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ABSTRACT As part of the smart grid concept, different strategies specialized for power flow control in
distribution networks have been developed. One of the possible solutions to optimize the utilization of
existing capacities and increase distributed generation penetration is the implementation of Soft Open Points.
Soft Open Points are modular devices based on power electronic converters that enable closing loops in
the network without negative consequences regarding fault current propagation. Introducing the concept of
soft open points in the distribution network enables power flow control in a particular part of the network
and voltage control in the soft open point connecting nodes. The control strategy proposed in this paper
addresses the main obstacle for appropriate exploitation of soft open points, defining reference values for
control variables in the case of large-scale distribution systems. Furthermore, the proposed strategy also
deals with data unavailability problems, that is, soft open point control under communication interruption.
The proposed control algorithm incorporates centralized optimal power flow calculations and an estimation
algorithm based on a multivariate polynomial regression. The optimal power flow is used to calculate the
control variables in normal operation modes. The procedure based on multivariate polynomial regression
was used to estimate the reference values of the control variables when the optimal power flow results were
unavailable. This feature makes the proposed algorithm applicable to communication interruptions when
only limited data capture is available. The algorithm proposed in this study was implemented and tested
on a test network considering different scenarios. Conclusions and simulation results make this algorithm
applicable to an actual soft open point controller.

INDEX TERMS Distribution automation, distributed generation integration, power flow control, soft open
point, smart grid.

I. INTRODUCTION
Conventional medium-voltage distribution networks (with
rated voltage range of 3 kV to 36 kV) aremainly characterized
by a radial topology. To provide alternate supply and isolate
faults, normally open points connecting adjacent feeders are
integrated into the network [1]. Despite quite simple pro-
tection schemes, fast fault isolation, and supply restoration,
this type of topology has some drawbacks related to the
integration of distributed generators and controllable loads.
These disadvantages mainly manifest as an uncontrollable
load balance between feeders, peak currents, increased losses,
and voltage excursions [2]. On the other hand, upgrading dis-
tribution networks to the looped configuration together with
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voltage profile improvement, load balance, and improved
reliability brings a high risk of fault propagation. Closing the
loops enables the fault current to propagate over a wider area
and thus requires more complex and expensive protection
schemes [3]. Soft Open Point (SOP) can be introduced as
a compromise between two previously described concepts.
Replacing normally open points with SOPs enables the com-
bination of radial and meshed configuration benefits while
avoiding the abovementioned drawbacks.

The integration of Distributed Energy Resources (DERs)
into distribution networks brings many changes to the com-
mon control strategies of conventional distribution systems.
The penetration of DERs causes reverse power flow in the dis-
tribution systems. Thus, the efficient and appropriate use of
modern distribution networks with integrated DERs requires
appropriate control algorithms. In addition to specially
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developed control algorithms, hardware resources are
required to establish the desired power flow control in the
network. SOP can also be considered and used for this
purpose.

The implementation of SOPs in power system operation
and control purposes has already been presented in transmis-
sion networks as a back to backHVDC conversion system [4].
Improvements in power electronic devices, achieved in the
past few decades, make this concept applicable to medium-
voltage distribution networks (3–36 kV) [5]. The use of SOPs
in distribution networks enables power flow control in a par-
ticular part of the network and ensures load balance between
distribution feeders.

As the SOP realization is based on back-to-back con-
verters, the reference values of the SOP’ control variables
are required for the appropriate and efficient application of
SOPs. Many different algorithms for calculating the refer-
ence values of SOPs have been developed. Most of these
algorithms are based on Optimal Power Flow (OPF) calcu-
lations [6], [7]. Their basis consists of an optimization frame-
work that includes different SOP models, which are further
introduced into the optimal power flow calculations. This
type of algorithm considers an approach that requires many
measurements within a network. The major challenge for
such algorithms is data unavailability when OPF calculations
cannot be performed for some reason. Data unavailability
is mainly caused by different communication interruptions.
In these cases, SOP control should be based on an alternative
technique that enables the local control of the SOP. Different
algorithms have been developed to ensure the SOP operation
under communication interruptions. In [8], the algorithm
for local control of the SOP is presented based on the volt-
age and power patterns. The algorithm designed to achieve
local control of power flow through the SOP is described in
[7] and [9]. This approach, which is also tested in a real 6 kV
network, ensures voltage control in the connection nodes of
the SOP, but does not analyze its influence on the rest of
the network. A similar approach that enables local Volt/Var
control was developed in [10]–[12]. These algorithms can
be used during short communication interruptions as backup
control strategies initialized when the OPF is unavailable.

The algorithm presented in the following chapters
combines the OPF with an estimation-based control
approach.When the OPF calculation results are not available,
the developed algorithm calculates the SOP’s control vari-
ables using a data history of few significant measurements
located in particular network nodes. Each control variable
can be estimated independently using the available data
history set. This approach requires only basic mathematical
operations, which makes it simple and easy to implement.
Compared to the strategies above, designed for SOP operation
under communication interruptions, the proposed algorithm
ensures the operation of the entire distribution network using
local control of the SOP. The applicability of the developed
algorithm does not depend on the network topology or num-
ber of SOPs or DERs in the network.

The study presented in this paper contributes to the SOP
control state of art in different ways. The most impor-
tant contributions are summarized in two key points. First,
an extended control framework for distribution networks
with DGs covering the SOP operation under both normal
and communication interruption conditions is formulated and
clarified. Second, a completely novel algorithm for SOP
operation under communication interruption was developed,
implemented, and tested. The proposed algorithm is based
on a polynomial-based estimation procedure, measurements
available during communication interruption, and a data his-
tory set containing values measured over a specified period.
Thus, the control strategy presented in this paper can easily
be implemented in real cases, as a module of DMS or inde-
pendently as a local SOP controller.

The remainder of this paper is organized as follows: The
model of the SOP incorporated into the proposed control
algorithm is described in detail in Section 2. Section 3 is
dedicated to the optimization framework, which incorporates
the SOP and treats it as a control resource in the network. The
polynomial-based estimation procedure introduced to ensure
the SOP operation during communication interruptions is
described in Section 4. Section 5 presents case studies and the
results of the simulations performed to test and validate the
proposed control strategy. Finally, the conclusions and guide-
lines for further research are presented in the final section.

II. SOFT OPEN POINT MODEL
The main components of soft open point are power elec-
tronic converters, that is, configurations based on Voltage
Source Converters (VSCs) [13]. The SOP connecting an
arbitrary number (k) adjacent distribution feeders is illus-
trated in Fig. 1(a). The topology of the SOP composed of
k VSCs is shown in Fig. 1(b). The main elements of this
circuit are (i) VSCs based on insulated gate bipolar transistors
(IGBTs), which are responsible for generating the desired
voltage waveforms, and (ii) a DC capacitor, which ensures
sufficient energy buffer and reduces DC voltage ripple. VSC
terminals are further connected to the filter introduced to
filter the high harmonics and limit the short-circuit current.
The concept (SOP topology) presented in Fig.1 could be
practically implemented as additional equipment to existing
substations where distribution feeders are close to each other
(for example, addition to Ring Main Units).

