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ABSTRACT Smartphones are among the most popular wearable devices to monitor human activities.
Several existing methods for Human Activity Recognition (HAR) using data from smartphones are based on
conventional pattern recognition techniques, but they generate handcrafted feature vectors. This drawback
is overcome by deep learning techniques which unfortunately require lots of computing resources, while
generating less interpretable feature vectors. The current paper addresses these limitations through the
proposal of a Hidden Markov Model (HMM)-based technique for HAR. More formally, the sequential
variations of spatial locations within the raw data vectors are initially captured in Markov chains, which
are later used for the initialization and the training of HMMs. Meta-data extracted from these models are
then saved as the components of the feature vectors. The meta-data are related to the overall time spent by
the model observing every symbol for a long time span, irrespective of the state from which this symbol is
observed. Classification experiments involving four classification tasks have been carried out on the recently
constructed UniMiB SHAR database which contains 17 classes, including 9 types of activities of daily living
and 8 types of falls. As a result, the proposed approach has shown best accuracies between 92% and 98.85%
for all the classification tasks. This performance is more than 10% better than prior work for 2 out of
4 classification tasks.

INDEX TERMS Human activity recognition, activities of daily living, fall detection, hiddenMarkovmodels,
smartphone sensors.

I. INTRODUCTION
Human Activity Recognition (HAR) has gained in impor-
tance for many decades for its capability to learn meaning-
ful and high-level knowledge about various types of human
activities including (but not limited to):

1) Ambulation: walking, running, climbing stairs, etc.
2) Activities of daily living (ADL): eating, drinking,

reading, etc.
3) Falls: fall forward, fall backward, syncope, etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yue Zhang .

More detailed descriptions of the existing types of human
activities are available in [1]1 and [2].2 A review of
state-of-the-art techniques for abnormal HAR is also pro-
posed in [3]. There are two main categories of HAR. These
are video-based HAR and sensor-based HAR. Video-based
HAR performs high-level analysis of videos or images con-
taining human motions from cameras. No further details
related to this category of HAR are provided in the cur-
rent paper which rather focuses on the second category.

1See Table 1 of [1]
2See Table 3 of [2]
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Nevertheless, relevant surveys on video-basedHAR are avail-
able in [4]–[6]. Sensor-based HAR is more popular and
widely used because it better preserves privacy than video-
based HAR. It relies on motion data from several types of
smart sensors including:

1) Body-worn sensors: These sensors are worn by the user
to describe the body movements. They are generally
embedded in smartphones, watchs, standalone devices
which include sensors such as accelerometers, gyro-
scopes, etc.

2) Object sensors: They are attached to objects to capture
object movements. Radio frequency identifiers (RFID)
deployed in smart home environment or accelerometer
fixed on objects (e.g: glass, cup) are generally used for
this purpose.

3) Ambient sensors: They are used to capture the interac-
tion between humans and the environment in a smart
environment. There are many kinds of ambient sensors
such as radars, microphones, pressure sensors, temper-
ature sensors, WiFi, Bluetooth, etc.

4) Hybrid sensors: Here, the three former types of sensors
are combined. Further details are available in [7].

Besides HAR, the aforementioned sensors are also
adapted for several other topics including indoor position-
ing methods [8] and pedestrian dead reckoning [9], [10].
Detailed presentations of these types of sensors and related
papers are provided in [11].3 When the experiments are
performed in smart homes with a variety of sensors,
the HAR data processing needs to be distributed over a
group of heterogeneous, autonomous and interacting enti-
ties in order to be more efficient. An efficient multi-
agent approach for HAR in this context has recently been
proposed in [12].

HAR can be treated as a typical pattern recognition prob-
lem and existing papers in HAR can be organized into two
main categories:

1) Conventional pattern recognition techniques [13]–[46]
where the feature extraction and the model building
steps are separated.

2) Deep learning techniques [43], [44], [47]–[88] where
the features extraction and model building processes
are performed simultaneously in the deep learning
models.

Conventional pattern recognition techniques embed the
following drawbacks analyzed in [11]4:

1) The features are extracted via a handcrafted process
that heavily relies on human experience and domain
knowledge.

2) Only shallow features can be learned according to
human expertise. Such shallow features can only
be used for recognizing low-level activities (walk-
ing, running, etc.), but they can hardly enable to

3See Section 3 of [11]
4See Section 2.2 of [11]

accurately infer complex activities like having a coffee
for example.

3) These techniques often require a large amount of
well-labeled data to train the model. However, most
of the activity data are remaining unlabeled in real
applications.

The aforementioned drawbacks are overcome by deep
learning sensor-based solutions. However deep learning tech-
niques embed the following limitations analyzed in [2]5:

1) They require lots of computing resources.
2) The parameters of the resulting models are difficult to

adjust.
3) The components of the resulting feature vectors are less

interpretable. More details related to this limitation are
available in [89] where an overview of explainable arti-
ficial intelligence for deep neural networks is proposed.

The current paper addresses these limitations through the
proposal of a Hidden Markov Model (HMM)-based tech-
nique for HAR which derives interpretable feature vec-
tors from the model’s meta-data. The parameters of the
resulting HMMs are understandable and can therefore be
easily adjusted. Furthermore, the models’ training time is
reasonable compared to deep models. Raw data from tri-
axial smartphones sensors are preferred here because stud-
ies demonstrated that samples from smartphones sensors
(e.g., accelerometer and gyroscope) are accurate enough to be
used in the clinical domain, such as ADLs recognition [23].

