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ABSTRACT The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent
years owing to technological advances and a significant reduction in their cost. UAV technology can be used
in a wide range of domains, including communication, agriculture, security, and transportation. It may be
useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV
usage can be alleviated by clustering. Several computational challenges arise in UAV flock management,
which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms
relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys.
We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey
several machine learning-based methods that have been suggested in the literature to handle the associated
challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different
challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive
review may be useful for both researchers and developers in providing a wide view of various aspects of
state-of-the-art ML technologies that are applicable to flock management.

INDEX TERMS Collaborative unmanned aerial vehicles, machine learning, multi-robot systems, reviews,

unmanned aerial vehicles.

I. INTRODUCTION

The technological advances in the abilities of unmanned
aerial vehicles (UAVs) and the reduction in their costs have
made UAVs more common than ever, with a significant
potential for future use. During the Covid-19 period, UAVs
could theoretically be used to assist in supply and trans-
portation goals. Moreover, it is expected that UAVs will be
integrated into the 5G and future communication networks.
UAVs offer numerous applications in agriculture, mainte-
nance, intelligence, and diverse security needs. However, sev-
eral challenges should be overcome to leverage the potential
of UAVs for practical goals successfully. For example, there
is a need for a smart, efficient power control mechanism
owing to the energy consumption limitation of UAVs, which
are constrained in their weight-carrying ability. Moreover,
aerial path planning should be performed carefully, while
maintaining the security and safety of UAVs.
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In addition to the aforementioned challenges that occur
even with a single UAV, certain tasks and issues arise when
considering a multi-UAV environment, in which a small or
a large group should act together or should act in the same
aerial environment. The formation of UAV networks, UAV
clustering and coordination, and resource allocation in the
UAV network should be considered and efficiently solved. A
hierarchical description of the various topics relating to UAVs
is provided in Figure 1.

As part of this survey, we also provide several insights
into general studies that are not directly focused on UAV
environments, but that may be useful when applied to UAV
environments. We believe that a complete view of the existing
works, both those that have been specifically developed for
UAVs and those that have not, can help UAV designers to
address the challenges that arise in managing and maintaining
UAV flocks more efficiently.

As demonstrated in Section III, numerous existing surveys
have dealt with the challenges and opportunities of UAV tech-
nologies. However, our goal is to focus on the increasingly
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FIGURE 1. Challenges in UAV flocking.

important topic of applying machine learning (ML) methods
to UAV flock domains.

The remainder of this paper is organized as follows:
Section II provides basic terminology for modern ML meth-
ods that may be applicable to the improved handling of
UAV flocks. Section III presents several relevant surveys
that have considered UAV technologies and ML methods
used for UAVs, as well as flying ad-hoc network (FANET)
environments. Section IV considers relevant studies that have
dealt with flock formation while Section V describes flocking
and coordination issues. Studies dealing with the deploy-
ment challenge are surveyed in Section VI, while trajectories
design issues are discussed in Section VII. In Section VIII,
the challenges of resource allocation and power control are
discussed, whereas Section IX focuses on studies that have
addressed the challenging problem of task allocation in UAV
flocks. Finally, Section X provides some guidelines and direc-
tion to find the best method to solve a particular challenge,
and Section XI provides some insights into future works.
We conclude our survey in Section XII.

Il. SOME BASIC TERMS AND BACKGROUND

As the main goal of our survey is to review the application
of ML methods to advance artificial aerial swarm scenarios,
we first briefly present the main ML methods considered
in the literature that are reviewed within the framework of
this survey. Figure 2 presents a scheme with the details of
several ML methods reviewed in this survey, and In Table 1,
we list the main ML methods described in this survey, their
main features, and their applicability to various UAV flock
challenges studied in this survey.

Various UAV types were used in the reviewed papers.
An overview of UAV types can be found in [44]. The authors
provided a detailed description of the available simulation
tools for UAV system performance, including the require-
ments, goals, and strengths and weaknesses of each tool. They
divided the UAVs into three categories: micro UAVs (the
weight of which can reach 2 kg), mini UAVs (2 to 20 kg), and
small UAVs (20 to 150 kg). Micro UAVs have an endurance
of several hours, and can be used for reconnaissance and
inspection, whereas mini and small UAVs can last for up to
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two days and can be used for data gathering. All UAV types
can be used for various surveillance goals.

Another UAV classification, based on UAVs’ functionali-
ties, is suggested in the review of Yan et al. [125]. According
to their classification, the UAVs are classified according to
their communication capability, which is measured accord-
ing to the radius range of the UAV data link. According to
this classification, there are long-endurance UAVs, mid-range
UAVs with radius range of about 650 km, short-range small
UAVs with radius range less than 350 km, close-range UAVs
with coverage of at least 30 km, very low cost closer-range
UAVs, and commercial and consumer UAVs/drones, with
very limited communication range, that may be controlled by
smartphone or tablet applications.

Regarding UAV flocks, Coppola et al. [31] distinguished
among different flock types as follows: Teams are typically
small groups, where each agent optimizes individual objec-
tives in a cooperative or competitive manner. Formation
refers to a situation where each agent is typically assigned a
specific sub-task, role or placement in a cooperative manner,
whereas swarms typically refer to large groups of dispens-
able agents. Nevertheless, in this survey, we consider all types
of UAV formations as flocks.

Ill. RECENT TUTORIALS AND SURVEYS

The aim of this study is to review recent works that have
considered the concept of applying state-of-the-art ML meth-
ods to handle the challenges of UAV flocks. In recent years,
several tutorials and surveys have been presented on related
topics, such as the application of ML methods to solve chal-
lenges in UAV design and management, or surveys dealing
with flocking challenges. However, no previous surveys have
focused on the use of ML for solving UAV flocking chal-
lenges.

Therefore, in this section, we first review existing surveys
and tutorials that are closely related to our goal. We categorize
these various studies into two main categories. Section III-A
focuses on the challenges in flock and swarm creation
and management, including several flocking issues such
as efficient deployment and security enhancement, whereas
Section III-B focuses on surveys that have considered using
ML techniques for enhancing UAV technologies and the
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communication between UAVs. Furthermore, Section III-C
discusses studies that have focused on using ML methods in
this area, and finally, several comparisons and a generaliza-
tion of the above.

In Table 2, we provide a list of acronyms used throughout
this paper.

A. SURVEYS ON UAV FLOCKS CREATION, MANAGEMENT
AND COORDINATION

The creation of groups of UAVs is important in several appli-
cations, such as wireless communication applications, agri-
culture applications, and security purposes. In the following
section, we review several surveys that have dealt with chal-
lenges considering flock creation and management, where
the flocks can be used for several application types. The
significant advancements in UAV technology have resulted
in applications whereby groups of UAVS (which are known
as flocks or swarms) can cooperate to perform a global task.
This may be the case when considering UAVs that act as
cellular base stations (BSs), which should decide among
themselves how to offer deployment to provide good cover-
age of an area for ground users. Other scenarios encompass
different domains where UAV's can be used, such as photogra-
phy tasks, control tasks, transportation applications, security
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purposes, and agriculture domains. The common factor of all
these applications is that they gave rise to several challenges
whereby decisions should be made, such as UAV deployment,
task allocation, and maintenance issues. In the following,
we describe several surveys relating to the aforementioned
issues, some of which also discuss relevant ML solutions to
the problems reviewed.

The significant potential of the general use of UAVs,
and more specifically, UAV flocks, was mentioned by
Tahir et al. [110]. The authors analyzed the core characteris-
tics of swarming drones, including the UAV mechanics, func-
tionality, organization, modeling, and applications, as well as
the autonomous aspects of such drones and drone swarms.
Moreover, they conducted an online survey to determine
the public awareness regarding the potential of using drone
technology. The survey results demonstrated that, although
most people were concerned about UAV usage, the majority
did not know about the concept of a swarm of drones.

Although there is significant potential, several chal-
lenges also need to be overcome. Chung et al. [29] sur-
veyed algorithms that allow the individual members of the
swarm to communicate and to allocate tasks among them-
selves, plan their trajectories, and coordinate their flight so
that the overall objectives of the swarm can be achieved
efficiently.
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TABLE 1. Main ML methods (C = centralized, D = distributed).

ML Learning type Approach | Main UAV

Method Applications

DNN Supervised/unsupervised | C/D Resource allocation

CNN Supervised C Clustering, resource allocation

RNN Unsupervised C Task allocation

LSTM Supervised C Deployment

Federated learning Supervised C/D Resource allocation

Q-learning Reinforcement learning C/D Clustering, flocking,

Reinforcement learning Deployment, positioning,
Resource allocation

Deep Q-learning, Reinforcement learning C/D Flocking, deployment,

Deep Reinforcement learning positioning, resource
allocation, task allocation

Particle swarm optimization Bio-inspired D Clustering, routing
positioning, task allocation

Genetic algorithm Bio-inspired C Clustering, deployment,
task allocation

K-means Unsupervised C Clustering, deployment,
resource allocation,
task allocation

Pricing Unsupervised D Resource allocation

The authors reviewed several theoretical tools, with a spe-
cific focus on how they have been developed for and applied
to aerial swarms, including theoretical algorithms, ML meth-
ods, and other advanced planning and decision-making strate-
gies. They emphasized that an important area of further study
is the development of learning and decision-making architec-
tures that will endow swarms of aerial robots with high levels
of autonomy and flexibility.

Coppola et al. [31] focused on micro air vehicles (MAVs),
which are miniature UAVs with a size as small as 5 cm, and
reviewed the challenges that must be addressed to develop
MAV5s for real-world operations successfully. The challenges
begin at the lowest level, in terms of how the MAV design
will impact the swarm behavior, and end at the highest
level, where collective behaviors must be designed that can
best exploit the lower-level designs, controllers, and sensors.
Although the work of Coppola et al. did not focus on ML,
they discussed several ML methods for behavior design and
optimization. In particular, they investigated evolutionary
robotics and reinforcement learning (RL).

Returning to the general problem of UAV flock formation,
Beaver and Malikopoulos [15] presented an overview of
optimization approaches for flocking behavior that provide
strong safety guarantees. They summarized the results of
existing optimal flocking works across engineering disci-
plines and presented the frontier of flocking and optimization
research. They also aimed to provide a new paradigm for
understanding flocking as an emergent phenomenon to be
controlled, rather than desirable group behavior for agents to
mimic.

Sargolzaei et al. [8] explored several applications of coop-
erative UAV missions in various fields, and reviewed emerg-
ing topics in the field of cooperative UAV control and their
associated practical approaches. They surveyed the applica-
tions, algorithms, and challenges. They categorized the appli-
cations into surveillance, search and rescue, mapping, and
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military applications. Similarly, they categorized the algo-
rithms into three main classes: consensus control, flocking
control, and guidance-based cooperative control. Further-
more, they investigated the challenges relating to the cooper-
ative control and applications of cooperative algorithms and
provided the related mathematics of the cooperative control
algorithms.

Several studies have drawn inspiration from the behav-
ior of flocks in nature and used bio-inspired algorithms
for the formation and management of UAV flocks/swarms.
Long et al. [71]

surveyed the literature on swarm shepherding, which is a
method for controlling multiple coordinated robotic agents.
The shepherding problem can be defined as the guidance of a
swarm of agents from an initial location to a target location.
The shepherd is responsible for the high-level path planning
of the swarm and task allocation, whereas the swarm mem-
bers themselves function solely on single-agent dynamics.
Long et al. mentioned the use of ML and computational intel-
ligence techniques for swarm control, and for shepherding in
particular.

All the above surveys focused on defining general flock
types and their management. Several also mentioned ML
methods, but none concentrated on surveying ML methods
for the creation and management of UAV flocks.

B. SURVEYS ON UAV-BASED WIRELESS
COMMUNICATION NETWORKS

The incredible technological advancements in the capabilities
for organizing groups of drones have considerably expanded
their use as part of the 5G and beyond systems. A UAV-based
wireless network is often referred to as a FANET. This term
was formally defined by Bekmezci and Temel [50], who
suggested several applications for FANET and discussed var-
ious design challenges. FANET design considerations were
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TABLE 2. List of acronyms.

Acronym Text

ABS Aerial base station

ACO Ant colony optimization

Al Artificial intelligence

ANN Artificial neural network

APC Affinity propagation clustering
AQL Adaptive Q-learning

BS Base station

CH Cluster head

CMTAP Cooperative multiple task assignment problem
CNN Convolutional neural network
CPS Cyber-physical system

DNN Deep neural network

DRL Deep RL

ESN Echo state network

FANET Flying ad-hoc Network

FL Federated learning

FTA Fast task allocation

GA Genetic algorithm

GPI Geographical position information
HAPS High-altitude platform station

HTER Half total error rate
ToD Internet of drones

LEACH Low-energy adaptive clustering hierarchy
LEACH-C | LEACH-centralized

LP Linear programming

LSTM Long short-term memory

MA Multi-agent

MADDPG | Multi-agent deep deterministic policy gradient
MARL Multi-agent reinforcement learning

MAV Micro air vehicle

MDP Markov decision process

MEC Mobile edge computing

MFG Mean-field game

ML Machine learning

NDP Neuro-dynamic programming

NFV Network function virtualization

NLP Nonlinear programming

PSO Particle swarm optimization

QoE Quality of experience

RAN Radio access network

RL Reinforcement learning

RPW Red palm weevil

SDN Software-defined network

SI Swarm intelligence

SPNE Subgame perfect Nash equilibrium
STAPP Simultaneous target assignment and path planning
UAV Unmanned aerial vehicle

WSN Wireless sensor network

investigated, including the adaptability, scalability, latency,
UAV platform constraints, and bandwidth.

