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ABSTRACT As a non-contact measurement technology with high data acquisition efficiency, photogram-
metry is an ideal choice for collecting the data needed in the safety evaluation of port hoisting machinery.
However, the radius fitting result accuracy cannot meet the requirements of safety assessment due to
the limitation of the port crane itself and the working environment characteristics, when the existing
photogrammetry method is used to measure the rotary body structure represented by the portal crane
slewing mechanism. In order to solve this problem, an iterative optimization algorithm for weighted radius
prediction for the photogrammetry of the slewing mechanism of port hoisting machinery is proposed in
this paper. First, the algorithm uses the generalized multi-line rendezvous model to transform the radius
fitting problem into the multi-line intersection point prediction problem, which lays a theoretical basis for
the subsequent algorithm implementation. Second, by introducing aweighting algorithm based on the camera
optical distortion model, the algorithm optimizes the accuracy of radius fitting results. In addition, through
the quantitative evaluation method of fitting accuracy based on weighted algorithm, the algorithm also
establishes a set of iterative rules to balance the accuracy of measurement results and the execution efficiency
of the algorithm. Finally, this paper designs theoretical verification tests and simulation engineering tests
based on the characteristics of the algorithm and the engineering practice of port hoisting machinery
photogrammetry. The experimental results demonstrate that the algorithm described in this paper can
significantly improve the accuracy of radius fitting results when the data quantity is small and the data
quality is poor compared with the traditional algorithm.

INDEX TERMS Port hoisting machinery, rotary body structure, radius, weighting, iteration.

I. INTRODUCTION
Port hoisting machinery represented by quayside container
crane, portal crane and gantry container crane is a kind
of typical high-risk special equipment [1], [2]. Due to the
frequent accidents and serious consequences, it is of great
significance to study the safety monitoring methods for such
equipment [3], [4].
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As a non-contact measuring method with high data
acquisition efficiency and excellent automation, photogram-
metry is an ideal technical solution for port hoisting
machinery safety monitoring. However, the application of
photogrammetry in the field of port hoistingmachinery safety
monitoring has always been limited by the complex working
environment of the port, which makes it impossible to get
photos taken at reasonable distance and angle and with
high background discrimination, resulting in unsatisfactory
accuracy of measurement results calculated by traditional
algorithm [5]–[7]. In order to solve this problem, the author
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and his team members put forward ‘‘a weighted intersection
point prediction algorithm for photogrammetry of port hoist-
ing machinery’’ based on the multi-line intersection points
characteristics of key points of port hoisting machinery [8].
By weighting intersection lines based on optical distortion,
the method realizes the principle of high-precision prediction
of key points and significantly improves the measurement
accuracy of key nodes of port hoisting machinery. However,
the object of measurement in this method is box structure
represented by front girder of quayside container crane and
main girder of gantry container crane, which cannot serve
the rotary body structure such as the column and slewing
mechanism of the portal crane.

As a type of crane widely used in port frontline, it is
of great significance to conduct safety research on portal
crane [9]. This model is listed as one of the key research
objects, in Key Technologies Research and Equipment Devel-
opment for Risk Prevention and Control and Governance
of Mechanical and Electrical Special Equipment (Project
No. 2017YFC0805703), which is the national key R&D
program of the Ministry of Technology of the People’s
Republic of China. In order to achieve high-precision
photogrammetry of portal crane, this paper has carried out
research on the optimization method of photogrammetric
accuracy of revolving body structure, and proposed ‘‘an
iterative optimization algorithm for weighted radius predic-
tion for photogrammetry of port hoisting machinery slewing
structure’’.

By utilizing the feature that the perpendicular lines
intersect at the center of the circle in the chordae of the circle,
the roundness error caused by the measurement error at each
point of the circle during the actual measurement is converted
into a non-strict intersection of the mid-perpendicular lines,
so that the measuring accuracy of the radius calculated by
adjustment of the circle center coordinate and the circle center
coordinate can be optimized by the multi-line intersection
point prediction model.

The algorithm uses the characteristic that the perpendicular
bisector of each chord around the circle intersects at the
center of the circle, and converts the roundness error caused
by the measurement error of each point of the circle in the
actual measurement process into the non-strict intersection
of the mid-vertical line. This paper optimizes the circle
center coordinates through the multi-line intersection point
prediction model and the measurement accuracy of the radius
obtained by the adjustment calculation based on the circle
center coordinates [8].On this basis, considering the different
measurement errors caused by optical distortion at each point
of the image plane, a weighted model for predicting and
calculating the multi-line intersection point at the center
of the circle is proposed, which realizes the quantitative
description of the error introduced by optical distortion
and further improves the measurement accuracy. Finally,
the algorithm establishes a set of iteration rules based on
the quantitative evaluation method of the fitting accuracy of
weighted algorithm, which realizes the balance between the

FIGURE 1. Schematic diagram of multi-line intersection principle.

precision of measurement results and the execution efficiency
of the algorithm.

The rest of this paper is arranged as follows: Section II
describes the details of the algorithm and the implementation
process. In the third section, according to the character-
istics of the algorithm, indoor and outdoor experiments
are set up, corresponding to the cylinder model and
the portal crane model, respectively. The test results in
Section III are analyzed and discussed in Section IV. Finally,
in Section V, the conclusions and prospects of this paper are
given.

