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ABSTRACT The uninterrupted operation of systems with artificial intelligence (AI) ensures high productiv-
ity and accuracy of the tasks performed. The physiological state of AI operators indicates a relationship with
an AI system failure event and can be measured through electrodermal activity. This study aims to model
the stress levels of system operators based on system trustworthiness and physiological responses during a
correct AI operation and its failure. Two groups of 18 and 19 people participated in the experiments using
two different types of software with elements of AI. The first group of participants used English proofreading
software, and the second group used drawing software as the AI tool. During the tasks, the electrodermal
activities of the participants as a stress level indicator weremeasured. Based on the results obtained, the users’
stress was determined and classified using logistic regression models with an accuracy of approximately
70%. The insights obtained can serve AI product developers in increasing the level of user trust andmanaging
the anxiety and stress levels of AI operators.

INDEX TERMS Artificial intelligence, electrodermal activity, physiological stress, stepwise regression,
system failure.

I. INTRODUCTION
According to numerous official dictionaries, artificial intel-
ligence (AI) is the capability of a machine to imitate intel-
ligent human behavior [1]. The main modern application
areas of AI are machine learning, big data, and driverless
cars [2]. Widespread adoption of AI can be attributed to the
positive perception of novel technologies and innovations by
users and customers; however, issues of user acceptance and
trust in AI technology are becoming increasingly pressing
every year [3]. Positively perceived technological character-
istics of AI improve technology acceptance and use. These
characteristics can improve the safety and performance of
AI systems. For example, human actions and movement
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recognition can be used in smart homes and automated office
AI environments to improve user comfort and safety [4], [5].
A prior study [4] elucidated this connection based on AI
environments, which could detect user actions to increase
user comfort. Subsequently, the corresponding safety issues
were analyzed, and an automatic crime detection method for
AI environments was proposed [5]. The positive impact of
this approach was supported by previously developed tech-
nology acceptance models (TAMs). Various TAMs [6]–[8]
demonstrated that personal characteristics such as usefulness,
ease of use, and behavioral intention are important factors that
influence technology acceptance and trust. Perceived useful-
ness and ease of use affect users’ intentions and how they
accept computer technologies [6]; they can also be used for
TAM development. The three-layered trust model [7] demon-
strated that operators’ trust and perceived characteristics
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differ for each AI system type. In turn, the AI trust model,
which incorporates the dynamics of trust, contextual AI use,
and influence of display characteristics, was proposed [8].
A connection between trust and stress existed when there
were AI mistakes and unreliability. This aspect was explained
through writing task performance using AI software [9], [10].
In case of AI system failures, the user’s trust gradually
decreases and their stress increases. In other words, AI errors
lead to a higher cognitive workload, mental stress, and
decreased user trust. Previous studies have shown that estab-
lishing a positive relationship between user trust and their
emotional stability during the AI system operation eased
the adoption of new products; people tend to distrust AI
products that exhibit failures during operation. This is evident
in the case of autonomous vehicles and medical equipment
because failures in these are directly related to the lives of
users. A car accident report [11] showed that more than 25
crashes were related to autonomous vehicles in California
from 2014 to 2017. In addition, it was found that proper auto-
mated system operations built trust and increased reliance
on automated technology [12]. Moreover, AI mistakes and
failures increased the cognitive workload of operators and
the mental stress of users [13], decreasing their work effi-
ciency [14]. User trust in AI technology is strongly related
to its reliability and accuracy [7]. However, as the study
indicates, it is difficult to achieve 100% accuracy, particularly
in systems with high intelligence. Moreover, in a similar
trend, users have exhibited varying degrees of sensitivity
to AI reliability depending on the level of automation. The
above studies demonstrated the importance of AI technology
acceptance by users and its connection with AI adoption and
user trust. Based on this, one of the primary objectives of cur-
rent research is to encourage adopting new innovations and
developing human trust in AI technologies using a modeling
approach.

The growth of user-perceived trust in AI is an important
issue that can be implemented in two main ways. First,
AI technology can be improved to prevent an AI failure.
Second, the user’s emotions and state of stress should be con-
sidered to protect the user from dangerous failure-related situ-
ations such as a loss of control while usingmedical equipment
with AI elements, driverless cars, and other devices. One of
the important conditions for this is the use of objective instru-
ments for stress measurements. Previous studies [15]–[17]
have reported that an accurate indicator of physiological
stress and states can be human responses, such as heart rate
and electrodermal activity (EDA). EDA produces continuous
changes in the electrical characteristics of the skin [18].
It refers to the variation of the electrical conductance of the
skin in response to sweat secretion [18]. An experimental
scheme based on EDA signals, which allowed one to recog-
nize stressful events, was proposed [15]; it was found that
the correct processing of EDA signals was the base for driv-
ing stress detection. Three psychological stress levels (low,
medium, and high) were detected [16] based on EDA signal
metrics, Fischer projection, and linear discriminant analysis.