More precisely, given a signal window w, we first rep-
resent w as a sequence w = w1 . . .wT of 3-dimensional
vectors. The sequential variations of spatial locations within
these 3-dimensional vectors are then captured to transform w
into the Markov chain δw whose content later serves to fix
the parameters of an initial HMM associated with w. These
parameters are then iteratively adjusted at each iteration of
the Baum-Welch algorithm to obtain the final HMM λw.
Thereafter, meta-data derived from λw are saved as the com-
ponents of the descriptor vector −→w associated with w. The
performances of the proposed approach are evaluated through
flat classification experiments on UniMiB SHAR [23] which
is a database containing acceleration patterns captured by
smartphones and constructed in 2017 for the objective evalu-
ation of ADLs recognition and fall detection techniques.

The rest of this paper is organized as follows: The state of
the art is presented in Section II, followed by a summarized
presentation of HMMs in Section III. A detailed description
of the approach proposed in this paper is given in Section IV.
Experimental results are presented in Section V and the last
section is devoted to the conclusion.

II. STATE OF THE ART
A. RELATED WORK
1) CONVENTIONAL PATTERN RECOGNITION TECHNIQUES
Conventional pattern recognition solutions for HAR gener-
ally rely on the following process depicted in Figure 1:

5See Table 5 of [2]
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FIGURE 1. HAR using conventional pattern recognition techniques.

FIGURE 2. HAR using deep learning techniques.

1) Signal preprocessing: Here, sensing devices capture
human motions and save them in raw data vectors.
Small-time windows (a couple of seconds) of the input
signal h are sequentially captured and sampled at a
specific sampling frequency depending on the targeted
application.

2) Features extraction: Handcrafted features are
extracted from each raw data vector w associated
with a given time window through the computation
of informative statistics. More precisely, time-domain
features (variance, mean, root mean square, zero-
crossing rate, etc.), frequency domain features (Fast
Fourier Transform, Discrete Cosine Transform, etc.)
and other features (Principal Component Analysis,
Linear Discriminant Analysis, etc.) are manually com-
puted and saved as the components of the features
vector −→w of each data vector w. More detailed lists of
typical handcrafted features used in HAR are available
in [1]6 and [2].7

3) Model building: Here, a conventional machine learn-
ing model (classifier) χ is trained to learn the char-
acteristics of the human activities associated with the
training feature vectors. The followingmodels are most
often used for this purpose:
• k Nearest Neighbor (KNN) [13]–[25].
• Support Vector Machines (SVMs) [16]–[20], [22],
[23], [25]–[28].

• Decision trees (DT) [13], [17], [19]–[22], [25],
[29]–[34].

• Random Forest (RF) [19], [22], [23].
• Multilayer perceptron (MPL) [17], [21], [33], [35].
• Artificial Neural Networks (ANN) [22], [23].
• Naive Bayes and Bayesian Networks [13], [14],
[17], [19], [22], [25], [31], [36].

• Fuzzy Inference System (FIS) [14], [37]–[39].
• Boosting and Bagging [40], [41].
• Hidden Markov models (HMMs) [36], [42]–[46].

4) Classification step: The previously trained model
(classifier) is now used for inferring the correspond-
ing human activity. The accuracy is the most used

6See Table 2 of [1]
7See Table 4 of [2]

metric for evaluating the performances of these classi-
fiers. Other metrics like the F1-measure, the Precision,
the Recall are also rarely used.

2) DEEP LEARNING TECHNIQUES
With deep learning techniques for HAR, the features
extraction and model building processes are performed
simultaneously in the deep learning models as shown
in Figure 2. Here, the feature vectors are automatically
learned through the network χ instead of being manually
designed. A detailed study of deep neural networks for
HAR is available in [90]. An evaluation framework allow-
ing a rigorous comparison between handcrafted features
and features generated by several deep models is proposed
in [91]. The following deep models are most often used
in HAR:

• Deep Neural Networks (DNN) [47]–[50].
• Convolutional Neural Networks (CNN) [49], [51]–[76].
• Recurrent Neural Networks (RNN) [49], [72], [76]–[80].
• Deep belief network (DBN) and Restricted Boltzmann
Machine (RBM) [43], [44], [60], [81]–[87].

• Stacked autoencoder (SAE) [67], [88].
• Hybrid models [7], [49], [60], [67], [72].

Although handcrafted features are considered a drawback
in HAR, these features can nevertheless enhance the per-
formances of CNN in some face related problems including
age/gender estimation, face detection and emotion recogni-
tion [92]. Handcrafted features have also been combined with
CNN generated features for HAR [73].

3) PERFORMANCES OF EXISTING WORK
The implementation of a typical HAR system requires the
design of a suitable dataset containing the raw data from
which the signal windows will be derived. The datasets
utilized in existing papers contain data related to human
activities performed by various participants whose charac-
teristics (gender, age, weight, height, etc.) vary from one
dataset to the other. Some authors prefer private custom data-
sets [13]–[16], [26], [27], [29]–[32], [34], [37], [39]–[42],
[45]–[48], [50], [53], [58], [60], [65], [66], [68]–[71], [77],
[82], [84]–[86], but it is difficult to perform comparisons
with these work in such conditions. Other authors adopt
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TABLE 1. Performances of relevant existing work where publicly available datasets are experimented. The values of the accuracy and the F1-measure
are in (%).
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TABLE 2. Performances of relevant existing work where custom datasets are experimented. Accuracies are in (%).

the use of publicly available datasets to enable further
comparisons [17]–[25], [28], [33], [35], [36], [43], [49],
[51], [52], [54]–[59], [61], [62], [64], [67], [72], [74]–[81],
[83], [86]–[88]. A deep survey of the evolution of modern
datasets for HAR is available in [93]. The performances
of a given HAR systems depend on several parameters
including: the type of sensors, the number of participants,
the protocol of data collection, the selected features and
the selected models. Tables 1 and 2 present the perfor-
mances of relevant existing work with experiments on
publicly available and custom datasets. In these tables,
the column entitled ‘#HA’ contains the number of human
activities involved in the considered work and the last
column contains the accuracy of each reviewed work (except
for [36], [49], [61], [79], [88] where the F1-measure is rather
provided).