II. METHODOLOGY
A. GENERALIZED MULTILINE INTERSECTION PRINCIPLE
As shown in Fig. 1, in the paper ‘‘A weighting intersection
point prediction iteration optimization algorithm used in
photogrammetry for port hoisting mechanism’’ published by
the author before, point i is taken as an example to show that
the key joint of port hoisting machinery structure belongs
to the characteristics of multi-line intersection point. The
straight line lab, lcd , lef determined by points a, b, c, d ,
e and f are introduced as the positioning basis of point i,
and the phenomenon that the spatial straight lines la′b′ , lc′d ′ ,
le′f ′ restored by the actual measurement results cannot meet
at the same point due to the existence of errors are used.
By weighting the distance d1, d2, d3 from the predicted
intersection point i (TPPOI) to each intersection line in the
solution model (TEWIPPA), the quantified weighting of the
observed data is realized based on the size of the theoretical
optical distortion of each point while introducing redundant
observation data, and a relatively ideal precision optimization
effect is obtained [8].

However, this method does not apply to the safety
evaluation research of the rotary body structure represented
by the slewing mechanism of portal crane as shown in Fig. 2,
because this method requires the measured object to have
a regular shape with obvious edge line characteristics.
In order to introduce redundant observation data and improve
measurement accuracy byweighted adjustment operation, the
measuring principle shown in Fig. 3 is adopted in this paper,
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FIGURE 2. Schematic diagram of slewing mechanism.

FIGURE 3. Fitting principle of circle center and radius.

which transforms the rotary body structure into a generalized
multi-line intersection structure.

The main data to be obtained by measuring the rotary body
structure are the coordinates of the center of the circle of
each circular section and the corresponding radius parameters
of the section. As shown in Fig. 3, based on the principle
that the perpendicular bisector of any two points on a circle
must pass through the center of the circle, by measuring the
points A, B, C , and D on the same circle section, the position
of the center point O can be determined according to the
intersection of the vertical lines lAB, lBC , lCD, and the radius
can be calculated. Therefore, when the radius parameters
are measured, the rotary body can also be regarded as a
generalized multi-line intersection structure.

B. EQUAL WEIGHT RADIUS PREDICTION OF ROTARY
BODY STRUCTURE
The measurement method described in Section generalized
multiline intersection principle is based on the geometric
feature that the perpendicular bisector of each pair of feature

FIGURE 4. The intersection of perpendiculars during the actual
measurement.

FIGURE 5. Schematic diagram of circle center prediction principle.

points must pass through the center of the circle. However,
due to inevitable measurement errors, the perfect intersection
of the perpendicular bisector shown in Fig. 3 at the same point
will hardly occur in the actual measurement process, but will
appear as a non-strict intersection state as shown in Fig. 4.

As shown in Fig. 4, point a, point b, point c and point d are
respectively object points restored from the measured values
of point A, point B, point C and point D in Fig. 3 and the
perpendicular bisector lab, lbc, lcd of them cannot intersect
at the same point due to the existence of measurement
errors. Therefore, according to the idea of establishing the
predictive intersection point solution model (TEWIPPA) [8],
the center O can be obtained according to the principle
shown in Fig. 5 in the actual measurement the principle
shown in Fig. 5 in the actual measurement process. Find the
minimum point o of the distance d1, d2, d3 sum of three
straight lines lab, lbc, lcd in object square space, and use point
o as the prediction point of the circle center O. Because d1,
d2, d3 can be used to measure the confidence level of the
perpendicular bisector lab, lbc, lcd [10], weighted adjustment
can be carried out based on d1, d2, d3 to improve the accuracy
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FIGURE 6. Prediction algorithm of equal weight rotary radius.

of measurement results, in the process of radius fitting. Since
the prediction of point O is based on the same confidence
of straight lines, we call this algorithm prediction algorithm
of equal weight rotary body. The flow of the algorithm is as
follows:

In order to ensure the execution efficiency of the algorithm,
the algorithm described in this paper only uses the perpendic-
ular bisector between adjacent points for solution. Details of
the prediction algorithm of equal weight rotary radius are as
follows.

1) SPACE PLANE FITTING ALGORITHM
Set: The object square coordinates of each characteristic point
used to fit the center and radius of the circle are respectively:
(XWi,YWi,ZWi), where i is the number of characteristic points.
In subsequent sections of the paper, we call them fitting
points. In order to facilitate the solution, let the space plane
equation fitted by each feature point be A ·X+B ·Y +C ·Z+
D = 0, then according to the coplanar constraint condition,
formula 1 can be obtained as shown at the bottom of the page.

According to this formula, the solution of space plane
equation A · X + B · Y + C · Z + D = 0 can be completed.

2) ALGORITHM FOR SOLVING PERPENDICULAR BISECTOR
In the traditional space circle fitting algorithm, after complet-
ing the fitting of the space plane where each point is used for
the solution, the spherical equation (X−a)2+(Y−b)2+(Z−
c)2−R2 = 0 with the equal radius of the space circle and the
center O as the spherical center needs to be solved according
to the distance constraints, as shown in formula 2 as shown at
the bottom of the page.