Hayat er al. [42] discussed the characteristics and require-
ments of UAV networks from a communications and net-
working perspective. They surveyed and quantified the
quality-of-service requirements, network-relevant mission
parameters, data requirements, and minimum data to be trans-
mitted over the network. They reported experimental results
from many projects and investigated the suitability of existing
communication technologies for supporting reliable aerial
networking.
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Recent implementations and projects using multi-UAV
systems were surveyed by Hentati and Fourati [45]. They pre-
sented a review of the recent UAV communication protocols
and mechanisms and summarized current research in the area
of monitoring via UAVs. They discussed well-known design
issues relating to UAV communication protocol, including
mobility, adaptability, reliability, scalability, latency, UAV
platform constraints, bandwidth allocation, power consump-
tion, computational power, localization, security, and privacy.
Another recent study by Boccadoro and Grieco [85] catego-
rized the multifaceted aspects of the Internet of drones (IoD),
including several fields in which drones and swarms of drones
may be useful. Their goal was to provide an overview of the
current state of research activities regarding the IoD.

The survey of Fotouhi ef al. [38] focused on regulation
issues that arise when integrating UAVs into cellular systems.
They reviewed the available UAV types and potential solu-
tions to interference issues, as well as challenges and opportu-
nities for assisting cellular communications with UAV-based
flying relays and BSs. They also considered testing, regula-
tion, and security challenges.

Qubbati et al. [99] summarized the main characteristics
of software-defined network (SDN) and network function
virtualization (NFV) technologies that are used for the
efficient management of UAV-assisted mobile networks.
They presented an in-depth discussion relating to both the
design challenges of UAV networks and their principal use
cases.

The authors emphasized that AI techniques and ML
methods are expected to play a crucial role in optimizing
UAV-assisted networks in various aspects, such as optimizing
the resource allocation and scheduling, enhancing the net-
work prediction and boosting the network performance. How-
ever, multiple challenges require further investigation, such as
the high computational processing, high energy consumption,
and high latency.

A special focus on the algorithmic challenges involved
in UAV-based networks was provided in the study of
Ullah et al. [114]. They investigated the joint optimization
problem to enhance the system efficiency of UAV-assisted
next-generation communication systems. They focused on
the following challenges: flight trajectory, time scheduling,
altitude optimization, aerial and relay BSs, energy harvesting,
power transfer, optimal power consumption, and resource
allocation. They presented an in-depth study regarding vari-
ous successive optimization algorithms and methods, such as
mobile edge computing (MEC) techniques and SDNs, as well
as ML and deep learning applications that play a vital role
in 5G and B5G communication.

The potential of using ML methods for UAV-based com-
munication networks has been the highlight of several recent
surveys. Mozaffari e al. [79] surveyed the applications and
challenges of UAV wusage in communication networks,
as aerial BSs (ABSs), or as flying mobile terminals. Specif-
ically, they also noted issues to which ML can be applied,
namely channel modeling and trajectory optimization.
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Saad et al. [98] surveyed the countless applications of
UAVs and UAV swarms, and the challenges that should
be addressed when considering these technologies. They
reviewed research problems pertaining to UAV network per-
formance analysis and optimization, including the physical
layer design, trajectory path planning, resource management,
multiple access, cooperative communications, standardiza-
tion, control, deployment strategies, and security issues.
Sharma et al. [103] provided insights into the latest UAV
communication technologies through the investigation of
suitable task modules, antennas, resource handling platforms,
and network architectures. They considered the applicability
of ML, encryption, and optimization techniques to ensure
long-lasting and secure UAV communications.

Moreover, several surveys have mainly focused on describ-
ing the major ML methods and their application to UAV
wireless communication networks, which we review in
Section III-C.

Owing to the common use of skimmers in security areas,
one of the most challenging issues in the implementation of
a wireless UAV-based network is the need for protection and
security.

Shakeri et al. [101] surveyed several design challenges of
multi-UAV systems for cyber-physical system (CPS) applica-
tions. They considered the modern generation of systems with
synergic cooperation between computational and physical
potentials that can interact with humans through several new
mechanisms. UAVs can act as part of such systems, and
the potential of ML to improve the efficiency of CPSs was
discussed.

Wang et al. [116] presented a comprehensive survey on
UAV networks from a CPS perspective. They attempted to
provide novel insight into the state of the art in UAV networks.
The basics of the three cyber components, namely commu-
nication, computation, and control, were discussed, includ-
ing the requirements, challenges, solutions, and advances.
The three UAV network hierarchies, namely the cell level,
system level, and system of the system level, were investi-
gated according to the CPS scale, with the architecture, key
techniques, and applications of the UAV network explicitly
demonstrated under each hierarchy. Blockchain applications
in UAV networks have even been considered in [111]. Such
applications include network security, decentralized storage,
inventory management, and surveillance. It worth noting that
they also considered ML as one of the blockchain applications
in other emerging areas.

As the focus of our survey is on the use of UAV
flocks/swarms, we present the following surveys relating to
the use of UAV swarms in wireless communication networks.
Li et al. [66] presented space—air—ground integrated networks
and discussed the research challenges faced by the emerging
integrated network architecture. They also provided a review
of various 5G techniques based on UAV platforms that could
be categorized into different domains, such as the physical
layer and network layer, as well as joint communication,
computing, and caching. They defined a UAV-based swarm
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network as a network based on a swarm of UAVs that offers
ubiquitous connectivity to ground users. The benefits of such
a network are that it is highly flexible with rapid provision
features, and it is a feasible solution to enable fast, effective
recovery and communication expending.

Another survey relating to UAVs for wireless networks
was conducted by Zhang et al. [135]. They discussed several
aspects of using air—ground integrated mobile edge networks,
in which UAVs are employed to assist the MEC network.
Among the advantages of this approach, they provided the
following examples: the easy deployment of such networks,
the high mobility of UAVs, and the ability to provide MEC
services ubiquitously and reliably. They also considered the
advantages as well as the challenges of using UAV swarms,
which can complete tasks more efficiently and can improve
the chance of successful missions. Furthermore, they can
improve the scalability and reduce the probability of system
failure. However, they noted that the means of hiring UAVs
requires further discussion.

The above survey focused on the use of UAVs as part
of communication networks. However, as mentioned pre-
viously, UAVs have several purposes, and somehow, dif-
ferent challenges arise when considering a communication
network from when aiming to connect the UAVs among
themselves. XiJun et al. [28] focused on UAV swarm com-
munication architectures and routing protocols. They detailed
four communication architectures for UAV swarms. They
also discussed applicable scenarios and introduced a system-
atic overview of as well as feasibility research on routing
protocols. Finally, they investigated the open research issues
of UAV swarm communication architectures and routing pro-
tocols. However, they hardly addressed ML methods.

In the following section, we present surveys that have
focused on ML methods used for solving different challenges
arising in UAV technologies and UAV swarms.

C. SURVEYS ON APPLICATION OF ML TO UAV-RELATED
CHALLENGES

In the following, we mainly focus on ML methods used for
UAV control and UAV flock control. Considering a group
of UAVs in terms of a communication network offers sev-
eral advantages as well as faces various challenges. In fact,
general-purpose UAVs can form a D2D wireless network
among themselves in order to be coordinated. In other appli-
cations, the mesh network of the UAVs can be used as a cloud
that provides a wireless network for ground users.

Bithas et al. [16] presented a survey on the use of ML
techniques for UAV-based communication and the improve-
ment of various design and functional aspects. Their survey
focused on UAVs that are used for communication tasks,
as part of 5G and beyond communication systems, in which
the following aspects were detailed: channel modeling, inter-
ference management, parameter configuration, security and
safety, resource management, position detection, and local-
ization. However, our survey differs from the study of Bithas
et al. in terms of the following aspects: (a) we concentrate

139151



IEEE Access

R. Azoulay et al.: ML Methods for UAV Flocks Management-A Survey

on the challenges relating to the planning, organization, and
maintenance of UAVs flocks, rather than dealing with the
challenges of a single UAV; (b) we provide a brief description
of classical and innovative ML methods and their use in the
construction, management, and utilization of UAV flocks for
different goals; and (c) we provide an overall survey of related
studies that may be applicable for these challenges, even if
they did not directly consider the UAV flocking goal.

Several studies have reviewed the capability of artificial
neural networks (ANNs) and advanced deep learning meth-
ods to address some of the above challenges relating to UAV
applications. Carrio et al. [19] reviewed several applications
of deep learning for UAVSs, including the most relevant devel-
opments as well as their performances and limitations.

Mao et al. [89] performed a comprehensive survey of the
applications of deep learning algorithms for different network
layers, including physical layer modulation/coding, data link
layer access control, resource allocation, and routing layer
path searching and traffic balancing. They also discussed the
use of deep learning to enhance other network functions, such
as network security and sensing data compression.

Chen et al. [25] considered the potential of using ANNs
for solving various wireless networking problems. They pre-
sented a detailed overview of several recent ANN types,
including recurrent, spiking, and deep neural networks, which
are pertinent to wireless networking applications. For each
ANN type, they presented the basic architecture as well as
specific examples that are particularly important for wire-
less network design. Moreover, they provided an in-depth
overview of the variety of wireless communication problems
that can be addressed using ANNs. For each individual appli-
cation, they presented the main motivation for using ANNss,
along with the associated challenges and use cases.

Another survey considering deep learning for wireless
networking was presented by Zhang et al. [23]. They intro-
duced and compared state-of-the-art deep learning models,
and provided guidelines for model selection towards solv-
ing networking problems, whereby the various scenarios
and applications in wireless networking were grouped, rang-
ing from mobile traffic analytics to security and emerging
applications.

The recent study of [57] examined how ML can be used in
the area of radio access networks (RANs) with UAVs. The
paper investigated which types of ML methods are useful
for designing UAV-based RANs (U-RANs), with a partic-
ular focus on supervised RL strategies. They discussed the
advantages and potential of using ML algorithms in U-RANs
in numerous network design scenarios that could not be
easily solved by conventional model-based methods. They
investigated the different types of ML methods that are useful
for designing U-RANs by focusing on supervised and RL
strategies in particular.

Al-Turjman et al. [4] presented an overview of the use of
artificial intelligence (AI) in UAV communications. They
reviewed the communication protocols and technologies that
have been applied in UAV communications and discussed
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several Al-based classification and image-based techniques
that are used for UAV communication. Another recent study
on UAV-based communication with ML method is the study
of Wueral [119], which focused on the exploitation of
advanced techniques, such as intelligent reflecting surfaces,
short packet transmission, energy harvesting, joint communi-
cation and radar sensing, and edge intelligence, to meet the
diversified service requirements of future wireless systems.
They also reviewed ML methods specifically for UAV tra-
jectory and communication design. Interestingly, Wu et al.
considered the three research dimensions that are the focus
of our survey, namely UAV technology, swarm control, and
ML utilization. However, Wu et al. focused on advanced
technologies that are used for UAV-based communication
networks, whereas our study focuses on ML methods that are
used for multipurpose UAV flocks and swarms.

The majority of the above surveys focused on the utiliza-
tion of ML methods for solving FANET challenges, but none
of them considered the challenges that are specific to UAV
clustering, which is an important issue in several practical
areas. Table 3 summarizes the afore-mentioned reviews, with
a special mention of the main focus of each one. In particular,
for each survey, we note whether it focused on UAV/aerial
vehicles, implicitly considered flocks and flock formation,
and whether ML methods and applications were also sur-
veyed. In the table, the notation ““V” indicates a main con-
cern, whereas “+”° denotes that several relevant ideas were
mentioned, but with no main focus on this issue, and finally,
x means that the study (almost) did not consider the men-
tioned issue.

To summarize, Table 3 presents a list of surveys related to
the topic of UAVs flocks, and the challenges relating to their
design and management.

The contribution and novelty of our survey compared to
the surveys mentioned previously and summarized in Table 3
are based on the fact that we concentrate on using ML
methods for UAV flock management. Our scope is in the
intersection among ML, swarm intelligence (SI), and studies
relating to UAVs, which none of the previous surveys have
encompassed. Figure 3 illustrates this point.

IV. FLOCKS FORMATION AND MAINTENANCE

The possible co-existence of large swarms of aerial vehicles
has logically led to the necessity of grouping them into flocks.
The grouping of UAVs into flocks may be useful for several
applications, such as UAV-based communication networks,
wireless sensor networks (WSNs), information gathering,
image collection, and military applications. The clustering of
UAVs implies many tasks, such as dividing them into clusters,
where each cluster has a cluster head (CH) that is responsible
for data aggregation and transmission to the BS.

The first problem that arises when dealing with UAV
organization into flocks is that of flock formation; that is,
how to cluster the UAVs into flocks. This includes (a) the
affiliation of each UAV to a certain flock; (b) the internal
topology within the flock; (c) the internal routing protocol
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TABLE 3. Summary of scope of surveys.

