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ABSTRACT This work presents the development and field testing of a novel adaptive visual information
gathering (AVIG) framework for autonomous exploration of benthic environments using AUVs. The
objective is to adapt dynamically the robot exploration using the visual information gathered online. This
framework is based on a novel decision-time adaptive replanning (DAR) behavior that works together with
a sparse Gaussian process (SGP) for environmental modeling and a Convolutional Neural Network (CNN)
for semantic image segmentation. The framework is executed in mission time. The SGP uses semantic data
obtained from stereo images to probabilistically model the spatial distribution of certain species of seagrass
that colonize the sea bottom forming widespread meadows. The uncertainty of the probabilistic model
provides a measure of sampling informativeness to the DAR behavior. The DAR behavior has been designed
to execute successive informative paths, without stopping, considering the newest information obtained from
the SGP.We solve the information path planning (IPP) problem by means of a novel depth-first (DF) version
of theMonte Carlo tree search (MCTS). The DF-MCTSmethod has been designed to explore the state-space
in a depth-first fashion, provide solution paths of a given length in an anytime manner, and reward smooth
paths for field realization with non-holonomic robots. The complete framework has been integrated in a ROS
environment as a high level layer of the AUV software architecture. A set of simulations and field testing
show the effectiveness of the framework to gather data in P. oceanica environments.

INDEX TERMS Adaptive, exploration, information, marine, planning, posidonia, robotics, semantic,
underwater.

I. INTRODUCTION
A. MOTIVATION
Autonomous exploration is being an important research area
for the last decades. The main purpose of robotic exploration
is to gather data in areas that humans cannot reach, such
as, in deep waters, in the space, or in missions that involve
unsafe or hazardous environments or actions. And, why
autonomous? Such exploration can be performed by means
of an operator controlling remotely a robot system. However
this relies on having a proper bidirectional communication
between the operator and the robot (for instance to transmit
robot images and operator commands), and inmany scenarios
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such communication is not possible, or is very limited, and
the robot has to be equipped with some degrees of autonomy.

AUVs have shown a big improvement of their autonomous
capabilities during last years. The localization problem has
been tackled in many areas [1], different strategies of sen-
sor fusion [2] and SLAM (Simultaneous localization and
mapping) have shown to provide very good performance [3]
and [4]. Additionally, CNNs (Convolutional neural net-
works) have shown to be very effective for online image
segmentation [5], which provides robots with a semantic
understanding of the environment. And the computing capa-
bilities, energy efficiency and control of autonomous robots
are also improving. However, data gathering missions with
autonomous robots are normally limited to the use of pre-
programmed paths, and their performance is supported only
on a reliable localization and control.
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This paper is focused on performing autonomous under-
water exploration on Posidonia oceanica seagrass meadows.
P. oceanica is an endangered endemic seagrass species
from the Mediterranean Sea, that has seen an estimated
35% aggregate reduction over the last 50 years [6]. The
absence of definitive answers to why the P. oceanica is
receding is broadly associated to the lack of precise data.
Abadie et al. [7] highlight a lack of data on the spatial dis-
tribution, which can be obtained using last developments on
AUVs.

B. RELATED WORK
Many applications in robotics share the common objective
of exploring an unknown environment for recording data to
represent it. Information Gathering (IG) algorithms guide
such exploration using an information metric which repre-
sents the informativeness of the environment variable under
study in particular locations, and this metric is used to drive
the data recording process towards themore informative spots
whilst minimizing a cost, such as the number of measure-
ments, the navigation distance or the mission time. IG algo-
rithms have been used for different types of exploration,
for instance; (a) goal-based, where the objective is travel-
ing from an initial location to a goal location with a given
cost budget [8]–[10], (b) front-based, for traversing a given
threshold area [11], [12], (c) frontier-based, usually for indoor
environment mapping [13]–[16], (d) multimodal, using dif-
ferent data sources [17], [18], (e) multirobot, using multiple
robots [19]–[21], (f) hotspot-based, to find environmental
variable hotspots [22], [23], and (g) coverage-based, for envi-
ronmental variables dense estimation [24], [25], which is,
in fact, the focus of this work.

The methods developed for such exploration are often
differentiated by four components: (1) the technique for mod-
eling the environment; (2) the information function; (3) the
Informative Path Planning (IPP) strategy, and (4) the adaptive
strategy for replanning.

One way to obtain environmental models is using a Gaus-
sian Process (GP) fed with the data collected by anAUV [26].
GP are a powerful nonparametric set of techniques that can
handle a large variety of problems, and have the ability
to learn spatial correlation with stochastic noisy measured
data [27]. The key feature of GP for IG algorithms is their
ability to handle both, data uncertainty and data incomplete-
ness, effectively, which allows to perform dense estimation
of environmental variables for coverage-based exploration
purposes. The problem of GPs is that they do not scale well,
having a time complexity of O(n3). Some works overcome
this issue by proposing the use of a sparse version of the
GP [24], [28] or local maps fusion using Bayesian Commit-
tee Machine (BCM) [16] to decrease time complexity and
improve the online execution.

The so called information function is used to point out the
more relevant spots to visit (or revisit), and is directly related
to the environmental variable under study (for instance salin-
ity [24], cyanobacteria [25] or plankton [29]). It is usually

computed considering the modelling uncertainty. Whilst the
authors in [30] propose the use of an interpolated version
of the GP model predicted variance, most of the methods
use either Differential Entropy (DE) or Mutual Information
(MI) as information function. Using DE results in lower com-
putation times and higher uncertainty reduction than using
MI, when computed from a GP prediction in a stationary
setup [31]. Despite of the submodularity property of MI [32],
the computational time of such information metric results
prohibitive in many applications.
Informative path planners define the most informative

trajectories for IG, applying constraints such as the plan-
ning time or the travelling cost. The IPP strategies used for
IG can be classified in two groups; myopic or nonmyopic.
Myopic strategies are short sighted, they only plan one step
forward, and usually work following greedy heuristics [33],
[34]. Thompson et al. [35] proposed a complete pipeline for
autonomous planetary exploration, they propose a science
on the fly to adapt the robots exploration to the collected
instrument data, using a GP for environmental modeling
and a greedy method for IPP. In contrast, nonmyopic strate-
gies look several steps ahead, providing paths that may
result better on the long run; such strategies are usually
graph-based, sampling-based or evolutionary-based. Whilst
graph-based solutions are usually time expensive, they have
been used for small state-space scenarios [8], [24] and in
non-adaptive frameworks [18] where the mission path is
processed offline. In contrast, sampling and evolutionary-
based strategies, have been used for adaptive frameworks,
and have yield high performance. For instance, [23], [31],
[36]–[38] base their strategies in modified versions of stan-
dard sampling-based strategies [39], [40], considering the
information gain. In particular, Hollinger and Sukhatme [23]
presented a rapidly-exploring IG tree (RIG-tree), that was
the base of a further developed two-step planning pro-
cess presented by Viseras et al. [31]. They proposed a solu-
tion based on Rapidly-exploring Random Trees (RRT) and
RRT* [41], using a GP for environment modeling and a DE
as information function, all to find a goal position providing
a high information path under a budget constraint. More-
over, evolutionary-based strategies solve the IPP problem
by parametrization and optimization of a path. The authors
in [25], [42] propose the use of a GP to model the environ-
mental variable and a CMA-ES optimizer to optimize the path
to be followed by the robot, with a fixed length and predefined
initial and ending locations.