The expression of the space circle can be obtained by
simultaneous solution of spherical equation (X − a)2 + (Y −
b)2+ (Z − c)2−R2 = 0 and space plane equation A ·X +B ·
Y + C · Z + D = 0 from formula 1.

Since only simple data fitting is used, a large number of
space point data is required to ensure the accuracy of tradi-
tional algorithm. In the slewing mechanism of port hoisting
machinery, the cross-section between slewing mechanism
and other structures is usually selected for measuring the
radius of section, but such interface is generally higher off
the ground and there are no climbing facilities around it.

Therefore, due to safety considerations, it is difficult to
set manual measuring marks on the surface of the mea-
sured object according to the traditional photogrammetric
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method in the actual operation of port hoisting machinery
photogrammetric work. Themeasurement can only be carried
out according to the characteristic points of the port hoisting
machinery itself represented by the intersection of stiffener
and slewing mechanism boundary. This method makes the
number of measuring points extremely limited, often no
more than 10, which results in that the solution accuracy of
traditional algorithm is difficult to meet the requirements of
port hoisting machinery measurement work.

In order to improve the accuracy of the measurement
results as much as possible, the spatial circle fitting of the
algorithm described in this section is based on the principle
of intersection point of the perpendicular bisector. Solving
the expression of the perpendicular bisector connecting
each object point of the fitting circle is the basis of this
method. Taking the solution of the perpendicular bisector lab
in Fig. 4 as an example, the solution algorithm used in this
paper is as follows:

Set: The parametric equation of the perpendicular bisector
lab is

X−XA
m +

Y−YA
n +

Z−ZA
p = t; The coordinate of the object

space of point a and point b are (Xa,Ya,Za) and (Xb,Yb,Zb).
Since the point h1, which is the plumb foot of the perpen-

dicular bisector, is theoretically very close to the spatial plane
fitted by the algorithm described in Section space plane fitting
algorithm, it can be approximately considered that the point
is above the plane. According to the characteristic that the
straight line lab is perpendicular to the line connecting points
a and b and the straight line lab is located on the fitting space
plane, the parameters in the lab straight line equation should
satisfy the following conditions:[
m n p

]
=
[
XA − XB YA − YB ZA − ZB

]
⊗

[
XA + XB

2
YA + YB

2
ZA + ZB

2

]
(3)

According to formula 3, the values of m, n and p can be
solved.

3) CIRCLE CENTER PREDICTION ALGORITHM
To carry out the forecasting calculation of the center of
circle, the distance between the center of circle and the
perpendicular bisector must be calculated. We named this
calculation model as the circle center - vertical foot distance
solution model.

Definition 1: Circle center-vertical foot distance solution
model (DYD)

Set: The object square coordinate of the center of a circle is
(Xo,Yo,Zo); The relevant parameters of each perpendicular
bisector equation calculated by the algorithm described in
Section algorithm for solving perpendicular bisector are
mg, ng, pg, where g = 1, 2, . . . , i − 1; And the object
square coordinates of the fitting points corresponding to each
perpendicular bisector are

(
Xg,Yg,Zg

)
,
(
Xg+1,Yg+1,Zg+1

)
.

According to the solution formula of distance from the
space point to the straight line, the circle center-vertical foot
distance solution model (DYD) is shown in formula 4, as
shown at the bottom of the page.

The (Xo,Yo,Zo) corresponding to the minimum value
DYDmin of formula 4 is the prediction result of the center
of circle. We call this point in the object square coordinate
system equal weight forecasting center Om.

4) RADIUS WEIGHTED ADJUSTMENT ALGORITHM
Due to the existence of measurement error, the distance
between the equal weight prediction center om and each
fitting point, that is, the corresponding solution radius of
each fitting point, is not the same. In order to increase the
accuracy of radius measurement results as much as possible,
it is necessary to adjust these data.

Since the measurement errors of each fitting point must
be different, it is obviously unreasonable to simply average
the calculated radius corresponding to each fitting point.
As mentioned above, the distance ddg between the center om
of the equal weight forecast and the perpendicular bisector
is inversely proportional to the reliability of the fitting point
corresponding to the perpendicular bisector. Therefore, ddg
can be used as a quantitative evaluation standard for the
confidence level of the solution radius corresponding to each
fitting point. According to the circle center-vertical foot
distance solution model, the calculation formula of ddm is as
follows (5), shown at the bottom of the next page.

After normalization, the corresponding solution radius of
the fitting points constituting each perpendicular bisector
in the weighted adjustment algorithm corresponds to the
weight QOg.
According to the weight calculation method described in

formula 6, as shown at the bottom of the next page, the
weight adjustment algorithm formula of radius of rotary

DYD =
i−1∑
g=1



{
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[
mg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
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)
m2
g + n2g + pg2

+ Xg

]}2

+

{
Yo −

[
ng ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Yg

]}2

+

{
Zo −

[
pg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Zg

]}2
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1
2

(4)
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body is shown in formula 7, as shown at the bottom of
the page.

It can be seen from definition 1 that the circle center-
vertical foot distance solution model (DYD) is established
based on the fact that the perpendicular bisector involved in
the center prediction have the same weight coefficient.

Therefore, the algorithm described in this section is called
equal weight radius prediction of rotary body structure.