Reference

Scope

=
=
(<]
=
@»

=
=

Tahir et al. [110]

Future usage of UAVs and flocks

Chung et al. [29]

Aerial swarm robotics

Coppola et al. [31]

Challenges of Micro Air Vehicles

Beaver et al. [15]

Optimal robotic flocking

Sargolzaei et al. [8]

Flock cooperation control

Long et al. [71]

Swarm control

Bekmezci et al. [50]

Flying ad-hoc networks

Hayat et al. [42]

Civil applications

Hentati et al. [45]

Design issues

Boccadoro et al. [85]

Internet of Drones

Fotouhi et al. [38]

Standards of UAV based communications

Ullah et al. [114]

Optimizing communication efficiency

Mozaffari et al. [79]

UAV based communication

Saad et al. [98]

UAV based networks

Sharma et al. [103]

Networking technologies

Shakeri et al. [101]

Cyber-physical applications

Wang et al. [116]

Cyber UAV perspective

Alladi et al. [111]

Blockchain applications

Li et al. [66]

UAV communication

Oubbati et al. [82]

SDN and NFV for UAV assisted networks

Zhang et al. [135]

Air-Ground Integrated Networks

XiJun et al. [28]

UAV swarm communication

Bithas et al. [16]

ML for UAV communication systems

Carrio et al. [19]

Deep Learning for UAVs

Mao et al. [89]

Deep Learning for Wireless networks

Chen et al. [25]

ANNSs for wireless networks

Zhang et al. [23]

Deep Learning for wireless networks

Kouhdaragh et al. [57]

ML for UAV-Based Networks Design

Alsami et al. [5]

Al for robotic communication

Al-Turjman et al. [4]

Al-based UAV communication system

Wuetal. [119]

Sensing and Intelligence
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FIGURE 3. Main focus of related surveys.

used in the flock; (d) the required updates of the internal and
external structure of the flock given external changes; (e) task
allocation within the flock; and (f) task allocation updates
given external changes.

The aim of this section is to survey ML methods for UAV
flocking. Clustering methods based on bio-inspired algo-
rithms and particle swarm optimization (PSO) are presented
in Section IV-A, whereas the issue of how ML methods
can be applied to clustering formation is investigated in
Section I'V-B.
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A. BIO-INSPIRED ALGORITHMS

Based on the fact that flocking behavior occurs widely in
nature, several studies have suggested the use of bio-inspired
algorithms to achieve efficient flocking behavior. Owing to
their popularity, we describe these in a separate section.

The PSO algorithm is an evolutionary computing tech-
nique that is modeled according to the social behavior of
a flock of birds. In the context of PSO, a swarm refers to
numerous potential solutions to the optimization problem,
where each potential solution is known as a particle. The
aim of the PSO is to determine the particle position that
results in the best evaluation of a given fitness function.
Regarding the clustering challenge, Latiff et al. [64] were
the first to present energy-aware clustering for WSNs using
a PSO algorithm. They defined a cost function that considers
the intra-cluster distance, available energy of each node, and
each CH candidate. The simulation results indicated that the
proposed protocol using the PSO algorithm provided a higher
network lifetime, delivered more data, and produced better
clustering stations compared to LEACH and LEACH-C.

Following Latiff ef al., several variations of the basic PSO
algorithm were suggested. Kuila and Jana [87] presented
linear programming/nonlinear programming (LP/NLP) for-
mulations of the clustering and routing problems in WSNs,
followed by two proposed algorithms based on PSO. The
clustering algorithm considered the energy conservation of

139153



IEEE Access

R. Azoulay et al.: ML Methods for UAV Flocks Management-A Survey

the nodes through load balancing, whereas the routing algo-
rithm considered a tradeoff between the transmission distance
and number of hop counts. In the clustering phase, the routing
overheads of the CHs were considered for balancing their
energy consumption.

Suganthi and Rajagopalan [108] considered the prob-
lem of the construction of energy-effective multi-swarms
in dynamic environments and presented variations of PSO
that are specifically formulated for excellent functioning in
dynamic settings. The primary notion is the extension of
single-population PSO as well as charged PSO techniques
through the construction of interactive multi-swarms. They
also proposed updating as well as recalculating algorithms
for connected dominating sets given changes in the ad-hoc
wireless network topology.

Collotta er al. [30] proposed a fuzzy logic-based mecha-
nism for wireless sensor networks, which defines the sleeping
time of the sensor devices. A PSO algorithm was introduced
to obtain the optimal values and parameters of the proposed
fuzzy logic controller so as to achieve the best results regard-
ing the battery life of the sensor nodes.

A hybrid approach for the clustering scheme was proposed
by Aftab et al. [1] for drone-based cognitive IoT, which uses
a hybrid mechanism of glowworm swarm optimization [117]
and the dragonfly algorithm [78]. Whereas cluster formation
and CH selection were performed using glowworm swarm
optimization, the swarm joining and cluster management
mechanisms were inspired by the dragonfly algorithm. Track-
ing methodology was also proposed using the dragonfly algo-
rithm rules, which aided in more effective management of
the cluster topology. The cluster maintenance was performed
by a mechanism to identify dead cluster members. Finally,
an efficient route selection function was proposed.

Arafat and Moh [7] suggested clustering and CH selection
methods based on PSO for reducing the energy consumption
and balancing the energy utilization, thereby increasing the
network lifetime. According to the PSO method, after com-
puting the search region, a particle is assigned to a subswarm,
which is known as a local swarm. The local swarm over-
lapping, overcrowding, and convergence are verified before
the next iteration starts. After obtaining the node location
information, the node is assigned into a cluster based on the
nearest location point. In the second phase, the cluster sizes
are balanced by moving the UAVs from an excessively large
cluster to their nearest cluster. The fitness values for the CH
selection in the PSO algorithm are based on the weighted sum
of three parameters: the intra-cluster distance, UAV energy
level, and inter-cluster distance.

Ganesan et al. [39] aimed to provide an effective solution
to elect the CH among multiple drones at different periods
based on the various physical constraints of the drones. The
elected CH acts as the decision maker and assigns tasks to
the other drones. In the case where the CH fails, the next
eligible drone is re-elected as the leader. The CH is elected
dynamically based on the following three parameters: its cur-
rent position (closer to the BS and all other drones), residual
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energy, and velocity, using a method based on PSO. This
elected leader CH alone communicates with the BS and other
drones, thereby decreasing the communication energy, which
in turn extends the network lifetime. Clusters are formed
using spider monkey optimization based on the proximity of
the drones to one another, their connectivity to other nodes
(using RSSI), and the residual energy of the drones. The clus-
ters that are formed will have equal average residual energy
for increasing the network lifetime further. In the above study,
the simulation demonstrated that the results of the proposed
distributed method were more efficient than the results of the
PSO-C algorithm, in which the fitness value is based only on
the residual energy, in terms of extending the network lifetime
by reducing the communication energy consumption.

Azoulay and Reches [12], [13] developed a multi-
agent (MA) blackboard-based protocol to form clusters of
self-interested UAV's with close routes. According to the pro-
posed protocol, the formed clusters are saved in a centralized
blackboard, and any new UAV can either join an existing
flock or create a new one and publish it in the centralized
blackboard. The simulation results of this approach demon-
strated a load reduction in crowded environments.

Another bio-inspired clustering algorithm for highly
dynamic large-scale ad-hoc UAV networks was suggested
by Yu er al. [124], which transplants the foraging model of
physarum polycephalum to the field of highly dynamic large-
scale ad-hoc UAV networks to adapt to these networks, and
conducts cluster formation and maintenance effectively. They
demonstrated through simulations that their algorithm out-
performed the classical clustering algorithm in terms of the
average link connection lifetime and average CH lifetime,
which could make the cluster structure more stable.

B. ML METHODS FOR FLOCK FORMATION

As highlighted in the literature, the problem of determining
optimal clusters, even in static environments, is known to be
NP-hard [2], [73]; thus, the different methods suggested for
relatively static or highly dynamic networks are heuristics.
Given that ML exhibits good performance in various NP-hard
problems [53], several studies have suggested the use of
advanced ML methods to handle the clustering challenge.
The basic clustering problem is a variation of the dominating
set problem [100]. A dominated set of graph G is a subset S
of the vertex set of G, in which each vertex in G is either in S
or adjacent to a vertex in S. A minimum dominating set is a
dominating set of the smallest size in a given graph. The size
of the minimum dominating set is known as the domination
number of the graph. In wireless sensor applications, each
sensor is considered as a node and an edge exists between
two nodes if and only if they have a direct connection to one
another. Moreover, the set of the CHs is the dominated set of
the WSN graph. He er al. [43] suggested the use of a Hopfield
neural network to minimize the weakly connected dominating
set for the self-configuration of WSNs. They explored the
convergence procedure by simulating the subsequent model
and tested the model on complete graphs to observe the
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robustness of the parameters in the model. Furthermore, they
presented an improved hill climbing algorithm with directed
convergence, heuristic adjustment, and threshold compen-
sation. They demonstrated the efficiency of their method
by means of simulation and investigated the effect of the
transmission radius on the cluster sizes. The results indicated
that it is important to select a suitable transmission radius to
ensure that the network has good stability and a long lifespan.

When viewing the clustering and head selection problems
along the timeline, the decision in one period may influence
the future environmental state and future decision making;
thus, RL can be applied to solve the clustering problem over
time. Pan et al. [88] proposed an energy-aware CH selection
method based on binary PSO and K-means to extend the
network lifetime. The selection criteria of the objective cost
function were based on minimizing the intra-cluster distance
as well as the distance between the CHs and BS, and optimiz-
ing the energy consumption of the entire network. Moreover,
the sensor nodes were divided into several clusters based
on the K-means algorithm at the beginning, which could
reduce the complexity of the overall algorithm. They demon-
strated by simulation that their technique could outperform
LEACH-C and PSO-C in terms of the network lifetime.

Yuan et al. [129] proposed a genetic algorithm (GA)-based
network clustering method that provided a framework for
dynamically optimizing wireless sensor clusters. The residual
energy, expected energy expenditure, distance to the BS, and
number of nodes in the vicinity were used as the arguments
for the fitness function, where each GA chromosome repre-
sented a designation map of CHs. Given the CHs, the clus-
ter members were formed following the nearest neighbors
rule. In each transmission round, the network structure was
updated dynamically to achieve a balance of the residual
energy of the sensor nodes, and hence, to extend the network
longevity.

Tolba and Alarifi [112] proposed an RL-based technique
known as adaptive Q-learning (AQL) for clustering in a dis-
tributed sensor network to improve the network performance
with a minimum energy—overhead tradeoff. AQL operates
in two distinct phases, namely those for CH selection and
forwarder selection. The decision-making system is used to
qualify nodes based on their past behavior over transmission.
AQL improves both the inter- and intra-cluster communica-
tion. The experimental results demonstrated the effectiveness
of the proposed learning technique by improving the network
lifetime with a high request-response rate, thereby minimiz-
ing the delay, overhead, and request failures.

Finally, Govindara and Deepa [40] considered a WSN for
the IoT and proposed a capsule neural network architectural
model to achieve better performance by minimizing the net-
work energy overhead for the WSN-based IoT. The clustering
process in sensor networks contributes to improving the net-
work quality by controlling the energy consumption rate and
improving the data accuracy rate. The above authors aimed
to develop a new capsule neural network model that can
maintain the network energy at an optimal level, leading to
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FIGURE 4. ML methods used for the clustering challenge.

improved throughput and higher accuracy with a reasonable
network overhead. The capsule neural network architecture is
a plausible neural model and has been proven to be effective
for routing and optimization operations wherein the activa-
tion of the capsule is calculated at the forward pass time.

The idea is to add structures known as ‘“‘capsules” to a
convolutional neural network (CNN) and to reuse output from
several of those capsules to form more stable representations
(with respect to various perturbations) for higher capsules.
The simulation results that were obtained established the reli-
ability and effectiveness of the proposed capsule neural net-
work learning for the energy optimization of the IoT in sensor
networks compared to existing methods in the literature.

To clarify the various algorithms used for clustering,
Table 4 summarizes the studies that have used bio-inspired
and ML methods to solve the clustering challenge, while
figure 4 presents the different types of ML methods used for
the clustering challenge.

V. FLOCKING STRATEGIES AND UAV COORDINATION

Several challenges in flock management involve the physical
location of the flocks. This includes determining the optimal
deployment of UAVs, physical coordination of UAVs, and
trajectory optimization. In the following section, we survey
several recent studies that have suggested the use of ML
methods to address the location-related challenges. We focus
on certain geographical challenges of flock formation, which
are mainly determined by their localization and mobility,
to avoid collisions and to achieve energy efficiency. We con-
sider the following related problems: flocking strategies to
avoid collisions between flock members, deployment chal-
lenges in UAV-based wireless networks, and multi-UAV path
planning challenges. Each related problem is discussed in a
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TABLE 4. Creation and maintenance of flocks and clusters (C = centralized, D = distributed).