The described SOP architecture is adopted owing to the
conveniences related to power/voltage control and fault iso-
lation ability. The fully controllable active power flow is a
consequence of the independent voltage waveforms of each
VSC (waveforms produced using PWM). Simultaneously,
independent voltage waveforms ensure independent reactive
power injections (supply or absorption) at the SOP termi-
nals [14]. Different control strategies can be used to achieve
Volt/Var control [15], limit voltage transients and overcurrent,
and ensure fault isolation. In this manner, using VSCs, faults
on one feeder can be isolated from adjacent feeders. The
selection of the aforementioned control strategy also depends
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FIGURE 1. k-terminal SOP: (a) illustration; (b) Circuit topology.

on the SOP’s operating mode. Different control strategies are
implemented for the normal operating mode, fault isolation,
and post-fault conditions (power supply restoration mode).

The proposed control algorithm was developed for normal
operating mode. Thus, an appropriate control strategy based
on the current control is used. This control strategy is also
known as a dual closed-loop current-controlled strategy, as it
contains twomain loops (inner and outer loop) [16]. The three
main parts of the current-controlled strategy are the outer con-
trol loop (power control), inner control loop (current control),
and phase-locked loop (PLL). Compared to other control
schemes used for VSC control (such as the voltage control
scheme [17]–[19]), the current-controlled scheme ensures
overcurrent protection, provides robustness against parameter
variations, ensures better dynamic performance, and higher
control precision [20]. These benefits make the current-
controlled scheme widely applicable to different practical
cases, which is also the reason for using such a strategy in
this study. However, the main internal loops are only briefly
stated to understand the importance and role of the reference
values of the SOP outputs focused on in this study. Detailed
mathematical relations that describe the internal SOP control
loops can be found in [21]–[24].

FIGURE 2. k-terminal SOP: power injection notations.

A. SOP MODEL IN POWER FLOW EQUATIONS
Considering the previously described control loops, a simpli-
fied block diagram of a multi-terminal SOP, which connects
an arbitrary number (k) of AC nodes presented in Fig. 2, was
adopted. According to the considerations presented in [25]
and using the notation presented in Fig. 2, the active power
flow through the SOP, which connects the k nodes in the
network, is described using (1):

k∑
h=1

(
PSOPh + PSOPh loss

)
= 0, (1)

where PSOPh denotes the active power injection from the SOP
to the network (in node h = 1, 2, . . . k) and Phloss denotes
active power losses in power electronic devices connected
in node h. Owing to independent internal control loops for
active/reactive power, DC voltage control, and SOP topology,
reactive power injections in nodes h = 1, 2, . . . k

(
QSOPh

)
are

independent. The relation between active and reactive power
injections from the SOP to the network is defined by the
thermal limitations of power electronic devices (converters):√(

PSOPh + PSOPh loss

)2
+
(
QSOPh

)2
≤ Srh; (2)

where Srh denotes the apparent power of the VSC connected
to nodes h = 1, 2, . . . , k . Equations (1) and (2) describe
the model of the multi-terminal SOP used in power flow
calculations. These equations are also used to encompass
the influence of the SOP on the network variables [26].
It should be noted that the active power losses in converters
are included in thismodel. Accuratemodeling of active power
losses in VSCs requires an independent analysis that exceeds
the scope of this study. For this reason, empirical models
of losses obtained from a series of practical experiments are
often used [15].

For the analysis and different simulations, simplified VSC
loss estimations can also be introduced. Therefore, a simpli-
fied model of losses in the power electronic devices used in
the proposed control algorithm is presented in the following
paragraph.
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B. SOFT OPEN POINT LOSSES ESTIMATION
The estimation of the active power losses in each converter
of the SOP can be implemented using the model described
by (3):

Plossesconverter = aI2 + bI + c, (3)

where I denotes the current through the converter leg (IGBT
and diode, illustrated in Fig. 1 (b)), and a, b, and c are
parameters of the switching components commonly provided
by the manufacturers. Except for this model, the linearized
model is often used as a sufficiently accurate approximation.
A linearized model of losses in a power electronic converter
can be represented as follows [27]:

Plosses = kI + c, (4)

where

k =
(
Plosses ratedconverter − c

)
/Irated , (5)

and c represents the converter losses independent of the
load of the converter. Due to the relatively slight differences
introduced by linearization, the linearized model of losses in
power electronic converters is further used in the remainder
of this paper.

In addition to losses in SOP switching components, addi-
tional losses caused by installation and environmental condi-
tions (enclosure type, cable termination, etc.) could appear.
In such cases, coefficients figuring in relation (3) and (4)
should be slightly modified to encompass these additional
heating losses. However, in most cases, losses in SOP switch-
ing components are much more dominant, so these additional
losses are mostly neglected, as is the case in this study.

III. OPTIMIZATION-BASED OPERATION OF THE SOP
Under normal operating conditions, the operation of an SOP
is based on the optimal power flow (OPF) calculations.
Therefore, the optimization framework, defined to imple-
ment OPF in a distribution network with SOP, includes the
following aspects: control variable definition, optimization
criterion, optimization constraints, and criterion functions,
that is, the mathematical expression of elements as mentioned
above.

A. CONTROL VARIABLES DEFINITION
The control variable vector consists of active and reactive
power injections in the direction adopted from the SOP to
the network. The relations between the control variables are
defined by the active power balance in the SOP and the
thermal limitations of each converter used in the SOP. These
relations, described by (1) and (2), respectively, must be
fulfilled at any moment, and their implementation in the SOP
control algorithm is mandatory.

With respect to the notation adopted in Fig. 2, in the case
of the SOP connecting a total of k distribution feeders (SOP
connecting k nodes in the network), the control variable

vector has 2k-1 elements, and it is defined as:

x =



PSOP1
...

PSOPk−1

QSOP1
...

QSOPk


. (6)

In the case of an arbitrary number (NSOP) of the SOPs in
the network, the control variable vector, as defined above,
is written for each of the SOPs in the network.

B. OPTIMIZATION CRITERIA
Different optimization criteria define different targets for the
optimization procedure. The optimization criterion is used to
rank all possible solutions that fulfill certain defined con-
straints. Two optimization criteria are commonly used in
distribution networks: the minimal active power loss criterion
and feeder load balance criterion. In the rest of the paper
and all the simulations performed, the minimal active power
loss criterion is considered. This choice does not affect the
generality of themain conclusions or optimization framework
design. Instead of this criterion, the load-balance criterion can
be used. Additionally, a hybrid criterion can be defined by
combining these two main criteria.
The minimal active power losses criterion is defined as:

min
(
Ptotalloss

)
= min

(
Pnetworkloss + PSOPlosses

)
, (7)

where both the network active power losses Pnetworkloss and
losses in the SOP converters PSOPlosses are included.