C. WEIGHTED RADIUS PREDICTION OF ROTARY
BODY STRUCTURE
1) WEIGHTED RADIUS PREDICTION OF ROTARY
BODY STRUCTURE
The fitting points are used to determine each perpendicular
bisector in the actual measurement process, but the mea-
surement errors contained in the fitting points are different.
Therefore, there is still room for improvement in the accuracy
of the center of circle predicted according to the circle
center-vertical foot distance solution model adopted by
equal weight radius prediction algorithm of rotary body
structure.

In order to give a more objective and scientific description
of the intersection of each perpendicular bisector in the actual

measurement process, so as to improve the accuracy of the
prediction results of the center of circle, the weighted radius
prediction algorithm of the rotary body structure described in
this section improves the circle center-vertical foot distance
solution model (DYD), and a weighted circle center-vertical
foot distance solution model (QDYD) is formed.
Definition 2:Weighted circle center-vertical foot distance

solution model (QDYD).
Set: The weight corresponding to each perpendicular

bisector in the solution model is QLg, then the weighted
circle center-vertical foot distance solution model (QDYD) is
shown in formula 8, as shown at the bottom of the next page.

In formula 8, the weight coefficients of each perpendicular
bisector are calculated as follows.

2) QDYD CALCULATION METHOD OF WEIGHT COEFFICIENT
The same idea as the weighting algorithm described in the
paper ‘‘A weighting intersection point prediction iteration
optimization algorithm used in photogrammetry for port
hoisting machinery’’ [8] the measurement errors at each
fitting point can be quantitatively evaluated based on the
camera optical distortion model.

ddg =
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+

√(
X0 − Xg+1

)2
+
(
Y0 − Yg+1

)2
+
(
Z0 − Zg+1

)2
2

(7)

140402 VOLUME 9, 2021



E. Lu et al.: Weighting Radius Prediction Iteration Optimization Algorithm

FIGURE 7. Schematic diagram of calculation model for weight coefficient
QDYD.

The distance between the center of circle predicted by
fitting points and the true center of circle can intuitively
reflect the errors contained in the prediction results, and it
is the best scale for calculation QLg. In this section, we will
discuss the distance between the predicted center based on
the optical distortion model and the real center, and on this
basis, we will calculate the method of QLg.
Since optical distortion model is used as the calculation

datum of weighting coefficient, the calculation method of
weighting coefficient QDYD is carried out in each phase
plane coordinate system. The principle of this method is
shown in Fig. 7, taking the calculation process of the weight
coefficient of the perpendicular bisector lAB in Fig. 3 as an
example.

Fig. 7 shows the image plane coordinate system of a
certain measurement photograph, in this coordinate system:
Points A and B are theoretical image points which do not
include optical distortion error in the image plane; Points
a and b are true image points containing optical distortion
errors; Point o1 is the theoretical image points of the center
coordinate and point o2 is the real image point containing
optical distortion. Point o1 and point o2, as mentioned above,
are not real image points, in which point o2 is the equal weight
forecasting center calculated by the algorithm described in
Section weighted radius prediction of rotary body structure.
PointsH1 o1 andH2 are the projection points of the vertical
foot of the perpendicular bisector in space. According to the
principle of invariant projection geometry proportion, they
are the midpoints of the connecting lines of point A and
Point B and the connecting lines of point a and point b
respectively.

Set: the square coordinate of point o2 to (Xo2,Yo2,Zo2).
According to the projection formula of space point and

image point, the image plane coordinate (xo2, yo2) of point
o2 can be obtained, as shown in formula 9.

x02 = −f

·
a1 (Xo2 − X0)+ b1 (Yo2 − Y0)+ c1 (Zo2 − Z0)
a3 (Xo2 − X0)+ b3 (Yo2 − Y0)+ c3 (Zo2 − Z0)

−1x

y02 = −f

·
a2 (Xo2 − X0)+ b2 (Yo2 − Y0)+ c2 (Zo2 − Z0)
a3 (Xo2 − X0)+ b3 (Yo2 − Y0)+ c3 (Zo2 − Z0)

−1y

(9)

where
a1 = cosϕ cos κ − sinϕ sinω sin κ;
a2 = − cosϕ sin κ − sinϕ sinω cos κ;
a3 = − sinϕ cosω;
b1 = cosω sin κ;
b2 = cosω cos κ;
b3 = − sinω;
c1 = sinϕ cos κ + cosϕ sinω sin κ;
c2 = − sinϕ sin κ + cosϕ sinω cos κ;
c3 = cosϕ cosω;
(X0,Y0,Z0) is the coordinate of the photographic center

corresponding to the image plane; f , ϕ, ω, κ 1x and 1y are
the parameter obtained by camera calibration.
Definition 3: Camera optical distortion model.
As the optical lens of measuring camera inevitably suffers

from processing and assembly errors in the production
process, the photographs taken by measuring camera must
inevitably produce optical distortion in theory [11], [12].
Optical distortion will seriously interfere with the accuracy of
the photogrammetric system. Therefore, in order to improve
the accuracy of the photogrammetric measurement results,
the optical distortion of the measuring camera must be
corrected.

