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ABSTRACT The depth map captured by depth sensors (e.g., the time of flight (ToF) and Kinect) is often
prone to low resolution, degradation, noise, and poor quality. This paper proposes a novel model for the
robust depth estimation of RGB-D images through local and nonlocal manifold regularizations. The first
stage called deep depth prior manifold (DDPM), is inspired partly by the deep depth prior (DDP) model,
that is a deep convolutional neural network (CNN) integrated with a local manifold regularization term. The
local neighboring relationships between depth pixels and color images are employed to promote smoothing
in the results. The Laplacian Eigenmap technique used for local manifold modeling produces over-smooth
depth map. To improve the quality of the reconstructed image, a nonlocal manifold modeling stage was
suggested, where the similarity between the depth and the corresponding color image is determined by
characterizing their matching aspects. These objectives are aggregated within an optimization problem.
Moreover, to extract edges better considering visual nonlocal characteristics, the structured low-rank Hankel
approximation was adopted to better eliminate depth degradations, and to extract highly promoted edges and
sharp points. Three types of the degradations were handling in this work, containing undersampling, ToF-
like, and Kinect-like degradations. Experimental results indicate that the proposed method outperformed the
state-of-the-art restoration techniques on standard benchmark images, in terms of well-known criteria like
PSNR.

INDEX TERMS Inverse problems, deep depth prior (DDP), manifold regularization, patch manifold, depth
map, auto-encoder.

I. INTRODUCTION
In recent decades, many studies have been dedicated to
estimate a depth map from a single image. The depth map
plays an essential role in many image processing and com-
puter vision applications such as the augmented reality (AR),
3DTV, 3D pose estimation, 3D scene analysis, 3D robot
vision, and autonomous navigation [1]–[5].

The manifold modeling mechanism for depth estimation
has not been analyzed thoroughly. According to the literature,
the first study to use manifold models for depth estimation
problems was conducted by Liu et al. in 2019 [1]. The goal of
depth reconstruction and enhancement is to increase the use-
fulness of depth for more subjectively pleasing depth images
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for human viewing. There have been insufficient attempts
at actual depth image estimation processes, the models of
which are mostly ad hoc. Failing to increase the inherent
contents of data, these processes include edge sharpening,
noise reduction, filtering, interpolation and magnification,
and pseudo coloring.

The depth information is the distance between a place
where a camera is located and an object in the 3D scene.
In these applications, the depth is captured with special cam-
eras (e.g., Microsoft Kinect and ToF), which usually suffer
from low resolution and high noise [4]. The previous studies
sought to provide high-quality depth maps [6]. However,
the real-world depth maps might be affected by different lev-
els of degradation that can lead to low quality in comparison
with color images due to the dissimilarity between a projector
and a sensor [7]. This can cause random missing in flat
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areas and the loss of depth information discontinuities. The
depth map degradation may occur in different stages such as
formation, transmission, and storage [8]. In other words, most
methods of ToF depth map restoration can also be applied to
the Kinect depth map restoration [3].

Although the estimation process aims to improve the qual-
ity of objects in the input depth map which is a degraded
image by minimizing the artifacts, the input depth image
is nearly corrupted by the missing information and noise
texture needing additional information to achieve satisfactory
performance. A serious challenge to this recovery process is
the emergence of an ill-posed inverse problem. An impor-
tant part of image restoration would be the ‘‘prior’’ which
helps improve estimation and optimization in problems used
even in deep learning or dimensionality reduction. The prior
is also employed in image models. Many different models
have been proposed to deal with the ill-posed optimization
in computer vision problems by offering efficient solutions
to many computer science tasks such as low-rank problems
[2], independence of statistical elements [9], nonnegative
matrix factorization [10], total variation (TV) [11], nonlocal
similarity [12], [13], and video-like active recognition [14].

The proposed depth reconstruction model seeks to han-
dle depth recovery on three typical depth map degradations,
i.e. under-sampling degradation, Kinect-like degradation, and
ToF-like degradation, by integrating deep learning and man-
ifold modeling.

In fact, deep learning is used because it has yielded great
performance [15], [16], especially in image restoration, and
manifolds are used as proper models to represent depth
maps.