The literature is scarce in terms of adaptive replanning
methods. Whilst the usual [14], [31] is to provide a linear
execution pipeline where the vehicle is stopped for mapping
and planning, some authors propose to perform the process
of environmental modeling in parallel to the planning pro-
cess [43], and even start planning in a further location of the
current mission path to avoid stopping the vehicle [25]. Fur-
thermore,most relevant strategies, either sampling-based [31]
or evolutionary-based [25] do not transfer planning knowl-
edge between consecutive planning iterations.
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C. CONTRIBUTIONS
This work is based on the GPmodelling described in [28], yet
it extends the latter by developing a novel: (a) adaptive visual
information gathering (AVIG) framework, (b) decision-time
adaptive replanning (DAR) behavior, and (c) depth-first
Monte Carlo tree search (DF-MCTS) strategy for IPP.
In order to deploy such adaptive information gathering in
the field we propose a method that joins the advantages of
graph-based and sampling-based methods. Devoting some
time at the initialization to produce a network of neighbor
nodes (a graph), that is used for sampling paths and grow
a decision tree. The consecutive planning iterations update
such decision tree and select a candidate path to execute in
an anytime manner. Having a precomputed network of nodes
boosts the sampling computations. This point, together with
the fact of maintaining a decision tree alive between consec-
utive planning iterations are two key features to reduce the
planning time and improve the overall performance. More-
over, the proposed planning method provides smooth paths,
which are more adequate that rough paths, to be followed by
the AUV.

The AVIG framework coordinates the parallel execution
of four modules: navigation, data processing, map estimation
and planning. Where, the planning module is designed using
the novel DAR behavior of (b) for adaptive mission replan-
ning, and integrates the novel IPP strategy of (c) that consists
in a depth-first (DF) version of the Monte Carlo tree search
(MCTS). The DF-MCTS is a reinforcement learning (RL)
strategy guided by: a value function that considers the sam-
pling informativeness and the recorded data density, and by a
function that rewards smooth paths. The proposed framework
is integrated in a ROS-based architecture to be executed
in field test and prove the effectiveness of the method for
autonomous exploration of underwater environments covered
with P. oceanica.

The remainder of the paper is organized as follows:
Section II introduces some background about GP models
and RL algorithms. Sections III, IV and V describe the
developedmethods–i.e. AVIG framework, DAR behavior and
DF-MCTS strategy, respectively–. Section VI describes the
tests performed in simulation and in field and illustrate the
results. Finally, Section VII summarizes the conclusions.

II. PRELIMINARIES
A. GAUSSIAN PROCESSES (GP)
This section introduces the basis of the Gaussian pro-
cesses used in the map estimation processes described in
Section III-C1. A GP is defined as a collection of random
variables which have a joint Gaussian distribution [44]. The
random variables represent the value of the non-observable
function value f (x) at location x. Such function is specified
by its mean function m(x) and covariance function k(x, x′)
values such that,

f (x) ∼ GP
(
m(x), k(x, x′)

)
(1)

Assuming a linear regression model, f (x) = φ(x)>w,
where φ(x) represents a basis function vector, or kernel,
and the weights w follow a zero mean normal distribution
w ∼ N (0, 6p). Since E[w] = 0, f (x) results in a zero mean:

m(x) = E[f (x)] = φ(x)>E[w] = 0 (2)

In addition, the covariance of f (x) is derived from using the
zero mean weights assumption such that:

k(x, x′) = E[(f (x)− m(x)) (f (x′)− m(x′))]
= E[f (x) f (x′)]
= φ(x)>E[ww>]φ(x′)
= φ(x)>6pφ(x′) (3)

It results in that the GP covariance directly depends on the
basis function vector, the query locations and the variance in
the weights.

Moreover, since there is no direct access to the function
values themselves–i.e. f (x)–, and only noisy observations,
we assume additive white noise ε with variance σ 2

n on a latent
variable modelled as y = f (x)+ε. Then according to [44] the
joint distribution of the observations y and the latent values
f∗ according to the prior is defined as,[

y
f∗

]
∼ N

(
0,
[
K (X ,X )+ σ 2

n I K (X ,X∗)
K (X∗,X ) K (X∗,X∗)

])
, (4)

being X = {xi | i = 1, . . . , n} the train locations, X∗ = {x∗i |
i = 1, . . . , n∗} the test locations and K (X ,X∗) the matrix of
covariances evaluated at the referenced locations.

B. REINFORCEMENT LEARNING (RL)
This section introduces the basis of the reinforcement learn-
ing formalization used to solve the IPP problem with the
DF-MCTS strategy described in Section V. The basic idea
behind RL is to learn from interaction. The learning is based
on trial and error; in real or simulated environments. In this
work we will use RL in order to explore the space of possible
paths to be executed by the AUV during its exploration mis-
sion by interactingwith the environmentmodel. The selection
of the best path to follow is considered a sequential decision
process. Next sections provide the basis of the problem for-
malization in terms of aMarkov decision process (II-B1) and
solutions for such problem (II-B2 and II-B3).

1) MARKOV DECISION PROCESSES (MDP)
MDPs are a classical representation of sequential decision
processes [45], and are characterized by the Markov assump-
tion: the decisions taken only depend on the current state.
Moreover, such processes are called Finite MDP (FMDP)
when the states and actions are finite and Partially Observable
Finite MDP (POFMDP) when the state cannot be completely
observed.

MDPs are suited for RL problems, being useful tomap situ-
ations to actions bymaximizing a numerical reward signal; an
agent interacts with the environment and gets a reward signal
and a change of state. They are characterized by four main
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subelements; a policy, the reward signal, the value function
and optionally, a model of the environment:
• The policy determines the action to be taken from a
particular state. It can be (1) stochastic, where a proba-
bility is specified for each action following, for instance,
a Gaussian or an uniform distribution; (2) deterministic,
for instance taking the action with the highest expected
reward in a greedy fashion; or even (3) ε−greedy, where
a stochastic policy is used with a probability given by
ε ∈ [0, 1] or greedy otherwise.

• The reward signal comprises the goal of the RL prob-
lem. The objective of the RL problem is to maximize
the total expected reward along an executed path.

• The state-value function estimates how good is for the
agent being in a given state. It considers the total amount
of reward that the agent can expect to accumulate over
the future. Whilst rewards are given directly from the
environment, values are obtained from trial experience.
This value function takes into account the future rewards
of the states that are likely to follow the actual state.

• The model describes the behavior of the environment.
It predicts the transitions between states given an action,
which is, the next state and reward from the current state
and action. Whilstmodel-freemethods learn by trial and
error, model-based methods are able to consider future
possible situations before they are experienced.

2) ITERATIVE POLICY EVALUATION
In this work the IPP strategy described in Section V is
approached as a POFMDP, in which the set of states, actions
and rewards (S, A and R respectively) have a finite number
of elements, and where the state cannot be fully observed.
The POFMDP is solved using a value functionmethod based
on iterative policy evaluation. In particular, we are using
Monte-Carlo (MC) for the expansion and Temporal difference
(TD) for the value backpropagation, methods detailed below,
in equations 15 and 16. In this case the Markov assumption
can be translated into a probability of resulting a particular
state s′ and reward r , at a particular time t , given a preceding
state s and action a:

p(s′, r|s, a) .= Pr{St = s′,Rt = r|St−1 = s,At−1 = a},

(5)

for all s, s′ ∈ S and r ∈ R, a ∈ A(s). Such probability
determines the dynamics of the MDP and is characterized by
S ×R× S ×A(s)→ [0, 1], where∑

s′

∑
r

p(s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s). (6)

The state-value function vπ (s) for an arbitrary policy func-
tion π(s) is defined as,

vπ (s)
.
= Eπ {Gt |St = S} (7)

This is the expected return on the long run (several time
steps ahead). Where Gt is defined as the discounted sum of

expected rewards such as,

Gt
.
= Rt+1 + γRt+2 + γ 2Rt+3 + γ 3Rt+4 + . . . (8)

= Rt+1 + γ
(
Rt+2 + γRt+3 + γ 2Rt+4 + . . .

)
(9)

= Rt+1 + γGt+1 (10)

where γ ∈ [0, 1] is the discount rate. With a γ = 0
the agent would be myopic, considering only immediate
rewards. Whereas with a higher γ value the agent would have
a stronger consideration on further rewards. From the last
expression we can start revealing the recurrent nature of RL
problems.