Publication Challenge Optimization ML Approach
Criteria Method
Latiff et al. Clustering Intra-cluster distance, PSO D
[64] Energy stability
Kuila and Jana Clustering, Energy conservation, and LP/NLP, D
[87] Routing load balancing PSO
Suganthi and Multi-swarm energy effectiveness PSO D
Rajagopalan [108] Construction
Collotta et al. [30] WSN clustering Battery life Fuzzy logic PSO D
Aftab et al. Drone cluster Clustering construction time | Glowworm swarm | D
[1] Management and lifetime, optimization
and routing energy consumption
Arafat and Moh [7] Localization and | Network lifetime PSO D
clustering
Ganesan et al. CH election, Link lifetime, PSO+MSO D
[39] Clustering cluster lifetime
Yu et al. UAV Connection lifetime, foraging model of | D
[124] clustering CH lifetime Physarum
polycephalum
He et al. [43] WSN clustering Stability, lifetime Hopfield NN C
Pan et al. [88] Clustering Energy consumption PSO+K-means C/D
Yuan et al. [129] Clustering Network lifetime GA C
Tolba and Alarifi [112] | WSN clustering Network lifetime AQL D
Govindaraj and Deepa | WSN clustering Optimal energy CNN C
[40] Maintenance

separate section and relevant ML methods are surveyed, with
each of these challenges discussed and solved.

Given a flying flock of objects, it is important for the flock
members to coordinate to avoid cohesion. The basic flocking
challenges of any flock of flying objects working indepen-
dently were defined as follows by Reynolds [94]: the birds
attempt to stick together, and to avoid collisions with one
another and with other objects in their environment. There are
three basic rules for maintaining the flocking behavior, as fol-
lows: separation: avoid collisions with nearby flockmates;
alignment: attempt to match velocity with nearby flockmates;
and cohesion: attempt to stay close to nearby flockmates.
Similar to the swarming behaviors that are observed in ani-
mals and insects, autonomous coordination among UAVs
should be guaranteed. In this section, we consider several
studies that have used ML methods to maintain stable flock
behavior.

A distributed approach for the flocking problem was sug-
gested by Olfati-Saber [81] in the area of MA dynamic sys-
tems, where the agents were autonomous and no centralized
manager existed. Oltafi-Saber considered this problem and
suggested several distributed flocking algorithms for this
purpose. Two cases of flocking in free space and the pres-
ence of multiple obstacles were considered. Moreover, three
flocking algorithms were proposed: two for free flocking
and one for constrained flocking. A systematic method was
provided for the construction of cost functions (or collective
potentials) for the flocking, in which the collective potentials
penalized deviation from a class of lattice-shaped objects.
Several simulation results were presented to demonstrate
the performance of the 2D and 3D flocking, split/rejoin
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maneuver, and squeezing maneuver for hundreds of agents
using the proposed algorithms.

Maza et al. [76], [77] considered civil domains in which
multiple aerial robots with sensing and actuation capabili-
ties were available and presented the AWARE project for
the autonomous coordination and cooperation of UAVs. The
different components of the AWARE platform and scenario
in which the multi-UAV missions were carried out were
described, including surveillance with multiple UAVs, sensor
deployment, and fire threat confirmation. Key issues in multi-
UAV systems, such as distributed task allocation, conflict
resolution, and plan refinement, were solved in the execu-
tion of the missions. Constraint-based temporal planning and
scheduling were used for solving the planning problems,
and the contract net protocol was used to manage the dis-
tributed task allocation process among the different UAVs.
They demonstrated by means of experiments with real UAVs
that the developed architecture allowed a broad spectrum of
missions to be covered: surveillance, sensor deployment, fire
confirmation, and extinguishing.

Quintero [92] developed a novel flocking algorithm that
enabled multiple UAVs to locate themselves in the flock to
distribute a given sensing task among the group members,
assuming a leader—follower network topology. They focused
on the control policy of the followers, and developed a cost
function that is a function of the distance and heading with
respect to the leader, as well as a stochastic kinematic model
that facilitates flocking. Thereafter, they used dynamic pro-
gramming to minimize the expected cost of each follower.
Quintero et al. assumed that there is a predefined flock leader
that is known to the entire flock, and their aim was to optimize
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the distance and heading of the followers with regard to the
leader.

Xu et al. [122] proposed a distributed neuro-dynamic
flocking design for ensuring that the UAVs follow three
heuristic flocking rules, namely cohesion, separation, and
alignment, in an optimal manner, using the neuro-dynamic
programming (NDP) technique, First, an innovative cost
function was developed by combining the system cohe-
sion, separation, and alignment performance. Subsequently,
anovel neural network was proposed to approximate the min-
imized cost function value by using the Hamilton—Jacobi—
Bellman equation in an online and forward-in-time manner.
Thereafter, near-optimal flocking could be achieved by min-
imizing the estimated cost function.

Flocking control can be performed by the learning-based
model predictive control (LBMPC), developed by Aswani
et al. [10]. Model predictive control (MPC) is a process
control method which aims to satisfy a set of constraints,
where LBMPC aims to handle system constraints, and to opti-
mize performance with respect to a cost function, by using
statistical identification tools to learn model uncertainties.
Aswani et al. [9] apply LBMPC to UAV control, and demon-
strate by their experiments that the LBMPC yields to less
overshoot on the UAV and to better robustness to mis-
learning, w.r.t. the referred linear MPC method.

Hung and Givigi [49] proposed the use of a model-free
RL method to enhance the autonomous coordination among
UAVs in a swarm. They used a leader—follower policy,
whereby Peng’s Q()) [84] with a variable learning rate was
employed by the followers to learn a control policy that
facilitates flocking. The problem was structured as a Markov
decision process (MDP), in which the agents were modeled
as UAVs that experience stochasticity owing to disturbances
such as winds and control noises, as well as weight and bal-
ance issues. The learned policies were compared to dynamic
programming methods that were solved using stochastic opti-
mal control. The simulation results demonstrated the feasi-
bility of the proposed learning approach for enabling agents
to learn how to flock in a leader—follower topology while
operating in a non-stationary stochastic environment.

Tsai [113] focused on vision-based collision avoidance for
UAVs. First, images from the UAV cameras were fused based
on deep CNN . Thereafter, a recurrent neural network (RNN)
was constructed to obtain high-level image features for object
tracking and to extract low-level image features for noise
reduction. The system distributed the calculation among
the multiple UAVs to perform object detection, tracking,
and collision avoidance efficiently. To achieve high overall
system performance, the study adopted the half total error
rate (HTER) accuracy measurement, which is based on the
false rejection rate and false acceptance rate.

Jafrai et al. [52] proposed a flocking design framework for
MA systems using an RL technique, which was appropri-
ate for real-time implementation. The controller that they
developed was based on a bio-inspired RL controller, rely-
ing on a computational model of emotional learning in the

VOLUME 9, 2021

mammalian limbic system. They used this model for practical
MA systems in the presence of uncertainty and dynamics.

In the work of Venturini et al. [115], the authors consid-
ered a general MARL framework for the initial exploration
and surveillance of a swarm of independent UAVs. Their
scheme followed the framework in which observations of
other agents are used to make decisions and to avoid colli-
sion, thereby encouraging cooperation. They defined a deep
Q network algorithm. They subsequently demonstrated its
efficiency with limited training, compared it to the look-ahead
search heuristic, and showed that the MARL scheme can
explore the environment and reach the targets more rapidly.
They also performed a transfer learning experiment, demon-
strating that agents trained on a different map can learn to
adapt to a completely new scenario much faster than when
restarting the training from scratch.

Anicho et al. [6] compared the performance of RL and SI
methods for solving the problem of coordinating multiple
high-altitude platform stations (HAPSs) for communication
area coverage. Swarm coordination techniques are essential
for developing autonomous capabilities for the control and
management of multiple HAPSs. The authors observed that
the RL approach exhibited superior overall peak user cover-
age with unpredictable coverage dips, whereas the SI-based
approach exhibited lower coverage peaks but better coverage
stability and faster convergence rates.

Sharma and Ghose [104] developed several basic swarm-
ing laws for UAVs. They demonstrated that when the cohe-
sion rule is applied, an equilibrium condition is reached,
in which all of the UAVs settle at the same altitude on a
circle with a constant radius. They proposed a decentralized
autonomous decision-making approach that could achieve
collision avoidance, and developed algorithms with the aid
of these swarming laws for two types of collision avoidance,
namely group-wise and individual, in the 2D plane and 3D
space. Their experimental results demonstrated the effective-
ness of their approach, in which self-organized flight cluster
collision avoidance was successfully achieved by the UAV
swarms.

Wu et al. [120] studied the problem of path conflicts for
UAV clusters and established a method for calculating the
collision probabilities of UAVs under the constraints of the
mission space and number of UAVs. In the cluster flight
mode, the automatic tracking and prediction of UAV clus-
ter tracks were implemented to avoid path conflicts in the
clusters. To address the inconsistency problem owing to
noise, a state estimation method based on the Kalman algo-
rithm was proposed. The cluster state prediction and colli-
sion probability were calculated to prevent the clusters of
formation UAVs conflicting on paths during flight. Finally,
the simulation results verified the validity and effective-
ness of the proposed method in multi-UAV formation flight
planning.

Table 5 and Figure 5 summarize the studies relating to
flocking and collision avoidance among UAVs using ML
methods.
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TABLE 5. ML applied to flocking and coordination.

Publication Challenge Optimization ML
Criteria Method
Olfati-Saber [81] Flocking challenges connectivity, energy Distributed flocking
algorithms
Maza et al. [76], [77] Architecture execution cost Temporal planning,
contract net
Quintero [92] Localization distance and heading DP

Xu et al. [122] Ensuring flocking rules | cohesion, separation, NDP
and alignment
Hung and Givigi [49] Coordination flocking cost function Q-learning
Tsai [113] Vision-based collision HTER RNN
avoidance

Jafrai et al. [52] Flocking design

multi-objective properties | Bio-inspired RL

Venturini et al. [115] Exploration and

surveillance

target reaching efficiency Deep Q-learning

Anicho et al. [6] Coordinating

coverage RL and SI

Sharma and Ghose [104] | Collision avoidance

Swarm laws
Decentralized alg.

swarm size and stability

Wau et al. object tracking noise, Kalman
[120] collision prediction algorithm
VI. UAV DEPLOYMENT T Bl

An important challenge in UAV based wireless communica-
tion network is the challenge of UAVs deployment. In this
UAV based network, the UAVs function as BSs, and their
deployment affects the network efficiency and coverage.
In fact, the problem of determining the optimal placement of
ABSs to maximize the coverage is known to be a NP-hard
problem [74], and in this section, we survey several ML-based
methods for addressing this challenge.

Park et al. [83] considered the problem of the optimal
deployment of multi-UAVs to provide high throughput for
users with different requirements in the UAV-BS environ-
ment. Based on the air-to-ground path loss model, the virtual
communication environment was established, in which air-
time fairness was applied for equitable time distribution of
the channel usage according to user requirements. RL was
applied to determine the best UAV positions, and a collab-
orative algorithm with modified K-means was employed to
distribute users to each UAV to solve communication over-
load problems.

In the study of Klaine et al. [56], the aim was to maximize
the number of users covered by the system in an emergency
scenario, where the drones were limited by both backhaul
and RAN constraints. For this scenario, Klaine et al. pro-
posed the use of RL to determine the optimal position of
the UAVs. The proposed solution was compared to differ-
ent positioning strategies, such as deploying the drones in
fixed random positions, fixing the drones around a circle
centered in the middle of the area at evenly spread angles,
or deploying the drones in the locations of hotspots of
a previously destroyed network. The results demonstrated
that the Q-learning solution outperformed all other methods
in all considered metrics. Liu et al. [67] proposed a deep
RL (DRL) variation known as the deep deterministic policy
gradient method for energy-efficient UAV control in the con-
text of providing communication coverage for ground users.
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FIGURE 5. ML methods used for the flocking challenges.

The control policy considers the UAV movements in each
time slot and the aim is to optimize the communication
coverage, fairness, energy consumption, and connectivity.
The deployment decision becomes more complicated when
the environment itself, the coverage map in particular, is ini-
tially unknown, and the effect of each UAV position on the
coverage is not known in advance. Zhang et al. [134] sug-
gested an ML framework based on a Gaussian mixture model
and a weighted expectation maximization algorithm to pre-
dict the potential network congestion. Based on the predicted
congestion and traffic, the optimal deployment of the UAVs
could be achieved in a manner that minimized the transmit
power required to satisfy the communication demand of users
in the downlink, while minimizing the power required for the
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UAYV mobility. Qiu et al. [91] considered the NP-hard prob-
lem of maximizing the coverage rate of N ground users by
the simultaneous placement of multiple ABSs with a limited
coverage range. In their study, Qiu et al. applied the DRL
method for representing the state by a coverage bitmap to cap-
ture the spatial correlation between ground users and ABSs,
and for effectively learning the action and reward function
given dynamic interactions with the complicated propagation
environment.

In the study of Liu ef al. [70], the maximization criteria
consisted of the ground user opinions. They formulated the
problem of the joint non-convex 3D deployment and dynamic
movement of the UAVs, where the goal was to maximize
the sum of the mean opinion score (MOS) of the ground
users. They demonstrated that the problem was NP-hard and
proposed a Q-learning-based solution to handle the prob-
lem. An algorithm based on a combination of the GA and
K-means was used to obtain the cell partition of the users.
Subsequently, a Q-learning-based deployment algorithm was
proposed to achieve 3D placement of the UAVs when the
users were static. Finally, a Q-learning-based movement algo-
rithm was presented to obtain the 3D dynamic movement
of the UAVs. Several recent studies have suggested differ-
ent types of learning to accelerate the deployment process.
Liu et al. [68] developed a fast positioning algorithm for
the deployment of UAVs serving as BSs, which achieved
the goal of maximizing the sum of the downlink rates in
the multi-UAV communication network. They designed a
geographical position information (GPI) learning algorithm
to learn the GPI relationship between the users and UAVs
and demonstrated that the GPI learning method enabled rapid
suboptimal deployment in the case of multiple UAVs and
users.