Recently, deep convolutional neural networks (CNNs or
ConvNets) have yielded satisfactory outputs, especially in
super-resolution natural images such as the well-known anal-
ysis of SRCNN [17]. There is also a novel model representing
an untrained deep image prior (DIP) [18], [19]. It has recently
been introduced in computer vision and has proven to be the
most interesting fully convolutional networks. This model
can be employed to optimize untrained weight parameters
(i.e. starting from a randomweight θ0) [19]. The reasons why
a CNN can be used as a prior were given in [18]. Accordingly,
the network resists ‘‘bad’’ solutions and descends much more
quickly toward natural-looking images [20].

There are many methods that take advantage of low-
dimensional manifolds in image recovery [21]. For instance,
the paper reviewed by [22] developed a promising method
called manifold modeling in embedded space (MMES). It is
mainly based on the idea of interpreting the deep learning
notions (e.g. in a deep image prior or a convolutional neural
network) used in image restoration as patch manifold learn-
ing. The manifold can be used for regularization, whereas the
local manifold is a smoothness regularization operator that
utilizes the local relationships between the pixels of a depth
image located nearby [1].

So far, the previous studies have mostly worked on depth
estimation by using several image features offered no further

systematic methods. For example, they did not exploit the
image statistical models seriously. In other words, some
approaches try to estimate the depth based on either depth
images or color images. To solve this problem and eliminate
the gaps in these methods, this study proposes a novel and
powerful method for depth recovery from RGB-D images
through deep learning frameworks with local and nonlocal
manifolds. The proposed method exploits the relationships
between a depth map and its corresponding color image.
Therefore, the gaps between previous studies are addressed.
This method was designed to be as simple as possible while
having an essential ConvNet structure. The addition of a
local manifold modeling term to the standard DIP framework
with nonlocal manifold appears to be able to solve all the
aforementioned issues. The depth estimation quality of the
proposed method was analyzed successfully in comparison
with the previous methods.

Introduced by Ulyanov et al. in [18], deep image
prior (DIP) is among the most well-known unsupervised
approaches. In their pioneering work, they empirically
showed how the architecture of a deep CNN would be able
to recover depth images more easily without the need for a
fixed set of training examples. Therefore, this possibility was
taken into account by adding manifold regularization terms.
Furthermore, the manifold-based terms have been efficient
in dealing with depth images [1]. The RGB and depth images
were also employed to build weights by integrating DIP with
manifold and modeling ideas of remedying various depth
map degradations. Finally, the outputs of this deep depth
prior manifold (DDPM) network are considered the inputs to
the nonlocal manifold modeling module, a process which is
described thoroughly in Section III.

The main contributions of this study are as follows:
1) The study provides a formulation to show the depth

estimation task as a combination of deep learning and man-
ifold learning to develop a powerful model leading to the
best success of depth image reconstruction. Therefore, it is
easy to apply the proposed model inn other image processing
applications.

2) The study also develops a refined depth map with
cleaner and sharper edges and preserves high-frequency parts
due to using a CNN with a manifold and a patch manifold
model. This model can exploit all the information of the prior
from the depth image and the color image, a process which
results in the robust depth recovery.

3) This study helps solve other problems in other studies
such as jagged artifacts on edges.

Optimization techniques were employed to achieve good
results considered the best of both areas. The architec-
ture of the proposed model (DIP with manifold) for depth
map restoration has not been completely explored yet; thus,
this is the first study to use this combination for inverse-
depth restoration. The rest of this paper consists of differ-
ent sections. Section II reviews the literature and related
works, whereas Section III presents the proposed method
and describes the problem formulation. Experimental results
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FIGURE 1. The deep depth prior local manifold (DDPM) modeling components.

are reported in Section IV. Finally, Section VI draws a
conclusion.

II. RELATED WORKS
The depth map recovery is considered a popular and impor-
tant field in computer vision tasks. Numerous methods
and models of depth recovery have been proposed so far.
Generally, themotivations and contributions of different stud-
ies can be summarized as follows: 1) Color and depth sensors
are combined to develop a robust depth image. 2) The depth
map can be restored by a single image. 3) Combination mod-
els are adopted simultaneously. This section reviews several
related works containing the deep learning approaches and
manifold learning ones.