The state-value function can be further expanded using (7)
and (10), and it can be deduced that,

vπ (s)
.
= Eπ {Rt+1 + γGt+1|St = S} (11)

= Eπ {Rt+1 + γ vπ (St+1)|St = S} (12)

=

∑
a

π (a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γ vπ (s′)

]
, (13)

where the policyπ (a|s) provides the probability of choosing a
particular action a from a state s. The Bellman equation (14)
provides an iterative expression to find an optimal solution
v∗(s)

.
= maxπ (vπ (s)) to the RL problem as k → ∞.

Dynamic programming (DP), Monte-Carlo (MC) and Tem-
poral difference (TD) methods can be used to perform such
iterative policy evaluation.

vk+1(s)
.
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γ vk (s′)

]
(14)

DP can be used to incrementally compute optimal policies
when a perfect model of the environment is available. How-
ever, they require a fully observable environment, they cannot
be used to solve partially observable MDP. The value update
for MC and TD methods is performed as follows:

MC : vk+1(s)
.
= vk (s)+ λ

(
Gt − vk (s)

)
(15)

TD : vk+1(s)
.
= vk (s)+ λ

(
r + γ vk (s′)− vk (s)

)
(16)

where the λ parameter defines the learning rate.
The basic difference between them is that whilst MC learns

after trial, TD guesses from guesses, that is MC uses the
expected reward value Gt and TD uses the discounted value
of the next step vk (s′), it bootstraps. Using either MC or
TD, the value of one state can be updated from the rewards
obtained on successive steps following a default policy.

3) DECISION-TIME PLANNING
Decision-time planning methods are used to plan a series of
decisions from a root state [45]. These methods use simulated
experience from a model to improve a policy or a value
function. Instead of solving the whole MDP, they focus on
solving a sub-MDP. They plan using the MDP model to look
ahead from the current state. Here, the approximate value
function is obtained on leaf nodes of the current state and then
propagated backwards to the current state.
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Rollout algorithms [45] are a type of decision-time plan-
ning methods, based on Monte Carlo control. They sample
multiple trajectories in a depth-first fashion from a root state.
Each trajectory (or rollout) consists in taking successive deci-
sions according to a given default policy until a terminal state
is reached. They are used to obtain near-optimal decisions
by taking random samples in a decision space and building
a search tree according to the results. They are useful for AI
applications with large states and actions spaces. Moreover,
this kind of methods are a good fit for our applications since
they are anytime, always provide a solution, where more
computing power leads to better performance.

Monte Carlo tree search (MCTS) is a particular rollout
method improved to bias the growing of a decision tree
towards highest valued regions. A tree is started from a root
node, and grows iteratively following the next iteration steps:
(1) Selection of the highest valued non-exhausted and non-
ending node according to some tree policy. (2) Expansion
of the tree. Randomly select a non-taken action to connect
a new node to the selected one. (3) Simulation of a play-
out. Propagate the new node by selecting sequential actions
according to a default policy until a given budget is exhausted,
and compute the new node value. (4) Backpropagation of
the node value upwards through the tree. Once the search is
interrupted an action of the root node is selected according to
some predefined criteria. For instance select the action that
conduces to the highest valued child, the most visited child,
or a weighted function between value and visits. The key parts
of the MCTS algorithm are the tree policy, the default policy
and the value function; which can be shaped based on the
nature of the problem domain.

The limitation of MCTS for our application lies in the fact
that, whereas MCTS explores the environment in a depth first
manner, the decision tree tends to grow exhaustively, resulting
in a shallow tree if a short planning time is given or a high
discount factor is used. For this reason we propose a novel
variation, the DF-MCTS, described in section V.

III. ADAPTIVE VISUAL INFORMATION GATHERING (AVIG)
This section introduces the framework built for AVIG in ben-
thic underwater environments, which is illustrated in Fig. 1.
A classic execution of a data gathering mission following
a preprogrammed path would involve the execution only of
the navigation module, which establishes a feedback loop;
it inputs different sensor measurements to compute a pose
estimation, compares it with a desired pose and outputs
thruster setpoints to actuate. This is the basic autonomous
behavior of an AUV, follow a mission path given several
sensor measurements. With the AVIG framework we propose
to close another feedback loop by adding two high level
modules: one for data processing and another for replanning.
We propose to synthesize the information about the spatial
distribution of P. oceanica contained in the stereo images and
replan the mission path to be followed by the robot using such
information. The framework has been integrated in a ROS
based software architecture [46].

FIGURE 1. AVIG framework scheme. The addition of the data processing
and replanning modules to the AUV software architecture based on a
classic navigation module establishes a feedback loop to guide the robot
to execute informative paths considering the latest recorded data.

A. NAVIGATION
The navigation module governs the thruster setpoints in order
to execute given mission paths, considering the navigation
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FIGURE 2. Turbot AUV.

sensor measurements. The processes involved in this module
can be separated in two groups; localization and mission
control.

1) LOCALISATION
Is in charge of filtering pose measurements and generating
accurate positioning. The main processes here are (1) a sen-
sor aggregator node used to coordinate the publication of
measurements coming from the navigation sensors, and (2) an
Extended Kalman Filter (EKF) implementation to filter such
measurements a provide a pose estimation. This localization
setup is discussed in [2]. In particular, we tested the execution
of the proposed framework on the Turbot AUV (see Fig. 2).
Turbot is a 1.6m long torpedo-shaped AUV based on a Sparus
II AUV [47], with three degrees of manoeuvrability; surge,
heave and yaw. The EKF implementation integrates data
provided by an inertial measurement unit (IMU), a Doppler
velocity log (DVL), an ultra-short baseline (USBL), depth
measurements and GPS (if the AUV is in the surface), and
has shown to provide accurate and precise positioning.

The AVIG framework has been integrated with the ROS
based COLA2 architecture [48], and can be executed in
any AUV working with this open source software. In this
work, we tested the execution of the proposed framework
on the Turbot AUV (see Fig. 2). Turbot is a 1.6m long
torpedo-shaped AUV based on a Sparus II AUV [47], with
three degrees of manoeuvrability; surge, heave and yaw. The
navigation module includes the software architecture that
rules the vehicle localization, themission control, and the data
gathering.

2) MISSION CONTROL
Governs the thruster power in order to follow a desired
mission path. It is performed by the COLA2 control archi-
tecture described in [48], where (1) a captain node parses
the incoming mission paths to lower level manoeuvers, that
are sent to (2) a pilot node that provides pose and velocity
reference commands to the controller using the estimated
AUV pose and low level manoeuver to be followed. Then,

(3) a controller node transforms the reference commands to
thruster setpoints by following a double PID implementation.

Using COLA2 control the mission paths can be composed
by waypoints or section maneuvers. Our proposed method
builds the mission paths using section manoeuvres; defined
by (i) an initial and final position (x,y,z), (ii) speed and
(iii) tolerance. This manoeuvre follows a Line of Sight with
Cross Tracking Error (LOSCTE) strategy [49] to produce
reference velocity commands.

B. DATA PROCESSING
The data processing module continuously generates semantic
point clouds from the incoming stereo cameras data flow.
The Turbot AUV carries a bottom-looking stereo camera
in the front of the payload that uses a (1) a stereo camera
driver node that is configured to provide 1936 × 1458 pix-
els resolution images with a framerate of 2Hz. Then, (2) a
stereo image processing pipeline based on the standard ROS
package found in [50] is used to rectify and downsample
the images to 480 × 360 pixels, and compute the disparity
between successive stereo pairs. Afterwards, (3) an image
segmentation node performs a semantic segmentation of the
downsampled images using a CNN, and (4) an image projec-
tion node projects the pixels of the semantic images into 3D
coordinates using the disparity image.

Fig. 3 shows a sample of the downsampled images,
together with the computed stereo disparity image. Even
though the disparity in the seagrass areas is not dense, since
we reduce the data resolution to allow online processing,
the impact in the data used for map estimation is minimum.