C. OPTIMIZATION CONSTRAINTS
Optimal power flow (OPF) can be treated as a nonlinear
multivariable constrained optimization procedure [28], [29].
Accordingly, constraints related to the network power flows
and SOP thermal limits must be considered.
Network constraints are the consequence of distribution

feeders/substations limits and active/reactive power balance
in the network. Therefore, these equations can be clas-
sified into two types: equality-type and inequality-type.
Active/reactive power balances define the equality-type net-
work constraints. The power balance equations can be written
using matrix notation as:[

Pinj
]
= [V ] ∗

(
[V ]T × (GTcos + B

T
sin)
)T
, (8)[

Qinj
]
= [V ] ∗

(
[V ]T × (GTsin − B

T
cos)

)T
, (9)

where ∗ and× denote elementwise andmatrix multiplication,
respectively. The vectors andmatrices introduced in the above
relation are defined as follows,

[
Pinj

]
,
[
Qinj

]
, [Gcos], [Gsin],

[Bcos], and [Bsin], as shown at the bottom of the next page,
where i, j = 1, 2, 3, . . .m denote network buses, PGi ,Q

G
i

denote active and reactive power generation connected to
node i, PLi ,Q

L
i denote active and reactive power consump-

tion, and PSOPi , QSOPi denote power injections from the SOP
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connected to node i. NotationsGij,Bij, are real and imaginary
parts of the admittance matrix element at position i,j, and
θij = θi − θj denotes the phase angle differences of voltages
in nodes i and j. Equations (8) and (9) are the fundamentals
of power flow calculations. The power balance described by
these relations must be fulfilled at any moment.

Inequality-type network constraints can be described using
equations (10) and (11):

Iij ≤ Imax
ij , (10)

Vmin
i ≤ Vi ≤ Vmax

i , (11)

where Imax
ij ,Vmin

i ,Vmax
i denote the boundary values of net-

work branch current and node voltages, respectively. Similar
to the network constraints, the constraints of the SOP are
classified into equality-type and inequality-type constraints.
The equality-type constraints of the SOP are defined by the
active power balance in the SOP described by relation (1).
The inequality-type constraints of the SOP are related to the
thermal limitations of the power electronic devices used for
SOP implementation. These constraints are described by (2).
The optimization framework presented in this chapter can be
implemented using an arbitrary optimization method. It does
not depend on the number of SOPs in the network or on the
number of ports/terminals in each of the SOPs. The choice
of the optimization method depends mainly on the desired
performance and available computing resources. To avoid
bothering this paper and considering the conclusions and
models above, the simplest case of SOP with two ports is

considered in the rest of the paper and all simulations. This
selection does not affect the applicability of the proposed
control strategy or the conclusions described in the following
sections. As could be noticed, all formulations presented in
this section are suitable for three-phase balanced systems and,
single-phase formulation is used. This choice comes from
practical reasons. Despite many unbalanced distribution net-
works, symmetrical three-phase SOP realization is common
in practical cases as their implementation is justified for eco-
nomic and feasibility reasons. Furthermore, SOPs designed
for unbalanced systems require additional expensive hard-
ware, which will enable SOPs to act as active filters and
ensure the symmetry of the considered network. Currently,
large-capacity SOPs designed for unbalanced systems, which
exceed the scope of this study, are not cost-effective, but they
will be state-of-art in the near future.

The optimization methods and power flow calculation
algorithms represent only the tools used to implement the
proposed control strategy. Accordingly, their selection did
not affect their applicability. The metaheuristic optimization
method - Grey Wolf Optimizer (GWO), is used to implement
a defined optimization framework. Except for metaheuristic
methods [6], [11], [30], classical optimization methods have
also been used [2], [31]. In this study, the metaheuristic
optimization method was chosen to avoid constraint relax-
ation necessary to implement classical optimization meth-
ods [32]. At the same time, compared to other metaheuristic
optimization algorithms, GWO retrieves results with good
performance using minimal computing resources [33].

[
Pinj

]
=


PG1 + P

SOP
1 − PL1

PG2 + P
SOP
2 − PL2
...

PGm + P
SOP
m − PLm

 ,
[
Qinj

]
=


QG1 + Q

SOP
1 − QL1

QG2 + Q
SOP
2 − QL2
...

QGm + Q
SOP
m − QLm

 ,

[Gcos] =


G11 G12 cos(θ1 − θ2) · · · G1m cos(θ1 − θm)

G21 cos(θ2 − θ1) G22 · · · G2m cos(θ2 − θm)
...

...
. . .

...

Gm1 cos(θm − θ1) Gm1 cos(θm − θ2) · · · Gmm

 ,

[Gsin] =


0 G12 sin(θ1 − θ2) · · · G1m sin(θ1 − θm)

G21 sin(θ2 − θ1) 0 · · · G2m sin(θ2 − θm)
...

...
. . .

...

Gm1 sin(θm − θ1) Gm2 sin(θm − θ2) · · · 0

 ,

[Bcos] =


B11 B12 cos(θ1 − θ2) · · · B1m cos(θ1 − θm)

B21 cos(θ2 − θ1) B22 · · · B2m cos(θ2 − θm)
...

...
. . .

...

Bm1 cos(θm − θ1) Bm2 cos(θm − θ2) · · · Bmm

 ,

[Bsin] =


0 B12 sin(θ1 − θ2) · · · B1m sin(θ1 − θm)

B21 sin(θ2 − θ1) 0 · · · B2m sin(θ2 − θm)
...

...
. . .

...

Bm1 sin(θm − θ1) Bm2 sin(θm − θ2) · · · 0

 ,

137890 VOLUME 9, 2021



D. R. Ivic, P. C. Stefanov: Extended Control Strategy for Weakly Meshed Distribution Networks

IV. THE POLYNOMIAL-BASED ESTIMATION
ALGORITHM–SOP OPERATION UNDER
COMMUNICATION INTERRUPTIONS
The SOP control could be implemented locally during the
unavailability of OPF caused by communication interruption
or any other failure in the DMS operation. This local con-
trol is based on measurements available during interruptions
and a polynomial-based estimation procedure. The estima-
tion procedure, used to achieve local control of SOP during
communication interruptions, consists of three main sub-
sequences: forming a training data set, training procedure
(i.e., calculating polynomial coefficients), and polynomial-
based estimation procedure.

A. THE TRAINING DATA SET
Before the estimation procedure is implemented, an appropri-
ate training data set must be formed. For example, to train the
control algorithm to encompass states of data unavailability,
the training data set should be formed to contain the appropri-
ate history of data obtained by the OPF in a defined period.

For this purpose, the following procedure for forming the
training data set can be used:

– Perform OPF calculations during periods of normal
operating modes of the SOP. The OPF calculation pro-
cedure considers the SOP as a control resource in the
network.

– Store the OPF data (i.e., SOP output values, active/
reactive power load/generation) for a while before the
moment of communication interruption– for example,
24 h before the consideredmoment of interruption (with
hourly sampling rate);

– Classify stored values and prepare them for further
use in the estimation procedure. This step encompasses
sorting, filtering, and storing the data in the most suit-
able manner to be quickly extracted during the estima-
tion procedure.

The complete procedure described above was based on
the power flow calculations. The network variables that
make the training data set could be measured values dur-
ing periods of the regular operation of the SOP or even-
tually estimated values in some specific virtual measure-
ments. The training data set also has to contain the weather
information related to the capturing period (cloudy period
or clear-sky period) to encompass the variations in PV plant
production. This information could be later introduced to
predict the expected estimation accuracy, define some pre-
defined estimation sequences, and improve the estimation
performance.