A. DEPTH RECOVERY THROUGH DEEP LEARNING
The CNN method is employed for image restoration, espe-
cially while using a single image (in ill-posed conditions).
It relies highly on the prior 3D shapes. Two recent CNN depth
restoration models were proposed by Song and Kim [23]
and Alhashim and Wonka [24]. In fact, Song and Kim [23]
proposed a novel and simple model by utilizing two color-to-
depth networks and employing the color image to develop
a depth map. Afterwards, the latent space of the depth-to-
depth network was utilized and compared with the ground
truth depth to determine the loss. Alhashim and Wonka [24]
proposed a similar network architecture (encoding-decoding)
presenting a CNN for the depth map estimation, which

obtains a high resolution image from a solid color image
through transfer learning. Yielding better results, these meth-
ods are over-smooth as opposed to the other kinds of images
such as ToF images. In [25] and [16], the contexts of global
scenes were used for depth denoising. Li et al. [16] introduced
a supervised deep convolutional network based on the filter
structures and transferred the structural information from the
prior guidance images to the noisy ones. Zhong et al. [25]
proposed a deep neural network model to estimate a 3D face
content through the single depth captured by a Kinect camera.
They handled the lack of depth images by exploiting the bidi-
rectional CycleGAN based on a generator for denoising and
simulating noisy depths. The model was trained by synthetic
depth images for real noise. However, supervised learning
plays a key role in using ConvNet in image reconstruction
functions [17], [26], [27].

B. DEPTH RECOVERY USING DIMENSIONALITY
REDUCTION METHODS
Many methods benefit from the fusion of multiple depths to
integrate the multiple degraded depth map estimations into a
monocular depth map with higher quality, usually based on
data reduction or idea embedment [1]–[5], [28]. For instance,
Gu et al. [28] proposed a method for weight-based depth
map enhancement by using the relationship between intensity
and depth images in a conventional manner in two ways
driven by learning tasks and image guidance. There are many
methods that follow the filtering path such as joint bilateral
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filter [29] and edge guided filter [30]. Liu et al. [5] developed
a combination method that utilized the internal smoothness
prior and external gradient consistency constraints within a
graph domain for the depth super-resolution. Yang et al. [4]
proposed a model to handle big holes and huge noise with
an optimization framework for the color-guided depth map
restoration.

Liu et al. [1] introduced a novel model combining local
and nonlocal manifolds. They used the local manifold for
regularization and the non-local manifold for 3D thresholding
on themanifold. They achieved good but over-smooth results.
In the current study, this weakness is removed by integrating
local manifolds with the deep image priors, a process which
yields better results and works with all types of datasets.
Dong et al. [2] proposed joining the weighted prior of the
total variation to the guided color autoregressive (AR)method
in [3] as well as the low-rank property to consider the simi-
larity of both local and nonlocal manifolds for information
guidance utilized to compute the patch-wise and pixel-wise
similarities. Those are all vastly used in the natural image
reconstruction. Both AR and TVmethods were utilized in [6].
However, the AR method promotes smoothness, whereas the
TV method improves the piecewise constant. In this paper,
an unsupervised method was employed to develop a com-
bined model for depth reconstruction in order to handle the
degradation and noise problems by introducing a multi-shape
consistency constraint. This is the distinct difference between
the reviewed studies and the current one.

III. PROPOSED METHOD
This study aims to exploit all image details(both RGB and
depth) through different methods for the depth reconstruction
to recover a proper, accurate, clean, and sharp image from a
degraded and noisy observation.

For this purpose, an RGB image was first used with depth
image for depth map reconstruction within an autoencoder
neural network. Moreover, a CNN was adopted in the pro-
posed approach, for it plays a key role in image recovery
with manifold regularization, which yields accurate results,
especially in image estimation. Regarding different types of
manifolds, the local manifold used in this study was modeled
on the Laplacian Eigenmap technique. All pixels of both
RGB and depth images were utilized to build weights forming
a Laplacian matrix for the local manifold. However, this
approach produced an over-smooth depth map. Therefore,
it still needs to be modified to handle the problem. For this
purpose, a nonlocal manifold was suggested, for it could
help obtain the depth with more accuracy and without noise.
The input of this part is the output of the deep depth prior
manifold (DDPM).

The DDPM is a fixed CNN with a mapping function fθ ,
the weights of which are shown as θ . Its input x is a depth
image vector. The CNN generator fθ is initialized with a set
of random weights that are iteratively optimized by means of
standard gradient-based algorithms. An approximation (x∗)
of the target solution (x) is then computed as fθ∗ (x), in which

FIGURE 2. Flowchart of the proposed model.

θ∗ is a solution obtained by applying the early stopping
procedure to the involved iterative optimization scheme.

Before the depth image was treated, the input depth was
made more reliable through the mean square error minimiza-
tion on each pixel. After that, the input image of the nonlocal
manifold was considered s × s patches. The edges obtained
from the proposed method were sharper and cleaner than
those of other approaches.