The semantic segmentation uses the encoder-decoder
based CNN architecture VGG16-FCN8 represented in Fig. 4.
More specifically, it uses the model described in [51], pre-
trained to discriminate the P. oceanica from the background
in underwater images. This model inputs a 480× 360 pixels
resolution RGB image and, as proposed by [28], instead of
using the high resolution output of the network (output 01 of
Fig. 4) the last two transposed convolutional layers can be
pruned, reducing the execution time at expenses of a lower
output resolution of 30 × 23 pixels (output 03). In any case,
the network outputs a resolution grey scale image depicting
the P. oceanica presence probability. Fig. 5 shows some
examples of gathered images together with their correspond-
ing segmented images and semantic point clouds.

The semantic point clouds are generated using the disparity
image, and the reference of such point clouds to global coor-
dinates is obtained using the robot pose, as described in [28].

C. REPLANNING
The replanning module continuously generates informative
mission paths bymodeling the spatial distribution ofP. ocean-
ica. This module is composed by two main groups of pro-
cesses, that are executed in two different threads: (1) a map
estimation group that uses the segmented point clouds from
the data processing module to train a GP model, executed in
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FIGURE 3. Example of 4 images gathered during field tests together with the corresponding disparity images.

FIGURE 4. Scheme of the encoder-decoder based CNN architecture VGG16-FCN8 used for online image segmentation. Encoder:
convolutional (blue), pooling (red) and dropout (black) layers. Decoder: score (purple) and transposed convolutional (green) layers
form the decoder. The numbers under and above the layers indicate the number of feature maps and its size, respectively. The orange
arrows represent the featured output points O1,O2 and O3.

FIGURE 5. Example of 8 images gathered during field tests together with the corresponding segmented images and semantic point clouds.
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loop, and (2) a planning group that uses the latest GP model
to generate successive informative paths at 0.1Hz.

The objective of the sampling process is to (i) efficiently
collect the processed data in a raw data dataset, (ii) generate
a downsampled samples dataset when queried by the GP
training process, and (iii) compute the raw data density when
queried by the update node network process. The first objec-
tive is attained by a thread that continuously filters the spatial
distribution data by means of downsampling each segmented
point cloud using a voxel filter with a 0.1m resolution and
appended to a raw data dataset. The second is attained by
downsampling the raw data dataset using a grid filter with a
given samples resolution (by configuration) and returns the
samples; such samples dataset is used to train the GP model.
The third is attained by building a k-d tree [52] using the raw
data dataset and a minimum leaf size of 1.0m. Such raw data
density quantifies the data recorded in a particular location
and is used to compute the utility of sampling that particular
spot.

1) MAP ESTIMATION
Every iteration of the map estimation group launches a query
to the sampling process to provide a samples dataset, and exe-
cutes an instance of the GP training process to build a model
of the environment. The objective of building such model
is to be able to obtain predictions about the seagrass spatial
distribution in punctual locations. Such predictions will be
further used by the IPP planner to compute the information
richness of visiting particular locations. The GP, introduced
in Section II-A, are useful to build such environment mod-
els and provide predictions in non-visited locations, thanks
to their uncertainty representation. Previous work presented
in [28] provided an extensive study for selecting the type of
GP and its configuration for modeling P. oceanica spatial
distribution. This aforementioned work pointed out the high
performance of using a Sparse Variational GP using MCMC
(SGPMC) [53] model with a Matérn function with scaling
factor ν = 3/2, and a beta function to represent the GP
likelihood distribution. In this work, we use the same GP
model and configuration. However, in this case, a fixed kernel
lenghtscale λ = 30 is used to train the GP. This parameter
controls the correlation strength between pairs of samples
depending on their distance. Fixing this hyperparameter per-
mits to control the distance foresight of the GP model. This
hyperparameter balances the exploration-exploitation trade-
off; increasing λ will result in an increased exploitation of
predicted areas, while decreasing λwill result in an increased
exploration, or increased data coverage.
Remark 1 (Limited Samples): A key aspect of the strategy

designed for mapping is to use a fixed sample resolution R
and induction points density IPD. This allows to get a high
mapping frequency at the beginning of the exploration, reduc-
ing the number of samples for training, and a bound on the
time expend for mapping as the data coverage increases. For
this purpose we set a maximum number of samples Nsamples
and of induction points NIP and compute R and IPD using the

area A of the target region as follows:

R =

√
A

Nsamples
(17)

IPD =
NIP
A

(18)

2) PLANNING
The planning module uses the developed DAR method
described in Section IV. It iteratively executes informative
paths using the novel DF-MCTS described in Section V,
considering the current mission status and the most recent
GP-based environment to maximize the information gain
during the exploration process.

This method is executed with a fixed frequency. It first
builds a network of possible sampling locations inside a target
area (build node network), establishing connections between
neighbor nodes. Then it iteratively executes (1) an update
node network process to query the sampling process for the
recorded data density at the sampling locations and to query
the GPmodel for predictions at the same locations and update
the network of sampling locations. Then, considering the
actual mission status, (2) a get next in it state provides the
starting state for the next IPP execution. Finally (3) a planning
process based on the novel DF-MCTS described in Section V
sequentially updates a search tree to retrieve an informative
path that is stored to be launched as the robot finishes the
current section manoeuver.

IV. DECISION-TIME ADAPTIVE REPLANNING (DAR)
This section describes the developed strategy for decision-
time adaptive replanning (DAR). This DAR behavior has
been designed to be executed online while the AUV is mov-
ing; the planner iteratively command new mission paths con-
sidering the newest data available as the robot navigates and
the GP-based environment model is updated. It consists in
four key ideas:
• Building and updating a network of nodesN that results
in a pre-initialization of part of the content included in
the states and actions considered during decision-time
planning.

• Having the AUV in constant motion, while being flex-
ible to execute updated missions. The robot is neither
stopped for planning nor forced to complete the com-
manded mission paths.

• Growing a search tree in a depth-first fashion, following
a novel DF-MCTS strategy for decision-time planning.

• Recycling part of the last search tree for successive
planning executions.

The main structure of the method is illustrated in Algo-
rithm 1. It inputs: a target area A and an obstacle region O
defined as polygon shapes in global coordinates, a model of
the environmentM containing the GP model and the k-d tree
used for computing the raw data density, an initial state s0
defined by the initial AUV pose, the sampling nodes density
ρ configured, and the nearest neighbor distances d1 and d2
set. The path to execute P and the remaining path Ps0 are
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initialized empty. The algorithm starts generating a set of
sampling nodesN , and then iteratively: (1) updates the nodes
utility using the newest environment model M, (2) gets the
next initial state s0 if a path P has been previously gener-
ated, (3) gets a path Ps0,sn using the DF-MCTS strategy, and
(4) saves the path.

Algorithm 1 DAR()
Input: A, O,M, s0, ρ, d1, d2

P ← ∅;Ps0 ← ∅;
N ← buildNodes(A,O, d, d1, d2)
while ¬stopCondition() do
N ← updateNodes(N ,M)
if P 6= ∅ then

s0← getNextInitState(P)
Ps0,sn ← getPath(s0)
Ps0 ← getRemainingPath(P, s0)
P ← Ps0 + Ps0,sn
savePath(P)

A. NODE NETWORK
TheAlgorithm 2 describes the generation of the node network
N (of Algorithm 1). It randomly generates a set of nodes N
inside of a given target area A and outside of given obstacle
areas O. The number of nodes n to build is determined by a
desired node density ρ and the area of A. Then, a k-d tree
is build using the locations of the nodes contained in N for
quick nearest-neighbor lookup. The node network is build by
querying the k-d tree for two sets of neighbors for each node;
a first set of nodes N1 located at a distance d < d1, and
a second set of nodes N2 located at a distance d > d1 and
d < d2. Being the distance thresholds d1 < d2.