According to the research of RICOLFE-VIALA C
[13]–[17], the camera optical distortion model, that is,
the offset of image point in image plane coordinate system
caused by optical distortion is shown in formula 10 and
formula 11 at the bottom of the next page.
where
δx , δy, are the value of the results of the non-linear

distortion synthesis in the x-axis and y-axis direction of the
image plane coordinate system respectively;

QDYD =
i−1∑
ε=1

QLg ·



{
Xo −

[
mg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Xg

]}2

+

{
Yo −

[
ng ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Yg

]}2

+

{
Zo −

[
pg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Zg

]}2



1
2

(8)
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δjx , δjy are the radial distortion parameter in the direction
of x-axis and y-axis in the image plane coordinate system
respectively;
δlx , δly are the eccentric distortion parameter in the

direction of x-axis and y-axis in the image plane coordinate
system respectively;
δbx , δby are the thin prism distortion parameters in the

direction of x-axis and y-axis in the image plane coordinate
system respectively;
k1, k2 is the radial distortion parameter;
q1, q2 are eccentric distortion parameters;
S1, S2 are the distortion parameters of the thin prism.
Due to the high cost of accurate camera calibration, the port

front line does not have the conditions for accurate calibration
of camera distortion parameters due to the pressure of
cost control, and the approximate values of the relevant
parameters can only be measured by a simple calibration
method. Therefore, the effect of error correction directly
based on optical distortion model is not obvious. However,
the δx , δy calculated according to the parameters obtained by
simple calibration method can intuitively and quantitatively
reflect the size of position deviation of image points caused
by optical distortion of lens to a certain extent.

In this paper, these parameters will be given a new function:
calculating weights [18].

As shown in Fig. 7, according to the algorithm described
in Section qdyd calculation method of weight coefficient,
the image plane coordinate (xA, yA) of point A can be
calculated from the image plane coordinate (xa, ya) of point
a, as shown in formula 12 and formula 13 at the bottom of
the page.

Based on the same principle, the image plane coordinate
(xB, yB) of point B can be calculated from the image plane
coordinate (xb, yb) of point b.
In Fig. 7, since the image point offsets |

−→
aA| and |

−→
Bb|

caused by optical distortion are very small relative to the
distance |

−→
AB| between point A and point B and the distance

|
−→
ab| between point a and point b, it can be approximately
considered that the straight line lH1o1 passes through point
h1, and

∣∣∣−−→H1o1
∣∣∣ ≈ ∣∣∣−−→H1o2

∣∣∣ ≈ ∣∣∣−−→h1o2∣∣∣. According to this
principle, the calculation model for weight coefficient QDYD
in Fig. 7 can be transformed into the simplified calculation
model for weight coefficient QDYD shown in Fig. 8.

Based on the calculated coordinates of each point and the
simplified calculation model for weight coefficient QDYD,

FIGURE 8. Schematic diagram of simplified calculation model for weight
coefficient QDYD.

the distance calculation formula of point o1 and point o2 is
shown in formula 14.

∣∣−−→o1o2∣∣ = 2 ·
∣∣∣−−→h1o2∣∣∣ · sin

1
2
· arccos

 −−→H1h1 ·
−−→
h1O2∣∣∣−−→H1h1

∣∣∣ · ∣∣∣−−→h1o2∣∣∣

(14)

Set: According to the position of each point group on each
measurement photo,

∣∣−−→o1o2∣∣ calculated according to formula
14 is DOOgt , t = 1, 2, . . . , p, and p is the number of
measurement photos.

After normalization, the calculation formula of the weight
coefficient q of each perpendicular bisector is:

According to the algorithm described in formula 15,
the weighted circle center-vertical foot distance solution
model QDYD described in Definition 2 can be completed.

The weighted circle center-vertical foot distance solution
model DYD in the equal weight radius prediction algorithm
of rotary body structure is replaced by QLg, which is the
weighted radius prediction algorithm of rotary body structure.

D. ITERATIVE ALGORITHM FOR WEIGHTED PREDICTION
OF RADIUS OF ROTARY BODY
The object coordinate of the predicted circle center o
is derived from the result of equal weight circle center
prediction. If the center result of the weighted prediction
algorithm of radius of rotary body is used as the solution basis
and iterative operation is carried out, the iterative algorithm
for weighted prediction of radius of rotary body as shown in
Fig. 9 can be formed. The purpose of setting up this algorithm
includes:

1. The accuracy of the measurement results of the weighted
prediction algorithm of radius of rotary body is further
optimized;

δx = δjx + δlx + δbx = k1x
(
x2 + y2

)
+

[
q1
(
3x2 + y2

)
+ 2q2xy

]
+ s1

(
x2 + y2

)
(10)

δy = δjy + δly + δby = k2y
(
x2 + y2

)
+

[
q2
(
3x2 + y2

)
+ 2q1xy

]
+ s2

(
x2 + y2

)
(11)

xA = xa −
{
k1xa

(
x2a + y

2
a

)
+

[
q1
(
3x2a + y

2
a

)
+ 2q2xaya

]
+ s1

(
x2a + y

2
a

)}
(12)

yA = ya −
{
k2ya

(
x2a + y

2
a

)
+

[
q2
(
3x2a + y

2
a

)
+ 2q1xaya

]
+ s2

(
x2a + y

2
a

)}
(13)
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FIGURE 9. Flow chart of iterative algorithm for weighted prediction of
radius of rotary body.