This study provided a formulation for depth map estima-
tion which preserves the high-frequency parts, and therefore
results in cleaner and sharper edges. Furthermore, a CNN
was adopted for modeling the local manifold to reconstruct
the depth map from RGB-D data, the results of which still
had noise and blurring edges. Thus, furthermore a nonlocal
manifold modeling module was proposed in order to provide
more reliable results.

In a mathematical representation, a typical depth degrada-
tion method can be defined as below:

y = Hx+ n (1)

where y ∈ Rv is the blurred image (represented as a column
vector), and H is the matrix of a degradation operator on
depth map images for missing pixels, downsampling, and
blurring. Moreover, vector x ∈ Rv contains the given depth
information and is taken into account along with its mapping
x: � → R, in which � is the sampling grid of the spatial
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TABLE 1. Depth map undersampling with differences between DDPM and DDPM with patch manifold in PSRN (dB).

domain reshaped to a v-dimensional column vector. In addi-
tion, n denotes the noise, which is typically an additive white
Gaussian noise (AWGN) with a mean of zero and a standard
deviation of σ [31]. Yielded by g:�→ R that is the intensity
of the counterpart color image, the guidance image g ∈ Rv

is also considered. However, in the image restoration, many
models consider Equation (1), which was proposed to supply
a recovered clean image x of the required estimate. In the
current study, this equation shows the depth map, which is
an inverse and inherently challenging ill-posed problem in
restoration of x from y. Thus, an additional prior is required
to make the problem tractable.

Inspired partly by the deep depth prior (DDP) with the
local manifold model [1], deep learning was employed in
this study. Afterwards, the results were integrated into those
of the nonlocal manifold model. It is also a prior model,
which provides low-dimensional parameterization. Accord-
ing to Figure 2, these two models were coupled together
to regularize the ill-posed problem of the depth map. The
reconstruction of the depth map was considered smooth on
manifolds, i.e. they had smooth regions separated with sharp
edges. The reconstructed image was represented as the obser-
vation. It is observed that the reconstruction performance
was efficiently improved when a DDP was used in the local
manifold regularization. Moreover, it is advisable that the
designed regularization be general enough to be applicable
for many recovery tasks [8].

The following subsections define a manifold with a DDP
based on a DIP by adding a regularization operator to handle
the overfitting problem in the depth image restoration tasks.
A nonlocal manifold term is also defined based on the mani-
fold model of the embedded space [22] to address denoising
and sharpness refinements of RGB-D images.

A. MANIFOLD WITH DEEP DEPTH PRIOR (DDP)
This section focuses on the deep depth prior (DDP) frame-
work employed for image restoration and utilized on the
depth map called the deep depth prior (DDP) in a bid to make
it more robust by adding the local manifold regularization
operator improving the solution. The local parameterization
was used for this purpose.

FIGURE 3. DDPM compared to DDPM with patch manifold in term of
PSNR (dB) with 24-cases of rate.

Based on the nonlinear image processing approaches,
the local manifold (MMM) can be employed to reflect the geo-
metric properties of an image in which the geometry of the
depth map x can favor some local relationships between local
neighbors in� [6]. Thismodel depends on the lifting function
δf defined as below:

δf (i) = (i, x (i)) ∈MMM = {i, x(i)|i ∈ �} ⊂ �× R ⊂ R3

(2)

The local lifting is similar to the bilateral filter [29] based
on both the geometric feature and the value of each pixel,
whereas d refers to an embedded surface of the depth map on
a feature space with a dimension of d = 3.
To reflect the similarity between points on the local mani-

fold, the weights of the data neighborhood graph are defined
as the diffusion kernel as below:

w (i, j) = exp
(
‖i−j‖22
σp

)
exp(

‖x(i)−x(j)‖22
σd

)

× exp(
‖r(i)−r(j)‖22

σr
)
∀i ∈ �, j ∈ N(i) (3)

where N(i) indicates the local neighborhood for pixel i. For
every pixel z that is not in the neighborhood N(i), the cor-
responding weight is w (i, z) = 0. The geometric measure-
ment is ‖i− j‖22 for the distance between pixels i and j.
The photometric measurement representation to indicate the
distance between pixel i and j in depth image is ‖x(i)− x(j)‖22.
Moreover, ‖r(i)− r(j)‖22 is employed to determine the pixel
value and compute the distance between points i and j in
the color image. The hyper-parameters σp, σx , and σr are
used to control the sensitivity of weights to these three
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FIGURE 4. The comparison of estimation methods on reindeer image at upsampling degradation with rate 8×. (a) RGB,
(b) the ground truth, (c) bicubic, (d) AR, (e) LN, (f) RCG, (g) manifold, and (h) the proposed method.