Algorithm 2 buildNodes()
Input: A, O,M, ρ, d1, d2

// Get sampling locations:
a← Area(A)
n← a · ρ
while k < n do
p← getRandomLocation(A)
if (p /∈ O) then

N ← append(N , p)
k ← k + 1

// Set neighbors:
kdt ← KDTree(N )
for N ∈ N do
N1← getNearNodes(kdt,N , d1)
N2← getNearNodes(kdt,N , d2)−N1
setNodeNeighbors(N ,N1,N2)

The Algorithm 3 describes the update of the node network
N (of Algorithm 1). The objective is updating the sampling
utility at the N locations. The model M is queried to get
the data density and GP prediction in the N locations. Then,

the information gain I and the utility value U of the nodes in
N are computed, that will be used to guide the IPP.

Algorithm 3 updateNodes()
Input: N , M

D← getDensity(M,N )
µ, σ 2

← getPrediction(M,N )
I ← computeInformation(µ, σ 2)
U ← computeUtility(D, I )
N ← D, µ, σ 2, I ,U

B. INFORMATION GAIN AND NODE UTILITY
The information gain I is computed from the prediction
obtained with the GP model at the node location. We have
considered two options to compute such information, either
using the differential entropy (DE) IDE or the upper confi-
dence bound (UCB) IUCB functions, Equations (19) and (20),
respectively.

IDE =
1
2
ln (2πeσ 2) (19)

IUCB = µ+ 1.96
√
σ 2 (20)

Whilst IDE uses the variance σ 2 provided by the GP in the
query locations, IUCB also uses the mean semantic label µ
provided by the GP. IUCB provides higher values to higher
mean label locations, which increases exploitation (coverage)
in such locations at the expenses of reducing exploration in
lower mean label locations. Moreover, instead of using the I
directly for planning we build an utility value U to leverage
the I with the neighboring data density D such as:

U = I ′(1− D′)α (21)

The objective of using such U is to attenuate the interest
of visiting areas that do not present a reduction on the pre-
dicted information I , even though they have been repeatedly
recorded (high density). This situation may happen in areas
with heterogeneous data, such as meadow boundaries. More-
over, since the resolution of the GP model is bounded by R
value and IPD of Remark 1, recording more data on a high
information location does not implies improving the fitness of
the GPmodel. I ′ andD′ represent the normalized information
and density values for all the nodes to the range [0, 1] using a
min-max normalization. The α parameter works as a weight
on the density factor, the higher the α the bigger is the impact
of the density D.

C. REPLANNING
In order to allow a continuous navigation and a flexible path
execution, we take into account the time expend in planning
in order to set the initial state used for next planning iteration.
The distance between the actual position and the next initial
state s0 has to be larger than a minimum distance dmin =
vmax · tplan, where vmax is the maximum speed of the robot
and tplan is the planning time. The next initial state s0 used
for next planning is selected taking into account the distance
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covered by the robot while the planning process is executed.
As the robot finishes a section maneuver, it executes the latest
planned path.

V. DEPTH-FIRST MONTE CARLO TREE SEARCH (DF-MCTS)
This section describes the IPP strategy developed to provide
mission paths to the DAR behavior. Considering the high
number of possible states and actions available in our field
robotics application and the necessity of an online realiza-
tion, a decision-time planning method has been developed to
solve the IPP problem. DF-MCTS is different from MCTS
in one key aspect: it keeps all the states traversed during the
rollout in the search tree. This provides a faster growth of
the tree, and guarantees a solution path of a given length. The
limitation ofMCTS for our application is that whereasMCTS
explores the environment in a depth first manner, the decision
tree tends to grow exhaustively resulting in a shallow tree if a
short planning time is given or a high discount factor is used.

A. PROBLEM FORMALIZATION
We propose to solve the IPP problem using a RL-based algo-
rithm using a finite number of non-fully observable states.
For that end, a POFMDP represents the sequential decision
problem.

1) STATES
A state Sk is defined by an associated node N , a parent
state Sk−1, a set of action candidates A(Sk ), a state value V ,
a distance cost c from the initial state, and an orientation θ ;
Sk ← {N , Sk−1,A(Sk ),V , c, θ}.

2) NODES
The nodes are used to provide a discrete representation of the
possible sampling locations in the target area. A node N is
defined by a north-east position x, a raw data density value
d , an information gain i, an utility value u, and two sets of
neighbor nodes NN

1 and NN
2 ; N ← {x, d, i, u,NN

1 ,N
N
2 }.

The nodes are initialized at the initialization of the DAR
behavior and updated before each IPP execution as described
in section IV-A.

3) ACTIONS
The actions are directly associated to the transition to a given
neighbor node. So, the selection of an action directly means
the selection of a neighbor node to be visited next. Taking
a particular action from a given state Sk will result on the
transition to the neighbor node considered in such action,
and in the creation of a new state Sk+1. The set of action
candidates A(Sk ) of a given state Sk will be composed by a
subset of the neighbor nodes NN

2 of its associated node N
such as A(Sk ) ∈ NN

2

B. METHOD
The structure of the proposed method is represented in Fig. 6
and includes 3 sequential steps: selection, expansion and
backpropagation. It starts building a tree T from a root state

FIGURE 6. One iteration of the proposed tree search algorithm. The
stared state represents the selected state for expansion, the states with a
triangle correspond to the states used for update the tree values for the
expansion and the backpropagation steps. The darker circles represent
the states whose values are updated.

s0 (initial state from DAR algorithm of Section IV). Then,
it iteratively selects a high valued node, expands the tree
with multiple rollouts, and backpropagates the state-values;
selection, expansion and backpropagation.
Remark 2 (Keep Search Tree): For successive plannings,

the tree structure that hangs from the next initial state s0, from
now on called T ′, is conserved. And prior to the next IPP
execution T ′ is traversed to update the distance cost, extend
the leave states and update the state values to the newest map
estimation.

1) SELECTION
Select a state from the tree Tne to expand, where Tne includes
the non-exhausted states of T ′–i.e. state containing non-
tested actions–. The state selection follows a tree policy based
on an ε − greedy method (with a parametrizable epsilon),
which consists in getting a random number r and evaluating if
r is bigger or lower than epsilon. If r > ε, the highest valued
state s∗ from Tne is selected. Otherwise get a random state.
Being,

s∗ = argmax
s∈T

v(s) (22)

2) EXPANSION
Expand the tree following a given default policy. This step is
different from the expansion step in MCTS algorithms in the
following: DF-MCTS (a) performs multiple rollouts from the
same selected state, and (b) the states transversed are kept in
the tree and are considered for further tree expansions.

A MC rollout is build by iteratively (1) searching for
candidate actions A(s) to the current state s, (2) selecting an
action a ∈ A(s) according to a given default policy π (a|s),
(3) performing action a and (4) getting next state s′ and reward
r until a distance budget B is exhausted.

We define the default policy π (a|s) with an uniform dis-
tribution (23) and deterministic action-state transitions (24).
We assume that the execution of action a being in state s
results in a new state s′ located on a neighboring node position
pointed by action a.

π (a|s) =
1

‖A(s)‖
, for all a ∈ A(s) (23)
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FIGURE 7. Two sets of action candidates for a given state s:
A1 =N2 ∩Np and A2 =N2 −Np. Where Np includes the nodes
located at a distance d from p and s p = sparent s = d .

p(s′|s, a) = 1, for all s ∈ S, a ∈ A(s) (24)

The set of action candidates A(s) of a given state s is built
when a state is visited for the first time. These actions include
the nodes that can be reached one step ahead. The set of
actions of a given state A(s) are build checking the node
network built in the DAR initialization, see Section IV-A.
In order to get smoother rollout trajectories, two sets
of action candidates are used: A1 and A2, represented
in Fig. 7.

The setA1(s) includes the priority actions. The default pol-
icy π (a|s) will use the setA1(s) if it is not empty, otherwise it
will use the setA2(s). Besides, afterwards an action candidate
a is used, it is removed from its action candidate set. As a
result from this, as the tree grows, some states get exhausted
of action candidates. Such states are considered exhausted
and are removed from the Tne used for selection.

