight of r ,
is calculated as

HW =
m∑
i=1

ri
m
× 100% (11)

5) The average Hamming weight is then used to calcu-
late the percentage of the reliable frequencies for the
individual ROs (k ROs) mapped in one FPGA area as
follows:

Avg_HW =
t∑
j=1

HWj

k
× 100% (12)

The IFA threshold value is calculated offline based on
the average value of 10 RO frequencies, after the frequen-
cies are collected using the logic analyzer, as shown in
equations 3 and 4. The generated frequency values are stored
in excel sheets (.CVS) by the logic analyzer. We then use the
Math lab for implementing the IFA algorithm and calculating
the results. The RO frequencies are first collected using the
analyzed andmanipulated offline. For that, the computational
overhead latency is irrelevant because this has been done
offline. Rather, we aim to focus on the reliability and perfor-
mance aspect of the proposed design. As a future research,
we will consider hardware implementation, vulnerability to
cyberattacks, on-chip key storage and online calculation of
the latency.

B. THE LOGARITHMIC GAMMA (Lnγ )
RANDOMNESS TECHNIQUE
Data normality is an importantmeasure for data homogeneity,
uniformity, and randomness [18]. According to the central
limit and normal Gaussian theorems, a normal distribution
with sufficiently large data samples also represents random
data samples [17], [18]. The Lnγ technique is proposed to
improve PUF normality and mitigate the systematic pro-
cess variation effects on RO frequencies. This enhances
the randomness of the generated PUF binary response bits.
Data samples are distributed normally by implementing log
and/or square root transformation [17], [18]. Mathematically,
gamma function of a positive integer n represents the factorial
function of n− 1 as follows:

Lnγ (n) = (n− 1)! (13)

The main steps of the proposed Lnγ technique are as
follows:

1) For each FPGA chip, one average frequency is calcu-
lated using FPGA(avg) average values for the r reliable
RO frequency mapped on p FPGA regions (six regions)
as follows:

FPGA(avg) =
1
p

p∑
i=1

r∑
j=1

Favg(j) (14)

2) As a result, the mean frequency value for all FPGAs is
calculated as follows:

mean =
1
n

n∑
i=1

(FPGA(avg)) (15)

3) This results in total averages of 640 RO sample fre-
quencies generated by all the FPGAs using all six
regions (Total average values).
Since data measurements are collected under varying
operating conditions, a total of 640 frequencies are sim-
ilarly generated from the FPGA for the other conditions
including the temperatures and supply voltages.
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FIGURE 5. 5(a) Proposed CF-ROPUF design for an FPGA region; 5(b) Mapping CF-ROPUF design on an FPGA region.

4) The random deviations values (Di), that represent the
deviations of the FPGA(avg) frequencies from their
mean values at a certain operating condition, is used
to randomize the normalized frequencies as follows:

Di = mean− FPGA(avg) (16)

5) The final average RO frequencies are normalized as

NZ =
√
Ln_γ _(mean)× D_i) (17)

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION
Spartan-3 100E FPGA contains 120 CLBs distributed among
22 rows and 16 columns. The CF-ROPUF design is imple-
mented inside a single CLB of Spartan-3E FPGA using
a hard-macro design, as shown in Fig. 4(a). An instance
of 16 sample frequencies measured from one CLB with the
help of the Agilent Logic Analyzer is shown in Fig. 4(b).
These frequencies are calculated from 16 ROs where each
RO is selected using dedicated multiplexers (F5 and F6)
and activated for a short period (i.e., 0.1ms each). For the
implementation of the CF-ROPUF on the FPGAs, each FPGA
is divided into six equal regions (three top FPGA regions and
three bottom FPGA regions) with 40 CLBs each. A gate-level
design of the PUF for an FPGA region (40 CLBs) is shown
in Fig. 5(a). An instance of this PUF design mapped at the
bottom right 40 CLBs as demonstrated in Fig. 5(b).

Data samples (RO frequencies) are collected from all
FPGA regions at five different temperatures, 0◦C, 25◦C,
50◦C, 75◦C and room temperature (RT), which is around
20◦C. The environmental temperature is managed using a
control panel embedded in the chamber, as shown in Fig. 6(a).
For accurate measurements, multiple FPGAs are physically
placed inside the chamber. The temperature environmental

is adjusted according to the desired value, and FPGAs are
connected to the logic analyzer through a 16-bit data bus for
PUF data measurements. Similarly, RO frequencies are also
measured at five different supply voltage levels (VCCINT),
1.0V, 1.1V, 1.2V (nominal), 1.3V, and 1.4V for the FPGAs
with the help of a DC power supply and logic analyzer,
as shown in Fig. 6(b). To study the impact of aging on
CF-ROPUF, RO sample frequencies are measured daily over
30 days, where each RO is activated for 0.1 ms every 10 ms,
as shown in Fig. 6(c).

The PUF response bits are generated once every day
and compared to the previous responses to compute the
percentage of the bit flips that may occur due to accel-
erated aging, negatively affecting the PUF reliability. The
proposed PUF is an improvement of weak ROPUF that
enlarges the secret keys by 16-times as compared to a simple
weak ROPUF. Our CF-ROPUF design efficiently utilizes
the same area (one CLB) of Spartan 3E FPGA to gener-
ate a 16-time larger response (more robust response) bit as
compared to simple ROPUF and 1-out-of 8 techniques. For
the sake of further comparison, the neighbor coding algo-
rithm is used to generate PUF response (256-bits) from our
CF-ROPUF and two state-of-the-art. For that, we can see
that our design uses the 40 CLBs while the other two dings
will need to occupy 256 CLBs of the same FPGA family,
Spartan 3E FPGA.

V. EXPERIMENTAL RESULTS ANALYSIS
AND DISCUSSIONS
This section discusses the obtained experimental results of
PUF performance and quality metrics in terms of hardware
overhead, uniqueness, reliability, and randomness using the
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FIGURE 6. Experimental setup for the collection of RO sample frequencies from the tested FPGAs: 6(a) Under varying environmental
temperature; 6(b) Under varying supply voltage; 6(c) The impact of accelerated aging on c-ROUF.

above-proposed security techniques and based on the ISO and
NIST standards definitions.

A. HARDWARE OVERHEAD
Table 1 shows the hardware overhead comparison between
the proposed design and the competing designs. As seen in
the table, the XCORPUF is implemented onXilinx Spartan-6
FPGAs [52]. The design requires 8 LUTs (7 XOR gates and
one AND gate) and is mapped inside a single CLB of each
Xilinx Spartan FPGA.

A low cost configurable RingOscillator (CRO) PUF design
is evaluated on six Xilinx Spartan-6 FPGAs. The design
requires 4 CLBs where each configurable logic block (CLB)
can implement two delay units [53]. Hard macros are used to
ensure that all CROs are identically routed. The design map
eight different configurations using 4 CLBs [53]. The design
is implemented using 10 Xilinx Virtex II XC2VP30 boards.

A 3 × 3 (9 Tristate inverter) matrix is implemented on
each FPGA [54]. A total of 5 CLBs are needed to implement
the matrix, where each CLB only implements two tristate
inverters. The hard macro procedure is used to map the matrix
on each FPGA identically. In this design, two delay paths
of an identically mapped tristate inverter matrix are needed
for generating one response bit with a hardware overhead
of 10 CLBs. The crossover RO consists of m inverters with
a particular frequency. The frequency of the ROs is gener-
ated using Xilinx Spartan3 FPGA boards, with 46 rows ×
34 columns and 1,164 CLBs. The cross ROPUF consists of
m levels of inverters; the outputs of an inverter level are fed
as the inputs to the next inverter level after passing through
an interstage crossing logic. The interstage crossing logic
determines the routing path of step signals inputted without
any additional logical operation. There are m-1 interstage
crossings to change the configuration of the delay loop with
selection inputs. Each interstate is implemented using 4 LUTs
(3 inputs LUTs). For that, a simple implementation of (4 ×
5) crossover RO PUF structure, which requires 16 LUTs
for implementing the interesting logic and 25 LUTs needed
to implement the 25 inverters. The proposed lightweight
CF-ROPUF is an area efficient design mapped inside a single
CLB, as shown in Table 1.