2. While improving the accuracy of measurement
results, it also balances the execution efficiency of the
algorithm.

In order to achieve the above objectives, a decision
threshold YZRD should be set for the weighted circle center-
vertical foot distance solution model QDYD, which can
quantify the accuracy of the calculation results. If the
following conditions are met, the accuracy of the solution
results can be considered as meeting the requirements,
then the iteration can be terminated and the results can be
output.

As shown in Fig. 9, the maximum number of iterations
n can be set during the actual measurement process. When
the number of iterations reaches the upper limit and the

FIGURE 10. Verification test step diagram.

measurement result still does not meet the criterion of
formula 16, as shown at the bottom of the page, the iteration
data corresponding to the minimum value of the weighted
circle center-vertical foot distance solution model QDYD can
be output as the solution result.

QLg =

( p∑
t=1

DOOgt

)−1
i−1∑
g=1

( p∑
t=1

DOOgt

)−1 (15)

III. CASE STUDY
In order to verify the actual accuracy correction effect of the
algorithm described in Section II, this paper designed the
verification test as shown in Fig. 10. The procedure of this
test is as follows:

1. Preparatory phase: In this stage, a test fields will be
built for principle verification model and engineering test
prototype respectively, and test photos will be collected.
In addition, in this stage, the existing simple calibration
method and the patent method held by the author will be used
to complete the calibration of the internal parameter matrix of
the test camera;

2. Traditional algorithm solution stage: According to the
forward intersection solution results of the classical pho-
togrammetric method [19] the traditional algorithm [20]–[22]
was used to solve the fitting radius of the test object based on
the fitting principle of space circle;

3. Equal weight radius prediction stage: Solve the
equal weight prediction radius according to the prediction

i−1∑
g=1

QLg ·



{
Xo −

[
mg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + n2g + p2g

+ Xg

]}2

+

{
Yo −

[
ng ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
m2
g + ng2 + pg2

+ Yg

]}2

+

{
Zo −

[
pg ·

mg ·
(
Xo − Xg

)
+ ng ·

(
Yo − Yg

)
+ pg ·

(
Zo − Zg

)
mg2 + n2g + pg2

+ Zg

]}2



1
2

≤ YZRD (16)
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algorithm of prediction radius of rotary body described
in Section equal weight radius prediction of rotary body
structure;

4. Weighted radius prediction stage: Based on the cal-
culation results of equal weight radius prediction stage,
the weighted prediction radius is calculated according to
the weighted prediction iteration algorithm of rotary body
radius described in Section iterative algorithm for weighted
prediction of radius of rotary body.

By comparing the measurement errors of the traditional
algorithm’s fitting radius, the equal-weight prediction radius
and the weighted prediction radius, the correction effect of
the algorithm described in this paper can be scientifically
evaluated.

In addition, in order to fully test the theoretical execution
effect of the algorithm and the actual engineering application
effect, according to the test step shown in Fig. 10, this
paper sets two sets of parallel tests for different test objects:

1. Principle verification test:
Based on the principle verification model, the experiment

is carried out in the laboratory to verify the implementation
effect of the algorithm in the ideal state;

2. Simulation engineering test:
Based on the engineering verification prototype, the test

is carried out in the outdoor test field to verify the real
application effect of the algorithm proposed in this paper
when measuring the large-scale port hoisting machinery in
the actual engineering application environment.

A. PREPARATION STAGE
1) SET UP THE TEST SITE
The test field used in the principle verification test is shown in
Fig. 11. Combined with the port hoisting machinery and the
algorithm characteristics described in this paper, the principle
verification model has the following characteristics:

1. It has the characteristic structure of the revolving body,
and there are a certain number of feature points on the
edge of the revolving body, which can be used to simulate
the circumferential structure characteristics of the slewing
mechanism in the measurement operation scene of port
hoisting machinery such as stiffeners, gear tooth rings, etc;

2. The control points are set on a structure composed of
standard size squares, making the object square coordinates
easy to read;

3. The size of the revolving body used in the experiment is
accurate due to strict inspection and calibration. In this paper,
the radius of the small cylinder at the top is used to provide
support for the scientific measurement of the accuracy of the
algorithm.

In Fig. 11, points 1 to 4 are control points; point a and point
b are the intensive reading pointer point, these two points,
together with the patented algorithm proposed by the author,
can achieve the precise calibration of focal length; Points A
to D are the test points, and they will be used to calculate the
radius of the rotary body.

FIGURE 11. Schematic diagram of the principle verification model test
site.

TABLE 1. Coordinate of the object space of control point and test point of
verification test B.

In coordinate system of the object space, the object
square coordinates of each calibration point and the intensive
reading pointer point in the model test field of the principle
verification model can be read directly, because the precise
shape dimensions of calibration block and test model are
known.

The object square coordinates of each point are shown
in Table 1:

The test fields used for simulated engineering tests are
shown in Fig. 12. In order to be as close as possible to the
actual engineering, a portal crane model located in School of
Logistics Engineering of Wuhan University of Technology
is selected as the engineering test prototype in this test.
According to the test report issued by the Port Logistics
Technology and Equipment Engineering Research Center of
the Ministry of Education of the People’s Republic of China,
the diameter of the seat circle of the slewing mechanism of
this equipment is RD = 1100 (mm).