The accuracy of the proposed methods reached the satisfac-
tory level of 81.82% and cemented the ability of the EDA
signal to characterize human emotional states. Physiological
responses obtained from sensors such as changes in heart
rate, skin conductance, and respiration were cemented as
accurate indicators of human rest and activity states [17]. The
heart rate variability metric has been proposed as the base to
predict individual human severity of congestive heart failure
using the Bayesian belief network algorithm [19]. Study [20]
showed that an EDA signal is an accurate measure of stressful
conditions. Research [21] presented methods for analyzing
EDA data to detect driver stress; it was found that EDA and
heart rate metrics are the most correlated with a state of
stress. Studies [22], [23] also supported findings that EDA
is an indicator of emotional and stressful changes in human
cognitive activity. Based on previous studies [13], [14], it can
be concluded that a failure in the operation of an artifi-
cial intelligence system impacts the user physiological state
through user stress occurrence, and user stress, in turn, can be
measured through EDA. Additionally, it was found [15]–[17]
that the main metrics characterizing human stress and its
levels are psychophysiological indicators such as EDA and
heart rate. Machine learning methods, including regression
analysis, are most commonly used to apply these metrics and
separate stress levels.

Previous studies have demonstrated several standard
approaches to assessing human emotional states and cog-
nitive processes. Research [24] discussed the prospect of
using different approaches to evaluate cognitive processes in
AI, including machine learning. They described the possi-
bility of using machine learning to increase the efficiency
of explainable AI in decision-making for the well-being of
people. Machine learning methods were discussed [25] for
data storage improvement in cloud computing and big data
systems. The layer-wise perturbation-based adversarial train-
ing method used to predict hard drive health degrees based
on different levels was proposed. Research guidelines were
proposed to assess the scope of model explanation meth-
ods [26]. During this study, the following two approaches
were adopted for predicting a learned model: linear and
sum pooling convolutional network models. Researchers and
designers have long recognized the importance of model-
ing stress and trust as significant influences on the accep-
tance and adoption of new technologies. On the basis of
the aforementioned studies [6]–[8], [16], [24]–[26], the stan-
dard approaches to evaluate cognitive processes and human
emotional states can be divided into the following five main
groups:

1) survey to measure qualitative characteristics of an AI
system;

2) regression modeling;
3) exploratory and confirmatory factor analysis including

TAM;
4) predictive modeling; and
5) advanced machine learning modeling (such as random

forests and support vector machines).
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In many studies, including the present research, user stress
based on trust in the AI system depends on the reliability
of the system and the success of the task performed. When
the task is performed successfully and the system operates
reliably, then the user’s trust is at a low-stress level and
vice versa. Research [27] reported that if a particular task
is simultaneously performed by AI and humans then, the
failure of AI may induct a higher level of mistrust even if
the human error causes more damage. In this case, the appli-
cation of AI may be further reduced. Study [28] modeled
user trust in AI and found that transparency, while the AI
system is in use, can have negative effects on operator trust.
Contradictions occur when the user has high trust in the
event of an AI system failure and vice versa. A system
calibration has been proposed as an approach to improve
the performance and interruptions when using AI tools. The
impact of trust in the adoption of AI for financial investment
services was studied [29]. A prediction regression model
of the intention of AI use was developed, including user
trust. Trust was found to be one of the variables with the
ability to significantly predict AI technology adoption. The
methodology of perceived trust evaluation in AI technology
was proposed [30]. It was found that the perceived difficulty,
perceived performance, success/failure of the task, and task
difficulty were extracted as the important predictors of per-
ceived trust in AI system use. Physiological signals (heart
rate) were studied [31] during the modeling of perceived
trust and purchase intention in the apparel business.Messages
about an apparel firm’s malevolent business practices caused
the heart rate of the users to decelerate and the perception
of the firm as untrustworthy to increase. It was found that
perceived trust has a greater impact on a participant’s overall
purchase intention for a malevolent business. The existing
literature is mainly devoted to the dependence of trust on sub-
jective assessments of perceived characteristics. Despite the
fact that previous studies have recognized the importance of
combining qualitative and quantitative approaches of analysis
and assessment of the AI user psychological state [7], [23],
it was reported that commonly adopted modeling approaches
could be related to factor analysis, development of TAMs or
separation of the subjective and objective personal scales. The
present research, by contrast, links an objective assessment
(physiological EDA signal) with user stress and AI system
trustworthiness.