As seen in the table, our CF-ROPUF and XOR PUF con-
sumes less hardware resources on FPGA, including one CLB

that has 8 LUTs and 8 flip flops (F.F.), as compared with
other PUF designs, that require four or five CLBs with larger
number of LUTs and F.F. when mapped on reconfigurable
logic (FPGAs devices). For each FPGA chip, an instance of
the design is mapped into an FPGA area (40 CLBs). In our
design, CLB logic is efficiently utilized to map 16 ROs with
an area overhead of eight LUTs and six dedicated multipliers,
as seen in Fig. 4(a). The main logic of the design only
consumes 320 LUTs (8 LUTs * 40 CLBs) and 240 dedi-
cated multiplexers (6 multiplexers * 40 CLBs). Also, for the
sake of more area overhead comparison, the neighbor coding
algorithm is used to generate 256-bit PUF response from our
CF-ROPUF and the state of the art [16], [19], [23].

For that, our design only uses the 40 CLBs while the other
designs need to occupy 256 CLBs of the same FPGA family,
Spartan 3E FPGA. This clearly shows that compared to the
existing PUF techniques, our design ismore area efficient that
uses less on-chips design area for the generation of a large
number of highly reliable secret keys. Further, the proposed
cROPUF design efficiently utilizes the same area (one CLB)
of Spartan 3E FPGA to generate a 16-time larger response
bit as compared to simple ROPUF and 1-out-of-8 techniques,
mentioned in these papers [16], [19], [23].

B. PUF UNIQUENESS RESULTS
PUF uniqueness is one of the essential performance metrics
of a secure PUF design. An average PUF uniqueness value
determines how the digital signatures generated after imple-
menting the same PUF design on different silicon devices can
differ. The uniqueness of our PUF design is calculated using
inter-die Hamming Distance (HD) for Spartan 3E FPGA
chips using the following equation [23]:

U =
2

m(m− 1)

m−1∑
u=1

m∑
v=u+1

HD(Ru,Rv)
n

(18)

where u and v are two chips,Ru andRv are response vectors of
u and v chips, n is the number of PUF instances, and m is the
number of FPGAs. Ideally, bit responses should only depend
on the random process variation independent of RO loca-
tions. According to earlier research [19]–[23], statistically
average Hamming distance value is theoretically expected
to be 0.5.
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TABLE 1. Hardware overhead comparison.

TABLE 2. Uniqueness comparison between our cROPUF and earlier sPUF designs.

An average uniqueness value close to 0.5 indicates that
any response generated by implementing PUF on a certain
deceive is genuinely random and uniquely independent of
any other response generated by implementing the same PUF
on a different chip. Therefore, PUF responses can be seen
as random sets with a 50% probability of having 0 and a
50% likelihood of having 1 for each response. In this case,
the average HD value of the responses is expected to be 50%.

For n generated PUF responses (secret keys), the average
PUF uniqueness can be found using the average value of the
calculated Hamming distances between PUF responses. The
Hamming distance between two PUF responses generated
from two different devices is produced by comparing
response bits of a PUF instance with the corresponding
response bits of other PUF instances. The distribution of
Hamming Distance values produced is then constricted using
the obtained HDs, known as the inter-die Hamming dis-
tance distribution. To generate a PUF response with 256 bits,
neighbor coding selection algorithm is used. The following
comparison equation is used to generate each response:

ri =

{
1, if fi ≥ fj
0, Otherwise

(19)

To estimate the average uniqueness of our PUF design,
a total of 30 PUF secret keys (each key has a length of
256-bits) are generated after mapping the PUF instance on
30 different FPGA devices. For n generated PUF responses
(each response has 256-bits secret key), the average PUF
uniqueness is calculated using the average value of Hamming
distances between PUF response bits. The Hamming dis-
tances between each two PUF responses ri and rj, generated
from two different FPGA chips (chipi and chipj) are obtained.
For that, a an XOR binary comparison that compare each
bit in ri PUF response with the corresponding bit in the ri
PUF response is needed. The average value of Hamming
distances is then calculated to determine the overall average
uniqueness of the proposed PUF design. As shown in Fig. 7,
the distribution of the calculated Hamming distance values

FIGURE 7. Average CF-ROPUF Uniqueness test results.

is then constricted using the obtained HDs, which is known
as the inter-die Hamming distance distribution. The aver-
age value of our CF-ROPUF uniqueness is calculated using
inter-die Hamming Distance (HD) 30 Spartan 3E FPGA. For
the average uniqueness shown in Fig. 7, there are a number of
(N = 435) binary comparison between n = 30 unique PUF
responses. The value of N can be also calculated based on the
following equations:

N =
n!

2! (n− 2)!
(20)

Table 2 compares the uniqueness of our lightweight, con-
figurable PUF design with the competing PUF techniques.
The table shows an improved average uniqueness of our PUF
of 49.9% with a standard deviation of 1.05%. As compared
to earlier PUF techniques, which is very close to the optimal
value (50%). This indicates that the proposed lightweight
is promising to authenticate consumer electronic and smart
devices, including IoT devices. This shows that the proposed
LFSR PUF is a robust hardware-based design that can be
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utilized to generate unique secret keys for cryptographic
applications.

C. PUF RELIABILITY RESULTS
1) IFA RELIABILITY TECHNIQUE
Inspired by the 1-out-of-k scheme, the 1-out-of-r PUF coding
algorithm is proposed to quantify the IFARO sample frequen-
cies to generate reliable PUF response bits. After the reliable
RO sample frequencies are obtained using the IFA technique,
the 1-out-of-r coding algorithm uses these r RO frequencies
to generate reliable PUF-based secret keys for IoT-based
applications. For that, a 1-out-of-r coding algorithm obtains
(r − 1) reliable RO frequency pairs. The CF-ROPUF maps
the r ROs in a single CLB, hence for any two CLBs, only the
two RO frequencies with the maximum frequency difference
are selected.

The following equation represents the frequency pairs
obtained from n CLBs using the 1-out-of-r as:

Fi = {(f[CLB0], f[CLB1]), (f([CLB1], f[CLB2])

. . . , (f[CLBn−1], f[CLB(n))]} (21)

The CF-ROPUF design is mapped on an FPGA region with
r = 40 CLBs, as shown in Fig 5(b). There are r−1 = 39 RO
frequency pairs in total. Since each pair is used to generate
one PUF response bit (PUF-based secret key), the length of
the PUF-based key will also be (r − 1 = 39) for each FPGA
region. The average frequency ranges between 268 MHz and
282 MHz, with an average of 274.78 MHz and a standard
deviation of 3.062 MHZ. As mentioned earlier, HW is used
to select the RO sample frequencies that are reliably regen-
erated. The average HWs range from 97.3% to 99.2% with
an average of 98.5% and a relatively low standard deviation
of 0.71% for all 30 FPGA regions, as shown in Fig. 8.

This indicates that by using the IFA technique to improve
reliability, on average, 98.5% of the generated RO sample fre-
quencies can be used to obtain a reliable (accurate, repeatable,
and reproducible) PUF response bit.

2) PUF ACCURACY
Based on ISO definition, data measurements that exhibit
trueness and precision are considered accurate. Test measure-
ments that exhibit trueness may not show good precision and
vice versa. The measure of trueness is usually expressed in
terms of bias between a set of actual or expected measure-
ments and their mean (i.e., reference) value.