The values v(s) of the states transversed during rollout are
updated using the state-value function (7). That, consider-
ing (5) and (23), can be rewrite as:

v(s) = r(s)+ γ v(s′), (25)

where r(s) represents the reward generated in state s.
In order to generate smooth trajectories the relative turns

between consecutive states are considered in the reward func-
tion r(s). Defined as

r(s) = u(s) · cosω
θr (s)
2
, (26)

where u(s) ∈ U is the utility value u of the node belonging
to state s obtained from the update of the node network
using equation 21, and θr (s) is the relative angle between the
orientations of s and its parent state. The second term has been
designed to penalize sharp turns, rewarding small variations
of θr (s), and is contained in the interval [0, 1]; the ω acts as a
parameterizable weight. Since u ∈ [0, 1] (Section IV-A) the
reward will be unitary r ∈ [0, 1]. Computing the value of the
rollouts is a matter of sequentially computing the discounted
sum of rewards. Furthermore, as the exploration advances and
more data is recorded, the map estimation gets more accurate,
which impacts in a more accurate utility value and reward
signal. Hence, the more accurate the GP regression becomes
the more accurate the reward signal becomes.

3) BACKPROPAGATION
Back-propagate the rollout values to the preceding states.
We use for this a value function based on the TD expres-
sion (16) presented in Section II-B2. However instead of
updating the state value using only a child state value, we use
the mean value of all child states sc ∈ Sc(s) for this value
update.

vk+1(s) = vk (s)+ λ
[
r + γ

∥∥∥∥∥∥
∑
sc∈Sc

vk (sc)

∥∥∥∥∥∥− vk (s)
]

(27)

Assuming that there will not be child outlier values is
necessary and strongly supported in the fact that the child’s
state value accuracy is directly determined by the rewards
signal accuracy, which directly depends on informativeness
accuracy computed from the GP estimation, elements already
discussed previously. Although the GP estimation might be
very inaccurate at the beginning of the exploration due to the
limited data, as they progress, GPs with the configurations
used have shown to provide very smooth and valued predic-
tions that inhibit the possibility of outliers in the child state
values.

VI. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
The results are presented using the following evaluation
metrics, which are obtained after each iteration of the map
estimation module.

1) MEAN OF THE DIFFERENTIAL ENTROPY (MDE)
Provides the mean map information, and is computed using
the variance value of the environment model prediction σ 2 at
n locations inside the target area.

MDE =
1
n

n−1∑
i=1

DE(i) (28)

DE(i) =
1
2
ln
(
2πeσ 2(i)

)
(29)

2) STANDARD DEVIATION OF THE DIFFERENTIAL ENTROPY
(SDE)
Provides the standard deviation of the pixelwise map infor-
mation, also computed using the variance value of the envi-
ronment model prediction σ 2 at n locations inside the target
area.

SDE =

√√√√1
n

n−1∑
i=1

[DE(i)−MDE]2 (30)

3) AREA UNDER THE CURVE OF THE RECEIVER OPERATING
CHARACTERISTICS (AUC ROC)
This metric is used only on the simulation tests, using the
simulation groundtruth GT represented in Fig. 8b. Such GT
is a precise mono-chrome representation of the simulation
environment since, in fact, is the source for building the
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FIGURE 8. (a) Screenshot containing a Sparus II AUV in the StoneFish
environment, the (b) synthetic seabed image containing P. oceanica and
sand used for simulation and (c) the seabed groundtruth.

seabed textures distribution containing P. oceanica and sand.
Given such mono-chrome image GT and a mean prediction
(obtained from the last GP model) with the same shape and
resolution, the ROC diagram is obtained by plotting the pix-
elwise true positive rate (TPR) with respect to the pixelwise
false positive rate (FPR) using a varying discretization thresh-
old for the mean GP prediction. The AUC ROC provides the
area under the ROC curve.

TPR =
TP

TP+ FN
(31)

FPR =
FP

TN + FP
(32)

where TP, FP, TN, FN represent the number of true positives,
false positives, true negatives and false negatives for a given
threshold value in the interval [0, 1].

4) COVERAGE PERCENT (CP)
Provides a percentage measure of the recorded data exten-
sion. It is computed as the recorded area Ar divided the
total area At of the target region, where the recorded area
Ar is obtained as the total number of samples nc con-
tained in the target region multiplied by the squared sample
resolution R.

CP = 100 ·
At
Ar
= 100 ·

At
nc ∗ R2

(33)

B. SIMULATION
The simulations have been performed in the ROS-based sim-
ulator StoneFish [54] using the Turbot AUV dynamics and
software architecture. Fig. 8 shows the synthetic seafloor
image used, a recreation of the environment found in Illetes,
a beach spot located in Palma Bay. The ground truth GT
shown in Fig. 8c is a black/white image built from an original
aerial picture of an area in Palma Bay. The simulated seabed
shown in Fig. 8b is formed by adding texture (P. ocean-
ica and sand) on this aforementioned original GT image,
which means that there is no error between the black/white
GT and the texture image that occupies the simulated
seabed.

This section describes the results obtained using the AVIG
framework with the DAR strategy, and compares the perfor-
mance if instead of using the DAR strategy on the planning
module we use a sampling based strategy (SBSRE*) or a
predefined lawn mower (LM) pattern path.

TABLE 1. Planning module configuration using the DAR strategy.

1) DAR STRATEGY
Table 1 shows the set of configuration parameters used in
these simulated experiments.Moreover, in order to generalize
to different target areas we propose to set by default the
distance budget B for the rollouts to the quarter of the target
area perimeter, and the neighbor distance d2 to a quarter
of B.

2) SAMPLING-BASED STRATEGY (SBSRE*)
We use a modified version of SBSRE sampling strategy pro-
posed by Viseras et al. [31]. The original strategy executes
sequentially (1) an update of the GP model hyperparameters
using the recorded data, (2) a search station (SS) process
based on a RRT algorithm where a path is proposed to reach
the highest utility location (station) within a given distance
budget, (3) an IPP process based in a RRT* algorithm which
tries to get an optimized path to the previously selected
station location, and (4) execution of the highest utility path
(SS or IPP). We take the GP model update–i.e. step (1)–out
of the loop, executed on the map estimation module as an
independent thread, in order to provide amore fluent behavior
and only stop the robot at the end of a path for SS and
IPP. Moreover, we used the same planning time (5s for SS
and 10s for IPP) and information function (DE) proposed
originally and scaled the distance budget, expand distance and
path resolution proportionally to the square root of the target
region area, Table 2.

3) PREDEFINED LAWN MOWER PATH (LM)
We programmed a lawn mower path (LM) to cover the target
area with an 6m distance between transects. Such type of
pattern is extensively used to get a partial representation
within a reachable time budget.

4) NAVIGATION
Due to the different path typologies, the three strategies used
a different configuration of the LOSCTE controller, as shown
in Table 3.

• The minimum speed determines the AUV speed at the
sampling locations for the DAR and SBSRE* strategies,
and is set to a sufficiently high value to allow a fluent
movement of the AUV. For the LM case, this minimum
speed is set to a value lower than the setting for the
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TABLE 2. SBRSE* scaled parameters.

TABLE 3. Configuration of the LOSCTE controller used for navigation.

DAR and SBSRE to ensure a proper tracking of the
pre-programmed path in the extreme of the transects.

• The maximum speed was set to the speed required for
sampling in the LM case in order to have homogeneous
data sampling along all the path. A highmaximum speed
causes lower path following accuracy in the extreme
of the sections if sharp turning angles exist. We set a
maximum speed value higher for the DAR than for the
SBSRE* for two reasons: (1) the DAR strategy provides
paths smoother than SBSRE*, which are less prone to
sharp turns, and (2) considering that the SBSRE* pro-
vides paths with distance between sample locations of
0.8m (expand distance parameter), and that the speed
transition distance is fixed to 3.0m, when going through
a section in normal conditions (low cross track error)
the SBSRE* wouldn’t have enough distance to reach the
maximum speed, in contrast the DAR provides sufficient
distance between sampling points to benefit from such
maximum speed.