The aforementioned studies demonstrated the mutual
influence between users’ trust, stress, physiological signals,
and task success. In this regard, this study investigated the
relationship between users’ physiological stress and phys-
iological signals and how a user’s trust in an AI system
depended on its reliability—level of success or failure for
each event. This helps understand how an AI user’s stress
and physiological state can be affected by a reliable or unre-
liable AI system if the performed task fails or is success-
fully completed. The proposed models also demonstrate the
ability of physiological signals (EDAs) to detect and clas-
sify the stress levels of AI users. The methods developed

in this study can be used to define the AI operator’s stress
levels. This study describes the mechanisms for building
operator trust in AI technology from the user’s perspective.
This will help to adapt the AI systems to the psychological
state of the operator and reduce the stress and fatigue of
the users during the interaction. The insights from this study
can help AI developers improve the attractiveness of their
product among users and increase trust in their technologies
throughout society. Designers can introduce our findings in
interactive systems with AI elements such as mobile phones
and apps, wristbands, wristwatches, tablets, and laptops. The
objective of this study is to understand how the perceived trust
and physiological responses of users, specifically an EDA
signal, are affected during tasks using reliable and unreliable
automation.

The present research includes two different approaches to
detect user stress when using an AI operation system based
on two experiments with AI software, which are described in
detail in the sections below. In this study, the uninterrupted
operation of AI was understood as the correct operation
of the AI system in accordance with its purpose. Correct
operation of the AI software had to occur without delay in
time and with the implementation of all intended functions.
In the case of the performed drawing experiment, AI correct
operation is recognition of the drawings and the provision
of professional versions of the sketches, and in the English
proofreading experiment, the provision of word verification
with the correct translation. The productivity and accuracy of
the tasks performed were assessed through the success and
completeness of the final result obtained in accordance with
the AI user expectations. In the case of a drawing experiment,
this is a recognized image and correctly proposed options for
sketches, and in the case of an English proofreading exper-
iment, this is correct recognition of an error in a word and
a satisfactory proposal for its replacement. A brief descrip-
tion of the general model development process (Figure 1)
contains data collection, data preprocessing, analysis, results,
and comparison of the classifiers. The data collection step
describes the collected datasets and the EDA device during
both experiments. Data preprocessing introduces the prelim-
inary data processing for each experimental set. The analy-
sis and results steps show the analysis methods used with
the main results. A comparison of the classifiers provides
a general comparison of the developed models. The model
application shows the most applicable areas of AI for the
developed methods.

II. EXPERIMENTAL FRAMEWORK
A. EXPERIMENT 1: DRAWING SOFTWARE USING AI
1) PARTICIPANTS
A total of 18 healthy students (9 males and 9 females) from
the same university with an average age of 22 years (standard
deviation of 2.1 years) participated in this study. The partic-
ipants did not have prior experience using this software and
were informed that they could discontinue the experiment at
any time.
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FIGURE 1. Development and application of the models.

2) EXPERIMENTAL SETUP
ASamsungGalaxy tablet (SM-T536; SamsungGroup, Seoul,
Korea) with a display of 10.07’’ (∼255 mm), pixels reso-
lution of 1280 × 800, and running the Android operating
system was used as the experimental equipment. The par-
ticipants used the stylus pen supplied with the tablet for
interaction with the software. The correct operation of the
devices was verified throughout the experiments. Samsung
Galaxy tablet was chosen owing to its satisfactory quality
that includes a thin and light structure, low power con-
sumption, convenient surface temperature, bright display, and
expandable storage system. These characteristics, combined
with its reasonable price, make this tablet suitable for the
experiment.

Google AutoDraw was selected as a representative AI.
AutoDraw allows drawing objects based on AI principles by
converting the user’s inaccurate and rough input sketches into
stylized drawings. Specifically, AI-based processing of the
input generates candidate drawings for the users to choose
and replace their original sketches.

3) DRAWING OBJECTS AND DIFFICULTY LEVEL
A preliminary experiment [30] was conducted to determine
the drawing objects corresponding to words and to confirm
the difficulty levels of the objects. The preliminary experi-
ment consisted of the selection of target words by five par-
ticipants who did not participate in the main experiment. The
participants drew the objects corresponding to the proposed
words using AutoDraw. The success of the task was deter-
mined from the correct recognition by the AI application.

A total of 50 words were selected using the Quick, Draw!
game (Google LLC, Mountain View, CA, USA) from dif-
ferent topics to avoid biasing. The five participants then
drew the objects corresponding to the words for up to 30 s.
If the participant and experimenter agreed that the word was
mapped onto drawings correctly, it was considered a success.

The degree of difficulty of the word was determined by the
following approach. A scale from 1 to 10 was used for
the assessment by the participants, with 1 representing the
minimum difficulty level and 10 indicating the maximum.
The success or failure of the tasks was assigned scores
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of 0.5 and 1, respectively, and multiplied by the score of each
participant. For example, the final score for ‘‘blueberry’’ was
retrieved using the equation 0.5 × 1 + 1 × 10 + 0.5 × 7 +
1 × 7 + 0.5 × 5 = 23.5, where each term corresponds to
one participant, with the left factor being the success/failure
score and the right being the subjective score. The final scores
allowed the classification of 50 words into low (score range
of 2.5 to 16.5), moderate (score range of 17 to 33), and high
(score range of 33.5 to 50) difficulties.