Another aspect that can be considered in optimal UAV
deployment is the expectation of user requests.

Liu et al. [18] considered the problem of navigation con-
trol for a group of UAVs that served as mobile BSs. The
UAVs were supposed to fly around a target area to provide
long-term communication coverage for ground mobile users.
Liu et al. designed a decentralized DRL-based framework to
control each UAV in a distributed manner. Their goals were
to maximize the temporal average coverage score achieved
by all UAVs in a task, maximize the geographical fairness of
all considered points of interest (Pols), and minimize the total
energy consumption, while maintaining the UAVs connected
and located inside the area borders. They designed the state,
observation, action space, and reward in an explicit manner
and modeled each UAV using deep neural networks (DNNGs).

In the remainder of this section, we consider studies that
aimed to deal with a joint optimization problem, namely the
deployment challenge that considers user association, power
control, and other optimization problems that are involved in
implementing a UAV-based wireless network.

Dai et al. [37] investigated the problem of the efficient
deployment of UAVs while guaranteeing the quality-of-
service requirements. The UAV played the role of a
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coordinator to provide a high-quality communication ser-
vice for ground users as well as to maximize the benefits
of caching. They proposed an RL-based approach to solve
the multi-objective deployment problem, while maintaining
an optimal tradeoff between the power consumption and
backhaul saving. Owing to the interdependent relationships
among different UAVs, they adopted RL based on the local
search approach to determine the 3D placement, minimum
transmit power, and cache strategy of each UAV. Finally,
the minimum number of UAVs was provided together with
the efficient deployment scheme.

In another study, Dai et al. [36] leveraged game theory to
model the problem of imperfect channel state information and
proposed a robust and distributed learning algorithm to iden-
tify the multi-UAV plan flight paths while simultaneously
gathering local information until the optimal deployment
location was determined. They demonstrated via simulation
that the suggested distributed probabilistic learning algorithm
converged to a stochastic stable state, which maximized the
optimization objective; that is, the sum of the alpha-fairness
of all ground terminals.

Chen et al. [26] studied the problem of the proactive
deployment of cache-enabled UAVs for optimizing the
quality-of-experience (QoE) of wireless devices in a cloud
RAN. In the considered model, the network could lever-
age human-centric information such as the visited locations,
requested contents, gender, job, and device type of users to
predict the content request distribution and mobility pattern
of each user. Subsequently, given these behavior predictions,
the proposed approach sought to determine the user—-UAV
associations, optimal UAV locations, and contents to cache
at the UAVs. The problem was formulated as an optimiza-
tion problem, the goal of which was to maximize the QoE
of the users while minimizing the transmit power used by
the UAVs. To solve this problem, they proposed the use
of conceptor-based echo state networks (ESNs). The ESNs
could effectively predict the content request distribution and
mobility pattern of each user when limited information on
the states of the users and network was available. Based
on the predictions of the content request distributions and
mobility patterns of the users, the user—-UAV association,
UAV locations, and contents to cache at the UAVs could be
optimally determined.

Several studies considering the deployment challenge have
suggested the use of clustering algorithms to cluster the
ground user, and subsequently to determine the UAV deploy-
ment based on the clustered users. Several studies proposed
running this scheme iteratively until convergence is reached.
Kang et al. [97] proposed a cluster-based UAV deployment
scheme to reduce the data traffic as well as service delays and
to improve the coverage of BSs. User groups were formed
using the K-means clustering algorithm. Thereafter, the opti-
mal UAV locations were determined given the user clus-
ters. Furthermore, a long short-term memory (LSTM)-based
caching scheme was proposed to cache the popular con-
tents on UAVs. Yang et al. [127] considered the sum power
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minimization problem via jointly optimizing the user asso-
ciation, power control, computation capacity allocation, and
location planning in a UAV-based network. They proposed
a low-complexity algorithm for solving these subproblems
iteratively. The compressive sensing-based algorithm was
proposed for the user association subproblem. For the com-
putation capacity allocation subproblem, the optimal solution
was obtained in a closed form. For the location planning
subproblem, the optimal solution was effectively obtained via
a 1D search method. Finally, to obtain a feasible solution
for this iterative algorithm, a fuzzy C-means clustering-based
algorithm was proposed.

Koushik et al. [58] studied an aerial network in which cer-
tain UAVs were used as gateway nodes to aggregate the data
from other UAVs and send these to a nearby aircraft that acted
as a control node for the UAVs in the swarm. To handle the
dynamic swarm topology and time-varying link conditions,
they designed the following solution: A deep Q-learning
algorithm was used to determine the optimal links between
nodes, and an optimization algorithm was applied to fine-tune
the position of the UAV node locally to optimize the overall
network performance.

Finally, Nguyen et al. [62] considered both the deploy-
ment and resource allocation challenges for a distributed UAV
wireless network in disaster situations. They proposed a rapid
user clustering model based on the K-means procedure for
the UAV network. Furthermore, they proposed distributed
real-time power allocation to maximize the end-to-end sum
rate and embedded programming into the UAV devices for
rapid recovery of the network to support a large number of
users in disaster communication.

It can be concluded that the various studies have considered
different aspects of the UAV deployment challenge. They
differ in terms of the maximization criteria, data availability,
and additional problems that are considered jointly with the
deployment decision. Table 6 and Figure 6 summarize the
studies dealing with deployment, path planning, and collision
avoidance using ML methods.

VII. TRAJECTORY OPTIMIZATION AND NAVIGATION

In this section, we extend our survey by reviewing the geo-
graphical challenges of flock management. We deal with the
trajectory and path planning challenges and review recent
studies that have aimed to address these challenges using ML
methods. Trajectory planning refers to moving from point A
to point B without collisions, which can be computed using
both discrete and continuous methods. Trajectory planning is
considered as a major topic in robotics as it paves the way for
autonomous vehicles.

Several recent studies [93], [95], [96] considered the issue
of path planning and collision avoidance in UAV flocks using
the MDP. Bayerlein et al. [14] leveraged the use of RL, where
the UAV acted as an autonomous agent in the environment,
to learn the trajectory that maximized the sum rate of the
transmission during the flying time. Movement decisions
were made directly by a neural network. The algorithm did
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not require explicit information regarding the environment
and could learn the network topology to improve the system-
wide performance.

Zeng et al. [131] formulated the UAV trajectory optimiza-
tion problem as the minimization of the weighted sum of its
mission completion time and the expected communication
outage duration. They demonstrated that the formulated prob-
lem could be transformed into an equivalent MDP. Thereafter,
it was proposed to use an RL technique, such as the classical
Q-learning approach, to learn the UAV action policy, namely
the flying direction in this context. As the output of the
MDP involves a continuous state space that essentially has an
infinite number of state—action pairs, they applied a DNN to
approximate the Q function. They used the dueling network
architecture with multi-step learning to train the DNN. The
proposed DRL-based trajectory design did not require any
prior knowledge regarding the channel model or propagation
environment. It only utilized the raw signal measurement at
each UAV as the input to improve its radio environmental
awareness.

In the study of Hu et al. [51], a decentralized RL method
was adopted to solve the UAV trajectory design problem.
To coordinate multiple UAVs performing real-time sensing
tasks, they first proposed a sense-and-send protocol, and
analyzed the probability of successful valid data transmis-
sion using nested Markov chains. Thereafter, they formulated
the decentralized trajectory design problem and propose an
enhanced multi-UAV Q-learning algorithm to solve this prob-
lem. The simulation results demonstrated that the proposed
enhanced multi-UAV Q-learning algorithm converged faster
and achieved higher utilities for UAVs in real-time task-
sensing scenarios.

Multi-ant colony optimization (ACO) was suggested by
Cekmez et al. [20] for the obstacle avoidance path planning
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TABLE 6. ML application for deployment.

Publication Challenge Optimization ML
Criteria Method
Park et al. [83] Deployment throughput RL, K-means
Klaine et al. [56] Deployment coverage Distributed Q-learning
Liu et al. [67] UAV movements coverage, fairness, DRL

energy consumption,

and connectivity

Zhang et al. [134]

Congestion prediction

power minimization

Gaussian model

Qiu et al. [91] Action and reward function coverage rate DRL
Liu et al. [70] Deployment and movement mean opinion score Q-learning,
GA
K-means
Liu et al. [68] Deployment sum rate DNN
Liu et al. [18] Navigation coverage, fairness, Decentralized DRL

energy minimization

Chen et al. [26]

User requests and
mobility prediction

QoE

Echo state network

Dai et al. [37]

Deployment

quality of service

RL + local search

Dai et al. [36]

Path planning, deployment

alpha-fairness

Probabilistic distributed learning

Kang et al. [97]

Deployment, caching,

reducing delays
improved coverage

Clustering, LSTM

Yang et al. [127]

User association, power control,

power minimization

Iterative algorithm,

resource allocation

computation capacity allocation, clustering
and location planning
Koushik et al. [58] | Routing throughput Q-learning,
and deployment Optimization
Nguyen et al. [62] Deployment and throughput K-means,

Distributed algorithm

challenge. According to the multi-ACO method, numerous
ant colonies attempt to determine an optimal solution coop-
eratively by exchanging their valuable information with one
another. Cekmez et al. aimed to implement obstacle avoid-
ance UAV path planning using this algorithm, and they exper-
imentally demonstrated that this approach achieved effective
path planning for UAVs compared to a single-colony ACO
approach.

A. TRAJECTORY DESIGN WITH ADDITIONAL CHALLENGES
In recent studies, the UAV trajectory challenge in wire-
less communication networks has also been discussed
in combination with the related resource allocation
challenges.

Challita et al. [21], [22] considered a UAV cellular net-
work and aimed to minimize the interference caused by the
ground network, as well as the wireless transmission latency.
They modeled the problem as a distributed multi-UAV game,
in which the objective of each UAV was to learn its path,
transmit power level, and association vector autonomously
and jointly. For the proposed game, the cell association
vector, trajectory optimization, and transmit power level of
the UAVs were closely coupled with one another and their
optimal values varied according to the network dynamics.
Challita et al. suggested the use of DRL based on ESN
cells for optimizing the trajectories of multiple cellular con-
nected UAVs in an online manner to achieve convergence
to equilibrium. The deep ESN architecture was trained to
allow each UAV to map each observation of the network
state to an action, with the aim of minimizing a sequence of

VOLUME 9, 2021

time-dependent utility functions. Each UAV used the ESN to
learn its optimal path, transmit power level, and cell associa-
tion vector at different locations along its path. The proposed
algorithm was demonstrated to reach subgame perfect Nash
equilibrium (SPNE) upon convergence.

Liu er al. [121] addressed the challenge of the joint trajec-
tory design and power control of UAVs that served as BSs.
Their goal was to improve the user throughput, while satisfy-
ing the user rate requirement. Their solution was based on an
MA Q-learning based placement algorithm to determine the
initial deployment of the UAVs. Furthermore, an ESN-based
prediction algorithm was used to predict the mobility of users
and an MA Q-learning-based method was considered for the
trajectory acquisition and power control algorithm for the
UAVs.

The objective in the study of Khamidehi ef al. [54] was to
determine the trajectory of multiple ABSs, such that the sum
rate of the users served by each ABS was maximized. For
this purpose, along with the optimal trajectory design, they
also considered the optimal power and subchannel allocation,
which are of great importance for supporting users with the
highest possible data rates. Thus, they divided the problem
into two subproblems: ABS trajectory optimization, and joint
power and subchannel assignment. Subsequently, they devel-
oped a distributed Q-learning-based algorithm to solve these
subproblems efficiently, which did not require a significant
amount of information exchange between the ABSs and core
network. The simulation results demonstrated that although
Q-learning is a model-free RL technique, it has a remarkable
capability to train ABSs to optimize their trajectories based

139161



IEEE Access

R. Azoulay et al.: ML Methods for UAV Flocks Management-A Survey

. o e
Trajectory _— B |/ s

2 1Stributec
design

algorithms
methods

Unsupervised Learning

Multi
ACO [20]

Centralized
T o
algorithm/methods

ulti-agent
RL [121, 90]
Reinforcement Learning”™ \ 1 16 1Ay
Q learning [51
Distributed Q learning [21, 54]
NN Q learning [14]
DRL [131

FIGURE 7. ML methods used for trajectory design.

on the received reward signals, which carry information from
the network topology.