The RO sample frequencies are measured and compared
with their mean values (reference values) to estimate trueness.
Alternatively, precision is expressed in terms of average
diverseness (standard deviations) of data measurements. For
an estimation of the expected values, RO sample frequencies
are directly-measured from the hard-macro designs (expected
values). These measurements are collected from 30 CLBs
mapped on the 30 FPGAs, where one CLB is randomly
selected from each FPGA. For the selected CLB, 16 RO
frequencies are measured directly from the hardmacro design

FIGURE 8. Distribution of HW percentage for reliable RO frequencies
after applying IFA technique.

with the help of the logic analyzer. A total of 16 RO sample
frequencies are measured per FPGA chip from one CLB. The
16 collected frequencies for each FPGA chip are denoted as

F(expected) = {f0, f1, . . . , f15} (22)

Each of the measured values is then compared with calcu-
lated mean values (reference values). For the calculations of
the mean values, the CF-ROPUF structures that incorporate
the ROs, Muxes, De-Muxes, counters, challenge generator,
etc. are physically implemented on all FPGAs. After this,
the average values of the 16 RO sample frequencies collected
from each chip under nominal operating conditions are cal-
culated. Average trueness values are estimated for each chip
in terms of the absolute variability (difference) between the
actual values (expected values) of the individual RO frequen-
cies and their reference (mean) values as

Trueness = |Freference − Fexpected | (23)

Theoretically, the variability between the reference and
expected values is zero, which indicates ideal trueness
(100%) of the generated RO frequencies. However, as shown
in Fig. 9(a), the trueness values of sample RO frequencies
that are collected from 30 CLBs range from 0.49 MHz to
0.09 MHz with an average of 0.27 MHz and a standard
deviation value of 0.1 MHz. These low average absolute true-
ness and standard deviation values of RO sample frequencies
indicate that they are close to their mean values, and thereby
they are truly measured.

Precision is an essential factor to determine the accuracy
of results since it indicates the closeness of the agreement
between independent test results obtained under the same
conditions. To calculate the precision value, the total average
value (Tavg) of the mean values (Freference) for each FPGA is
calculated as follows:

Tavg =
1
m

m∑
i=1

Freference (24)
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where m represents the number of FPGAs. The average pre-
cision of RO frequencies is calculated as

Precisioni =

√∑m
i=1(Tavg − Freference)2

(m− 1)
(25)

The average RO frequencies collected from the top-right
areas of 30 FPGAs (640 frequencies) are shown in Fig. 9(b).
The average precision for these RO frequencies is deter-
mined to be 3.78 MHz. The collected frequencies range from
258.4 MHz to 276.7 MHz, with an average of 267.5 MHz.
The range (Maxvalue - Minvalue) is 18.3 MHz, and data are
precisely measured without any noticeable outlier due to a
potentially faulty FPGA chip or aging effects. It can be con-
cluded that the collected measurements are relatively close to
each other and, therefore, exhibit good precision.

A measurement exhibits repeatability only if the probabil-
ity of regenerating the same measurement results under fixed
operating conditions is high, according to the ISO defini-
tion. These operating conditions may include test equipment,
operators, and/or environmental conditions. The repeatabil-
ity is not applicable if the experiment is performed by
another person, even using the same lab equipment under
the same environmental conditions. The repeatability of the
CF-ROPUF is evaluated from 15 randomly selected FPGA
regions from the 30 FPGA chips. Each one of these regions
contains n = 40. Reliable RO frequencies are determined
from these CLB after applying the IFA reliability technique.
The 1-out-of-r coding is used to generate PUF response bits
for each group. The generation of the response bits is repeated
n = 10 times using ten different RO sample frequencies.

3) PUF REPEATABILITY
The CF-ROPUF repeatability is evaluated in terms of
intra-die Hamming distance (HD) for the response bits gen-
erated by each group individually using

Repeatability =
1
n

n∑
i=1

HD(rl, r ′l )

n
× 100% (26)

where rl and r ′l are two response bits, from n responses,
regenerated using the same input challenge under nominal
operating conditions. The HD for ideal PUF repeatability
is 100%. HD percentage of the average repeatability of the
CF-ROPUF responses at nominal operating conditions is
shown in Fig. 10. For the 15 FPGA regions, the average HD
values range from 97.1% to 99.8% with an average of 98.2%
and 0.98 standard deviations at the nominal operating condi-
tions. These results demonstrate that the CF-ROPUF exhibits
high repeatability at nominal operating conditions.

4) PUF REPRODUCIBILITY
ISO defines reproducibility as the probability of regenerat-
ing the same measurement result from an independent test
under varying operating conditions. PUF reproducibility is
determined in terms of the ‘reproducibility’ of the generated
response bits under varying temperatures and supply voltages

FIGURE 9. Percentage of average repeatability of CF-ROPUF under
nominal operating conditions.

FIGURE 10. Estimation of PUF accuracy: 10(a) Average trueness
of 30 CLBs; 10(b) Average precision of 640 RO frequencies.

in this work. The average values of the regional frequencies
change between 263.2 MHz and 281.2 MHz with an average
of 274.46 MHz and a standard deviation of 5.6 MHz under
temperature variations, as listed in Table 3. Alternatively,
the average value of the regional frequencies varies between
227.2 MHz and 300.4 MHz with an average of 263.1 MHz
and a standard deviation of 27.05MHz under a supply voltage
varying between 1.0 V to 1.3 V.

Environmental variations cause the range of measurement
results to fluctuate, leading to reliability issues. A higher
temperature decreases the average regional frequency while
a higher voltage increases average regional frequency. The
average PUF reproducibility is evaluated at five temperatures
and four voltage levels. Accordingly, PUF response bits gen-
erated at nominal operating conditions (rc) are compared to
the PUF response bits generated at varying operating condi-
tions (r ′c) using Hamming distances (HDs) as

Reproducibility =
1
m

m∑
j=1

HD(rc, r ′c)
m

× 100% (27)
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TABLE 3. The environmental variation effects on regional average RO frequencies.

where rc and r ′c are two response bits, from n responses,
regenerated using the same input challenge under nomi-
nal operating conditions. The reproducibility of CF-ROPUF
responses generated at five temperatures and four voltage
levels for 30 different regions of the tested chips are shown
in Figs: 11 (a) and 10(b). RO sample frequencies of selected
30 FPGA regions (one region for each chip) are paired and
quantified to apply the 1-out-of-r coding algorithm described
earlier. The length of the quantified response bits is 39 bits×
30 chips = 1170 bits. Fig. 11(a) shows the reproducibility
value, under different temperature variations, is ranging from
99.5% to 99.9% with an average of 99.73% and a standard
deviation of 0.17%.

Similarly, Fig. 11(b) shows that the average reproducibility
value, under different voltage variations, is ranging from
99.3% to 99.8% with an average of 99.53% and a stan-
dard deviation of 0.25%. Bit-flip is the probability that a
response bit flips from ‘0’ to ‘1’ or ‘1’ to ‘0’ due to different
external factors including environmental variations. From
Figs. 12(a) and (b), it is indicated that the average percentage
of unstable bits due to temperature variations is only 0.27%,
which is smaller than the percentage of bit-flips (0.47%)
due to voltage variations. This leads to the observation that
the CF-ROPUF reproducibility is slightly more sensitive to
voltage fluctuations than temperature variations.