After classification, 18 words were selected from the
50 words to avoid redundancy, such as that between
‘‘home lamp’’ and ‘‘street lamp,’’ with varying interpre-
tations according to cultural norms and conflicting, albeit
correct, sketches of parts from larger objects. The remain-
ing words, listed in Table 1, were classified accord-
ing to their difficulty and used to conduct the main
experiment.

TABLE 1. Experimental objects to be drawn according to their difficulty
level.

4) MEASURES
An Empatica E4 wristband (EDA sensor) was used for the
physiological signal collection in this experiment. The wrist-
band [32] is a wearable andwireless device designed for com-
fortable, continuous, and real-time data acquisition in daily
life. Data from this sensor were used as an objective measure
with a sampling rate of 4 Hz throughout the tasks. In this
study, for physiological EDA signals, the features proposed
in [21] and the amplitude and duration calculated from signal
peaks and valleys were used. The signal feature extraction
process allows us to extract the following EDA characteristics
of duration (OD) and amplitude (OM): theminimum (ODMin
and OMMin), maximum (ODMax and OMMax), mean
(ODMean and OMMean), standard deviation (ODstdev and
OMstdev), summation (sum of ODsum and sum of OMsum),
and the number of occurrences of duration and amplitude
(ODN and OMN).

5) EXPERIMENTAL PROCEDURE
The 18 words (Table 1) were selected for the 18 partic-
ipants to sketch in AutoDraw. The order of the selected
words was arranged using the Latin square design. Each
participant was then asked to sketch the object correspond-
ing to the selected word. The words were not shown
to the participant in advance. While drawing, the exper-
imenter checked the success/failure, and the physiologi-
cal signal of EDA was recorded using the Empatica E4
wristband.

B. EXPERIMENT 2: ENGLISH PROOFREADING SOFTWARE
USING AI
1) PARTICIPANTS
A total of 19 native English speakers (10 females, 9 males)
participated in the experiment, with a range of 18–82 years in
age (mean = 33.6 years old; SD = 18.0). One participant’s
results were excluded due to an error in recording the EDA
signal (data showed zero). The participants had at least two
years of experience in using AutoCorrect in Microsoft Word.

2) APPARATUS
A previous program developed using Visual Studio C#
(Visual Studio 2015, Microsoft Co., USA) was applied to
conduct the experiment [10], [33]. The program included four
different auto-proofreading sessions (i.e., sessions A, B, C,
and D) [9]:
Session A: A reliable auto-proofreading condition indi-

cating a grammatical error with an underline and without
providing a suggestion (word).
Session B: A reliable auto-proofreading condition with a

correct suggestion.
Session C : An unreliable auto-proofreading condition indi-

cating a correct word with an underline and without providing
a suggestion.
Session D: An unreliable auto-proofreading condition indi-

cating a correct word with an underline and providing an
incorrect suggestion.

Sentences used for the proofreading tasks were selected
from online sentence completion test sets, for example,
the Scholastic Aptitude Test (SAT) for the easy level and
Graduate Record Examinations (GRE) for the difficulty level.
A total of 34 sentences, i.e., 17 for the easy and difficult levels
each, were chosen based on their readability scores, which
were measured using the Readability Test Tool.

The training session contains 4 sentences, the manual
proofreading session contains 10 sentences, and 20 sentences
were included for each of the 4 sessions (sessions A, B, C,
and D). The 13.5-inch laptop (Q524UQ, AsusTek Computer
Inc., USA) was used for the experiment with a screen reso-
lution of 1920 × 1080. The font type and size were Times
New Roman and between approximately 14 and 16 points,
respectively.

3) MEASURES
An Empatica E4 wristband (EDA sensor) was used for the
physiological signal collection in our experiment. In this
experiment, the aforementioned features proposed in the
study [21] were also applied. The room temperature was
controlled at approximately 22◦C to block the effect of tem-
perature on the skin conductivity. An example of data col-
lected from this sensor throughout the tasks performed by
one of the participants is shown in Figure 2. In Figure 2,
the difference between reliable and unreliable sessions is
indicated by a dotted line. The EDA values during the reliable
experimental session were lower in comparison with those
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FIGURE 2. Example of collected EDA data during an experiment.

during the unreliable session. This is preliminary evidence
that an unreliable system is associated with an increased
stress level.

4) EXPERIMENTAL PROCEDURE
The experiment was divided into three stages: preparation,
practice, and the main experiment. During the preparation
stage, an Empatica E4 wristband was attached to each par-
ticipant’s wrist to measure the EDA signal, and the exper-
imental procedure was described. A 2-min rest period was
applied before starting the practice stage. The starting time
and time for each task were recorded to synchronize with the
measured EDA signals. For understanding the proofreading
system, a practice stage was conducted for the participants.
The users performed the proofreading tasks quickly and cor-
rectly during this stage. For increase the stress levels during
the proofreading tasks, each sentence had to be corrected
within 20 s. If the sentence was not completed within the
time limit, the program would move automatically to the next
sentence. Next, after a break, themanual proofreading session
for the 10 sentences was conducted without an automated
proofreading system. After the manual proofreading session,
the participant had a 2-min rest period before starting the
main experiment. During the main experiment stage, each
participant was randomly assigned to one of the four sessions.
During each session, the participant was asked to complete
a set of five sentences as quickly and correctly as possible.