B. POLYNOMIAL COEFFICIENT CALCULATION -
MULTIVARIATE POLYNOMIAL REGRESSION
The optimization framework presented in the previous
section enables the calculation of the SOP control variables
using OPF. In cases of communication interruptions or cases
in which OPF results are not available for any other reason,

the estimation of the SOP control variables could be used.
For this purpose, different estimation procedures are used.
Estimation based on artificial neural networks and predic-
tive control specialized for HVDC control [35], [36] can be
adjusted and used to control the SOP. In addition, special-
ized control strategies based on fuzzy logic for distribution
networks with power electronic devices presented in [37]
can also be introduced. All the estimation strategies stated
above require a data history set for training/prediction. The
data history set contains the measured values of the particular
voltages and currents/powers within the network. Commonly,
a data history set is formed using the data retrieved from all
available metering points within the network. These values
were further sorted, filtered, and processed to represent the
network history in a defined period.

With the exception of polynomial regression, used in the
proposed approach, some related regression techniques such
as Autoregressive Moving Average (ARMA), Autoregres-
sive IntegratedMovingAverage (ARIMA), or Autoregressive
Moving Average with exogenous terms (ARMAX) could also
be considered. More details related to these estimation tech-
niques can be found in [38]–[40]. Compared to polynomial
regression, all the models mentioned above are classified as
linear signal models.

During communication interruptions, the current values
of some measurements within the network remain available
through remaining/alternate communication channels or by
manual input. Accordingly, polynomial estimation based on
these values seems to be the most suitable technique for
estimating the necessary SOP reference values. Owing to the
possibility of adjusting coefficients and the degree of vari-
ables in multivariate polynomials, polynomial-based estima-
tion is expected to track changes in the control variables and,
simultaneously, to ensure high estimation accuracy. Linear,
single-variable estimation, as the simplest form of polyno-
mial estimation, cannot estimate rapid changes in the control
variables. Therefore, this case of polynomial estimation must
be neglected.

Following the previously defined model of the SOP and
considering the estimation targets, it can be concluded that
all control variables of the SOP are independently estimated.
Thus, each control variable of the SOP is considered as
a single-output static system governed by the m variable
smooth function:

y = g(x1, x2, x3, . . . , xam). (12)

In (12), y represents the control variable of the SOP (active
and reactive power injections from the SOP to the network),
and x1, x2, . . . , xam are independent variables that determine
the system behavior. In the considered case, these variables
are some of the available network variables (node volt-
ages and/or branch currents/power flows) archived together
with the SOP output values in the training data history set.
Therefore, the relation (12) can be approximated using the
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p-th order polynomial described in [41]:

5p = β0 +

am∑
l1=1

βl1xl1 +
am∑
l1=1

am∑
l2=l1

βl1l2xl1xl2 + · · ·

+

am∑
l1=1

am∑
l2=l1

· · ·

am∑
lp=lp−1

βl1l2···lpxl1xl2 · · · xlp , (13)

where p is a non-negative integer, and β0, β1, βl1 l2, . . . ,
βl1 l2,...lp are polynomial coefficients. The multivariable
function (13) is linear with respect to the polynomial coef-
ficients, implying that Least Square Estimator (LSE) can be
used.

In the case of the existing data history of N OPF cal-
culations, that is, yi (i = 1, 2, . . . ,N ) values of the SOP
control variable and xi1, xi2, . . . , xiam values of independent
(input) variables from the training data set, considering xl1,
xl2, . . . , xlj (j = 1, 2, 3 . . .) multivariable function 5p can be
represented in vector form as follows:

Y = 82+ E, (14)

where Y =
[
y1 y2 · · · yN

]T is a vector of results (con-
sidered SOP control variable calculated by OPF), 2 =[
β0 β1 · · · βam · · · β11···11 β11···12 · · · βamam···am

]T is the
parameter vector, and E =

[
ε1 ε2 · · · εN

]T is an error vector.
8 denotes the loading matrix, which can be expressed as:

8 =


1 x11 · · · x1am · · · x

p
11 xp−111 x12 · · · x

p
1am

1 x21 · · · x2am · · · x
p
21 xp−121 x22 · · · x

p
2am

...
...

...
...

...
...

...
...

...

1 xN1 · · · xNam · · · x
p
N1 x

p−1
N1 xN2 · · · x

p
Nam

 .
In cases where the matrix 8T8 is invertible, the LSE can

be used to estimate the polynomial coefficients:

2∗ = (8T8)−18TY . (15)

In the case of large dimensions of matrix 8, QR factor-
ization can be used to avoid explicit matrix inversion [41].
In cases where matrix 8T8 is not invertible, the truncated
Least Square estimation [42], [43] can be used to estimate
the polynomial parameters.

C. ESTIMATION OF SOP’s OUTPUTS DURING
COMMUNICATION INTERRUPTION
After calculating the polynomial coefficients, all the precon-
ditions necessary to calculate the SOP outputs were fulfilled.
The outputs of the SOP during communication interruptions
can be calculated as:

y|∗ = g(x1, x2, x3, . . . , xam). (16)

where y∗ denotes the SOP output, and x1, x2, . . . , xam are
network variables (available measurements) captured after
communication interruption has occurred. Function g is a
polynomial function described by the coefficients calculated
using (15). Similar to the training data set, the available mea-
surement set contains weather information (clear or cloudy
sky), so the expected estimation accuracy range could be
calculated.

FIGURE 3. The polynomial-based estimation algorithm flowchart.

By introducing the polynomial coefficients 2∗ estimated
using relation (15), the resulting polynomial function (5∗p)
can be used to calculate the control variables of the SOP
for any new value of the considered independent (network)
variables. A flowchart of the polynomial-based estimation
procedure is presented in Fig. 3.

The implementation of the previously described procedure
on training data sets and available measurements makes a
local control algorithm that requires only basic math oper-
ations – multiplication and summation. The main obstacle
during implementation could be the decision to choose appro-
priate network variables. As this decision depends on a few
factors such as the SOP’s location, the capacity of loads in
the network, network topology, current configuration, etc.,
the choice of appropriate variables cannot be generalized.
It can only be defined by analyzing the correlation between
particular measured values in the network and using operator
experience and simulation results.

V. CASE STUDIES
A. TEST SYSTEM
To test the proposed algorithm, an SOP control strategy
was implemented and simulated in the IEEE 33 test net-
work. The detailed network parameters are presented in [36].
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To analyze the impact of DERs, a photovoltaic power plant
with a rated power of 5 MW located at node 10 of the
test system was considered. The SOP location and network
configuration are adopted, as shown in Fig. 4. The particular
choice of the number and location of the SOPs selected to
present the proposed control strategy does not affect the final
conclusions.

Distributed generators integrated into the test network are
considered to operate in the P-Q operating mode. They are
modeled as power injections in the connecting bus and are fur-
ther treated as negative loads [44]. The power electronic con-
verter parameters employed correspond to the actual devices
obtained from different vendors. The rated apparent power of
the converters was 3 MVA.