The speed at the sampling locations also depends on
the light conditions. In order to record non-blurred images
the vehicle speed sx has to be adjusted accordingly
to the light conditions and navigation altitude according
to

sx 0
psx · blurmax

E
, (34)

where E is the exposure time, blurmax is the maximum blur-
ring admitted (usually taken as 1 pixel in order to be insignif-
icant). And psx is the pixel size in meters in the advancing
direction, defined as

psx =
2 · a · tan

(
0.5 · FOVx

)
rx

, (35)

where a is the vehicle altitude. And FOVx and rx are the
field of view and the image resolution, respectively, in the
advancing direction x.
Fig. 9 shows the resulting speeds for the three tests during

an intermediate interval of 7min of the simulation tests.While
the DAR oscillates between 0.1m/s and 0.5m/s, SBSRE*
reaches sequentially 0.2m/s when a mission is enabled and

FIGURE 9. Resulting AUV speed in the forward direction for the tree
strategies tested in a 7min time interval.

stops when the mission is disabled, and LM reaches sequen-
tially 0.2m/s while going through a transect and lowers to
0.05m/s at the end of the transects. The mean AUV speed in
the advancing direction obtained for the entire mission tests
is 0.23m/s, 0.11m/s and 0.16m/s for the DAR, SBSRE* and
LM, respectively.

5) DATA PROCESSING
Fig. 10 shows an example of the images gathered during
simulation and the resulting segmentation using the high
resolution output of the CNN. The segmentation results are
very good on the boundaries and sand regions.

However, even when using the high resolution output of
the CNN, some artifacts appear in some areas covered with
synthetic P. oceanica, since this kind of images were not
included in the CNN training process, and, therefore, some
noise is expected to be produced at the segmentation out-
put. In any case, the intrinsic characteristics of a GP for
environment learning from semantic data points makes it a
good fit for modeling a physical process under noisy input
data conditions; heterogeneous data regions will produce
high variance values on the GP prediction. Moreover, using
the proposed adaptive replaner we aim to visit, or revisit,
high variance (uncertainty) regions, leveraging exploration
vs. exploitation. With exploration we refer to navigate on
high variance non-visited regions, with exploitation we refer
to navigate on high variance visited regions. Hence, cor-
rupted data is handled in an effective way by means of the
same mathematical and stochastic background that forms
the system, firstly by the GP regression and secondly by the
planner. As a consequence, the processwas continuedwithout
retraining the CNN.

Furthermore, in these simulations, the pipeline for pro-
ducing the samples depth was modified to use a simulated
depth camera instead of the disparity of the AUV stereo
images.We generated the segmented point clouds, combining
the point cloud obtained from the depth camera and the
segmented image. The semantic point clouds are published at
a 0.290Hz frequency, and are completely flat due to the flat
environment used and the null noise in the simulated depth
image.

6) MAP ESTIMATION
Table 4 shows the configuration parameters used for the map
estimation module. Moreover, the sampling resolution and
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FIGURE 10. Images recorded during the 3D simulation tests and their corresponding high resolution segmentation image.

TABLE 4. Mapping module configuration.

FIGURE 11. Resulting mapping time and coverage percent (CP) obtained
during the AVIG execution in simulation using DAR algorithm.

the induction points density, computed from the target area
extension and considering a maximum number of samplesNS
and induction points NIP as described in Remark 2, resulted
in 0.75m and 0.18m−2 respectively.
Fig. 11 shows the resulting mapping times obtained from

an execution of the AVIG framework using the DAR planning
strategy. Such mapping time include the sampling time and
the learning of the GP hyperparameters. Considering that the
latter is the higher contributor and that it is proportional to the
number of training samples and inducing points, the mapping
time is proportional to the data coverage and not to the gath-
ered data. Hence, the mapping time will converge as the data
coverage converges, using the maximum number of samples
and number of inducing points.

In this case, the mapping time seems to converge
around 55s. The fact that, at the beginning of the exploration
the mapping frequency is higher, allowing fast adaptation of

the IPP planner to the changing map estimation, is a good
consequence of the behaviour described above. Since at the
last part of the exploration the map is partially known, and the
high information areas are already located, a low frequency of
the map estimation module can be tolerated. However, even
at the end of the exploration we require a bound on the map
estimation time in order to integrate newer data into the belief
within a reachable time.

7) PLANNING
The rollout distance budgetB and the neighboring distance d2
were computed using the target area extension, as considered
at the beginning of this section. And resulted in 33.8m and
8.5m, respectively. The Fig. 12, 13 and 14 represent the
results obtained for the simulation tests.

Fig. 13 represents the executed paths for the three tests
(DAR, SBSRE* and LM); the green shade represents the raw
data density, which is normalized for each test. Since the
frequency of the data acquisition is equal for the three tests,
the quantity of data gathered during the same time interval
is also equal. However, the distribution of such data differs.
The raw data density distribution using DAR shows that a
large part of the meadow boundary presents the highest data
density, and that the lowest density regions belong to homo-
geneous data regions. The high density region on the left
corresponds to an area where noisy data was acquired as we
will see further in the analysis. The SBSRE* raw data density
distribution is irregular, whilst it shows high density values in
some boundary regions, it does not visit some others, and over
records some regions due to being stopped while planning
the next path. Using a predefined LM patter results in evenly
distributed data on the transects, and higher density spots on
the section limits.

Whilst the LM tests provide more data density in the
extreme of the section maneuvers due to a slow vehicle
speed required for precise path following, the DAR and
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FIGURE 12. Representation of four different instants during the execution of the DAR algorithm in simulation. In the top row, the square markers
represent the samples (black squares for background, white squares for P. oceanica detection) with resolution R used to train the GP; and the color-map
represent the predicted variance map, blue for low variance regions and yellow for high variance regions. In the bottom row the black line represents the
contour of the segrass meadow generated from the groundtruth image, and the color-map represent the predicted map; purple for P. oceanica and
orange for background.

FIGURE 13. Paths followed and raw data density obtained during the
execution of the 3D simulation tests; from left to right, following DAR,
SBSRE and LM strategies. The color in the path represents time, starts in
yellow and ends in dark blue. The raw data density is represented with
the green shade. And the background represents the groundtruth,
the white area contains P.oceanica.

SBSRE* tests provide higher data density in high uncer-
tainty areas, such as meadow bounds or heterogeneous data
regions, being the former faster and more fluid visiting high
uncertainty areas. In contrast with DAR, that penalizes path
turns in the DF-MCTS planner, the SBSRE* results in com-
plex paths, since the path turns are not considered during
planning.

FIGURE 14. Results obtained using the DAR, SBSRE* and LM in simulation.

Fig. 14 presents the results obtained during the three tests in
terms of theMDE, SDE, AUCROC and CPmetrics described
at the beginning of the section. The DAR strategy presents
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the fastest reduction of the MDE metric and a low SDE,
whichmeans that theAUVefficiently retrieves data from high
uncertainty regions and reduces the entropy of the predicted
seagrass distribution. The SBSRE* provides a fast reduction
of the MDE at the beginning of the mission. At the beginning
it reduces the entropy by targeting the regions with highest
predicted variance values (the SDE maintains low values).
However, approximately after the 10th minute, the MDE
reduction rate gets slower. The LM results in a final value
of the MDE lower than the SBSRE*. However, during the
mission execution, it achieves the highest MDE and SDE
values, which means that generated predictions provide high
uncertainty. In terms of CP, the DAR strategy provides the
best results. Thanks to the smoothness of the informative
paths computed, the robot is able to achieve higher speeds
that result in an increased CP. At the beginning of the explo-
ration the AUC ROC metric is very unstable due to that the
mapping process has very limited data for training. In par-
ticular, at the instant 4’25min of DAR test the AUC ROC
of the estimated map shows a large negative peak. As more
data is recorded the AUC ROC improves and stabilizes at
minutes 20′, 22′, and 33′ for the DAR, LM and SBSRE*,
respectively. Which means that, from those points the map
estimation module has sufficient data to learn a proper
model.