The participants were asked to complete a total of 20 sen-
tences, randomly separated into 4 sequential sets; perceived
trust wasmeasured at the end of each set. A short break period
was included between the sets to observe a change in the
physiological response.

III. ANALYSIS
A. EXPERIMENT 1: DRAWING SOFTWARE USING AI
1) PARTICIPANTS
Data analysis from the drawing AI software used in exper-
iment 1 was based on the assumption that if the drawing
task was completed successfully by the participant, then the
participant has trust and a low-stress level (event ‘‘0’’). A lack
of trust with a high-stress level (event ‘‘1’’) corresponds to
a failed drawing task. The analysis method was developed
using a second-order polynomial logistic regression model.
The dependent variable was the failure/success of the drawing
AI software in the drawn word recognition. The indepen-
dent variables were linear terms of extracted EDA features,
products of their pairs, and squared terms of EDA features.
A second-degree model was developed to find a more effec-
tive combination of predictors to increase the model perfor-
mance because the first-order model showed a low accuracy
of approximately 50%. At the same time, the degree of the
regression model no longer increased owing to the possibility
of an overload with a large number of terms in the equa-
tion. Finally, 36 variables were in the equation. The research
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FIGURE 3. Research systems.

framework that explains the entire study system, including
analysis, is illustrated in Figure 3.

Figure 3 divides the complete research framework into
three systems with their respective elements. The First AI
system in Experiments consists of proofreading and draw-
ing AI software. The second system of data collection and
extraction includes an EDA signal with extracted features.
The third system of analysis comprises the machine learning
method of binary logistic regression, wherein AI reliability
and success were dependent variables, and EDA features
were independent variables.

B. ANALYSIS OF EXPERIMENT 2 DATA
Data analysis from the English proofreading AI software
used in experiment 2 was based on the assumption that a
reliable auto-proofreading condition (with correct sugges-
tion) corresponds to a low level of stress with trust (‘‘0’’)
or a lack of trust with high-stress level (‘‘1’’) under non-
reliable auto-proofreading conditions (with errors in the sug-
gestion). The predictors were the only linear terms of the
EDA features. The analysis method was developed using a
first-order logistic regression model. The dependent variable
was reliable/unreliable proofreading conditions. Independent
variables were the only linear terms of the extracted EDA
features. In this case, the linear model was sufficient to show a
satisfactory result in the balance between model performance
and the number of variables. Finally, seven variables were
used in the equation. A schematic of the analysis process of
both models is shown in Figure 4.

As shown in Figure 4, the analysis process consists of
model development and cross-validation stages. The data

collection step describes the collected data and informa-
tion during both experiments. The model development step
introduces the models obtained with dependent and inde-
pendent variables (a detailed description is shown above
in section 2.3). ‘‘Extracted variables’’ show the number of
predictors obtained in each model. The cross-validation step
provides a description of which parts of the cross-validated
dataset the developed model was applied to. The ratio
between the number of extracted variables from the AI exper-
iment model and the number of cases from the cross-validated
proofreading experiment makes it possible to apply themodel
equation only to the full cross-validated dataset. In cases of
half and a quarter of the cross-validated dataset, this process
was inaccessible because the number of variables obtained
exceeded the number of cases in the dataset. Fewer variables
in the proofreading AI model made it possible to apply this to
all sections of the cross-validated AI dataset. The ‘‘Results’’
show data extracted after cross-validation. The model per-
formance metrics obtained include the accuracy, sensitivity,
specificity, and positive predictive value.

IV. RESULTS
A. EXPERIMENT 1: DRAWING SOFTWARE USING AI
During the drawing AI software experiment, stress classi-
fication was performed on the binary scale with low and
high levels based on detected physiological responses from
the measured EDA signal. During the performance of the
task, the EDA signal was directly measured from a wristband
sensor attached to the participant. In the case of successful
task performance, it was assumed that trust existed along with
a low-stress level (this event was coded as ‘‘0’’). Otherwise,
a task failure caused a lack of trust with a high-stress level
(this event was coded as ‘‘1’’).