Among the datasets experimented by existing deep
learning techniques listed in Table 1, OPPORTUNITY,
PAMAP2 and UCI-HAD are the most experimented datasets.
However these datasets have not been considered in the cur-
rent work for several reasons. OPPORTUNITY and PAMAP2
were respectively designed with 4 and 9 participants,

which are low values. Additionally, the subset of human
activities selected by the authors for these two datasets
varies from one work to the other. The dataset UCI-HAD
was design with enough participants (30 participants) but
it only enables us to identify 6 human activities. The
advantages of the dataset UniMiB SHAR (selected here)
compared to the other publicly available datasets listed
in Table 1 are thoroughly analyzed in [23].8 A summa-
rized description of the UniMiB SHAR datatset is given in
Section V-A.

B. PROBLEM STATEMENT
Existing approaches for HAR rely on conventional pat-
tern recognition techniques or deep learning techniques for
deriving feature vectors from the raw data acquired by
diverse sensors. These feature vectors are used for classifi-
cation purposes. Conventional pattern recognition techniques
only enable to learn shallow features extracted via hand-
crafted processes and require a large amount of well-labeled
data. Deep learning techniques for HAR overcome these

8Cf. Sections 1 and 2 of [23]
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FIGURE 3. HAR using the proposed HMM-based learning technique.

drawbacks, but they require lots of computing resources and
they generate less interpretable feature vectors. Additionally,
it is challenging to adjust the parameters of the resulting deep
models.

The current paper attempts to provide a solution to these
limitations. This solution is based on the following obser-
vation: Every human activity is a sequential process; hence
it embeds a natural temporality that is meaningful for its
characterization. For this reason, human activity is generally
captured at a precise sampling frequency by dedicated sensors
which sequentially record several values in a raw data vector.
Unfortunately, the natural temporality embedded in the raw
data vectors is actually ignored during the computation of
existing feature vectors. Our opinion is that, the sequential
variations of spatial locations within each raw data vector
enables the derivation of relevant feature vectors which may
provide a better characterization of the considered human
activity.

The current paper follows the principle presented in
Figure 3 to analyze these sequential variations in order to
generate one new feature vector −→w from each raw data
vector w through a machine learning process. HMMs have
been selected in this paper on the one hand because they
are suitable for sequential data and their training time is
reasonable compared to deep models. On the other hand,
these models are managed by algorithms whose robustness
and efficiency are widespread. HMMs have already been
used in HAR systems as classifiers [36], [42], [45], [46].
They have also been combined with deep learning techniques
[43], [44]. But they are used here in a different way and for a
very different purpose (i.e: feature vectors are extracted from
their meta-data).

III. PRESENTATION OF HMMs
A. HMM DEFINITION
A HMM λ = (A,B, π) is fully characterized by [94]:

1) The number N of states of the model. The set of states
is S = {s1, s2, . . . , sN }. The state of the model at time
x is generally noted qx ∈ S.

2) The number M of symbols. The set of symbols is
ϑ = {v1, v2, . . . , vM }. The symbol observed at time x
is generally noted ox ∈ ϑ .

3) The state transition probability distribution A =

{A[si, sj]} where A[si, sj] = Prob(qx+1 = sj|qx = si)
with 1 ≤ i, j ≤ N .

4) The symbols probabilities distributions B = {B[si, vk ]}
where B[si, vk ] = Prob(vk at time x|qx = si) with 1 ≤
i ≤ N and 1 ≤ k ≤ M .

FIGURE 4. HMM used as sequence generator.

5) The initial state probability distribution π =

{π [si]} where π [si] = Prob(q1 = si) with
1 ≤ i ≤ N .

B. HMM USED AS SEQUENCE GENERATOR
A HMM λ = (A,B, π) can be used to generate a sequence
O = o1o2. . .oX composed of X symbols observed by the
sequence of states q = q1q2. . .qX as described in theMarkov
chain (MC) shown in Figure 4. In order to obtain the MC
presented in Figure 4, the following algorithm is executed:
1) Select the initial state sj ∈ S according to the distribu-

tion π and set x = 0.
2) Set x = x + 1 and change the current state to qx = sj
3) Select the symbol ox ∈ ϑ to be observed at state qx

according to the distributions in B.
4) If (x < X ) go to step 5, else terminate.
5) Select the state transition to be realized from the cur-

rent state qx to another state sj ∈ S according to the
distribution A, then go to step 2.

C. MANIPULATION OF A HMMs
Consider a sequence of symbols O = o1o2. . .oX and a HMM
λ = (A,B, π). The probability Prob(O|λ) to observe O
given λ is efficiently calculated by the Forward-Backward
algorithm [94] which runs in θ(X .N 2). Given a sequence
of symbols O = o1o2. . .oX , it is possible to iteratively
re-estimate the parameters of a HMM λ = (A,B, π) in order
to maximize the value of Prob(O|λ), where λ = (A,B, π ) is
the re-estimated model. The Baum-Welch algorithm [94] is
generally used to perform this re-estimation. This algorithm
runs in θ (γ.X .N 2) where γ is the user-defined maximum
number of iterations. In this paper, the value γ = 100 is
selected following [95].