Qie et al. [90] considered a multi-UAV target assignment
scenario, where a flock of UAVs was supposed to fly to
targets that were distributed at different locations with the
shortest total flight distance, with certain fixed threat areas
that the UAVs could not enter. Of course, collision avoidance
between UAVs was required, and it was assumed that there
was only one type of target and all UAVs were identical.
This combinatorial optimization problem included two main
subproblems: target assignment and path planning. They pro-
posed a simultaneous target assignment and path planning
(STAPP) method based on an MA deep deterministic policy
gradient (MADDPG) algorithm, which is a type of MARL
algorithm. In STAPP, the multi-UAV target assignment prob-
lem was first constructed as an MA system. Thereafter,
the MADDPG framework was used to train the system to
solve the target assignment and path planning simultaneously,
according to a corresponding reward structure. The proposed
system could deal with dynamic environments effectively,
as its execution required only the locations of the UAVs,
targets, and threat areas.

Table 7 and Figure 7 summarize the part of our survey
related to the trajectory design of UAVs using ML methods.

VIIl. RESOURCE ALLOCATION IN AERIAL FLOCKS

A challenging issue when considering flock management is
the allocation of communication resources among the flock
members, given that the flock members organize an ad-hoc
mesh network for their internal and external communication
tasks. Note that D2D network challenges arise in FANETS
as well as in other ad-hoc networks, such as VANET, fixed
sensor networks, and even any wireless network. Thus, in this
section, we survey not only studies that have considered
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FANETS, but also those that can easily be applied to FANETS.
We review these studies for the sake of completeness, as we
ought to provide designers of UAV flocks with all of the
elements that can be used to develop solutions to their specific
scenarios.

Many types of resources can be allocated among flock
members, as described in the following:

o Transmission time: This can be managed via time-
division multiple access (TDMA), which allows several
users to share the same frequency channel by transmis-
sion at different time slots.

« Frequency channel: This can be managed via frequency-
division multiple access (FDMA), which consists
of dividing the available bandwidth into several
non-overlapping frequency channels, where each chan-
nel is allocated to a different user.

« Power control: This is important to achieve the optimal
transmission power for each D2D transmission so as to
reduce the interference on other concurrent transmis-
sions, while maintaining a sufficiently strong received
signal at the target receiver. It is also important for
avoiding the near—far problem (mainly in the CDMA
technique) and saving battery life.

o Multiple input, multiple output (MIMO) antennas:
These enable the control of a new dimension, namely
the possibility of focusing on a specific target via beam-
forming, and also improve the received signal via signal
processing.

Three different situations arise when considering resource
allocation problems in UAV flocks or other D2D mesh
networks:

o The cluster is completely covered by a ground BS.

o The cluster is partially covered by a ground BS.

o The cluster does not detect any ground BS in the entire
area.

Clearly, the most difficult situations are those in which no BS
is detected, as well as those that may occur in uninhabited
areas, areas following a disaster, or for flying flocks. In such
situations, all of the decisions should be made by the flock
members, with no involvement from external management.

Another level of distinction is in the goal function that
one is attempting to maximize. Cui et al. [34] specified four
fundamental energy-efficient metrics that have received the
most research attention in the literature:

« GEE: the system global energy efficiency;

« WSEE: the weighted sum energy efficiency;.

« WPEE: the weighted product energy efficiency; and
« WMEE: the weighted minimum energy efficiency.

Additional optimization criteria include::

« maximizing the system throughput;

« maximizing the quality of service, in a manner that is
compatible with the request types;

« minimizing the average latency; and

« minimizing the maximal latency of any device.
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TABLE 7. ML application for trajectory design.

Publication Challenge Optimization ML
Criteria Method
Bayerlein et al. [14] Trajectory sum rate NN Q-learning
Zeng et al. [131] Trajectory Weighted sum of DRL
optimization mission completion
Hu et al. [51] Trajectory design successful Transmissions | Multi-UAV Q-learning
Cekmez et al. [20] Path planning fitness Multi-ACO
Challita et al. [21] Subgame routing, power Distributed DRL
perfect equilibrium
Liuetal. [121] Trajectory design Throughput MA
and power control Q-learning
Khamidehi et al. [S4] | Trajectory sum rate Distributed Q-learning

Qie et al. [90] Target assignment

Shortest flight distance

MARL

In general, the common resource allocation problems are
known to be NP-hard [2], [73]. Thus, over the years, various
suboptimal resource allocation algorithms have been devel-
oped to deal with such problems [35], [106].

Another difference among resource allocation policies
is how decisions are made regarding the distribution of
resources, for which three decision-making styles are used:

o Centralized resource management: One of the UAVs,
known as the CH, is responsible for the decision-making
process. Centralized management can also be imple-
mented by the ground BS in situations where the cluster
is covered or partially covered by such a BS.

o Decentralized decision-making process: The decision-
making process is handled in a distributed manner by
the network/flock members. Coordination among the
decisions of the members is achieved using spectrum
sensing and message passing.

o Hybrid approach: Decisions are made in a manner that
combines the distributed decisions of the flock members
with the central management of the manager.

In the remainder of this section, we describe several studies
that have leveraged ML methods to address the challenge of
resource allocation in ad-hoc networks. For each considered
study, we mention the challenge and the main details of
the ML method or methods used to address the challenge.
We structure the section according to the ML method used to
solve the resource allocation problem.

A. DEEP LEARNING-BASED METHODS

Several recent studies in communication resource manage-
ment have suggested the use of deep learning models to
determine efficient optimal solutions to the scheduling and
control decisions made in a UAV wireless network. Using
deep learning schemes, a multilayer neural network is trained,
where the network inputs are the network state (in a given
representation), and the output that should be trained is the
resource allocation decision. A DNN can be trained either
with a supervised training scheme using resource allocation
solutions that are calculated using any optimization method,
or with an unsupervised scheme by calculating the value of
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the neural network output and optimizing this value by chang-
ing the neural network weights. In the following, we describe
several works of both types.

Sun et al. [109] proposed a deep learning-based scheme
for real-time resource management over interference-limited
wireless networks. In particular, they suggested the use of
deep learning to approximate the behavior of a certain opti-
mization algorithm. Their theoretical results indicated that
it is possible to learn a well-defined optimization algorithm
highly effectively by using finite-sized DNNs. To demon-
strate their claim, they constructed such a DNN for the power
control problems over either the IC or the IMAC channel and
trained the DNN to approximate the behavior of the WMMSE
algorithm effectively [106].

Cui et al. [34] used a deep-learning approach for the
scheduling of interfering links in a dense wireless network
with full frequency reuse. They employed a DNN architec-
ture that takes the geographic spatial convolutions of the
interfering or interfered with neighboring nodes as the input
over multiple feedback stages to learn the optimal solution.
To ensure fairness, they proposed a scheduling approach that
uses the sum rate optimal scheduling algorithm over subsets
of links for maximizing the proportional fairness objective
over the network. In their study, Cui et al. suggested two
methodologies for the neural network training: the first is a
supervised learning process, in which the network is trained
by suboptimal solutions to the resource allocation problem,
as computed by FPLinQ [105], which is an algorithm based
on the fractional programming approach, and the second
is an unsupervised training process, in which the sum rate
is supposed to be maximized. According to their compar-
ison, the unsupervised sum rate scheme outperformed the
supervised learning scheme for layouts containing links with
similar distances.

Matthiesen et al. [75] developed a deep learning system
for energy-efficient power control in wireless networks. They
used an optimal reduced-complexity branch-and-bound pro-
cedure to determine the globally optimal power policy for a
large set of situations, and subsequently used the solved set
as the training set for a DNN. The numerical results demon-
strated that the proposed method achieved near-optimal
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performance in suggesting the optimal power control policy.
Azoulay et al. [11] used a DNN to learn the optimal power
control and to request scheduling in a MANET cluster, were
the optimization problem was mathematically defined and the
DNN was trained by examples that were solved by an optimal
solver. The simulation results revealed that the DNN could
serve as a computationally inexpensive component of expen-
sive optimization algorithms in real-time tasks, providing a
very good approximation solution for these problems with a
very low average run time. Ahmed et al. [3] developed a deep
learning-based resource allocation model with the objective
of maximizing the total network throughput by performing
joint resource allocation for both the power and channel.
They used a supervised learning approach to train the model
and obtained the training data by solving the non-convex
optimization problem using a GA.

However, despite the similarities between WSNs and UAV
networks, certain differences should be considered, such as
the high mobility and large distances of the UAVs in an ad-hoc
UAV wireless network. Thus, in the remainder of this section,
we focus on ML methods that have been used for resource
allocation in UAV wireless networks.

Chen et al. [27] considered the problem of joint caching
for a network of cache-enabled UAVs that served wireless
ground users over the long-term evolution (LTE) licensed
and unlicensed (LTE-U) bands. They proposed a distributed
algorithm based on the ML framework of the liquid state
machine (LSM) to predict the user content request distribu-
tion and to enable the UAVs to select the optimal resource
allocation strategies that maximized the number of users with
stable queues depending on the network states autonomously.
The optimization problem that was solved was a combined
user association, spectrum allocation, and content caching
problem.

CNN methods were used by Lee at el. [65] to learn
the efficient transmit power control strategy for maximizing
either the spectral efficiency or energy efficiency. Moreover,
they proposed a form of deep power control that could be
implemented in a distributed manner with local channel state
information, allowing the signaling overhead to be greatly
reduced. Through simulations, they demonstrated that the
deep power control could achieve almost the same or even
higher spectral efficiency and energy efficiency compared
to a conventional power control scheme, with a much lower
computation time.

In summary, when considering the use of deep learning for
any resource allocation management, the above related stud-
ies have suggested: (a) how to present the input, (b) the value
to be optimized, and (c) how to train the network. Given all
of the above, the recent studies succeeded in solving different
scheduling and resource allocation problems by using deep
learning with algorithms based on steps (a) to (c). Previous
works have demonstrated the benefit of the deep learning
approach in solving complex optimization problems, and in
particular, complex resource allocation problems.
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B. RL AND DRL

Owing to the high dynamics of UAV networks, several studies
have considered RL-based methods to manage the resource
allocation in these environments. RL. methods can consider
the effect of each episodic decision on the future network
behavior. This is particularly important when the goal is to
maximize an objective function such as the quality of service
or latency, where the aim is to avoid long queues and to fulfil
the user requirements as soon as possible, because in this
situation, each decision may be crucial to avoid long queues
in the future system behavior as a result of current decisions.
RL and DRL methods can be applied to enable resource
management decisions that consider the system behavior over
time.

Zhang et al. [132] proposed an efficient energy and radio
resource management framework based on intelligent power
cognition for solar-powered UAVs. In particular, they sug-
gested the use of RL for adjusting the energy harvesting,
information transmission, and flight trajectory to improve the
utilization of solar energy, with two primary goals: staying
aloft over a long period and achieving high communication
performance.

Hu et al. [46] suggested the use of RL for the following
three essential parts in the cellular UAV network: protocol
design, trajectory control, and resource management. They
presented a distributed sense-and-send protocol to coordinate
the UAVs, proposed the use of a Q-learning algorithm for
the trajectory control and resource management, and intro-
duced different types of RL approaches and their applica-
tions, including the user association, power management, and
subchannel allocation.

Cao and Liang [123] proposed a DRL framework for chan-
nel and power allocation in a UAV communication system,
in which the UAVs were used as BSs. With the proposed
framework, the UAV stations could allocate both the channels
and transmit power for the uplink transmission of the IoT
nodes, with the aim of maximizing the minimum energy
efficiency of the IoT nodes.

Ciu et al. [32], [33] addressed the challenge of the
autonomous resource allocation of multiple UAV communi-
cation networks with the goal of maximizing the long-term
rewards. To model the uncertainty of the environments, they
formulated the resource allocation problem as a stochastic
game, in which each UAV becomes a learning agent and each
resource allocation solution corresponds to an action taken
by the UAVs. They developed an MARL-based resource
allocation algorithm to solve the formulated stochastic game
of multi-UAV networks. Specifically, each UAYV, as an inde-
pendent learning agent, discovered its best strategy according
to its local observations using the Q-learning algorithm.
All agents implemented a decision algorithm independently
but shared a common structure based on Q-learning. They
provided convergence proof of the proposed MARL-based
resource allocation algorithm, and demonstrated by simu-
lations that the proposed MARL-based resource allocation
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algorithm for the multi-UAV networks could achieve a trade-
off between the information exchange overhead and system
performance.

C. DISTRIBUTED AND MA-BASED METHODS
We proceed by surveying ML distributed methods that can be
applied for resource allocation in UAV wireless networks.

Zeng et al. [130] used a distributed swarm approach for
the power control and scheduling of UAV flocks. In partic-
ular, they used distributed federated learning (FL) algorithms
within a UAV swarm that consisted of a leading UAV and
several following UAVs. In their study, the UAVs trained their
ability to share their local FL with the flock leader.

Chen et al. [24] considered the problem of spectrum
access in multi-UAV networks using a game theoretic per-
spective. They formulated the demand-aware joint channel
slot selection problem as a weighted interference mitigation
game, and subsequently designed a utility function consid-
ering the features of the multi-UAV network; for example,
certain rewards based on the channel and slot selection. They
proved that the formulated game was an exact potential game
with at least one pure-strategy Nash equilibrium.

Thereafter, they applied the distributed log-linear algo-
rithm to achieve the Nash equilibrium, and proposed a
low-complexity and realistic channel and slot initializa-
tion scheme for the UAVs to accelerate the convergence.
They demonstrated by simulation that the network utility
and aggregate interference level that were achieved from
the learning solution were very close to the best Nash
equilibrium.