Loads in the network are modeled as an aggregated load
connected to the network nodes and classified into several
groups: residential loads (groups D1-D3), commercial loads
(group K), and industrial loads (group I). Normalized load
diagrams for each load group, together with the production
diagram of the PV plant, are presented in Fig. 5. In power
flow calculations, the load-voltage dependence was modeled
using the ZIP model. The production diagram of the PV
plant, presented in Fig. 5, is based on the incident solar radia-
tion measured at the location with geographic coordinates of
44.7866◦ N and 20.4489◦ E (Belgrade, Serbia).
As the data set necessary for the control algorithm ‘‘train-

ing,’’ the results obtained by OPF based on Grey Wolf Opti-
mizer are used. For each load/generator, the load/production
was varied up to 5% during the considered period relative to
the baseline diagrams presented in Fig. 5. A power flow algo-
rithm based on the impedance matrix [45] was introduced
as a power-flow calculation tool. SOP active power losses,
presented in Section 2, were directly introduced to the power
flow calculation algorithm, and such calculated values were
further introduced in the OPF and estimation procedures.

The boundary values of the current, representing the ther-
mal constraints of the power lines, were adopted for each line
in the network. For simulation purposes, an overload of any
line in the network was not considered. Boundary values of
voltages in the network buses are defined as: Vmin = 0.9 p.u.
andVmax = 1.05 p.u. The operation of the networkwithout an
SOP was analyzed as a benchmark for comparison. Simula-
tions implemented to validate the proposed control strategy
encompass different scenarios based on different training
and testing data sets. Different scenarios are structured and
described in the following paragraphs, depending on key
factors related to the DER, that is, PV plant production.

B. CASE STUDY 1
The first case study encompasses a scenario in which training
and testing data sets are defined based on similar periods of
PV plant production, that is, either clear or cloudy periods.
The estimation procedure was performed considering the
measurements (network variables), as listed in Table 1.

In addition to the choice of network variables, their
degree in the estimated polynomial significantly affects the

FIGURE 4. IEEE 33 test network with added SOP.

TABLE 1. Set of available network variables case study 1.

estimation quality. Therefore, all possible polynomial forms
should be considered to achieve high-quality estimation. The
degree of each network variable in the resulting polynomial
defines the number of coefficients that must be calculated.
This value is also limited by the available data history set used
to perform the estimation.

For simulation purposes, the data history set was limited
to 24h. The degree of each network variable in the resulting
polynomial form is limited to ≤3. The Root Mean Square
Error (RMSE)was used as a tool to compare different polyno-
mials. According to the simulation results, to achieve themost
accurate estimation, each SOP output was estimated using
different polynomial forms. These differences are represented
by network variables and degree levels in the resulting poly-
nomial. The estimated SOP outputs can be represented as:

PSOPl

= f (x1, x2, x7) = a7x7 + a2x2 + a27x2x7 + a1x1
+a17x1x7 + a12x1x2 + a127x1x2x7 + a11x21 + a117x

2
1x7

+a112x21x2 + a10 + a111x
3
1 ; (17)

QSOPl

= f (x4, x5, x6) = b6x6 + b66x26 + b5x5
+b56x5x6 + b566x5x26 + b55x

2
5 + b556x

2
5x6

+b4x4 + b46x4x6 + b466x4x26 + b45x4x5
+b456x4x5x6 + b455x4x25 + b0 + b555x

3
5 ; (18)

QSOPm

= f (x2, x4, x5, x6, x7) = c7x7 + c6x6 + c67x6x7 + c5x5
+c57x5x7 + c56x5x6 + c4x4 + c47x4x7 + c46x4x6
+c26x2x6 + c25x2x5 + c24x2x4
+c0 + c22x22 + c44x

2
4 + c55x

2
5 ; (19)

where a0, . . . a111, b0, . . . b555, c0, . . . c55 are real coefficients
calculated by performing a polyfit-based algorithm for each
of the SOP outputs independently. These coefficients are
updated with time, as different moments of communication
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FIGURE 5. Load/Production diagrams.

FIGURE 6. SOP output variables–case study 1.

interruption are considered, that is, for each of the considered
48 h. A graphical interpretation of the estimated SOP outputs
during the considered simulation period together with the
appropriate OPF values is presented in Fig. 6. From Fig. 6,
it can be concluded that the estimated output variables of the
SOP are very close to the corresponding values obtained by
the OPF.

The total active power losses in the network for the first
case study for 48 h are presented in Table 2 and Fig. 7.

The analysis of the simulation results presented in Table 2
and Fig. 7 can be summarized as follows:

– Total active power loss minimization is the most effi-
cient when the SOP operates using the OPF results,
that is, when there is no communication interruption.
In contrast, maximum active power losses occur in the
base case when the SOP is completely turned off.

– The active power loss reduction obtained using the
SOP control variables estimation, based on polynomial
regression, is very close to the active power loss reduc-
tion obtained using the OPF.

– Active power loss minimization, performed using
SOP control variables estimation based on polynomial
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TABLE 2. Total active power losses–case study 1.

regression, gives the best results when it is most needed,
during periodswhen the PV plant injects themost power
into the network. This feature is directly driven by
introducing the values of the PV plant power injection
in the estimation procedure. Compared to the case when
the SOP is completely turned off during communication
interruptions, the total active power losses during peak
hours of PV production (10-18h) could be decreased
by 24.44% by operating the SOP using control variable
estimation.

For comparison, Fig. 7 also shows the active power losses
in the case where the SOP uses the last known set points (OPF
values just before the communication interruption), that is,
the SOP operationwith fixed outputs. As expected, fixed SOP
outputs cannot track changes caused by power injection from
the PV plant, thus, polynomial-based estimations are a better
solution in such cases.

C. CASE STUDY 2
Considering the variations in PV plant production based
on weather variation, significant differences between the

training and testing data sets could occur. These differences
are most noticeable in the following scenarios:
• Scenario 1:When the training data set contains data cap-
tured during periods of clear sky and estimation of SOP
outputs should be performed during cloudy periods.

• Scenario 2: When the estimation shall be implemented
during clear sky periods and training data set contains
data captured during cloudy periods.

Both of the scenarios stated above encompass the case
of a significant difference between PV plant outputs in the
training and testing data sets. Similar to the first case study,
the data history set was limited to 24h, and the degree of each
network variable in the resulting polynomial form is limited
to≤3. Again, the RMSEwas used to compare the estimations
based on different polynomial forms. The SOP outputs when
the training procedure is performed during cloudy periods
and estimation is performed during clear-sky periods are
presented in Fig. 8.

Compared to the estimation results from the first case
study, the estimation of the SOP outputs, in this case,
is slightly different, especially when considering the reactive
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FIGURE 7. Simulation results: total active power losses–case study 1.

FIGURE 8. SOP output variables–case study 2, scenario 1.

powers of the SOP. These differences could be interpreted as a
direct consequence of the difference between the PV outputs
in the training and testing data sets. As the PV output (and
its influence on network variables) is significantly larger in
testing than in the training data set, the estimation procedure
is less accurate compared to the scenario analyzed in case
study 1.