D. STATIONARY DISTRIBUTION OF A HMM
A vector ϕ = (ϕ[s1], . . . , ϕ[sN ]) is a stationary distribution
of a HMM λ = {A,B, π} if:

1)
∑

jϕ[sj] = 1
2) ∀j, ϕ[sj] ≥ 0
3) ϕ = ϕ.A⇔

(
ϕ[sj] =

∑
iϕ[si]× A[si, sj],∀j

)
ϕ[sj] estimates the overall proportion of time spent by λ in

state sj over a long time span. ϕ can be extracted from any line
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FIGURE 5. Extraction of the 3 data vectors x , y and z from the raw data generated by the triaxial accelerometer of a
smartphone located inside subject’s waist pocket during a fall.

FIGURE 6. Methodology for deriving the features vector −→w associated with the signal windows w .

of the matrix Ar = A×A× . . .×A (r times) when r →+∞.
Therefore, the computation of ϕ requires θ (r .N 3) arithmetic
operations.

IV. THE PROPOSED APPROACH
A. MAIN IDEA
Given a human activity, we assume that the experimental data
are recorded by a triaxial smartphone accelerometer which
generates 3 vectors x = (x1, . . . , xT ), y = (y1, . . . , yT ) and
z = (z1, . . . , zT ) for each signal window w. These vectors are
respectively obtained after sampling the signal on each Carte-
sian axis at a unique sampling frequency. Figure 5 depicts
this process for fall detection where the smartphone is located
inside subject’s waist pocket. In that figure, a signal window
extracted from the raw data generated by the smartphone
triaxial accelerometer is sampled on each Cartesian axis to
derive the 3 data vectors x, y and z.

Existing techniques for HAR generally concatenate these
3 raw data vectors to obtain a unique vector w = (x1, . . . ,
xT , y1, . . . , yT , z1, . . . , zT ). All the (3T )-dimensional raw
data vectors resulting from the application of this principle
on all the signal windows of the database are then used for
handcrafted feature extraction or for deep feature extraction.

FIGURE 7. Proposed representation of a signal window w = w1. . .wT
derived from the raw data vectors.

The main idea of this work is related to the fact that the
former raw data vectors x, y and z can also be viewed as one
sequence w = w1w2. . .wT composed of 3-dimensional data
vectors as depicted in Figure 7 where each wi = (xi, yi, zi)
with (1 ≤ i ≤ T ). Hence, the sequential variations of the
spatial locations within the T vectors composing w can be
captured into a MC δw which can later be used to initialize
and train a dedicated HMM λw. Thereafter, one single feature
vector −→w derived from the model’s meta-data can finally be
associated with w for classification purposes.

B. METHODOLOGY
As it is summarized in Figure 6, the proposed methodol-
ogy for deriving the feature vector −→w associated with the
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sequencew = w1w2. . .wT is composed of the three following
steps:

1) The spatial locations of the T data vectors composing
the input sequence w = w1w2. . .wT are captured by
transforming w into the MC δw through a calculation
involving each wi and the K central vectors derived
from the off-line K-means clustering of the training
data vectors. More explanations about this step are
provided in Section IV-C.

2) The content of δw is used for initializing a HMMwhich
is then trained using the Baum-Welch algorithm to
learn the sequential variations occurring inside δw (and
consequently, inside w). The resulting model is λw.
Section IV-D is devoted to the presentation of this step.

3) Meta-data are finally extracted from λw to derive the
features vector −→w . More precisely, −→w has M compo-
nents, where M is the number of symbols of λw. The
k th component wk of −→w being the overall proportion
of time spent by λw observing the symbol vk∈ϑ over a
long time span, irrespective of the state from which vk
is observed. This step is fully presented in Section IV-E.

C. TRANSFORMATION INTO MARKOV CHAIN
As shown in Figure 4, a MC is composed of symbols and
states, both belonging to finite sets. In order to transform
a signal window into a MC, these two finite sets must be
defined.

To determine the set of symbols, we are initially going to
cluster the data vectors derived from all the signal windows
found in the training database. More formally, let H =

{H1, . . . ,Hn} be the set of activities found in the training
database, each activity being represented by |Hj| signal win-
dows, with (1 ≤ j ≤ n). Given that each signal window w
is now considered as a sequence w1. . .wT of 3-dimensional
data vectors, the experimental database becomes a collection
composed of T ×

(∑n
j=1 |Hj|

)
data vectors. The k-means

clustering algorithm [96] is then executed off-line for orga-
nizing this collection of training data vectors into K clusters,
where K is a positive user-defined integer. The resulting set
ϑ = {v1, . . . , vK } of clusters is finally considered as the set of
symbols of the model in such a way that all the vectors found
inside a given cluster are associated with the same symbol.
If we note v(wi) the cluster containing the data vector wi,
then the signal window w = w1. . .wT is associated with the
sequence of symbols v(w1). . .v(wT ). The k-means clustering
algorithm is preferred in this work due its simplicity of imple-
mentation and the quality of its resulting clusters.