As seen in Table 4, the overall average PUF reliability con-
cerning both temperature and voltage variations is found to
be 99.63%. The PUF reproducibility also has a relatively low
calculated standard deviation of 0.14% and an overall bit-flip
percentage of 0.37%. Therefore, these experimental results
demonstrate a good overall reproducibility of CF-ROPUF
sample frequencies under varying temperatures and supply
voltages. The reliability of our configurable PUF with dif-
ferent types of silicon PUFs that are suitable for FPGA [16],
[55], [56] are compared in Table 4. Our CF-ROPUF shows
a slightly better average reliability as compared to the other
designs. This shows that the CF-ROPUF is a strong candidate
for lightweight IoT devices due to the area-efficient design
that can generate a larger number of reliable secret keys at
varying operating conditions as compared to conventional
ROPUFs.

5) AGING
As soon as the voltage exceeds 1.4V and/or temperature
exceeds 85◦C , RO frequencies are not captured by the Logic
Analyzer, as indicated in Table 3. This is an example of a
temporal functional failure. Due to the temperature varia-
tions, the average regional frequency generated by the ROs
exceeds 300MHz, which is the maximum frequency limit the
Spartan 3E FPGA operates on. Additionally, the used FPGAs
do not operate properly when the temperature is higher than
85◦C . The failure causes FPGA to work unreliably, and
therefore, data samples cannot be completely measured from
the individual ROs. While the effects of temporal variations
(change in the ambient temperature and supply voltage) can
be reversible, the effects caused by accelerated aging are
irreversible. Accordingly, a simple experiment to study the
potential impact of accelerated aging on PUF reliability is
performed.

A total of ten ROs (five frequency pairs) are mapped on ten
adjacent CLBs. Using the reliable IFA technique, the ability
of these ROs to reliably regenerate the same response for
n times is evaluated. For enhanced reliability, the ROs with
the maximum frequency difference is selected by applying
1-out-of-r coding. The impact of aging on the average value
of the RO frequency pairs mapped on nine Spartan 3E FPGAs
over 30 days is shown in Fig. 11(c). The ROs have minimal
frequency fluctuations within 1 MHZ after 30 days of aging.
Since there is no overlap between the generated frequencies,
the results indicate no bit flip events in the response bits
and no reliability issues due to the accelerated aging. The
overall observation is that the reliability of FPGA chips can be
affected temporally by the change of the operating conditions
(temperature and voltages), as depicted in Table 3. Ignoring
the impact of varying operating conditions, we conclude that
CF-ROPUF design is functioning reliably after applying the
proposed IFA technique and 1-out-of-r coding.

D. RANDOMNESS
As previously mentioned, the central limit theorem (CLT)
states that a normal distribution should exhibit true random-
ness for its uniformly distributed data samples [17], [18].
So as a first step, we define normality, study, and enhance
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FIGURE 11. Average CF-ROPUF reproducibility (a) Under varying temperatures; (b) Under varying supply voltages; (c) Aging impact on
the average value of five RO frequency pairs mapped on 9 Spartan-3E FPGAs.

TABLE 4. Reliability comparison between our c-ROPUF and earlier sPUF designs.

the normality of RO data sample frequencies. After improv-
ing the normality, the true randomness of the normalized
generated PUF response bits is tested using the 15 NIST
randomness standard tests.

1) NORMALITY
The normal distribution, also called the Gaussian distribution,
shows a symmetric probability distribution around a mean
value that appears as a bell curve shape. Average regional RO
frequencies are calculated, the average RO frequency for each
FPGA region, at varying temperatures ‘t’ or voltages ‘v’. The
IBM-SSPS software is used to examine the normality of the
implemented generated RO sample frequencies.

Figs. 12(a)-(e) show the constructed data histograms that
represents the distribution of average RO frequencies for
30 chips before and after the application of Lnγ normal-
ization technique at 0◦C , 25◦C , RT ◦C , 50◦C and 75◦C .
From the figures, one cannot conclude whether or not the
data samples are well represented by normal distributions.
Thus, data normality is evaluated in terms of mean, median,
standard deviation, variance, skewness, kurtosis, and the
standard error of the mean under varying temperatures,
as tabulated in Table 5. In statistics, when the mean and
median are close to each other, it is expected that the data
sample exhibits good normality. As seen in Table 5, the mean
and median values are very close to each of the applied
temperatures. This is true for the measured average RO fre-
quencies before applying Lnγ , as well as the normalized RO
frequencies using Lnγ . It is expected (but not confirmed)
that both data samples exhibit normality (before and after
the application of Lnγ . Standard deviations and variances
measure the diverseness and variability of the data samples,
respectively.

From the same table (Table 5), it is noticed that with the
application of the probability Lnγ technique, data samples
exhibit higher diverseness and variability. Average diverse-
ness and variability are significant measures for the PUF
reliability [2], [5], [26]. Thus, it is expected that data samples
are more reliable under varying conditions with the imple-
mentation of Lnγ on real hardware. The standard error of the
mean (SEM) is calculated by dividing the standard deviation
(S.D.) of the test results by the square root of the data sample
size (n) as follows:

SEM =
S.D.
√
n

(28)

The SEM provides an estimate of the confidence interval
for themean of the population. Similar to standard deviations,
SEM values are calculated using IBM-SPSS and multiplied
by 1.96 to obtain a rough estimate of 95% from the population
means to settle in the normal distribution as assumed by the
software. The standard errors are inversely proportional to the
sample size. Since the sample size is fixed (640), the stan-
dard errors are proportionally affected by standard deviation
values. This means large data samples with small standard
deviations result in small values of the standard errors. The
smaller the standard error, the more representative the mean
of the data. In cases of large standard errors, the data samples
can experience significant irregularities and less likely to be
normally distributed.

From Table 5, one can notice that the application of Lnγ
leads to increments in the calculated SEM value. This is
expected due to the high standard deviations. Skewness and
kurtosis are among the important parameters to confirm the
normality of histograms of data samples. In theory, the skew-
ness of a random data sample (n = f0, f1, . . . , fn) that is
represented in a histogram distribution is referred to as the
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FIGURE 12. Distribution of average RO frequencies for 30 chips before and after the application of logarithmic gamma function
normalization technique: (a) 0◦C, (b) 25◦C (c) RT◦C, (d) 50◦C and (e) 75◦C.

TABLE 5. The estimation of data normality with different parameters.

Pearson’s moment coefficient of skewness [18], [61], [62].
Skewness is a quantified probability measurement that deter-
mines the asymmetry of the histogram distribution about its
mean value. The average skewness of this data can be zero
(normally distributed data), positive (skewed to the right),
or negative value (skewed to the left) that is determined using
the following equation [61]:

Avg(skewness) =
n∑
i=1

E(
fi − µ
δ

)3 (29)

where fi is an average RO sample frequency, µ is the mean
value of the population, δ is the standard deviation of the
sample population, and E is the expectation operator. Sim-
ilarly, kurtosis, a Greek term which literally means curved,
is a quantified measurement to determine the sharpness of
the histogram distribution about its mean value [18], [61],
[62]. The average kurtosis of n random variables can be zero
(normally distributed data), positive or negative value defined
by the following formula [61]:

Avg(kurtosis) =
f 4i
µ4 =

E(fi − µ)4

(E(fi − µ)2)2
(30)

The µ represents the mean value of the population, µ4

is known as the fourth central moment, and δ is the stan-
dard deviation of xi. For normally distributed data, both the
skewness and kurtosis values should be theoretically zero.
However, having a negative average kurtosis (avgskewness ≤
0) means that distribution will become a smoothened peak
with more readings near the tail. On the other hand, a distribu-
tion that has more readings near the center (sharper peak than
normal) will have a positive kurtosis (kurtosis ≥ 0). It can be
concluded from the table that Lnγ shows no improvement in
the skewness of data samples and lead to more reading near
the right tails, i.e., data histogram is more skewness to the
right. However, the application of Lnγ noticeably improves
the kurtosis values, as it is also noticed from Figs. 12(a)-(e).
From the results, it is not clear how the average frequencies
vary according to the normal distribution. Therefore, further
tests to confirm data normality are needed.