The second scenario tested in this case study encompasses
cloudy periods as a testing data set and periods of clear
sky included in the training data set. The SOP outputs esti-
mated with respect to this scenario are shown in Fig. 9.
Considering the simulation results presented in Fig. 9, it can
be concluded that in this scenario, the estimation algorithm
provides better accuracy considering both active and reactive
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FIGURE 9. SOP output variables–case study 2, scenario 2.

power injections of the SOP. Furthermore, as the PV output is
larger in the training data set than in the testing data set, the
algorithm tackles the output peaks much better than in the
previous scenario.

Further estimation improvements in both scenarios ana-
lyzed above could be achieved by introducing an additional
solar irradiance parameter into the estimation procedure.
In this manner, the most suitable training data set could be
selected so that the training data capture includes the period
with irradiance values near to the value captured or estimated
during communication interruption.

In both scenarios analyzed above, the algorithm ensures
an accurate estimation of the active power injections of
the SOP. Simultaneously, the active power injections of the
SOP significantly affected the total active power losses in
the network. Thus, the total active power losses in the net-
work obtained using the SOP output estimation in both
scenarios are very close to the values obtained using the
OPF calculations. For example, the total active power losses
in the network calculated for Scenario two are presented
in Fig. 10.

Graphs presented in Fig. 10 could also be used to compare
the efficiency of the proposed polynomial-based estimation
algorithm to the simplest estimation procedure - linear esti-
mation. According to the results presented in Fig. 10, the ben-
efits of polynomial-based estimation over linear estimation
could easily be quantified. It shows up that linear estimation
is not suitable to track changes in SOP outputs, or even
worse, linear estimation in some cases leads to increased
active power losses compared to the defined benchmark (case
without SOP).

D. EFFICACY AND PERFORMANCE INDICES
The study of the efficacy and performance of the proposed
control algorithm was conducted as an additional subse-
quence of the case studies presented above.

The algorithm efficacy is investigated using a defined opti-
mization criterion, that is, total active power losses in the
network. Similar to the paragraphs above, total active power
losses in the network are compared between two cases of SOP
operation: OPF-based operation and operation based on the
proposed estimation algorithm. The maximal relative error
between the power losses in these two cases of SOP operation
was used as a index of the algorithm efficacy. The efficacy
indices of the proposed algorithm, for all scenarios described
above, are presented in Table 3.

TABLE 3. Algorithm efficacy parameters.

The values presented in Table 3 indicate satisfactory accu-
racy level of the polynomial-based estimation algorithm in
all the analyzed scenarios. As expected, the lowest accu-
racy of the proposed estimation algorithm is in the scenario
when estimation is implemented for clear-sky periods and
the training data set contains values captured during cloudy
sky. However, the accuracy achieved in this scenario (value
of relative error below 5%) is more than satisfactory for the
practical implementation of the proposed control algorithm.

Besides accuracy, the processing time is a very important
parameter for the implementation of the proposed algorithm.
The total processing time necessary to implement the pro-
posed estimation algorithm can be divided into training and
calculation times. As stated in Section 4 and presented in
the above case studies, the algorithm performance depends
on the polynomial degree. This value affects the estimation of
the SOP value and the necessary length of the data history set.

VOLUME 9, 2021 137897



D. R. Ivic, P. C. Stefanov: Extended Control Strategy for Weakly Meshed Distribution Networks

FIGURE 10. Total active power losses in the network–case study 2, scenario 2.

FIGURE 11. Algorithm processing time for different values of polynomial degree (single SOP output).

The training and calculation times of a single SOP output esti-
mation for different polynomial degree values are presented
in Fig. 11. From Fig. 11, it is evident that the calculation time,
necessary for the estimation of a single SOP output, fits into
a couple of milliseconds while appropriate training time fits
into a range from 50 to 250 milliseconds. These values are
significant for the applicability of the proposed algorithm.
As the proposed SOP control strategy is designed for real-
time implementation, the values presented in Fig. 11 indi-
cate the applicability of the proposed algorithm to real SOP
controllers. It should be emphasized that all simulations were
performed using a regular PC (i5-7300U CPU, 8GB RAM).
In real cases, the computational resources (server machines)
aremuch better, so the values presented in Fig.11 are expected
to be significantly lower.

E. DEMONSTRATION OF APPLICABILITY
AND ROBUSTNESS
The benefits of SOPs are most noticeable in large networks.
On the other hand, the implementation of SOPs in large net-
works requires amore complex communication infrastructure
for the transmission of larger data sets. Consequently, larger
networks are more susceptible to potential communication
interruptions. The proposed control strategy is designed as
an effective tool to ensure the continuous operation of SOPs
in such large-scale systems.

To demonstrate the applicability of the proposed algorithm
and test its robustness in large-scale networks, a modified
IEEE 69 buses test network is analyzed. A single-line dia-
gram of this system is presented in Fig. 12. The basic (radial)
configuration is changed by adding 2 SOPs and 3 DER.
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FIGURE 12. IEEE 69 network with SOPs and DERs added.

FIGURE 13. Total active power losses in the network–modified IEEE 69 test network.

FIGURE 14. SOP1 Output estimation modified IEEE 69 test network.

Network loads and generation from DER are modeled as
already described in Section 5.1. All other simulation param-
eters, such as the length of the data history data set, the limit
values of the polynomial degrees were also similar to those

FIGURE 15. SOP2 Output estimation modified IEEE 69 test network.

in 5.1. As expected, a larger network with multiple SOPs
and DERs required a larger set of available measurements
necessary to ensure the efficient operation of the proposed
control algorithm. The set of available measurements used
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in this case study is presented in Table 4. Simulations were
performed for all scenarios presented in 5.2. The simula-
tion results for the most expected scenario (similar radia-
tion in the data sets for training and testing) are shown in
Fig. 13. Estimated outputs of the SOPs are presented in
Fig. 14 and Fig. 15.

As can be seen from Fig. 13, the proposed control algo-
rithm shows good performance in the case of a larger network
with an increased number of SOPs and DERs integrated into
the network. Even in the worst case, when both SOPs oper-
ate using a polynomial-based estimation algorithm, the total
active power losses in the network are very close to the values
obtained during the operation of the OPF-based SOP. The
above simulation results once again confirm the wide range
of applicability of the proposed algorithm. The applicability
of the proposed control strategy does not depend directly on
the number of SOPs and DERs in the network.

VI. CONCLUSION
Introducing Soft Open Points (SOPs) into a conventional
medium-voltage distribution network brings significant ben-
efits related to the increased efficiency and operating flexi-
bility of the considered network. These benefits are the most
visible in networks with a high penetration of renewable
energy resources (distributed generators), where SOPs play
an important role in power flow control and efficient utiliza-
tion of available capacities in the network. On the other hand,
efficient operation of the SOP requires the development of
appropriate control strategies designed to ensure the opera-
tion of the SOP under normal operating conditions as well as
in cases where communication interruptions occur.

The control strategy presented in this paper encompasses
both normal operation modes when the OPF is used to
calculate the SOP control variables and operation under
communication interruption when the SOP control variables
are estimated using a polynomial-based estimation proce-
dure. In this manner, the SOP is continuously operating,
so turning the SOP off during communication interruptions
is completely avoided.