To determine the set of states, we focus on the spatial loca-
tions of the data vectors inside each cluster. More formally,
consider a data vector wi and let ṽ(wi) be the center vector of
cluster v(wi). We first evaluate the distance between wi and
ṽ(wi), then we compare the resulting distance to the highest
distance between any data vector of cluster v(wi) and ṽ(wi).
This comparison leads to the computation of a percentage
α(wi) which spatially characterizes each data vector wi inside

its cluster. Given a selected distance measure dist between
vectors, the computation scheme of α(wi) is shown in (1).

α(wi) = 100× (U/V ) in (%) where

U = dist(wi, ṽ(wi)) and

V = max{dist(wj, ṽ(wi)),∀wj ∈ v(wi)} (1)

Our objective is to consider all the possible values of α(wi)
as the set of states. In these conditions, Figure 8 depicts the
resulting ‘pseudo’ MC δw associated with w = w1w2. . .wT .

FIGURE 8. Pseudo MC δw associated with w .

FIGURE 9. MC δw associated with w .

δw is not a valid MC because the spatial locations can
take any value in the continuous interval [0, 100]. However,
the states of a MCmust always belong to a finite set. To over-
come this limitation, the interval [0, 100] is first split into
(m+1) slices {s0, s1, . . . , sm} following [97]9 as shown in (2),
where m is a user-defined integer.

s0 = {0} and sj =
]
100
m
× (j− 1),

100
m
× j
]
, (1 ≤ j ≤ m)

(2)

If the value of m is very high, the width of each slice sj
becomes tiny and all the elements in sj converge to one unique
value which is 100

m × j. In that case, the elements of sj can
be approximated by this single value which we identify here
by the index j of slice sj. In these conditions, the finite set
{s0, s1, . . . , sm} of slices can be considered here as the set
of states. This reasoning enables defining the valid MC δw
associated with w = w1w2. . .wT by replacing every α(wi)
appearing in δw by the value β(wi) which is the index j of the
slice sj containing α(wi) as shown in (3). Figure 9 shows the
resulting MC.

(β(wi) = j)⇔
(
α(wi) ∈ sj

)
, (0 ≤ j ≤ m) (3)

Proceeding this way, δw effectively embeds information
related to the sequential variations of spatial locations within
w because:
1) The sequence v(w1). . .v(wT ) of symbols embeds infor-

mation related to the sequential variations of clusters
within w.

9See Equation 7 of [97]
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2) The corresponding sequence β(w1). . .β(wT ) of states
embeds information related to the sequential variations
of spatial locations inside the various clusters within w.

Consequently, if a HMM λw is initialized and trained
according to the content of δw, this model will learn all the
information related to these sequential variations.

D. HMM INITIALIZATION AND TRAINING
1) DESIGN OF THE INITIAL HMM
Given a positive user-defined constant ε, the parameters of
each the initial HMM λ0w associated with w, are set to statisti-
cally capture the state transitions and the symbols probability
distributions from the content of δw as follows:
1) The set of symbols is the set ϑ = {v1, . . . , vK } of

clusters generated by the k-means clustering algorithm,
the number K = M of clusters (symbols) being
user-defined.

2) The set of states is S = {s0, s1, . . . , sm} whose con-
tent is computed in (2) where m is the user-defined
number of slices used to split the interval [0, 100].
Consequently, the number of states is N = m+ 1.

3) The probability of transiting from state sj to state sk is
calculated in (4), where transit(sj, sk , δw) is the num-
ber of transitions from state sj to state sk in δw and
transit(sj,−, δw) is the number of transitions from state
sj to any destination in δw.

A0w[sj, sk ] =
transit(sj, sk , δw)

transit(sj,−, δw)+ ε
(4)

4) The probability to observe symbol vk at state sj is cal-
culated in (5), where observe(vk , sj, δw) is the number
of times symbol vk is observed at state sj in δw, and
observe(−, sj, δw) is the number of occurrences of state
sj in δw.

B0w[sj, vk ] =
observe(vk , sj, δw)

observe(−, sj, δw)+ ε
(5)

5) The probability that the observation starts with state sj
is calculated in (6), where start(sj, δw) = 1 if δw starts
with state sj, 0 otherwise.

π0
w[sj] =

start(sj, δw)
1+ ε

(6)

2) READJUSTMENT OF THE INITIAL HMM
The parameters of λ0w are not probability distributions. This
inconvenience is intentionally introduced by adding ε to the
denominators of its various components in order to avoid
eventual divisions by zero and zero probabilities. In this work,
we experimentally fixed ε = 1. An equitable redistribution of
the missing quantity is applied to each element of each line
in λ0w = (A0w,B

0
w, π

0
w) to obtain the readjusted initial model

λ1w = (A1w,B
1
w, π

1
w) whose parameters are:

1) A1w[sj, sk ] = A0w[sj, sk ]+
1

m+1

(
1−

∑m
l=0 A

0
w[sj, sl]

)
2) B1w[sj, vk ] = B0w[sj, vk ]+

1
K

(
1−

∑K
l=1 B

0
w[sj, vl]

)
3) π1

w[sj] = π
0
w[sj]+

1
m+1

(
1−

∑m
l=0 π

0
w[sl]

)

3) TRAINING OF THE HMM
The readjusted initial HMM λ1w is trained to learn the sequen-
tial variations occurring inside δw using the Baum-Welch
algorithm. The resulting HMM λw is the final model associ-
atedwithw. During this training phase, the training sequences
are exclusively composed of symbols appearing in δw.