The second-order polynomial logistic regression equation
of 36 terms with the obtained coefficients can be described as
follows:

P=1/1+ e−(0.42121−0.00025025X1+0.0016284X2+418.96X3

+1814.6X4−744.1X5−0.055392X6+0.057147X7+0.097449X8−1.4335X9

+1.5152X10+1.9158X11+618.37X12−143.79X13+8.2973X14−10.881X15

+1.6403X16−20.026X17+543.94X18−1661.7X19−2.391X20+3.7646X21

−1.1173X22+1.2596X23+6.2165X24−361.36X25−1.0066X26+0.25811X27

+0.47974X28−1.5348X29−0.00041707X30+0.0016321X31+0.021078X32

−0.0051527X33−0.0070897X34−0.00038176X35) (1)

In equation (1), Y is a dependent variable assuming a
user stress level through a failure or success of the task. All
independent variables X1–X35 is squares and multiplications
of extracted EDA data features (in Appendix A). Variables
in the obtained model were significant with p-values not
exceeding 0.04; the exceptions were only two insignificant
variables, OMMean2 and Constant with p-values of 0.1.

Themodel performance for drawing the AI software exper-
iment is shown in Table 2. The developed model was applied
and cross-validated using a full dataset of the second above
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FIGURE 4. Analysis and cross-validation processes.

FIGURE 5. Confusion matrix of the originally developed model.

presented proofreading AI experiment. Confusion matrices
for the developed model and cross-validation matrices are
shown in Figures 5 and 6.

Table 2 shows that the accuracy, specificity, and sensitiv-
ity of the models ranged between 67% and 82%, whereas
PPV ranged between 80% and 86% for the original model
developed, i.e., ‘‘original,’’ and the cross-validated model,

FIGURE 6. Cross-validated confusion matrix.

‘‘Cross-Val.’’ The goodness of fit was evaluated using Cox
and Snell pseudo-R-squares with values between 0.2086 and
0.2125. In general, a model based on an AI failure event has
a satisfactory performance for both datasets.

B. ENGLISH PROOFREADING SOFTWARE WITH AI
In the English proofreading AI experiment, stress classi-
fication was also binary (low vs. high) and based on the
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TABLE 2. Performance of logistic regression model based on full sets.

TABLE 3. Coefficients of logistic models based on proofreading AI
experiment.

FIGURE 7. Confusion matrix of the originally developed model.

EDA signal, which was measured by the wristband sensor
attached to the participant during the performance of the task.
The proposed hypothesis is that a reliable auto-proofreading
condition (with correct suggestion) corresponds to a low level
of stress with existing trust (the event was coded as ‘‘0’’) or a
lack of trust with a high-stress level (the event was coded as
‘‘1’’) under non-reliable conditions (with errors in the sugges-
tion). The coefficients of the regression model explaining the
reliability of the English proofreadingAI software as a depen-
dent variable are shown in Table 3. The model performance,
along with the cross-validated results, are shown in Table 4.
This model was cross-validated by applying the coefficients
obtained to the dataset from the first presented AI drawing
experiment. In this case, it was possible to cross-validate
the model on different sections of the drawing experiment
dataset (full, half, quarter) because of the balanced numbers
of predictors and validating cases. The basic and validated
confusion matrices obtained for the full datasets are shown
in Figures 7 and 8.

In Table 4, ‘‘Original’’ is the result of the developed
basic model, ‘‘C/V Full’’ indicates the results of the cross-
validated full set, ‘‘C/V_Half1’’ shows the first half of the
cross-validated set, ‘‘C/V_Half2’’ indicates the second half
of the cross-validated set, and ‘‘C/V_Quarter1-4’’ shows the
results of all cross-validated set quarters from 1–4 respec-
tively. For the originally developed model, the accuracy is
over 70%, with other characteristics of between 69%–75%.
The goodness of fit was evaluated using the Cox and Snell

FIGURE 8. Full set cross-validated confusion matrix.

TABLE 4. Performance of regression models.

pseudo-R-squares with a value of 0.214. For the cross-
validated set, the accuracy varies between 56%–60%, with
other characteristics of between 44%–97%. Based on the
results obtained, the original model achieves a satisfactory
performance.

V. DISCUSSION
A. PERFORMANCE OF MODELS
The present study proposed binary classification models of
stress levels (high and low) of AI operators during sys-
tem failure. Correct work and reliability of the AI sys-
tem corresponded to low stress and the presence of trust
in AI. Otherwise, if the AI system demonstrated failure or
unreliability, mistrust and high-stress level occurred. The
developed logistic models show a satisfactory accuracy, sen-
sitivity/specificity, and positive predictive values (PPVs) of
approximately 60%–80% on average for both models. In par-
ticular, the general PPV results show high values of approx-
imately 90% or more. This indicates the high ability of the
developed models to detect the lack of trust and high-stress
level of operators while using AI systems. The goodness of
model fit is assessed using various measures [34]. In our
study, Cox and Snell pseudo-R-squares were used to evaluate
the goodness of fit. Cox and Snell pseudo-R2 is unable to
reach a value of ‘‘1’’ even for a perfect model [34]. The results
obtained show that the original models developed explain
between 0.20 and 0.22 of the variance at low and high-stress
levels. In previous studies, there is no consensus on how
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to interpret the values of the pseudo-R-squares, but some
sources [35], [36] have evaluated a Cox & Snell level from
0.2 to be satisfactory and acceptable.