The results of simulations performed in the analyzed
case studies could serve as representative efficiency indica-
tors of the implemented control strategy. Compared to the
base case, without SOP in the network, or compared to
the cases when SOP outputs are frozen during communica-
tion interruptions, the implemented control strategy signifi-
cantly decreases the total active power losses in the network,
compensates load peaks in the network, and releases exist-
ing capacities to enable an increase in distributed generator
penetration.

The necessity of data history can be identified as a
shortcoming of the proposed control strategy. The data set,
consisting of measured values of currents, voltages, and
load/generation, is often unavailable in existing conven-
tional distribution networks. In this case, implementing the
proposed control strategy requires the first acquisition of
the necessary data set by introducing appropriate metering

points, which will be used as a basis for the polynomial
estimation of SOP outputs. On the other hand, the simplic-
ity of implementation combined with good performance is
the main advantage of the control strategy analyzed in this
study. The proposed control strategy requires a metaheuristic
optimization method to perform OPF under normal operating
conditions and applies only basic mathematical operations to
estimate the optimal SOP outputs during periods whenOPF is
unavailable. As the proposed control strategy does not depend
on the dimensions of the network, the number of SOPs in
the network, and the number of distributed generators inte-
grated into the network, it is applicable to a wide range of
existing (real) distribution networks.

The main contribution of this study is the complete control
framework covering normal and operating conditions with
communication problems. Furthermore, the presented control
strategy and appropriate simulation results are the basis for
further research in this area. As has already been empha-
sized, the choice of network variables plays a crucial role
in the estimation procedure. It has also been stated that the
desired estimation performance can be achieved using differ-
ent polynomial forms, depending on the limitations related to
the number of introduced network variables and polynomial
degrees. These topics will be within the scope of the author’s
future research focused on improving the estimation perfor-
mance and reducing the necessary data set.

REFERENCES
[1] A. J. Momoh, Electric Power Distribution, Automation, Protection, and

Control. Boca Raton, FL, USA: CRC Press, 2007.
[2] C. Wang, G. Song, P. Li, H. Ji, J. Zhao, and J. Wu, ‘‘Optimal configuration

of soft open point for active distribution network based on mixed-integer
second-order cone programming,’’ in Proc. Appl. Energy Symp. Forum,
Apr. 2016, pp. 70–75.

[3] M. A. Abdullah, A. P. Agalgaonkar, and K. M. Muttaqi, ‘‘Assessment
of energy supply and continuity of service in distribution network with
renewable distributed generation,’’ Appl. Energy, vol. 113, pp. 1015–1026,
Jan. 2014.

[4] K. V. Sood, HVDC and Facts Controllers. New York, NY, USA: Springer,
2004.

[5] J. M. Guerrero, P. C. Loh, T.-L. Lee, and M. Chandorkar, ‘‘Advanced con-
trol architectures for intelligent microgrids—Part II: Power quality, energy
storage, andAC/DCmicrogrids,’’ IEEE Trans. Ind. Electron., vol. 60, no. 4,
pp. 1263–1270, Apr. 2013.

[6] J. Flottemesch and M. Rother, ‘‘Optimized energy exchange in primary
distribution networks with DC links,’’ in Proc. IEEE Int. Conf. Electr. Util-
ity Deregulation, Restructuring Power Technol., Hong Kong, Apr. 2004,
pp. 108–116.

[7] N. Okada, ‘‘A method to determine the distributed control setting
of looping devices for active distribution systems,’’ in Proc. IEEE
Bucharest PowerTech., Bucharest, Romania, Dec. 2009, pp. 1–6, doi:
10.1109/PTC.2009.5281982.

[8] A. Marano-Marcolini, M. B. Villarejo, A. Fragkioudaki,
J. M. Maza-Ortega, E. Ramos, A. de la Villa Jaen, and C. C. Delgado,
‘‘DC link operation in smart distribution systems with communication
interruptions,’’ IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2962–2970,
Nov. 2016, doi: 10.1109/TSG.2016.2589544.

[9] N. Okada, ‘‘Verification of control method for a loop distribution sys-
tem using loop power flow controller,’’ in Proc. IEEE PES Power
Syst. Conf. Expo., Atlanta, GA, USA, Apr. 2006, pp. 2116–2123, doi:
10.1109/PSCE.2006.296271.

[10] H. Hafezi and H. Laaksonen, ‘‘Autonomous soft open point con-
trol for active distribution network voltage level management,’’ in
Proc. IEEE Milan PowerTech., Milan, Italy, Oct. 2019, pp. 1–6, doi:
10.1109/PTC.2019.8810735.

137900 VOLUME 9, 2021

http://dx.doi.org/10.1109/PTC.2009.5281982
http://dx.doi.org/10.1109/TSG.2016.2589544
http://dx.doi.org/10.1109/PSCE.2006.296271
http://dx.doi.org/10.1109/PTC.2019.8810735


D. R. Ivic, P. C. Stefanov: Extended Control Strategy for Weakly Meshed Distribution Networks

[11] P. Li, H. Ji, and H. Yu, ‘‘Combined decentralized and local voltage control
strategy of soft open points in active distribution networks,’’ Appl. Energy,
vol. 241, pp. 613–624, Oct. 2019, doi: 10.1016/j.apenergy.2019.03.031.

[12] Q. Hou, J. Zheng, and N. Dai, ‘‘Application of soft open point for
flexible interconnection of urban distribution network,’’ in Proc. IEEE
PES Asia–Pacific Power Energy Eng. Conf. (APPEEC), Macao, China,
Oct. 2019, pp. 1–5, doi: 10.1109/APPEEC45492.2019.8994697.

[13] J. M. Bloemink and T. C. Green, ‘‘Benefits of distribution-level power
electronics for supporting distributed generation growth,’’ IEEE Trans.
Power Del., vol. 28, no. 2, pp. 911–919, Apr. 2013.

[14] W. Yazdani and R. Iravani, Voltage-sourced Converters in Power Systems.
Hoboken, NJ, USA: Wiley, 2010.

[15] S. Cole, J. Beerten, and R. Belmans, ‘‘Generalized dynamic VSC MTDC
model for power system stability studies,’’ IEEE Trans. Power Syst.,
vol. 25, no. 3, pp. 1655–1662, Aug. 2010.

[16] C. L. Trujillo, D. Velasco, J. G. Guarnizo, and N. Díaz, ‘‘Design and
implementation of a VSC for interconnection with power grids, using the
method of identification the system through state space for the calculation
of controllers,’’ Appl. Energy, vol. 88, no. 9, pp. 3169–3175, Sep. 2011.

[17] N. R. Chaudhuri, R. Majumder, B. Chaudhuri, and J. Pan, ‘‘Stability
analysis of VSC MTDC grids connected to multimachine AC systems,’’
IEEE Trans. Power Del., vol. 26, no. 4, pp. 2774–2784, Oct. 2011.

[18] J. M. Espi Huerta, J. Castello-Moreno, J. R. Fischer, and R. Garcia-Gil,
‘‘A synchronous reference frame robust predictive current control for three-
phase grid-connected inverters,’’ IEEE Trans. Ind. Electron., vol. 57, no. 3,
pp. 954–962, Mar. 2010.