E. FEATURES VECTOR COMPUTATION
The features vector −→w = (w0,w1, . . . ,wm) associated with
w is finally derived from λw = (Aw,Bw, πw) by analyzing
the behavior of λw regarding each symbol vk . More precisely,
we propose to consider wk as the overall proportion of time
spent by λw at observing symbol vk over the long term, irre-
spective of the state from which this observation is realized.
In order to compute wk , one must first evaluate the overall
proportion of time spent by λw at observing vk in each state
si over the long term as follows:

1) Evaluate the overall proportion of time spent by λw in
state si over the long term. This proportion is given by
the ith component ϕw[si] of the stationary distribution
of λw.

2) Multiply the result obtained at step 1 by the probability
of observing vk in state si which is Bw[si, vk ].

The value ofwk is finally obtained by repeating this process
for every state si and summing the resulting proportions (7).

−→w = (w0,w1, . . . ,wm) where

wk =
∑K

i=1
(ϕw[si]× Bw[si, vk ]) with (0 ≤ k ≤ m) (7)

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATASET
Among the publicly available databases recorded with smart-
phones listed in Table 1, the dataset UniMiB SHAR has been
selected in this work [23]. It is database of acceleration
patterns measured by smartphones to be used as a common
benchmark for the objective evaluation of both, ADLs recog-
nition and fall detection techniques. This dataset contains
17 human activities including 9 different types of ADLs and
8 different types of falls. Table 3 presents the description of
each ADL/fall.

During the construction of the selected database, human
activities where performed by 30 subjects (including
24 females) between 18 and 60 years of age. Each ADL/fall
type was performed twice by each subject: the first time
with the smartphone in the right pocket and the second time
with the smartphone in the left pocket. Signal windows of 3s
each were saved during every experimental trial of a given
ADL/fall performed by each subject. For each signal window
w, the accelerometer recorded three data vectors (samples) x,
y and z, each having T = 151 components. The database
contains a total of 11.771 samples not equally distributed
across activity types: 7.759 samples describing ADLs and
4.192 samples describing falls. Further details about the data
acquisition, the experimental protocols, the characteristics of
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TABLE 3. Descriptions of the 17 human activities of UniMiB SHAR.

the subjects, the signal segmentation and the signal process-
ing are available in [23].

B. EXPERIMENTAL SETTINGS
The classification experiments performed in this work were
realized on a personal computer having 16 GB of main mem-
ory and the following processor: Intel(R) Core(TM) i7-8665U
CPU @ 1.90 GHz 2.11 GHz. We evaluated four different
classification tasks, following [23]:

1) AF-17 which contains 17 classes (9 ADL classes and
8 FALL classes).

2) A-9 which contains 9 ADL classes.
3) F-8 contains 8 FALL classes.
4) AF-2which contains 2 classes obtained by considering

all the ADLs as one class and all the FALLs as one
class.

The Euclidean distance was selected in this work as the
distance dist between two vectors required in (1). (2) was
used to split the interval [0, 100] into 51 slices (i.e: we fixed
m = 50) following [97] where the authors used analog
reasoning to split the same interval to perform the comparison
of finite sets of histograms using HMMs. Hence, the number
of states of the HMMs designed in the current work is 51.

To analyze the impact of the user-defined number K of
clusters discovered by the k-means clustering algorithm on
the performances of the proposed approach, we experimented
with the 5 following values of K : 20, 40, 60, 80 and 100.
Consequently, the number of symbols of the HMMs designed
in this work also varies accordingly. The first step of the
machine learning process presented in Figure 6 and corre-
sponding to the transformation of every signal w into the
MC δw was entirely developed in Matlab. This choice was
dictated by the fact that the database files were available as
Matlab tables. Therefore, we executed aMatlab version of the
k-means clustering algorithm during this step. Depending on
the classification task and on the selected number of clusters,
the off-line clustering step could sometimes take over an hour.

The two remaining steps of the proposed machine learning
process were both developed in C language. Given a signal
window w and its associated HMM λw = (Aw,Bw, πw),
the stationary distribution ϕw of λw is obtained in this work
by extracting the first line of the matrix (Aw)r with r = 100.
After discovering the K clusters for each classification task,
the computation of each feature vector −→w associated with w
took between 50 and 3500 ms, depending on the content of
the signal window. The overall time taken for the computation
of the feature vectors associated with all the signal windows
varied from one classification task to another depending on
the considered number of signal windows. For each classifi-
cation task in {AF-2, F-8, A-9, AF-17} and for each number
of clusters in {20, 40, 60, 80, 100}, the resulting descriptor
vectors have been saved into one online available ‘arff’ files10

which are taken as inputs by WEKA. The Matlab items
(codes and tables) required to perform the off-line k-means
clustering and the transformation into of Markov chains are
also available through this same URL.

C. CLASSIFICATION PERFORMANCES
Classification experiments were realized with the soft
WEKA [98] through 5-fold cross-validation following [23].
The following classifiers have been selected in this paper and
their corresponding names in WEKA are shown in brackets:

1) k-NN (IBk) with k = 1, was used for the Euclidean and
the Manhattan distances.