Liu et al. [69] studied the problem of downlink power allo-
cation in UAV-based wireless networks with ABSs. They
proposed a price-based optimal power allocation scheme and
modeled the interaction between the UAVs and ground users
as a Stackelberg game. As the leaders of the game, the UAVs
selected the optimal power price to maximize their own
revenue. Each ground user that belonged to the networks
selected the optimal power strategy to maximize its own
utility. To solve the equilibrium program with the equilibrium
constraint problem of the Stackelberg game, they investigated
the lower equilibrium of the ground users and proposed a
distributed iterative algorithm to obtain the equilibrium of the
lower game.

A distributed power control problem in a dense UAV
network was formulated as a mean-field game (MFG) by
Zhang et al. [136]. They proposed a two-stage scheme to
alleviate the congestion of date traffic and interference
effects. In the proposed scheme, a high-altitude plat-
form (HAP) performs semi-persistent scheduling and allo-
cates time frequency resources in a non-orthogonal manner,
while the UAVs autonomously perform distributed power
control. They formulated the centralized resource allocation
problem as a roommate matching problem and developed
a novel time slot allocation algorithm to solve it. There-
after, the distributed power control of massive UAVs was
formulated as an MFG, which was solved based on the finite
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difference method. The simulation results demonstrated that
the proposed scheme could significantly improve the reliabil-
ity of the communication in dense UAV networks.

In a recent study, Zhang et al. [133] proposed a potential
game-based power control algorithm to optimize the power
allocation of the UAVs. The power control problem was
proven to be an exact potential game in which the Nash
equilibrium was reached. First, the rule of determining neigh-
bors was defined by fixing a threshold. Thereafter, the power
strategies were updated continuously until convergence was
reached and the final optimal power allocation result was
obtained. They proposed a clustering algorithm by means of
affinity propagation clustering (APC). The UAVs and their
associated users were clustered into groups according to the
mutual interference, whereby UAV's who potentially received
severe interference from one another had a stronger tendency
to join the same cluster. The APC also provided an unsuper-
vised learning technique to determine the number of clusters
and CHs to reduce interference automatically.

Table 8 and Figure 8 summarizes the different studies, with
their main goal, ML method that was used to achieve the main
goal, how the method was tested and the validation thereof,
and whether the project code can be downloaded.

IX. TASK ALLOCATION IN UAV FLOCKS

The problem of multi-type UAV task allocation involves
determining the best combination of UAVs to cover certain
targets.

Huang et al. [63] considered the multi-type UAV task allo-
cation problem, which dealt with the question of how to
determine the best combination of UAVs to cover certain
targets. They assumed that certain amounts of resources were
required by the targets and that the UAV formations had to
meet the resource demands of the targets. They presented
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a multi-type UAV coordinated task allocation method based
on cross-entropy. Their study focused on the task allocation
situation in which different types of UAVs were assigned to
several tasks and the tasks required certain resources. The
cross-entropy method obtained random samples from the can-
didate solutions and then used them to update the allocation
probability matrix.

In [86], the authors presented an algorithm for the routing
of multiple UAVs and UAV swarms to a set of locations while
meeting the constraints of the time on target, total mission
time, enemy radar avoidance, and total path cost optimiza-
tion. They aimed to develop a massive array of autonomous
UAVs that were capable of working together towards a com-
mon goal. They used a combinatorics problem known as the
vehicle routing problem with time windows (VRPTW) to
model the routing situation of the UAVs.

In [80], a planning approach for a platform composed
of multiple heterogeneous unmanned aerial systems (UASs)
was presented. The research activities were focused on the
interoperability, task allocation, and task planning problems
within the system. A consolidated planning technique was
applied to generate low-level plans from a mission described
in C-BML automatically, thereby filling the gap between
the interoperability and automatic plan generation for mis-
sions in which multiple heterogeneous aerial platforms, both
simulated and real, were involved. The architecture inte-
grated symbolic, geometric, and task allocation planners. The
approach was tested in missions involving multiple surveil-
lance and 3D map generation tasks with a team of simulated
and real UASs.

Hu et al. [47] presented a new architecture for UAV clus-
tering to enable efficient multi-modal, multi-task offloading.
They considered the problem in which the user distribution
changes dynamically in real time. Thus, the deployment of
static/fixed edge computing nodes in state-of-the-art net-
works failed to meet their computing demands. They con-
structed a model known as UAV-M3T for vehicular VR/AR
gaming. The UAV-M3T architecture used Al-based decision
making for the collaborative optimization of the UAV team
and network resources to improve the task performance and
resource efficiency of the UAVs. They proposed an Al-based
decision-making framework to facilitate the UAV coopera-
tion and joint optimization of the computing, caching, and
communication resources. The deployment of UAV clusters
is performed in real time, using RNN based on real-time
perception.

A. REINFORCEMENT LEARNING METHODS
In [107], a review that focused on RL techniques for dynamic
task scheduling was presented. The results of the study were
addressed by means of the state of the art in RL used in
dynamic task scheduling and a comparative review of those
techniques. Although it did not focus on UAVs, it was con-
nected to several studies in that area.

Shamsoshoara et al. [102] studied the problem of the lim-
ited spectrum in UAV networks and suggested a relay-based
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cooperative spectrum leasing scenario in which a group of
UAVs in the network cooperatively forwarded data packets
to a ground primary user for spectrum access. Each UAV
either joined a relaying group to provide a relaying service for
the or performed data transmission to the UAV fusion center.
MARL was used for the task allocation among UAV's and sim-
ulation results were presented to verify the convergence to the
optimal solution. The proposed method is a general form of
the Q-learning algorithm for a distributed MA environment.

Kim and Morrison [55] jointly determined the system
resources (system design), task allocation, and waypoint
selection in a stochastic context. They formulated the prob-
lem as an MDP and employed DRL to obtain state-based
decisions. The study of [137] also used the MDP model.
These authors presented a Q-learning-based fast task alloca-
tion (FTA) algorithm through neural network approximation
and prioritized experience replay, which effectively offloaded
the online computation to an offline learning procedure.
Specifically, in the proposed approach, a Q network was
developed that encoded the allocation rules. The Q network
could handle totally different tasks by learning the allocation
rules. The task allocation problem for heterogeneous UAV's
in the presence of environmental uncertainty was formulated
as an MDP. Subsequently, a Q-learning-based FTA algorithm
using neural network approximation and prioritized experi-
ence replay was presented.

The study of [126] proposed a task-scheduling algorithm
based on RL, which enabled the UAV to adjust its task strat-
egy automatically and dynamically using its calculation of
the task performance efficiency. A decentralized networking
protocol was presented to coordinate the movement of UAVs
and to achieve real-time networking of UAV clusters. The
expansion strategy was applied to solve the problem of UAV
networking in the initial state and DRL was employed to solve
the dynamic allocation problem of the wireless channel, so as
to optimize the time delay of the UAV data transmission.
Finally, an example was provided to introduce the application
of the above methods to solve the problem of UAV cluster task
scheduling.

In [17], a spatiotemporal scheduling framework for
autonomous UAVs using RL was presented. The framework
enabled UAVs to determine their schedules autonomously to
cover the maximum pre-scheduled events that were spatially
and temporally distributed in a given geographical area and
over a pre-determined time horizon. The designed framework
had the ability to update the planned schedules in the case of
unexpected emergency events. The UAVs were trained using
the Q-learning algorithm to determine an effective scheduling
plan.

B. BIO INSPIRED ALGORITHMS

In [61], a bio-inspired approach for efficient task allocation
was presented. The objective was to provide each UAV with
the capability to make independent task allocation decisions
to ensure autonomous control, an efficient running time, and
the mean time to search and rescue a survivor. They developed
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TABLE 8. Summary of ML-based resource allocation methods (C = centralized, D = distributed).

Publication Resources Model Objective Learning Method Approach | UAV
Sun et al. [109] Power control Throughput Deep learning C X
Cui et al. [34] Link scheduling Sum rate Deep learning C \%
Zeng et al. [130] Power allocation Convergence rate Distributed D A%
and scheduling distributed swarm approach
Matthiesen Power control energy efficiency Deep learning C X
etal. [75]
Azoulay et al. [11] Power control Throughput DNN C A%
Ahmed et al. [3] Resource allocation | throughput Deep learning C X
Chen et al. [27] User association, max stable Liquid state D \%
spectrum allocation queues machine
and content
caching
Lee atel. [65] Power control Spectral efficiency/ | CNN C/D X
energy efficiency
Zhang et al. [132] Power control throughput RL D \
Hu et al. [46] User association, maximize RL D \%
power management, | successful
subchannel alloc. transmissions
Cao et al. [123] Channel and power Energy efficiency DRL C v
Ciu et al. [32], [33] | Dynamic resources Long-term rewards | MA RL D \%
Zeng et al. [130] Power control, coverage federated D A%
scheduling learning
Chen et al. [24] Spectrum access stability Log-linear D v
algorithm to
achieve NE
Liu et al. Power allocation Maximize pricing D A%
[69] own values
Zhang et al. Power control reliability Finite difference C+D v
[136] method
Zhang et al. [133] Power control Data traffic APC clustering C \Y

a new locust-inspired heuristic with explicit mapping of
the algorithm components to the existing biological locust
colony, and the proposed algorithm was customized to the
task allocation problem. The proposed approach was inspired
by the nature of the locust species, and their autonomous
and elastic behavior in response to inside and outside stim-
uli. The experimental results demonstrated the superiority of
the performance of LIAM compared to the well-established
MUTA heuristics, including the auction-based, max-sum,
ACO, and opportunistic task allocation (OTA) algorithms,
where it successfully maintained a significantly higher
throughput as well as lower task completion and execution
times.

In [118], a multi-UAV reconnaissance task allocation
model was presented that considered the heterogeneity of
targets as well as the constraints of the UAVs and targets.
The optimization objective was to minimize the weighted
sum of the task execution time and total UAV consumption.
A modified GA was developed to solve the extended multi-
ple Dubins traveling salesman problem (MDTSP). Double-
chromosome encoding was used to describe the allocation
results of targets to UAVs. Opposition-based learning and
multiple mutation operators were employed to improve the
optimality and convergence efficiency. The effectiveness of
the algorithm was validated by numerical experiments on
scenarios of different scales.
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In [48], a hierarchical method was presented to solve the
task assignment problem for multiple UAV teams. Tasks
involving multiple UAVs formed into several teams that coop-
eratively attacked numerous ground targets were considered.
In this scenario, the targets had to be pre-assigned to the
UAVs. A hierarchical solution framework was developed to
divide the task assignment problem into three subproblems:
target clustering, cluster allocation, and target assignment.
First, the targets were clustered based on their geographic
positions. Thereafter, the clusters were assigned to different
UAV teams, with one cluster per team, using the Hungarian
algorithm. Finally, the targets were assigned to different team
members for each team using an improved ACO (IACO)
algorithm, the ant windows of which were adaptive to accel-
erate the convergence. Through this process, all UAVs were
assigned targets along with the visit sequence. The problem
was solved by means of clustering algorithms and integer lin-
ear programming, using a mixed integer linear programming
model and the IACO. The ACO algorithm is a combinatorial
optimization algorithm that simulates the foraging process of
ants, which is performed using chemical signals known as
pheromones.

In [60], the author introduced a bio-inspired algorithm
for task allocation in multi-UAV search and rescue missions
based on locust behavior. The locust species was selected as
it represents an extreme example of adaptive control and high
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plasticity to respond to internal and external stimuli. To evalu-
ate the proposed algorithm, a strictly controlled experimental
framework was designed to demonstrate the potential role of
the proposed algorithm in such missions by providing a high
net throughput and an efficient communication scheme.

In [128], the cooperative multiple task assignment prob-
lem (CMTAP) of heterogeneous fixed-wing UAVs perform-
ing the Suppression of Enemy Air Defense (SEAD) mission
against multiple ground stationary targets was discussed. The
study presented a modified GA with a multi-type gene chro-
mosome encoding strategy. First, the multi-type gene encod-
ing scheme was introduced to generate feasible chromosomes
that satisfied the UAV capability, task coupling, and task
precedence constraints. Thereafter, the Dubins car model was
adopted to calculate the mission execution time (the objective
function of the CMTAP model) of each chromosome and to
make each chromosome conform to the UAV maneuverability
constraint.

In [72], the process of allocating pesticide spraying tasks
by multiple UAVs was investigated. A model was proposed to
produce a satisfactory allocation scenario for pesticide spray-
ing and to provide the flight route for each UAV. The model
extended the distance between two points to the Dubins path
distance and dynamically determined the time windows of the
pesticide spraying according to the temperature conditions
at the time that the UAVs performed the tasks. The study
proposed a GA to solve the aforementioned problem and
provided the encoding, crossover, and mutation methods in
the algorithm.

The study of [59] proposed a bacteria-inspired heuris-
tic for the efficient distribution of tasks among deployed
UAVs. The use of multi-UAVs is a promising concept for
combating the spread of the red palm weevil (RPW) in
palm plantations. The proposed bacteria-inspired heuristic
was used to resolve the multi-UAV task allocation problem
when combating RPW infestation. The performance of the
proposed algorithm was benchmarked in simulated detect-
and-treat missions against three long-standing multi-UAV
task allocation strategies, namely opportunistic task alloca-
tion, the auction-based scheme, and the max-sum algorithm,
as well as a recently introduced locust-inspired algorithm for
the allocation of multi-UAVs.