Moreover, Fig. 12 represents the acquired data and the
online estimated maps at four different time instants. As the
AUV navigates the target area, the map estimation gets more
accurate, starting by a naive prediction at the time instant
1′49′′ to a more confident prediction at 45′37′′, where only
the boundary regions present high uncertainty value (yellow
on the top row), and the P. oceanica distribution (purple on
the bottom row) is predicted with high precision, given the
mapping resolution used. Notice how the right part of the map
presents noisy samples (false negative samples) that increase
the uncertainty value and attracts the robot navigation to
gather more data, path in Fig. 13.

C. FIELD TESTS
This section describes the field tests performed to evaluate
the proposed exploration framework and the discussion of
the results. The objective of the tests was to obtain a fast
representation of a large environment contained in the target
area, delimited by a yellow line in Fig. 15.
The experiments have been carried out at the south of Mal-

lorca Island. The target area has an extension of 10, 212m2,
and was located in a shallow water region with [3.5, 5.5]m
depth to assess the mapping performance by comparing
the online estimated maps with the existing aerial images
of the area. We set a time budget for the exploration
of 90min.

1) NAVIGATION
Since the experiments were carried out with theAUVnavigat-
ing on surface, a precise localization was assumed, using GPS
measurements which bound the navigation error of the EKF

FIGURE 15. Field test target area (10, 212m2) on top of an aerial image
from the Instituto Geodesico Nacional (PNOA 2018 campaign
39.326284, 2.986278).

localization filter. Regarding the mission control, a default
configuration for the LOSCTE was used with minimum and
maximum speeds of 0.1m/s and 0.6m/s, respectively, look-
ahead distance of 4m, speed transition distance of 3m/s and
velocity ratio of 0.1m/s. This configuration resulted in amean
AUV speed in the advancing direction of 0.27m/s.

2) DATA PROCESSING
Fig. 16 shows an example of the kind of images acquired
together with their segmentation output. They show a good
segmentation performance using the low resolution out-
put of the CNN. The image segmentation achieved a fre-
quency of 0.461 Hz, providing sufficient overlap between
successive semantic point clouds, which is illustrated in
Fig. 17.

3) MAP ESTIMATION
The map estimation module was configured with the same
settings as the simulation tests, Table 4. These settings pro-
vided a sample resolution R of 2.26m and an IPD of 0.02m−2.
Fig. 18 shows part of the grid samples processed for map
estimation during the test. And Fig. 19 illustrates the resulting
mapping time and the coverage percent. The figure shows
a correlation between coverage and mapping time, resulting
in 40s of mapping time after 90min of mission, with a CP
around 60%.

4) PLANNING
The planning module was configured as in simulation tests
(Table 1). The distance budget B and the maximum neighbor
distance d2 were automatically set using the perimeter of the
target area as considered for simulation, resulting in 92m and
23m respectively. Considering that the distance to maximum
speed configured in the LOSCTE controller is inferior to d2,
such neighbor distance allows the AUV to reach maximum
speed between sampling locations. The Fig. 20, 21 and 22
represent the results obtained during the execution of the
AVIG framework.

Fig. 21 represents the entire executed AUV exploration
path. The color in the path represents time, starts in yellow
and ends in dark blue. The figure also represents the raw data
density with a green shade, and the hand-labeled contours of
the seagrass meadow interpreted from an aerial image.
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FIGURE 16. Field test image examples and their corresponding low resolution segmentation output.

FIGURE 17. Sequential semantic point clouds projected to global
coordinates; white pixels represent areas covered with P. oceanica, and
black pixels represent background areas.

FIGURE 18. Samples used for online environment learning; white cubes
represent areas covered with P. oceanica, and black cubes represent
background areas.

FIGURE 19. Resulting mapping time and coverage percent obtained
during field testing the AVIG framework.

Moreover, Fig. 20 shows five representations of the gath-
ered data and the estimated map in different time instants
during the exploration. The top row of the figure shows as
square markers the samples used to train the GP and the
predicted variance map with a color-map, dark blue for low
variance regions and yellow for high variance regions. The

bottom row represents the predicted seagrass distribution
with a color-mapwhere purple indicates presence ofP. ocean-
ica and orange indicates background.

Finally, Fig. 22 represents the MDE and SDE of the online
estimated maps along the path. Such metrics have been
obtained during the exploration for every mapping module
iteration.

The results provided show that, as the AUV gathers
more data, it is able to generate a more accurate model of
the environment–i.e., more accurate seagrass distribution in
terms of variance and predicted value–, which results in an
improved fitness of the computed paths, that focus the AUV
navigation in areas with high uncertainty. In this test the nav-
igation is heavily focused on the seagrass meadow because
it presents an heterogeneous distribution containing small
patches of background. In contrast, the data collected outside
of the meadow contain homogeneously sensed background,
resulting in low uncertainty.

The likelihood function used for GP modelling takes the
credit of such high variance in heterogeneous data regions.
The beta function used for the likelihood representation pro-
vides higher beliefs for extreme data samples; eitherP. ocean-
ica or background. However, since the resolution size used
for sampling is too large to capture the data complexity in
heterogeneous data regions, such regions produce intermedi-
ate sample values that result in high uncertainty. This is a key
result that enables keeping high entropy values in meadow
boundaries and patchy regions to reinforce the data gathering
in such areas.

TheMDE and SDE show a fast convergence during the ini-
tial 30min, that corresponds to the results illustrated in Fig.20;
the AUV performs a fast exploration of the target area
up to that time increasing the map informativeness. Then,
the exploration framework exploits the environment knowl-
edge by gathering data mostly in heterogeneous data regions.
Whilst the AUV gathers more data in such regions, the use of
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FIGURE 20. Representation of five different instants during the execution of the DAR algorithm in field test. In the top row, the square markers
represent the samples (black squares for background, white squares for P. oceanica detection) used to train the GP and the color-map represent the
predicted variance map; blue for low variance regions and yellow for high variance regions. In the bottom row the black line represents the contour of
the seagrass meadow obtained from the groundtruth image, and the color-map represent the online predicted map; purple for P. oceanica and orange
for background.

FIGURE 21. Path followed and raw data density obtained in field test
following DAR strategy. The color in the path represents time, starts in
yellow and ends in dark blue. The raw data density is represented with
the green shade.

FIGURE 22. Results obtained in field test.

a fixed resolution size of the samples used for training bound
the MDE reduction.

VII. CONCLUSION AND FUTURE WORK
This work presents the novel design of a adaptive visual
IG framework (AVIG) that integrates a novel decision-time
adaptive replanning behavior (DAR). Such DAR behavior
is coupled with a DF-MCTS strategy for IPP, and joins
two advantages of graph-based and sampling-based meth-
ods: (a) initializes a node network to set neighbor relations
between sampling locations (which reduces computation dur-
ing online execution), and (b) samples paths in the node net-
work through tree search following a decision-time strategy
(that provides near-optimal solutions in an anytime manner).
The AVIG framework has been successfully integrated in
a ROS-based software architecture and tested in simulation
and in field. The results show that using this framework the
vehicle is driven to cover the region with higher uncertainty
given by the GP model, whilst producing smooth paths easy
to follow. Regions with increased GP variance imply that the
gathered information is highly uncertain or incomplete thus
it need to be revisited. The DAR behavior with DF-MCTS
provided the fastest MDE reduction when compared with
the very relevant strategy proposed by Viseras et al. [31] and
with a predefined lawn mower pattern mission. The results
show that the variable distance between sampling nodes and
the penalization of sharp turns in the reward function provide
smooth paths that are secure to be followed by the LOSCTE
controller.

Additional future work will look to (i) integrate prior envi-
ronmental knowledge (if existing) to themap estimationmod-
ule by fusing a GP model trained with data from previous IG
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missions, and (ii) test the AVIG framework on deeper regions
using USBL positioning and acoustic communications.
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