2) SVMs with polynomial kernel (SMO).
3) Multilayer Perceptron (MLP).
4) Decision trees (J48).
5) Random Forest (RF), these are bootstrap-aggregated

decision trees with 300 bagged classification trees.
Table 4a presents the best classification accuracies for

each classification task using the proposed feature vec-
tors, irrespective of the number of clusters generating

10http://perso-etis.ensea.fr/sylvain.iloga/index.html
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TABLE 4. Classification results. Accuracies are in (%). The best accuracies are in bold.

these accuracies. According to Table 4a, the selected classi-
fiers can be organized in descending order of performances
for all the classification tasks as follows: RF, IBk (Man-
hattan), IBk (Euclidean), J48, MLP and SMO. The content
of Table 4a demonstrates the high quality of the proposed
descriptor vectors derived from the proposed HMM-based
learning process with best accuracies always above 75%,
84% and 92% for the J48, the IBk and the RF classifiers
respectively. This table also reveals the unsatisfactory perfor-
mances exhibited by the SMO and the MLP classifiers for the
AF-17 classification task and the very poor performances of
these same classifiers for the F-8 classification task. Detailed
classification performances for each classification task are
presented in Tables 4b to 4f respectively for 20, 40, 60, 80 and
100 clusters. According to these tables, the variations of the
user-defined number K of clusters do not significantly influ-
ence the performances of the proposed technique. Indeed,
the gaps between the classification accuracies for the 5 exper-
imental values of K are low. Consequently, it is not worth
selecting a high value of K . We therefore recommend low
values between 20 and 40.

D. COMPARISONS WITH RELATED WORK
We have compared the best classification performances
obtained in this paper with those obtained in [23] where
the authors conducted classification experiments on the same
database and for the same classification tasks, using the fol-
lowing classifiers:

1) k-NN with k = 1.
2) SVMs with a radial basis kernel.
3) Artificial Neural Networks.
4) RF with 300 bagged classification trees.

Comparison results presented in Table 5 reveal that the
approach proposed in this paper always outperforms [23]with
positive accuracy gains reaching +13.45% and +10.36%
respectively for F-8 and AF-17.

TABLE 5. Comparisons with [23]. Accuracies are in (%). The best
accuracies are in bold.

E. TIME COST
1) THEORETICAL TIME COST
The main contribution of the current paper is the computation
of the proposed feature vector −→w associated with an input
sequence w of raw data vectors as it can be observed in
Figure 6. This computation embeds an offline k-means clus-
tering whose time cost is not considered in this evaluation
because it is realized ‘offline’. The remaining steps of the
computation of −→w are:
1) The transformation of w into the Markov chain δw

(See Section IV-C).
2) The HMM initialization using the content of δw to

obtain the initial model λ0w (See Section IV-D1).
3) The readjustment of λ0w to obtain λ1w (See

Section IV-D2).
4) The HMM training of λ1w with the Baum-Welch algo-

rithm to obtain the final model λw (See Section IV-D3).
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5) The extraction of meta-data from λw to derive −→w
(See Section IV-E).

The time cost of the 3 first steps was experimentally low
and very tiny compare to the time cost of the two last steps.
Consequently, only the HMM training and the meta-data
extraction are time consuming. According to Section III-C,
the HMM training phase runs in θ (γ.T .(m + 1)2). The main
operation realized during the meta-data extraction is the com-
putation of the stationary distribution of the HMM which
runs in θ (r .(m + 1)3) as stated in Section III-D. Therefore,
the overall time cost of our contribution is approximated by
θ (r .(m+ 1)3 + γ.T .(m+ 1)2) where:
1) r is the user-defined number of matrix products needed

to compute the stationary distribution. In this paper
r = 100.

2) γ is the user-defined maximum number of iterations of
the algorithm. In this paper γ = 100.

3) T is the number of vectors in the sequence w. In this
paper T = 151.

4) m is the user-defined number of slices used to split the
interval [0, 100]. In this paper m = 50.

This time cost can be further reduced by gradually reduc-
ing the values of parameters like r or γ without negatively
impacting the classification results. If the stationary distribu-
tion is discovered after r0 iterations with (r0 < r), this sta-
tionary distribution will not change during (r− r0) remaining
iterations. Similarly, if the Baum-Welch algorithm reaches its
local optimum after γ0 iterations with (γ0 < γ ), this local
optimum will not change during the (γ − γ0) remaining iter-
ations. The experimental value T = 151 cannot be modified
because it was fixed during the design of the experimental
database. Similarly, the experimental valuem = 50 cannot be
changed here because it was fixed after several experiments
performed in [97].

2) EXPERIMENTAL TIME COST
In order to measure the speed-up of the two most time-
consuming stages of the processing chain (i.e. the stages of
HMM training and the meta-data extraction), we executed
and benchmarked the program on two different architectures:
a desktop and the Nvidia JETSON TX2 [99] comparable in
terms of hardware to an embedded platform.

The main characteristics of the experimental desktop are
the following:
• CPU: AMD Ryzen 5 5600X (6 Cores) with dedicated
core frequency when used at 4649.877 MHz

• RAM: 32GB DDR4 3600MHz G SKill Trident Z Neo
• GPU: RTX 3080 Gaming X Trio MSI
• Motherboard: Asus ROG STRIX B550-F GAMING Wifi
• Power supply: RMX 850W Corsair (Certified 89% of
efficiency)

The System-On-a-Chip (SOC) used on the Nvidia JET-
SON TX2 has in common 4 cores used on the SOC of
the Exynos 7 Octa (5433) [100] clocked at 1.9 GHz which
is used on the Galaxy Note 4 and the Galaxy Tab S2.

The experiment presented in this section has been performed
using the 11.771 MCs obtained when the k-means algo-
rithm is executed with k = 20 (our smallest experimental
value of k).

The Nvidia Jetson TX2 has 8 GB L128 bit DDR4 of
main memory. It runs on L4T (Linux for Tegra, i.e. Linux
Kernel 4.9) and has a Parker SOC consisting of:

1) A Pascal GPU at 256 Cuda cores (not used in this
experiment).