To further assess the normality of the RO sample
frequencies represented by data histograms, Q-Q plots are
constructed using IBM-SPSS statistical software. Since the
main objective is to compare the obtained data histogram dis-
tribution to the normal distribution that only varies in location
and scale, the location and scale parameters are estimated
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TABLE 6. Estimated QQ plot parameters for normality.

FIGURE 13. Normal Q-Q plots for the average RO frequencies before and after the application of Lnγ normalization technique: (a) 0◦C,
(b) 25◦C (c) RT◦C, and (d) 50◦C and (e) 75◦C.

using the Q-Q plot shown in Table 6. A point of linear patterns
indicates that data samples reasonably describe the normal
distribution. The location and scale parameters are estimated
for data samples, such as the intercept and slope of the linear
pattern shown in Figs. 13(a)-(e). A Q-Q plot is a typical
graphical illustration for determining the exact normality of
data histograms. It compares the empirical cumulative dis-
tribution probabilities of a data set (RO sample frequencies)
with their theoretical cumulative probabilities (normal distri-
bution) [18]. The correlation between the expected (normal)
and observed probabilities (cumulative) can be written as
follows:

Expected(fi) = P(f < i) (31)

Observed(i) =
(i− 1

2 )

n
(32)

The location parameter shown in Table 6 represents the
mean values of the distortion that are tabulated in Table 5.
However, scales are the Y slope of the plots. As shown in
Figs. 13(a)-(e) of Q-Q plots, with the application of Lnγ ,
Ro sample frequencies collected under different temperatures
follow almost the same trend, which typically lies on the
straight (normality line). From the same figures, it is noticed
that data samples collected before the application of Lnγ
exhibit irregularity and do not fall on the normality line. This
confirms that the normalized RO sample frequencies (NZ)
are better represented by using the normal distribution as
compared to themeasured frequencies (MD) before the appli-
cation of gamma, and thus, the normality is improved.

2) SYSTEMATIC VARIATIONS MITIGATION
Spatial systematic correlations negatively affect the random-
ness of the generated responses with the pairing strategy of
the original chain-like coding. Several security techniques,
including regression-based distiller and a pseudo-random
(PRN) technique, and logarithmic and absolute diverseness
technique (LDT), have been proposed to mitigate systematic
process variations and improve PUF randomness. For exam-
ple, the regression-based distiller technique has been applied
with multiple coding algorithms, including 1-out-of-8 cod-
ing, chain-like neighbor coding, decoupling neighbor coding,
S-sequence, and T-sequence. Additionally, a pseudo-random
technique (PRN) was introduced to decrease the impact of
systematic process variation on ROPUFs. The LDT technique
(a novel security technique based on base-10 logarithm func-
tion and the square root of RO deviations from the global
mean) has been proposed in our earlier work to mitigate the
effect of systematic spatial variation and also to improve the
randomness of the response bits generated using a unique
reconfigurable ROPUF design.

Figs. 14(a) and 14(b) show the distribution of average RO
sample frequencies of 240 CLBs after and before the applica-
tion of the proposed Lnγ normalization techniques explained
earlier. As shown in the figures, the application of Lnγ with
the 1-out-of-r coding on the average RO sample frequency
of two FPGA chips at both 0◦C and 75◦C temperatures has
efficiently randomized the frequency distributions across all
CLBs and removed clustered frequency regions due to the
negative impact of systematic process variation [9].
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TABLE 7. Analyses of P − values and Proportion probabilities for the 15 NIST test suites for randomness.

FIGURE 14. Mitigation of systematic process variations (a) Chip 1 at 0◦C; (b) Chip 2 at 75◦C.

3) NIST RANDOMNESS TEST
The NIST statistical test suite for random and pseudorandom
number generators and cryptographic applications including
the approximate entropy test, binary matrix rank test, discrete
Fourier transform, non-overlapping template, overlapping
template, universal statistical, and linear-complexity require
a large random sequence with over 1000 binary response bits.
Thus, they are not suitable for designing true randomnumbers
using simple ROPUF designs [17]. To test the PUF ran-
domness, different coding algorithms, chain-like neighbor,
decoupled chain-like neighbor, and 1-out-of-r that exploits
the RO frequencies, normalized using logarithmic gamma
Lnγ technique, are used to generate the PUF-based binary
response bits.

The randomness of the generated response bits are justified
using the 15 NIST test suites for randomness over a popu-
lation of 30 chips (30 random sequencers). For an applied
sequence, a NIST test calculates an empirical Proportional
probability [17]. The probability P − value of P − values
in n sub-intervals (Si), i ← 1, . . . , n, is computed using the
incomplete gamma function (igamc) based on (χ2) distribu-
tion and the goodness-of-fit distribution Fi as follow [17]:

χ2
=

∑n
i=1(Fi −

Si
n )

2

( Sin )
(33)

P− value = igamc (
n− 1
2

,
χ2

2
) (34)

According to NIST, for a particular NIST test, if 4% or
more of all tested sequences are significant (more than 4%

of the tested sequences have a P-value ≤ 1%), the ‘Propor-
tional’ test fails; otherwise, it passes. For the Proportional
event, since there are 30 sequences that are generated by the
CF-ROPUF scheme, at least 29 sequences (96%) should pass
with a significance level of α = 1% [17].

Besides, the NIST frequency test examines all sequences
to determine their uniformity to test whether or not the dis-
tribution of 1’s to 0’s are uniformly distributed in all of the
tested sequences. Tested sequences are considered uniformly
distributed only when critical P − value of the calculated
P − values is greater than or equal to 0.0001 (P − value of
P− values)← 0.0001 [17].
Based on the chain-like coding explained earlier, the num-

ber of generated random binary responses out of any FPGA
region is 16 × (n − 1) = 624 bits. The total generated
binary sequence from each chip (6 regions) will be 624 ×
6 = 3744 bits. This represents a relatively large number of
binary responses that satisfy all 15 NIST test requirements
where at least 1000 responses are needed per each sequence.
The obtained randomness results from the NIST statistical
test for CF-ROPUF after applying the Lnγ function tech-
nique with chain-like neighbor coding are given in Table 7.
From the table, it can be seen that out of the 15 NIST
tests, the chain-like coding completely fails to pass the
Longest Run, Non-overlapping and Approximate Entropy.
It also partially fails the Serial (back-word), Universal Statis-
tic, and Linear Complexity Tests. We believe that these
expected failures are due to the high intrinsic dependencies
by the systematic spatial correlations caused by the layout
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dependency [7]–[9], [36]. Although the chain-like coding
passes (partially or fully) at least 12 NIST tests out of 15 trials
with a percentage of 80% for the P−value test and 73.3% for
the Proportional analysis, the results are better than the exist-
ing techniques, including the regression-based distiller and
PRN techniques where chain-like-coding completely fails
the entire NIST test suites [17]. We strongly believe that the
failure rate can be significantly reduced with the application
of different normality techniques and coding algorithms to
nullify the negative impact of systematic process variations
completely. Considering decoupled neighbor coding as a
solution to this problem helps to improve passing NIST
randomness tests. The generated response using decoupled
neighbor coding is 16 × 20 = 320 bits and the total binary
sequence generated from FPGA (6 regions) is 624×6 = 1920
bits.