Similar to the test point setting principle of the principle
verification model, the test point setting scheme of the
engineering test prototype test field is shown in Fig. 12. In this
experiment, points 1 to 4 are the control points; points a, b are
intensive reading pointer point. In this test, four test points,
such as a bit DA- point DD, are set up to fit the seat ring
diameter RD.

In coordinate system of the object space, the coordinate
values of each calibration point and intensive reading pointer
point of the engineering test prototype test site are measured
by total station. The measurement site is shown in Fig. 13.
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FIGURE 12. Schematic diagram of test site for engineering test prototype.

FIGURE 13. Calibration site of engineering test prototype.

TABLE 2. Object square coordinates of control point and pointer point of
test object B.

In Fig. 12, the object square coordinates of each point are
shown in Table 2:

2) CALIBRATION TEST CAMERA
The camera used in this experiment was a Canon EOS 5Ds.
The technical parameters of this camera are shown in Table 3.
In order to ensure the relative stability of the focal length f
and the clarity of the photos used for calculation during the
test, when taking the photos used for calibration and the test
photos, the method of using automatic focusing mode (AF)
to complete the focusing at the nearest measuring station and
then switching to manual focusing mode (MF) to complete
the shooting is adopted.

The camera calibration tool used in this experiment is
MATLAB Camera Calibrator toolbox., which is a mature
camera calibration tool widely used for accurate results and
convenient establishment of calibration field. The calibration
results of the camera are shown in Table 4.

In the table: 1x, 1y is the deviation of the center of the
image plane coordinate system; k1, k2 is the radial distortion
parameter of the camera; q1, q2 is the eccentricity distortion

TABLE 3. Test camera parameters.

TABLE 4. Calibration results of the test camera.

TABLE 5. Camera calibration parameters based on test methods.

parameter of the camera; s1, s2 is the thin prism distortion of
the camera.

Because of the large difference in the shooting distance
between the principle verification model test ground and the
engineering test prototype test ground, the actual shooting
focal length of the principle verification model and the
engineering test prototype will be different due to the
automatic focusing operation of the camera in the actual
shooting process. The existing differences are calibrated by
the patent algorithm, which is held by the author of this paper.
Detailed values are shown in Table 5. In the table: f 1, f 2 are
the focal length calibration values of the principle verification
test and the simulation engineering test respectively.

B. TRADITIONAL ALGORITHM SOLVING STAGE
1) SELECTION OF PHOTOGRAPHIC POINTS
a: PHOTO SELECTION DATA OF THE PRINCIPLE
VERIFICATION TEST
In this paper, two photos are used to solve the problem.
According to the customary appellation of the traditional
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FIGURE 14. Left photo of principle verification test.

FIGURE 15. Right photo of principle verification test.

TABLE 6. Artificial identification results of test control points, precision
pointer points, test points of principle verification test.

algorithm, these are named left photo and right photo
respectively. The left and right photos collected in the
principle verification test are shown in Fig. 14 and Fig. 15
respectively.

In order to show the precision optimization effect of the
algorithm described in this paper as clearly as possible,
the coordinates of each control point, precision pointer point
and test point in the image plane coordinate system are
obtained by manual selection. The detailed parameters of the
selection point are shown in Table 6.

b: PHOTO SELECTION DATA OF SIMULATED
ENGINEERING TEST
Similar to the process of the principle verification test, the test
photos collected from the simulation engineering test are

FIGURE 16. Left photo of the simulated engineering test.

FIGURE 17. Right photo of the simulated engineering test.

TABLE 7. Artificial identification results of control points, precision
pointer points and test points in simulated engineering tests.

shown in Fig. 16 and Fig. 17. The image plane coordinates
obtained by manual selection are shown in Table 7.

2) SOLUTION RESULTS OF CLASSIC ALGORITHMS
In this test, the method described in Analytical Photogram-
metry [19], written by Academician Deren Li of Wuhan
University, is used to calculate the object coordinates of each
test point. This method is the most widely used algorithm
in the field of photogrammetry at present. After calculation
based on this method, the calculation results are as follows:

a: SOLUTION RESULTS OF CLASSICAL ALGORITHM OF
PRINCIPLE VERIFICATION TEST
1. The exterior orientation parameters of the left and right
photos of the principle verification test are shown in Table 8:
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TABLE 8. Calculation results of exterior orientation parameters in
principle verification test.

TABLE 9. Calculation results of classical photogrammetry algorithm in
principle verification test.

TABLE 10. Calculation results of classical space circle fitting algorithm.

2. The object square coordinates of each test point in
the principle verification test are calculated by classical
photogrammetry, as shown in Table 9:

3. The object square coordinate and radius of the center of
the circle calculated based on the classical spatial circle fitting
algorithm are shown in Table 10.

b: CLASSICAL ALGORITHM SOLUTION OF SIMULATION
ENGINEERING TEST
1. The exterior orientation parameters of the simulation
engineering test are shown in Table 11.

2. The object square coordinates of each test point
in the simulation engineering test calculated by classical
photogrammetry are shown in Table 12.