Previous studies used the EDA signal as the base for
emotional recognition and reported the following results.
A method to detect human emotions using EDA data in a
word remember/recall task was proposed [22]. The authors
used the positive and negative affect schedule method and
support vector machine to classify the EDA response, with
an accuracy of approximately 75.65%. This study [37] used
various physiological responses, including EDA signals to
study the cognitive and mathematical task performance. The
accuracy of the models was between 75 and 95%, depending
on the type of physiological signal. In this study, the authors
performed the Stroop test, the Trier social stress test, and
the Trier mental challenge test to evaluate emotions using
EDA and speech features [23]. EDA data indicated that the
best accuracy was approximately 70%. Another study [38]
used the driver database and main object analysis to select
the appropriate features for the identification of the stress-
ful state. These factors resulted in an accuracy of 78.94%.
An accuracy of approximately 89% was achieved [39] using
the support vector machine approach to detect the stress state
of participants in three types of tasks: Stroop color-word test,
an arithmetic test of counting numbers, and talking about
stressful experiences or events. During the comparison of
previous and present methods, it was proposed that the EDA
signal shows potential to recognize human emotions and
stress levels. Average accuracy was between 70 and 90%, and
the performance of the proposed model was within this range
with scope for future improvement and development.

Based on the results obtained, the original stress models
based on AI failure show satisfactory performance. This is
connected with the fact that stress applied in this study is
an objective measurement as well as a failure of the AI.
This finding supports and expands the previous result of
relations between stress and AI failure events, which were
provided in studies related to autonomous driverless vehicles
with AI tools. Research [40] provides the results of a survey
of 1028 randomly selected Americans aged 18 and older. This
study reported that 37% of men and 55% of women have
anxiety about driverless car safety owing to the possibility
of failure, and only 6% of people would put a child alone in a
driverless car. Study [41] showed that people have a high level
of anxiety when driving autonomous cars with AI systems
owing to failure events. Supporters of autonomous driving
have declared that AI technologies secure the driving process;
however, despite this, consumers are under stress with the
idea of being in a car that can break down or fail at any
time without their control. AI system operators have psycho-
logical roadblocks in using automated technology because
of a lack of control and understanding of how the system
works, the risk of injury, and the unpredictability of failure
moments [42].

Previous studies have shown that stress, anxiety, and AI
failure are related to each other. In contrast to existing

research, the present study proposed two validated stress
models with satisfactory accuracy and performance. The pro-
posed models are significantly different from the previously
developed models. First, the combination of the trust con-
cept with real physiological data was conducted in a single
model for each individual experiment. Second, the developed
models confirmed the relation between AI failure and the
emotional state of the AI operator based on the objective mea-
surements of the EDA signal. Third, amajority of the previous
research was focused on building models based on subjective
user assessments of the perceived characteristics of AI sys-
tems. In turn, the present study did not use subjective assess-
ments but provided a further perspective on the combination
of subjective and objective measurements of the emotional
state of AI operators and users. The results obtained confirm
previous research and provide new knowledge regarding sen-
sors, AI/automation engineering, and physiological science
for researchers, engineers, and designers.

B. RELATIONSHIPS AMONG EMOTIONAL STATE,
PERCEPTION, AND AI OPERATION OF USERS
Both models developed in the present study have a satisfac-
tory classification ability and demonstrate the mutual con-
nection between user stress levels, AI failure, and system
reliability. It was found that AI failure and unreliable AI
systems have a positive influence on the stress of the users.
The general assumption of this study is that an AI failure and
unreliability cause increased stress based on a low trust in
AI system operations owing to unpredictable AI reactions. A
connection between trust and stress was described in previous
research [9], [10], where it was found that AI mistakes and
unreliability cause a higher cognitive workload and mental
stress with decreased user trust. In other words, if the AI
system fails or is unreliable, then the operator stress increases,
and the trust level decreases. In the present study, the stress of
the users was confirmed if the AI drawing software does not
recognize the user’s sketch or if the proofreading AI proposes
an unsatisfactory suggestion, which corresponds to a low trust
level. The present research expands and novelizes previous
studies, which also found a general connection between user
perception, trust, emotional state, and AI or automation sys-
tem failures. In addition, [43] and [44] show the negative
effect of automation errors on user trust. If the error occurs
earlier, then the negative effect on trust is stronger. It was
also found that the first impression of the system is the
most important and forms the foundation of trust. Study [45]
showed that if the operating system fails quickly and easily,
it undermines the user’s trust, and the operator’s subsequent
impression of the system will be ‘‘untrustworthy.’’ Based on
this, one of the important problems for AI system design-
ers is the prevention of early and easy errors by improv-
ing the feedback connection between themselves and users
after a failure event. Examples were demonstrated in [46]
on a collision warning system for drivers. Driver trust was
significantly lower if the system gave a warning after pressing
the brake pedal than before because of less benefit gained
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by users. The study [47] connected human trust, stress, and
physiological signals while using a computer interface with a
VR tool. Electroencephalography (EEG), EDA, and heart rate
variability (HRV) were used to measure trust with a virtual
agent and find the connection between trust and stress. It was
found that in low cognitive load tasks, EEG data reflect the
trust in VR, and the cognitive load (stress or anxiety) of
the user is reduced when the VR is accurate. The routine
performance of automated systems causes a high level of
user trust [48]. Trust becomes significant if the user does not
know how to prevent the occurrence of AI system failures.
This uncertainty influences the workload and further error
management of the operator, particularly under time pressure
conditions. A few principles were proposed to reduce human
stress and increase trust during automated car driving [49].
One of the important factors in trust is the ability of the
system to provide the operator with information about what
the vehicle senses when a failure occurs. The interface should
help predict the failure and its effects to provide the best
performance. The information should be provided as quickly
as possible so that users can react proactively, and in this case,
the trust in the AI system increases. According to [50], stress
levels and user stress responses are different and depend on
the personal characteristics of the users in video gaming task
performances. Users with higher experience in video gaming
have lower distress and better performance. This indicates
that an AI system operation causes lower stress and workload
to experienced users regardless of the failure event. Trust
positively affects human satisfaction and is negatively related
to stress [51].