As shown in Table 7, decoupled neighbor coding only
fails to pass the Longest Run thoroughly. It fails to par-
tially pass the Linear complexity with a 13.3% improvement
rate over the original chain like coding. Future investigation
using different random responses generated with varying
security techniques is needed to improve the randomness of
the generated PUF responses. For the generation of random
binary sequences with significant binary response bits, the
1-out-of-r coding algorithm uses the five least important bits
of each input challenge of the fastest RO in each CLB. There-
fore, test sequences that are 5 times larger are generated. For
example, assume that the input challenge 000000101 picks
the fastest RO frequency RO5 out of 16 frequencies that are
mapped on the first CLB (CLB0). In this case, the 5 least
significant bits of this challenge (00101) are used in the gen-
eration process of PUF binary sequences from each FPGA.
Thus, the binary bits generated out of each FPGA region are
maximized to 40 CLBs × 5 = 200 bits. Hence, each FPGA
produces a random sequence with a length of 6×200 = 1200
binary bit responses.

FromTable 7, it is observed that 1-out-of-r coding performs
well after applying (Lnγ ) transformation technique with only
one ‘P − value’ failure and two marginal Proportional fail-
ures. The 1-out-of-r coding algorithm completely fails to
pass the non-overlapping and partially fails the approximate
entropy test. We believe that these failures are because the
selection process of the random bits (five-bits challenge)
may lead to similar patterns and increase the chance of
intrinsic correlation probability in the generated responses.
It is expected that an excellent shuffling technique can
help to overcome such an inherent correlation behind these
selections.

The 1-out-of-r coding passes 13 out of 15 NIST tests
with a passing percentage of 93.3% for P − value test and
86.7% for the Proportional test. The passing rates are signif-
icantly better than another coding such as chain-like neighbor
coding and decoupled chain-like neighbor algorithms that are
proposed in [8], [9].

VI. CONCLUSION
In this paper, two new security techniques, intra-die fre-
quency aware (IFA) and (Lnγ ), are proposed to enhance the
robustness of IoT-based lightweight PUF using configurable
ring oscillator PUFs (CF-ROPUFs) design. The CF-ROPUF
is realized on real hardware and RO sample frequencies that
are collected at varying temperatures and supply voltage from
a population of 30 Spartan-3E FPGAs. Experimental results
show an average of a 98.5% Hamming Weight (HM) value
after applying the IFA technique, which indicates a highly
reliable PUF output. Additionally, the CF-ROPUF reliability
is defined and evaluated in terms of accuracy, repeatability,
and reproducibility, which are the International Organization
for Standardization (ISO). The results show that the collected
measurements exhibit high accuracy in terms of average
trueness and precision of the generated sample RO frequen-
cies. With the application of the IFA and 1-out-of-r cod-
ing algorithm, it is also shown that CF-ROPUF has notable
average repeatability of 98.2%, and an enhanced average
reproducibility of 99.63% as compared to traditional ROPUF
design. From the aging result, it is concluded that after apply-
ing the proposed IFA technique and the 1-out-of-r coding,
the CF-ROPUF design is more immune against accelerated
aging impacts with no bit flip that can lead to reliabil-
ity issues. Further, our results show that the proposed Lnγ
enhances the normality and mitigates the negative impacts of
the systematic process variations on RO sample frequencies.
Consequently, PUF randomness results show that generated
IoT PUF-based binary response bits can successfully pass the
15 NIST test suites for true randomness with an enhanced
percentage, 93.3%, with the application of the 1-out-of-r
coding.

ACKNOWLEDGMENT
The statements made herein are solely the responsibility of
the authors. The authors, therefore, acknowledge with thanks
to DSR for technical and financial support.

REFERENCES
[1] F. Amsaad, A. Razaque, M. Baza, S. Kose, S. Bhatia, and G. Srivastava,

‘‘An efficient and reliable lightweight PUF for IoT-based applications,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021,
pp. 1–6.

[2] A. Sengupta and S. Kundu, ‘‘Guest editorial securing IoT hardware: Threat
models and reliable, low-power design solutions,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 12, pp. 3265–3267, Dec. 2017.

[3] C. Dong, G. He, X. Liu, Y. Yang, and W. Guo, ‘‘A multi-layer hard-
ware Trojan protection framework for IoT chips,’’ IEEE Access, vol. 7,
pp. 23628–23639, 2019.

[4] P. Gope and B. Sikdar, ‘‘Lightweight and privacy-preserving two-factor
authentication scheme for IoT devices,’’ IEEE Internet Things J., vol. 6,
no. 1, pp. 580–589, Feb. 2019.

[5] V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal, ‘‘PMsec:
Physical unclonable function-based robust and lightweight authentication
in the internet of medical things,’’ IEEE Trans. Consum. Electron., vol. 65,
no. 3, pp. 388–397, Aug. 2019.

[6] B. Zhao, P. Zhao, and P. Fan, ‘‘EPUF: A lightweight double identity
verification in IoT,’’ Tsinghua Sci. Technol., vol. 25, no. 5, pp. 625–635,
Oct. 2020.

136808 VOLUME 9, 2021



F. Amsaad et al.: Enhancing Performance of Lightweight Configurable PUF for Robust IoT Hardware-Assisted Security

[7] A. Maiti and P. Schaumont, ‘‘Improving the quality of a physical unclon-
able function using configurable ring oscillators,’’ in Proc. Int. Conf. Field
Program. Log. Appl., Prague, Czech Republic, Aug. 2009, pp. 703–707.

[8] X. Xin, J. Kaps, and K. Gaj, ‘‘A configurable ring-oscillator-based PUF for
Xilinx FPGAs,’’ in Proc. 14th Euromicro Conf. Digit. Syst. Design, Oulu,
Finland, 2011, pp. 651–657.

[9] F. Amsaad, T. Hoque, and M. Niamat, ‘‘Analyzing the performance
of a configurable ROPUF design controlled by programmable XOR
gates,’’ in Proc. IEEE 58th Int. Midwest Symp. Circuits Syst. (MWSCAS),
Fort Collins, CO, USA, Aug. 2015, pp. 1–4.

[10] Technical Corrigendum, Accuracy (Trueness and Precision) of Mea-
surement Methods and Results—Part 1: General Principles and Def-
initions, Standard ISO 5725-1:1994, International Organization for
Standardization, Geneva, Switzerland, 1998.

[11] Statistical Interpretation of Data Part 6: Determination of Statistical Tol-
erance Intervals, Standard ISO 16269-6:2014, 2014.

[12] (2017). TestXpo, Reliable Test Results, International Forum for Materials
Testing. [Online]. Available: https://www.testxpo.com

[13] Information Technology—Vocabulary—Part 37: Biometrics, document
ISO/IEC 2382-37:2017(en). [Online]. Available: https://www.iso.org/
obp/ui/#iso:std:66693:en

[14] Statistical Interpretation of Data Intervals, Standard ISO 16269-6:2014,
2014. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:16269:-
6:ed-2:v1:en

[15] J. Zhang and G. Qu, ‘‘Physical unclonable function-based key sharing via
machine learning for IoT security,’’ IEEE Trans. Ind. Electron., vol. 67,
no. 8, pp. 7025–7033, Aug. 2020.

[16] A. Maiti, V. Gunreddy, and P. Schaumont, ‘‘A systematic method to eval-
uate and compare the performance of physical unclonable functions,’’ in
Embedded SystemsDesign with FPGAs, P. Athanas, D. Pnevmatikatos, and
N. Sklavos, Eds. New York, NY, USA: Springer, 2013.

[17] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks,
‘‘A statistical test suite for random and pseudorandom number gener-
ators for cryptographic applications,’’ NIST, Gaithersburg, MD, USA,
Tech. Rep. SP 800-22 Rev 1a, Apr. 2010.

[18] V. Krishnan, ‘‘Statistics for the behavioral sciences,’’ inCengage Learning,
9th ed. Boston, MA, USA, Jan. 2012.

[19] G. E. Suh and S. Devadas, ‘‘Physical unclonable functions for device
authentication and secret key generation,’’ inProc. 44th ACM/IEEEDesign
Autom. Conf., San Diego, CA, USA, Jun. 2007, pp. 9–14.