2) One HMP (6 cores) including 2 Denver cores (custom
core designed by Nvidia to run the ARMv8 ISA) and
4 Arm Cortex A57 cores (to run the ARMv8 ISA).
All the cores are compatible with ISA ARMv8 which
is the 64 bits architecture of Arm.

The Nvidia Jetson TX2 has several power supply modes
that influence the frequency of the different cores. The modes
used during our tests were the ‘Max-N’ mode which allows
to reach 2 GHz on each core and the ‘Max-P Core-All’
mode allowing each core to be used at 1.4 GHz (i.e. a trade-
off between performance and energy consumption). During
the current experiment, the program was executed on cores
excluded from the Linux scheduler allowing to dedicate the
core entirely to the program and thus, not to distort the per-
formance measurements. The following units were selected
to measure the performance of our program using the Perfor-
mance Monitoring Unit and Syscall:

1) Milliseconds (ms)
2) Instructions per cycle (IPC)
3) Instructions per second (IPS)
4) Floating point operations per second (FLOPS)
Tables 6 and 7 present the performances of our program on

the experimental devices. According to these tables, the best
performance is obtained by the desktop with a mean time
cost of less than 2 seconds. Nevertheless, the performance on
Nvidia Jetson TX2 is also very interesting with a mean time
cost of around 12 seconds when the Core Denver 2 GHz is
used.

TABLE 6. Time cost in (ms) on the experimental devices.

TABLE 7. Means of IPC, IPS and FLOPS on the experimental devices.

A wattmeter was additionally used for measuring the
energy consumption in order to deduce the Average Power

VOLUME 9, 2021 139347



S. Iloga et al.: HAR Based on Acceleration Data From Smartphones Using HMMs

TABLE 8. APC and FOM.

Consumption (APC) of each experimental device. This
enabled us to calculate the Figure Of Merit (FOM) of each
device by multiplying the Average Execution Time (AET) by
the APC as shown in Equation (8). According to the FOM
presented in Table 8, the Nvidia Jetson TX2 is 2.138 times
more efficient than the Desktop 4.6 GHz for the execution of
our program.

Efficiency(Time,Power) = (AET )× (APC) (8)

F. MAIN ASSETS
The technique proposed in this paper:

1) Considers the sequential variations of spatial locations
inside the raw data vectors unlike existing techniques.

2) UsesHMMs for the extraction of feature vectors, unlike
existing techniques which only use these same models
during the classification step.

3) Generates feature vectors whose components are inter-
pretable, unlike existing techniques generating hand-
crafted or less interpretable feature vectors.

4) Performs the feature vectors extraction in reasonable
time compared to deep learning techniques.

5) Efficiently performs HAR and outperforms prior work
for the selected database.

6) The algorithm has been demonstrated viable on embed-
ded platform processors from 2014 mobile phones and
tablets, namely, ARM and Denver cores clocked at
1.4GHz and 2GHz. This shows that current mobile
phones and tablets would be much closer to the per-
formances of a PC.

VI. CONCLUSION
This paper addresses the problem of HAR based on accel-
eration data from Smartphones. Existing approaches for this
purpose either rely on conventional pattern recognition tech-
niques or on deep learning techniques. Conventional pattern
recognition techniques generate shallow handcrafted fea-
ture vectors which heavily rely on the human experience/
expertise. Deep learning techniques are preferable, but they
require lots of computing resources while generating less
interpretable feature vectors. The current paper attempts
to overcome these limitations by proposing an efficient
HMM-based technique that generates interpretable feature
vectors while requiring a reasonable time cost with a demon-
strated feasibility of implementation on embedded proces-
sors, namely, Denver and ARM cores.

Four different classification tasks have been tested on the
UniMiB SHAR dataset containing 17 human activities includ-
ing 9 types of ADLs and 8 types of falls. Classification results

have demonstrated the efficiency of the proposed approach
with the best accuracies between 92% and 98.85% for all
the classification tasks. This performance is more than 10%
better than state of the art for two classification tasks.

The main contribution of the current work is the
HMM-based sequential learning of the sample (raw data
vector) w associated with a human activity. Meta-data
extracted from the resulting HMM λw are then used for
deriving the corresponding feature vector −→w . Consequently,
the number of samples in the experimental database does
not impact the components of −→w since each sample in the
database is handled individually, irrespective of the other
samples in the database. For this reason, the proposed
approach will still exhibit good classification results even
for large scale databases. Only the overall computation time
for all the samples in the database will increase in these
conditions. Parallel computation of all the feature vectors in
the data base can also be implemented to reduce this overall
computation time.

The current work has a dual impact on further researches
in HAR. Firstly, it has been theoretically and experimentally
demonstrated that learning a human activity as a sequential
process enhances the quality of the resulting feature vectors
and consequently, induces better classification results. A lot
of the research in HAR only considers discrete activities as
opposed to activities in a continuum. The proposed method
enables extracting salient features from a stream of data
using HMM. Secondly, the proposed method is an advance
towards real-time implementation since this method can be
efficiently ported on embedded platforms. Indeed, the current
work uses HMMs for generating the feature vectors and the
resulting feature vectors exhibit good classification perfor-
mance, even with a basic classifier like the k-NN. Given that
efficient hardware implementations of the Baum-Welch [101]
and the k-NN [102] algorithms on Field-Programmable Gate
Array (FPGA) chips are available, this method can therefore
be deployed using hardware platforms with a lower footprint
than GPUs in terms of energy and using fewer resources on a
FPGA due to the simplicity of the implementation compared
to CNN or DNN approaches.
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