The present findings confirm mutual relationships among
the user’s stress, anxiety, trust, and AI operation with failure
events. The developed models demonstrate the new sets of
variables capable of classifying user stress during a failed
AI operation.

C. LIMITATION OF THIS STUDY AND FUTURE RESEARCH
There are few limitations of this study related to the AI soft-
ware experiment. First, the developed model was based on an
AI success/failure event, which is not an entirely independent
indicator because it is connected with the characteristics of
the participants, such as their drawing skills and personal
experience. These personal features cannot be predicted or
controlled during the experiments. Another limitation is the
short time to complete the drawing task and accordingly to
precisely determine the psychophysiological signal, which
could lead to mixed results of EDA detection in certain
cases. The time condition was also impossible to control
because the drawing time was strictly provided by AI soft-
ware. Additionally, for the proofreading AI software, exper-
imental results may vary depending on the native language
and literacy of the participant. In this regard, the choice of
participants for the proofreading AI experiment was limited
to native English speakers.

Another limitation is the difference in the number
of fully analyzed cases between the two experiments.

AI drawing software experiments provide 4-times the number
of cases than AI proofreading experiments. This could have
influenced the results of the cross-validation, particularly in
the case of the polynomial model, owing to the imbalance
between the numbers of analyzed cases and predictors.

In the future, the presented research can be supplemented
and expanded with a greater variety of AI tools. Future AI
experiments will also be based onmore versatile software that
does not depend on the talents and special characteristics of
the participants (e.g., talent for drawing, singing, native lan-
guage, or literacy). The developed models can be improved
by considering additional variables; for example, we can
use physiological signal features together with another type
of stress assessment tool. The stress levels presented were
divided into ‘‘low’’ and ‘‘high,’’ and these categories can be
extended by including a ‘‘middle level’’ as an example. The
applied methods of data analysis and event prediction can
be expanded by applying machine learning methods such as
random forest and support vector machines.

VI. CONCLUSION
In the present paper, two cross-validated models were pro-
posed for stress level classification (high and low) based on
the physiological response (EDA), system reliability, and AI
system failure. The original logistic models developed show
a satisfactory performance and goodness of fit. It was found
that the EDA signal features of the users can be reasonably
accurate predictors for stress level classification in an AI
system failure and reliable/unreliable AI system operation.
The following conclusions were drawn:

1) The originally developed models achieve a satisfac-
tory classification ability and acceptable goodness of fit and
demonstrate the mutual connection among stress, AI failure,
and unreliability.

2) Both stress models applied to the original experimental
datasets show a satisfactory performance with an accuracy of
approximately 70%.

3) Relationships among EDA signal features, stress, andAI
system trustworthiness during an AI operation were found.

4) The combination of EDA features as polynomial and
linear terms can predict the human stress levels during a reli-
able/unreliable AI system operation and successful or failed
task performance.

The results obtained can be used for theoretical and practi-
cal applications. The study provides new knowledge for sen-
sors, AI/automation engineering, and physiological science.
The developed models and results obtained will help to adapt
the AI systems to the psychological state of the operator and
reduce the stress and fatigue of the users during interaction
with the system. The insights from this study could serve
AI developers to improve their product attractiveness among
users and increase trust in their technologies throughout soci-
ety. Designers can also introduce our findings in interacting
systems with AI elements such as mobile phones and apps,
wristbands, wristwatches, tablets, and laptops.
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APPENDIX A
TABLE 5. Composition of polynomial Equation1 of drawing AI software.

APPENDIX B
TABLE 6. Table of nomenclature.
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