[20] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
‘‘A technique to build a secret key in integrated circuits for identifica-
tion and authentication applications,’’ in Symp. VLSI Circuits. Dig. Tech.
Papers, Honolulu, HI, USA, 2004, pp. 176–179.

[21] M. J. Azhar, F. Amsaad, and S. Kose, ‘‘Duty-cycle-based controlled phys-
ical unclonable function,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 26, no. 9, pp. 1647–1658, Sep. 2018.

[22] N. Pundir, F. Amsaad, M. Choudhury, and M. Niamat, ‘‘Novel technique
to improve strength of weak arbiter PUF,’’ in Proc. IEEE 60th Int. Mid-
west Symp. Circuits Syst. (MWSCAS), Boston, MA, USA, Aug. 2017,
pp. 1532–1535.

[23] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, ‘‘A large scale
characterization of RO-PUF,’’ in Proc. IEEE Int. Symp. Hardw.-Oriented
Secur. Trust (HOST), Anaheim, CA, USA, Jun. 2010, pp. 94–99.

[24] B. Chatterjee, D. Das, S. Maity, and S. Sen, ‘‘RF-PUF: Enhancing IoT
security through authentication of wireless nodes using in-situ machine
learning,’’ IEEE Internet Things J., vol. 6, no. 1, pp. 388–398, Feb. 2019.

[25] Z. Guan, H. Liu, and Y. Qin, ‘‘Physical unclonable functions for IoT device
authentication,’’ J. Commun. Inf. Netw., vol. 4, no. 4, pp. 44–54, Dec. 2019.

[26] S. Larimian, M. R. Mahmoodi, and D. B. Strukov, ‘‘Lightweight inte-
grated design of PUF and TRNG security primitives based on eFlash
memory in 55-nm CMOS,’’ IEEE Trans. Electron Devices, vol. 67, no. 4,
pp. 1586–1592, Apr. 2020.

[27] B. Chen and F. M. J. Willems, ‘‘Secret key generation over biased physical
unclonable functions with polar codes,’’ IEEE Internet Things J., vol. 6,
no. 1, pp. 435–445, Feb. 2019.

[28] F. Amsaad, A. Sherif, A. Dawoud, M. Niamat, and S. Kose, ‘‘A novel
FPGA-based LFSR PUF design for IoT and smart applications,’’ in
Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON), Dayton, OH, USA,
Jul. 2018, pp. 99–104.

[29] A. P. D. Nath, F. Amsaad, M. Choudhury, and M. Niamat, ‘‘Hardware-
based novel authentication scheme for advanced metering infrastructure,’’
inProc. IEEENat. Aerosp. Electron. Conf. (NAECON)Ohio Innov. Summit
(OIS), Dayton, OH, USA, Jul. 2016, pp. 364–371.

[30] D. E. Holcomb, W. P. Burleson, and K. Fu, ‘‘Power-up SRAM state as an
identifying fingerprint and source of true random numbers,’’ IEEE Trans.
Comput., vol. 58, no. 9, pp. 1198–1210, Sep. 2009.

[31] F. Farha, H. Ning, K. Ali, L. Chen, and C. Nugent, ‘‘SRAM-PUF-based
entities authentication scheme for resource-constrained IoT devices,’’
IEEE Internet Things J., vol. 8, no. 7, pp. 5904–5913, Apr. 2021.

[32] Y. Shifman, A. Miller, O. Keren, Y. Weizman, and J. Shor, ‘‘An SRAM-
based PUF with a capacitive digital preselection for a 1E-9 key error
probability,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12,
pp. 4855–4868, Dec. 2020.

[33] M.-K. Oh, S. Lee, Y. Kang, and D. Choi, ‘‘Wireless transceiver aided run-
time secret key extraction for IoT device security,’’ IEEE Trans. Consum.
Electron., vol. 66, no. 1, pp. 11–21, Feb. 2020.

[34] F. Amsaad, C. R. Chaudhuri, and M. Niamat, ‘‘Reliable and reproducible
PUF based cryptographic keys under varying environmental conditions,’’
inProc. IEEENat. Aerosp. Electron. Conf. (NAECON)Ohio Innov. Summit
(OIS), Dayton, OH, USA, Jul. 2016, pp. 468–473.

[35] N. Pundir, F. Amsaad, M. Choudhury, and M. Niamat, ‘‘Novel technique
to improve strength of weak arbiter PUF,’’ in Proc. IEEE 60th Int. Midwest
Symp. Circuits Syst. (MWSCAS), Boston, MA, USA, Aug. 2017.

[36] C. R. Chaudhuri, F. Amsaad, and M. Niamat, ‘‘Impact of temporal vari-
ations on the performance and reliability of configurable ring oscillator
PUF,’’ in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON) Ohio Innov.
Summit (OIS), Dayton, OH, USA, Jul. 2016, pp. 458–463.

[37] F. Amsaad, A. Prasad, C. Roychaudhuri, andM. Niamat, ‘‘A novel security
technique to generate truly random and highly reliable reconfigurable
ROPUF-based cryptographic keys,’’ in Proc. IEEE Int. Symp. Hardw. Ori-
ented Secur. Trust (HOST), McLean, VA, USA, May 2016, pp. 185–190.

[38] F. Amsaad, M. Niamat, A. Dawoud, and S. Kose, ‘‘Reliable delay based
algorithm to boost PUF security against modeling attacks,’’ Information,
vol. 9, no. 9, pp. 1–15, Sep. 2018.

[39] M.-D. Yu, M. Hiller, and S. Devadas, ‘‘Maximum-likelihood decoding of
device-specific multi-bit symbols for reliable key generation,’’ in Proc.
IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), Washington, DC,
USA, May 2015, pp. 38–43.

[40] M.-D. Yu and S. Devadas, ‘‘Secure and robust error correction for physical
unclonable functions,’’ IEEE Des. Test Comput., vol. 27, no. 1, pp. 48–65,
Jan./Feb. 2010.

[41] C.-E. Yin and G. Qu, ‘‘Temperature-aware cooperative ring oscilla-
tor PUF,’’ in Proc. IEEE Int. Workshop Hardw.-Oriented Secur. Trust,
San Francisco, CA, USA, Jul. 2009, pp. 36–42.

[42] J. Shi, Y. Lu, and J. Zhang, ‘‘Approximation attacks on strong PUFs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2138–2151, Oct. 2020.

[43] U. R Ührmair, F. Sehnke, J. S Ölter, G. Dror, S. Devadas, and
J. Ü. Schmidhuber, ‘‘Modeling attacks on physical unclonable functions,’’
in Proc. 17th ACM Conf. Comput. Commun. Secur., 2010, pp. 237–249.

[44] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, ‘‘PUF modeling
attacks on simulated and silicon data,’’ IEEE Trans. Inf. Forensics Security,
vol. 8, no. 11, pp. 1876–1891, Nov. 2013.

[45] P. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Proc.
Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer, 1999,
pp. 388–397.

[46] P. C. Kocher, ‘‘Timing attacks on implementations of Diffie–Hellman,
RSA, DSS, and other systems,’’ in Proc. Annu. Int. Cryptol. Conf., 1996,
pp. 104–113.

[47] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, ‘‘Semi-invasive EM attack
on FPGA RO PUFs and countermeasures,’’ in Proc. Workshop Embedded
Syst. Secur., 2011, pp. 1–9.

[48] J. Delvaux and I. Verbauwhede, ‘‘Side channel modeling attacks on 65 nm
arbiter PUFs exploiting CMOS device noise,’’ in Proc. IEEE Int. Symp.
Hardw.-Oriented Secur. Trust (HOST), Jun. 2013, pp. 137–142.