3. According to the data in Table 12, the object square
coordinate and radius of the center of the circle calculated
based on the classical spatial circle fitting algorithm are
shown in Table 13.

TABLE 11. Calculation results of exterior orientation parameters in
simulation engineering test.

TABLE 12. Calculation results of classical photogrammetric algorithm in
simulated engineering test.

TABLE 13. Calculation results of classical space circle fitting algorithm.

TABLE 14. Calculation results of equal weight space circle fitting
algorithm.

C. EQUAL WEIGHT RADIUS PREDICTION STAGE
1) EQUAL WEIGHT RADIUS PREDICTION OF PRINCIPLE
VERIFICATION TEST
According to the data in Table 9 and the prediction algorithm
of the radius of the rotating body with equal weight described
in Section Equal weight radius prediction of rotary body
structure, the object square coordinate of Od and radius Rd
of the circle obtained can be calculated. Specific values are
shown in Table 14:
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TABLE 15. Calculation results of equal weight space circle fitting
algorithm.

TABLE 16. Iteration weight of validation test B.

TABLE 17. Iteration results of validation test B.

2) EQUAL WEIGHT RADIUS PREDICTION OF SIMULATION
ENGINEERING TEST
According to the data in Table 12 and the prediction algorithm
of the radius of the rotating body with equal weight described
in Section Equal weight radius prediction of rotary body
structure, the object square coordinate of Od and radius Rd
of the circle obtained can be calculated. Specific values are
shown in Table 15

D. WEIGHTED RADIUS PREDICTION STAGE
The termination threshold set in the principle verification test
and simulation engineering test of this paper is 4 (mm), and
the maximum number of iteration steps is 10 (step).

1) WEIGHTED RADIUS PREDICTION OF PRINCIPLE
VERIFICATION TEST
Three iterations were carried out in the principle verification
test, and the weights Q1, Q2, Q3 of each perpendicular
bisector in each iteration are shown in Table 16.

In the principle verification test, the object square coordi-
nate valueOq of the weighted prediction center and the radius
value Rq of the weighted prediction obtained in each iteration
are shown in Table 17. Themeasurement result corresponding
to loop 3 is the final calculation result of verification
test B.

TABLE 18. Iteration weight of validation test B.

TABLE 19. Iteration results of validation test B.

TABLE 20. Error comparison of measurement results of principle
verification test.

2) WEIGHTED RADIUS PREDICTION OF SIMULATED
ENGINEERING TEST
Three iterations were carried out in the simulation engineer-
ing test, and the weights Q1, Q2, Q3 of each perpendicular
bisector in each iteration are shown in Table 18.

In the principle verification test, the object square coordi-
nate valueOq of the weighted prediction center and the radius
value Rq of the weighted prediction obtained in each iteration
are shown in Table 17. Themeasurement result corresponding
to loop 3 is the final calculation result of verification test B.

IV. RESULTS AND DISCUSSION
The errors of measurement results of principle verification
test and the errors of measurement results of classical
algorithm, equal weight algorithm and weighted algorithm
in simulation engineering test are shown in Table 20 and
Table 21 respectively.

The error comparison between the calculation results in
each stage of the principle verification test and the simulation
engineering test is shown in Fig. 18 and Fig. 19.

From the above comparison data, it can be seen that
the errors of settlement results of traditional algorithm,
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TABLE 21. Error comparison of measurement results of simulation
engineering test.

FIGURE 18. Comparison diagram of error in principle verification test.

FIGURE 19. Comparison diagram of error in simulated engineering test.

equal weight algorithm and weighted algorithm decreases
gradually, and the correction range is large. This shows that,
compared with the traditional algorithm, the weighted radius
prediction iterative optimization algorithm proposed in this
paper can significantly improve the accuracy of the radius
fitting results when the data volume is used to fit fewer circle
points. This is of great significance for the measurement
of the rotary body structure of the port hoisting machinery

with limited characteristic points and inconvenient manual
sticking.

V. CONCLUSION
Based on the optical distortion model and through the
simplified model described in chapter 2.3.2, the quantitative
confidence assessment of fitting data based on lens optical
distortion model is realized, and the weighted fitting method
of measuring data of center and radius is proposed based
on this theoretical basis. In order to balance the accuracy
of measurement results and the execution efficiency of the
algorithm, this paper also proposes the iterative algorithm
described in Chapter 2.4. Experiments show that the method
proposed in this paper can significantly improve the accuracy
of measurement results when the fitting data is limited.
It is of great significance to the measurement of large-
scale mechanical rotary body structure represented by port
hoisting machinery, with limited data of surface feature
points and inconvenient to set up manual mark points.
However, during the experiment, the setting of relevant
iteration parameters still comes from the operating experience
of scientific researchers, which not only has a negative impact
on the optimization of measurement results accuracy, but also
hinders the promotion of the algorithm in this paper. In the
subsequent research, the author and members of the scientific
research team will use machine learning method to explore
the two variables of the size level of the measured object and
the distance between the measuring station and the measured
object, and study their influence mechanism on the optimal
setting scheme of the iterative parameters in the iteration
method described in this paper. In this way, an automatic
setting scheme of relevant parameters is proposed, which
further improves the accuracy of measurement results and the
ease of use of the algorithm.
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