[19] I. J. Balaguer, Q. Lei, S. Yang, U. Supatti, and F. Z. Peng, ‘‘Control for
grid-connected and intentional islanding operations of distributed power
generation,’’ IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147–157,
Jan. 2011.

[20] L. G. B. Rolim, D. R. da Costa, and M. Aredes, ‘‘Analysis and software
implementation of a robust synchronizing PLL circuit based on the pq the-
ory,’’ IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1919–1926, Dec. 2006.

[21] E. Romero-Ramos, A. Marano-Marcolini, and J. Maza-Ortega, ‘‘Assess-
ing the loadability of active distribution networks in the presence of
DC controllable links,’’ IET Gener., Transmiss. Distrib., vol. 5, no. 11,
pp. 1105–1113, Nov. 2011.

[22] W. R. Erickson and D. Maksimovic, Fundamentals of Power Electronics.
New York, NY, USA: Springer, 2001.

[23] D. Van Hertem, J. Verboomen, R. Belmans, and W. L. Kling, ‘‘Power flow
controlling devices: An overview of their working principles and their
application range,’’ in Proc. Int. Conf. Future Power Syst., Amsterdam,
The Netherlands, 2005, pp. 16–18.

[24] F. Belloni, R. Chiumeo, C. Gandolfi, andM. Brenna, ‘‘Application of back-
to-back converters in closed-loop and meshed MV distribution grid,’’ in
Proc. AEIT Annu. Conf. From Res. Ind., Sep. 2014, pp. 1–6.

[25] W. Cao, J. Wu, N. Jenkins, C. Wang, and T. Green, ‘‘Operating principle
of soft open points for electrical distribution network operation,’’ Appl.
Energy, vol. 164, pp. 245–257, Feb. 2016.

[26] D. Sciano, A. Raza, R. Salcedo, M. Diaz-Aguilo, R. E. Uosef,
D. Czarkowski, and F. de Leon, ‘‘Evaluation of DC links on dense-load
urban distribution networks,’’ IEEE Trans. Power Del., vol. 31, no. 3,
pp. 1317–1326, Jun. 2016.

[27] B. Dokic and B. Blanusa, Power Electronics. Cham, Switzerland: Springer
2015.

[28] K. Bhattacharya, ‘‘Optimization principles: Practical applications to the
operation and markets of the electric power industry,’’ IEEE Power Energy
Mag., vol. 3, no. 6, pp. 75–76, Nov. 2005.

[29] R. Simanjorang, Y. Miura, T. Ise, S. Sugimoto, and H. Fujita, ‘‘Applica-
tion of series type BTB converter for minimizing circulating current and
balancing power transformers in loop distribution lines,’’ in Proc. Power
Convers. Conf., Nagoya, Japan, Apr. 2007, pp. 997–1004.

[30] Q. Qi, J. Wu, and C. Long, ‘‘Multi-objective operation optimization of
an electrical distribution network with soft open point,’’ Appl. Energy,
vol. 208, pp. 734–744, Dec. 2017.

[31] C. Long, J. Wu, L. Thomas, and N. Jenkins, ‘‘Optimal operation of soft
open points in medium voltage electrical distribution networks with dis-
tributed generation,’’ Appl. Energy, vol. 184, pp. 427–437, Dec. 2016.

[32] H. Ji, C. Wang, P. Li, J. Zhao, G. Song, and J. Wu, ‘‘Quantified flexibility
evaluation of soft open points to improve distributed generator penetration
in active distribution networks based on difference-of-convex program-
ming,’’ Appl. Energy, vol. 218, pp. 338–348, May 2018.

[33] E. Cuevas, E. B. Espejo, and A. C. Enriquez,Metaheuristics Algorithms in
Power Systems. Cham, Switzerland: Springer 2019.

[34] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[35] S. Li, M. Fairbank, C. Johnson, D. C. Wunsch, E. Alonso, and J. L. Proao,
‘‘Artificial neural networks for control of a grid-connected rectifier/inverter
under disturbance, dynamic and power converter switching conditions,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 738–750,
Apr. 2014.

[36] S. Mariethoz, A. Fuchs, and M. Morari, ‘‘A VSC-HVDC decentralized
model predictive control scheme for fast power tracking,’’ IEEE Trans.
Power Del., vol. 29, no. 1, pp. 462–471, Feb. 2014.

[37] A. Luo, C. Tang, Z. Shuai, J. Tang, X. Yong Xu, and D. Chen, ‘‘Fuzzy-
PI-based direct-output-voltage control strategy for the STATCOM used in
utility distribution systems,’’ IEEE Trans. Ind. Electron., vol. 56, no. 7,
pp. 2401–2411, Jul. 2009.

[38] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear
Regression Analysis. Hoboken, NJ, USA: Wiley, 2012.

[39] H. Gatignon, Statistical Analysis of Management Data, Norwell, MA,
USA: Kluwer, 2003.

[40] P. Campagnoli, S. Petrone, and G. Petris, Dynamic Linear Models With R.
New York, NY, USA: Springer-Verlag, 2009.

[41] W. D. Scott, Multivariate Density Estimation. Hoboken, NJ, USA: Wiley,
2015.

[42] T. F. Chan and P. C. Hansen, ‘‘Some applications of the rank revealing
QR factorization,’’ SIAM J. Sci. Stat. Comput., vol. 13, no. 3, pp. 727–741,
May 1992.

[43] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’ Leary, ‘‘Regular-
ization by truncated least squares,’’ SIAM J. Sci. Comput. , vol. 18, no. 4,
pp. 1223–1241, Jul. 1997.

[44] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo,
‘‘A compensation-based power flow method for weakly meshed distribu-
tion and transmission networks,’’ IEEE Trans. Power Syst., vol. 3, no. 2,
pp. 753–762, May 1988.

[45] P. Stefanov, ‘‘Weakly meshed distribution networks with distributed
generation—Power flow analysis using improved impedance matrix based
algorithm,’’ in Proc. Int. Symp. Ind. Electron., Banja Luka, Bosnia,
Nov. 2016, pp. 1–6.

DEJAN R. IVIC (Member, IEEE) received the
B.Sc. degree in electric power systems from the
Faculty of Electrical Engineering, University of
Banja Luka, Bosnia and Herzegovina, in 2015, and
theM.Sc. degree in electric power systems and net-
works from the School of Electrical Engineering,
University of Belgrade, Belgrade, Serbia, in 2016,
where he is currently pursuing the Ph.D. degree
in electric power systems and networks. His inter-
ests include power system operation optimization,

power systems automation and control (especially distribution automation),
and implementation of power electronics in power systems.

PREDRAG C. STEFANOV (Member, IEEE)
received the B.Sc., M.Sc., and Ph.D. degrees in
electrical engineering from the School of Electri-
cal Engineering, University of Belgrade, Belgrade,
Serbia, in 1988, 1995, and 2004, respectively. He is
currently an Associate Professor with the Depart-
ment of Electrical Power Systems, School of Elec-
trical Engineering, University of Belgrade.

VOLUME 9, 2021 137901

http://dx.doi.org/10.1016/j.apenergy.2019.03.031
http://dx.doi.org/10.1109/APPEEC45492.2019.8994697