[49] S. Tajik, E. Dietz, S. Frohmann, H. Dittrich, D. Nedospasov, C. Helfmeier,
J.-P. Seifert, C. Boit, and H.-W. Hubers, ‘‘Photonic side-channel analysis
of arbiter PUFs,’’ J. Cryptol., vol. 30, no. 2, pp. 550–571, 2017.

[50] A. Mahmoud, U. Rhrmair, M. Majzoobi, and F. Koushanfar, ‘‘Combined
modeling and side channel attacks on strong PUFs,’’ IACR Cryptol. ePrint
Arch., vol. 63, no. 2, Oct. 2013.

[51] Y. Cao,W. Zheng, X. Zhao, andC.-H. Chang, ‘‘An energy-efficient current-
starved inverter based strong physical unclonable function with enhanced
temperature stability,’’ IEEE Access, vol. 7, pp. 105287–105297, 2019.

[52] J. Zhang, C. Shen, H. Su, M. T. Arafin, and G. Qu, ‘‘Voltage over-scaling-
based lightweight authentication for IoT security,’’ IEEE Trans. Comput.,
early access, Jan. 6, 2021, doi: 10.1109/TC.2021.3049543.

VOLUME 9, 2021 136809

http://dx.doi.org/10.1109/TC.2021.3049543


F. Amsaad et al.: Enhancing Performance of Lightweight Configurable PUF for Robust IoT Hardware-Assisted Security

[53] M. T. Arafin, M. Gao, and G. Qu, ‘‘VOLtA: Voltage over-scaling based
lightweight authentication for IoT applications,’’ in Proc. Asia South
Pacific Design Autom. Conf., Jan. 2017, pp. 336–341.

[54] H. Su and J. Zhang, ‘‘Machine learning attacks on voltage over-scaling-
based lightweight authentication,’’ in Proc. Asian Hardw. Oriented Secur.
Trust Symp., Dec. 2018, pp. 50–55.

[55] R. Kumar, H. K. Chandrikakutty, and S. Kundu, ‘‘On improving reliability
of delay based physically unclonable functions under temperature varia-
tions,’’ in Proc. IEEE Int. Symp. Hardw.-Oriented Secur. Trust, San Diego,
CA, USA, Jun. 2011, pp. 142–147.

[56] B. Srinivasu, P. Vikramkumar, A. Chattopadhyay, and K.-Y. Lam,
‘‘CoLPUF: A novel configurable LFSR-based PUF,’’ in Proc. IEEE
Asia Pacific Conf. Circuits Syst. (APCCAS), Chengdu, China, Oct. 2018,
pp. 358–361.

[57] L. Zhang, C. Wang, W. Liu, M. O’Neill, and F. Lombardi, ‘‘XOR gate
based low-cost configurable RO PUF,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Baltimore, MD, USA, May 2017, pp. 1–4.

[58] Y. Cui, C. Wang, W. Liu, Y. Yu, M. O’Neill, and F. Lombardi, ‘‘Low-
cost configurable ring oscillator PUF with improved uniqueness,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Montreal, QC, Canada, May 2016,
pp. 558–561.

[59] Y. Cui, C. Gu, C. Wang, M. O’Neill, and W. Liu, ‘‘Ultra-lightweight and
reconfigurable tristate inverter based physical unclonable function design,’’
IEEE Access, vol. 6, pp. 28478–28487, 2018.

[60] Z. Pang, J. Zhang, Q. Zhou, S. Gong, X. Qian, and B. Tang, ‘‘Crossover
ring oscillator PUF,’’ in Proc. 18th Int. Symp. Quality Electron. Design
(ISQED), Santa Clara, CA, USA, Mar. 2017, pp. 237–243.

[61] Measures of Skewness and Kurtosis. Accessed: May 2020. [Online]. Avail-
able: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

[62] T. Tae-Hwan andW. Halbert, ‘‘On more robust estimation of skewness and
kurtosis: Simulation and application to the SP500 index,’’ Finance Res.
Lett., vol. 1, no. 1, pp. 56–73, Mar. 2003.

FATHI AMSAAD (Senior Member, IEEE)
received the Ph.D. degree in engineering from The
University of Toledo (UT), Toledo, OH, USA,
in 2017. He is currently an Assistant Profes-
sor with the School of Information Security and
Applied Computing (SISAC), Eastern Michigan
University (EMU). His research interests include
hardware-oriented security and trust for the IoT
and smart systems.

AHMED OUN (Graduate StudentMember, IEEE)
received the M.S. degree in electrical engineering
from the University of Bridgeport, Bridgeport, CT,
USA, in December 2012. He is currently pursuing
the Ph.D. degree with the Electrical Engineering
and Computer Science Department, The Univer-
sity of Toledo, Toledo, OH, USA. He also worked
as a Project Manager with General Electric Inter-
national Inc. (GEII) before deciding to pursue
his Ph.D. degree. He is also working with the

Hardware Oriented Security Laboratory, The University of Toledo. His
research interests include hardware-oriented security and trust, testing of
digital VLSI, field programmable gate arrays, machine learning algorithms,
swarm intelligence optimization techniques, neural networks, and their
applications.

MOHAMMED Y. NIAMAT (Life Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from Aligarh Muslim University, Aligarh,
India, the master’s degree in electrical engineering
from the University of Saskatchewan, Saskatoon,
SK, Canada, and the Ph.D. degree from The Uni-
versity of Toledo, Toledo, OH, USA, in 1989.
From 1996 to 1997, he was a Visiting Associate
Professor with the Center for Reliable Computing,
Stanford University. He is currently the Group

Leader of the High-Performance Computing Research Group, Electrical
Engineering and Computer Science Department, The University of Toledo.
He has supervised more than 50 graduate students, including Ahmed Oun.

ABDUL RAZAQUE received the Ph.D. degree in
computer science and engineering from the Uni-
versity of Bridgeport, USA, in 2014. He is cur-
rently an Associate Professor with the Department
of Computer Engineering, International Informa-
tion Technology University, Almaty, Kazakhstan.
His research interests include the wireless sensor
networks, cybersecurity, cloud computing secu-
rity, design and development of mobile learning
environments, and ambient intelligence.

SELCUK KOSE (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
the University of Rochester, Rochester, NY, USA,
in 2012. He is currently an Associate Profes-
sor of electrical engineering with the Univer-
sity of Rochester. His research interests include
low-power VLSI design and hardware-oriented
security.

MOHAMED MAHMOUD (Senior Member,
IEEE) received the Ph.D. degree from the Uni-
versity of Waterloo, in April 2011. He is cur-
rently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
Tennessee Technological University, USA. His
research interests include security and privacy
preserving schemes for smart grid communication
networks, and mobile ad hoc and sensor networks.

WALEED ALASMARY (Senior Member, IEEE)
received the Ph.D. degree in electrical and com-
puter engineering from the University of Toronto,
Toronto, ON, Canada, in 2015. He is currently
an Assistant Professor of computer engineering
with Umm Al-Qura University, Saudi Arabia. His
current research interests include mobile comput-
ing, ubiquitous sensing, intelligent transportation
systems, privacy, and anonymity.

FAWAZ ALSOLAMI (Member, IEEE) received
the M.A.Sc. degree in electrical and computer
engineering from the University of Waterloo,
Canada, in 2008, and the Ph.D. degree in com-
puter science from KAUST University, Thuwal,
Saudi Arabia, in 2016. He joined the Department
of Computer Science, King Abdulaziz University,
as an Assistant Professor of computer science.
Since 2018, he has been the Chairperson of the
Computer Science Department, King Abdulaziz

University. He also publishedmany articles and onemonograph. His research
interests include artificial intelligence, machine learning, data mining, and
combinatorial optimization.

136810 VOLUME 9, 2021