Table 9 and Figure 9 summarize the task allocation studies
surveyed in this section.

X. GUIDELINES FOR ML METHOD SELECTION

In this study we surveyed several challenges related to UAV
flocks, and described some recent ML based solutions for the
different challenges. Given the information about most suc-
cessful approaches, we would like to provide, in the following
section, some guidelines to researchers attempting to select
an appropriate ML method to solve a particular problem at
hand. First of all we define some criteria to classify a given
problem instance, and then we describe decision tree for each
challenge.
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o Flock challenge: we considered the following chal-
lenges: clustering (flock formation) challenge; coordi-
nation, deployment and trajectory design; resource and
task allocation. In addition, sometimes two or more
challenges are combined, for example, if resource and
task allocation decision are taken together.

« Distributed, centralized or hybrid solution: In gen-
eral, centralized solution assumes a central controller
that collect all UAV’s information and manages the
learning process. There are challenges where such situ-
ation is not realistic. For example, if online rapid power
control is required, while the overhead of transmission
the information to the central controller is too high.
In such a case, distributed solution is used where each
unit collects the relevant information to it and gets its
own decision. A third possible approach is the hybrid
approach: for example, small groups (cluster) of UAVs
may be managed by a local manager (cluster head) for
each group. This approach combines the advantages of
the centralized solution: efficiency, available informa-
tion, etc., with the advantages of the distributed solution:
time and space lower complexity, even though the solu-
tion is mainly sub-optimal. Note that in domains which
require distributed management, methods such as deep
learning, which require large amount of information
about the environment, will not be applicable, given
the lack of the availability of this data at each node.
However, deep reinforcement learning, where each UAV
learns from its historical moves and from observable
information in its own environment, can be used for
addressing several challenges.

o Cooperative UAVs or Self interested Multi UAVs:
When considering different flock challanges, there may
be two types of situations. In most of the surveyed
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TABLE 9. Summary of ML-based task allocation methods.

Publication

Challenge

Optimization
Criteria

ML
Method

Huang et al. [63]

Coordinated
task allocation-

team rewards

Cross-entropy
based algorithm

Pohl and Lamont [86] UAV mission planning path length PSO, GA
Munoz-Morera Task allocation cost planning
et al. [80]
Hu et al. [47] Multi-modal, multi-task min delay RNN
task offloading
Shamsoshoara et al. UAV partition communication Distributed
[102] and task allocation rate Q-learning
Kim and Morrison [55] | Waypoint selection reward DRL
Zhao et al. [137] Task allocation for heterogeneous | Reward and DRL
UAVs in uncertain environment coverage
Yang et al. [126] Minimizing sum power for Transmission DRL
UAV-enabled MEC network delay
Bouhamed et al. [17] Spatiotemporal scheduling coverage Q-learning
Kurdi et al. [61] UAV allocation to survivors Throughput Locust inspired
Wang et al. [118] Task allocation for path length GA

heterogeneous targets

Hu et al. [48]

Task allocation
for multiple teams

Overall reward

Clustering +
Hungarian alg. +
ACO

Kurdi et al. [60]

Coordinated task allocation

Throughput

Locust inspired

Ye et al. [128]

Cooperative task assignment
against ground stationary targets

Mission execution
time

GA

Luo et al. [72] Pesticide spraying task allocation | Total profit GA
Kurdi et al. [59] Task allocation Bacteria-inspired
among deployed UAVs Net throughput heuristic

situation the UAVs are cooperative. This means that
they belong to the same owner and attempt to reach
a common goal or perform a common task. On the
other side, there are also Multi UAV situations, in which
each UAV has its own motivation, interests and goals
to perform. In this situation, each suggested solution
protocol should ensure that each UAV will be motivated
to follow the protocol solution. Given self interested
multi UAV situations, methods such as reinforcement
learning, deep reinforcement learning, pricing mecha-
nisms or other game theory based protocol should be
applicable, rather than standard ML methods that do
not consider the interests and motivation of each selfish
UAV.

Optimization criteria: In the literature of optimization
challenges in flock control and management, there are
several types of optimization criteria, that are used.
Some of them are relevant to most or all challenges,
while most of them are relevant only in part of the
domains. In particular, the criteria of energy efficiency,
and battery lifetime, can be considered for optimization
of different aspect of UAV’s flock, thus it may be rel-
evant in most of the considered challenges. Coverage,
throughput maximization, and latency minimization, are
relevant in most challenges that are related to aerial
communication networks. Issues of fairness are more
relevant in multi-UAV domains, where each UAV has
its own goals and incentives. Finally, in task allocation
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and deployment challenges, task completion rate and
coverage success should be considered too. In fact, dif-
ferent optimization criteria can be used by the same ML
method, by changing the objective function which the
ML method aims to optimize.

Does the Required big-data exist or can it be pro-
duced:

Most of the new machine learning methods rely on
a large amount of information to perform their train-
ing. Thus, in domains where big data exists, or can
be created, such machine learning methods, and espe-
cially deep learning methods, can be successfully uti-
lized. In particular, big data is required in deep learning
methods, including the different popular DNNs, CNNs,
RNNS, etc., which all rely on training phase done using
large amount of available training data.

Training phase can be performed:

Given the fact that all challenges considered in our
survey should find solutions in real time, the require-
ment in run time is critical. However, if the main char-
acteristics of the environment are known in advance,
a training phase can be performed before getting to real
time situations. In some domains, the main challenge
situations is indeed already known, thus training phase
can be performed in order to train the machine learning
method. However, if we consider dynamic environment
that frequently changes and where no key characteristics
can be exhibited ahead of time, then training phase may
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results in learning a model that is not applicable to the
real time situations. Therefore, when a training phase
is not possible, it would be better to use algorithmic
solutions, or methods like Particle Swarm Optimization,
which do not require pre-training phase.

o Computational available resources: Some of the
machine learning methods required a large amount of
time and space to be performed. Therefore, when there
are limited resources, one may prefer using machine
learning methods with lower resources requirement,
as well as using non-optimal greedy algorithms to handle
the challenge. Deep learning methods, or deep rein-
forcement methods, will not be considered in such
cases. However, in situations where large computational
resources (time and space) are available for the training
phase, but not in real time, still deep learning methods
may still be useful, if training is done off-line. Then
in real time the UAV behaves according to the process
learned in the training phase.

In Figure 10 we show for each UAV flock challenge,
the main recent ML that were recommended for solving it.
The description is given as a decision tree, where the leaves
of the decision tree describes the main ML methods that have
been successfully used for this type of problem.

Figure 10 can be used as a guideline to choose the most
appropriate machine learning method, given the problem
attributes. Surely, there are challenges which should be solved
in distributed manner, such as clustering, flocking, and UAV
coordination, where no central unit can be solve them. Thus
methods such as PSO, DP, RL or DRL can be used in this
case, by each decision maker unit in the flock. Other chal-
lenges that can be solved also in centralized manner, are
UAV deployment and resource and task allocation. When a
centralized unit solves problem, it may use all the available
information, and a DNN, CNNs or RNNs, can be applied to
solve it. In addition, if the problem can be defined as a MDP,
and the effect of the current decision of the future system
status should be considered, then the RL or DRL can be used
to solve the challenge.

Note that of course there are additional approaches that are
not described in our discussion, as this survey focuses on ML
methods. In addition, we recommend the readers to explore
other effective methods, that can of course be effective for
solving various problems and challenges.

XI. OPEN ISSUES

Several open issues can be considered in the different
challenges involving UAV flocks. In the following section,
we describe some of the interesting open issues that can be
considered.

A. COMPARISON OF DIFFERENT ML METHODS

First, most studies have suggested one or two ML-based
methods to solve the flock challenge, and subsequently
compared the performance of their methods to classical
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algorithmic solutions presented in the literature. However,
a comparison of different ML methods has rarely been con-
ducted, while this may be important to enable the correct
mapping of an ML method to each specific challenge. For
example, when considering flocking and coordination chal-
lenges, where different algorithmic and ML methods were
suggested, a comprehensive study comparing the different
approaches for the same problem and their efficiency can be
profitable for the system designers.

B. DEFINING UNIFORM OPTIMIZATION CRITERIA

When describing the different studies on controlling and
managing aerial flocks, we observed that different optimiza-
tion criteria exists, which may even conflict with each other.
A uniform set of optimization criteria may be helpful in
order to be able to compare the efficiency of various methods
and solution. For example, when considering the resource
allocation challenge, we can suggest the criteria of average
throughput and average latency, but other criteria, that take
into consideration fairness and starvation avoidance, may be
also important.

C. ML METHODS COMBINATIONS

The combination of more than one DRL method may also be
efficient for different real problems. For example, a CNN and
LSTM can be combined to achieve superior solutions when
considering sequences of several prediction problems over a
time series given coverage maps. Moreover, DRL and CNN
or LSTM can be combined to achieve better decision making
in complex spatial or sequential models.

Another type of challenge, which may benefit, from uti-
lizing ML methods combinations, is reflecting the effects of
the flock decision on the long term flock management, or the
effect of the flock member on its own long term status. These
effects can be incorporated by using RL and DRL methods,
probably combined with other ML methods. For example,
the DRQN method [41], which is a combination of RNN and
deep Q learning method, developed for challenging partially
observed decision processes, can be successfully applied for
complex design and control challenges in the aerial domain.

D. DISTRIBUTED ML METHODS

Distributed algorithms have been widely suggested for flock
management. However, when considering a UAV that per-
forms its tasks alone without interacting in a flow (hereafter
referred to as a standalone UAV), the use of distributed algo-
rithms is rare. A standalone UAV behaves in a manner that
is best for itself, and it will cooperate with other UAVs only
if this will improve its own situation. Thus, any mechanism
that is proposed for such constellations should be proven to be
stable. DRL methods can be used in such situations, consid-
ering self-learning by each UAV or by each UAV group, but it
is not clear whether centralized learning can be implemented
by any standalone CH or cluster presenter, given the fact that
it may learn a model that is biased for its own profit rather
than for the benefit of the entire flock or system.
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E. REAL WORLD DATA-SETS

Another challenge that will affect future developments in this
area is the need to obtain real-world-based standard flock
databases, with data regarding their motions and actions, for
use as comparative databases for ML training when solving
algorithm challenges relating to flock formation and mainte-
nance. Databases for standard UAV motions and actions may
also be useful to compare different ML methods, which is
already the case in other domains in which ML is widely used,
such as NLP and machine vision. Such datasets may include
several data about UAV flocks, including the geographical
aspects of UAV motion, and relevant information about the
strength of the wireless coverage of the flying ad-hoc net-
work. The geographical data included in the datasets should
include the three dimensional locations of the UAVs, which
may be important to the development of efficient methods for
solving the flocking challenges in the aerial domain.
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F. EMBEDDING REPRESENTATION

Another important issue that can be studied, when consid-
ering DL methods to solve flocking challenges, is how to
represent the aerial domain in a way that will enable easy
training of the DL model, as well as enabling scalability of
the learning process. We should enable the learning process
to be done on small aerial domains, and also to manage flocks
working in larger and complex domains. Some recent studies
suggested embedding representation for graph information
to solve classical optimization problems on graphs using
ML. Therefore some of these ideas can be helpful to the
embedding challenge of the aerial technical properties.

G. CONSIDERING THE HYBRID PROBLEM

Finally, the abilities of different deep learning schemes
make it possible to take a comprehensive planning approach,
and to consider all aspects of flock management and use.

139171



IEEE Access

R. Azoulay et al.: ML Methods for UAV Flocks Management-A Survey

This enables the provision of an overall ML solution that
solves all of the involved challenges, including flock forma-
tion, flock maintenance, resource allocation, task allocation,
and UAV deployment, simultaneously. Such a harmonic view
may be efficient and can provide a real-time, rapid solution
to several applications of UAV flocks, which are expected to
become increasingly popular in the near future, as the cost of
UAV-based technology becomes lower and their use becomes
more crucial.

XIl. CONCLUSION

This paper has surveyed several complex issues relating to
UAV flock formation, maintenance, and related challenges,
which can be efficiently handled using ML methods. We have
provided a review that is as current as possible, and in each
section we also discussed relevant open issues. We hope
that our study will be helpful for researchers and devel-
opers who wish to apply ML methods for solving chal-
lenges relating to UAV flocks, and in particular, regarding
FANETs.

The technological advancements in the production of
UAVs, together with the need to manage them by grouping
them into clusters, offers enormous potential in various fields,
including commercial, industrial, agricultural, and security
applications. Moreover, several challenges arise in determin-
ing the correct manner in which to manage UAV clusters.
ML methods can enable rapid and efficient solutions to these
challenges in real time for problems that can be considered
in advance, so that the learning system can be trained in
a manner that will make it possible to handle the various
challenges in real time effectively. Such challenges appear in
several main areas: flock formation and management; flock
deployment, coordination, and navigation; inter-flock and
intra-flock communication resource allocation; and finally,
task allocation in flocks that are responsible for handling
predefined tasks. To the best of our knowledge, this survey is
the first attempt to address the range of issues associated with
the creation, management, and maintenance of UAV clusters
comprehensively, with particular emphasis on machine-based
solutions, to provide an effective and rapid response to these
important issues.
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