distances, respectively. Based on the matrix of diffusion ker-
nelsWwith elementsw (i, j) from equation (3), the Laplacian
matrix is computed as below:

L = D−W (4)

where D represents a diagonal matrix of the node degrees
with i’th diagonal element

∑
j w (i, j). The depth recovery can

be regarded as an optimization problem with the following
objective function:

x∗ = argminx ‖Hx− y‖22 + γ x
TLx (5)

The second term plays the role of a manifold regularization
term, and its minimization is equivalent to the smooth depth
map on themanifold represented by LaplacianL. The positive
scalar γ balances the strength of the regularization. It is small
only if the depth image x has close values on vertices i and
j when the edge (i, j) has a large weight, or if the weight of
the edge w (i, j) is small. The minimization problem (5) has a
closed form solution as:

x∗ = (HTH+ γL)−1HTy (6)

It is also possible to consider other metrics [32], [33] based
on the Laplacian matrices, which are symmetric. First we
build an orthogonal basis through the Eigen-Decomposition
of Laplacian into a set of eigenvectors (U = {ui}
i = 1, . . . , n), in which U refers to the eigenvector matrix
with ui’s showing columns, and the real and non-negative
eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn constituting the
diagonal matrix 3 with λi’s representing diagonal elements
that indicate frequency in spectral graph theory:

L = U3UT
= U


λ1 0 0 . . . .0
0 λ2 0 . . . .0
. . . . . . ..

0 · · · . . . λn

UT (7)

The manifold regularization term in (5) can be shown in
the spectral domain as below:

xTLx = αT3α =
∑

k
λkα

2
k (8)

where α = UTx is the graph Fourier transform (GFT) coeffi-
cients,U and3 are the spectral bases and eigenvalues derived
from L. Its mean that xTLx is the sum of the squared graph
Fourier transform coefficients α2k scaled with frequencies
(eigenvalues) λk . This study tried to estimate the solution to
the ill-posed problem given in (5) by combining the manifold
regularized restoration based on [1], [34].

Inspiring from various state-of-the-art deep image recov-
ery networks [31], [35], the optimization problem can be
defined as follows:

θ∗ = argminθ E(fθ (x) , x0) (9)

where x∗ = fθ∗ (x) is the recovered image, the image x is
used to compute the task-dependent loss E(fθ (x) , x0) which
is selected as MSE loss for the used learning procedure, and
fθ represents the deep learning architecture with parameter θ .
The empirical information is also available to the reconstruc-
tion process, which is the noisy image x0.

The method proposed in [18] uses not only the image
space but also certain parameters of a parameterized space for
image restoration. For the posterior used in image degrada-
tion modeling, the likelihood and the prior are also necessary.
Without a prior, the resultant degradation depth map will not
be affected by the domain knowledge. According to Figure 1,
the local manifold regularization part can be added. The pro-
posed combination of CNN-based DDP and local manifold
modeling outperformed the method introduced in [19]. The
clean depth image x∗ was obtained from the degraded depth
map y as x∗ = fθ∗ (x) in which fθ represents a deep neural
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network with weights θ [11]. The minimization problem of
DDP can be extended by using amanifold regularizationR(x)
term as below:

θ∗ = argmin
θ

‖Hfθ (x)− y‖22 + γR(x) (10)

which is rewritten through a Laplacian-based regularization
term as below:

θ∗ = argmin
θ

‖Hfθ (x)− y‖22 + γ fθ (x)
TLfθ (x) (11)

This optimization problem is equivalent to:

argmin
θ ,a
‖Hfθ (x)− y‖22 + γ ‖a‖

2
2

subject to fθ (x) = a (12)

where constraint fθ (x) = a, denotes the image vector with ai
being the ith element of a. If the constraint is assumed to be
always satisfied, ai is a derivative computed on the ith pixel
for i = 1, . . . , v, whereas v denotes the whole image size.
To solve this problem, the nonconvex optimization frame-
work for depth restoration was utilized in [11], [19]. The
standard derivation for the minimization of the problem (12)
read [36]:

L(θ , a, γ a) = ‖Hfθ (x)−y‖22 + γ ‖a‖
2
2

+
βa

2
‖R (fθ (x))− a‖22

+ γ T
a (R (fθ (x))− a) (13)

where βa is a positive scalar, called penalty parameter, and
γ a is the Lagrangian-Coefficient associated with the con-
straint fθ (x) = a. According to the ADMM framework [36],
itssaddle point can be determined by minimizing the primal
variables θ and a, auxiliary variable, and γ a which is the dual
variable when the variables involved are properly initialized.
Thus, the t-th iteration of the optimization algorithm [19] is
defined as below:

θ t+1 = arg
θ

min ‖Hfθ (x)− y‖22

+
βa

2

∥∥∥∥R (fθ (x))− at +
γ ta
βa

∥∥∥∥2
2

(14)

at+1 = argmin
a
γ ‖a‖22

+
βa

2

∥∥∥∥at − R
(
fθ t+1 (x)

)
+
γ ta
βa

∥∥∥∥2
2

(15)

γ t+1
a = γ t

a + βa(R
(
fθ t+1 (x)

)
)− at+1 (16)

Problem (14) is solved inexactly by applying a prefixed
number of iterations of a gradient-based method. In particu-
lar, the ADMM framework was adopted [36]. The numerical
gradient is determined by employing the automatic differenti-
ation provided by Pytorch with respect to the variable θ [37].
Evidently, the optimization problem is similar to the one
solved in the classical DIP framework (9). In this case,
R
(
fθ t+1 (x)

)
is forced to be closed to at − γ ta

βa
.

Problem (15) is separable and can be solved in a closed
form by using the 2D L2-norm, which is a proximity operator

to the v components of R
(
fθ t+1 (x)

)
+
γ ta
βa
. In the implementa-

tion process, the local manifold was selected as a regulariza-
tion parameter.

Adding the manifold regularization term to the deep depth
prior framework can help improve the quality of the resultant
restored depth images by taking the underlying data manifold
and the data of intrinsic dimensionality into account as well
as dealing with the curse of dimensionality in the problem.
Algorithm 1 shows the steps of the proposed method called
the deep depth prior manifold (DDPM).

Algorithm 1 Deep Depth Prior Manifold (DDPM)
Input: g, y ∈Rn (RGB image and corrupted depth image);
fθ (x) (CNN); and tmax (the maximum number of itera-
tions).
Output: θ∗(optimal learned network parameters); and x∗

(the final depth map)
Initialize γ (regularization coefficient) θ (0) (random initial
network weights), x(0)← initial depth image, t ← 1, and
σp, σx , σr
Compute the matricesW and L according to (3) and (4)
While not converged and t ≤ tmax
1. Update θ (t+1) based on x(t−1) according to (14)
2. Update γ t according to (16)
3. t ← t + 1

End while
θ∗ = θ (t−1), x∗ = x(t−1)

B. LOW-DIMENSIONAL PATCH MANIFOLD PRIOR
The nonlocal computations introduced in [6] for the structure
of the depth map image exploited through the previously
obtained formulation can improve the quality of the restored
image. They can also be used for image denoising [38].
This subsection uses a nonlocal manifold inspired partly
by the MMES [22] in the previous study as the last stage
of the proposed algorithm shown in Figure 2. The Hankel
structured framework [39] was used with an MMES for the
image restoration applications such as in-painting and super-
resolution. The optimization problem related to Equation (1)
can be formulated for the patch manifold through the follow-
ing problem:

min
x

∥∥Y−GGG (X)
∥∥2
2

s.t.HHH (X) = [f1, f2, . . . , fP] = H

fp ∈Mk for p = 1, 2, . . . ,P (17)

where Y ∈ RJ×Q is the observed corrupted image (J and
Q are the dimensions of image Y), and X ∈ RI×Q is the
estimated image (I and Q are the dimensions of image X),
whereas GGG: RI×Q

→ RJ×Q is a linear operator representing
the observation system and the degradation operator on depth
map images such as missing pixels or blurring. Furthermore,
HHH: RI×Q

→ RD×P is padding for a Hankelization oper-
ator [22] with a sliding window of size (S1,S2, . . . ,SQ).
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FIGURE 5. The comparison of estimation methods on laundry image at upsampling degradation with rate 8×.
(a) RGB, (b) the ground truth, (c) bicubic, (d) AR, (e) LN, (f) RCG, (g) manifold, and (h) the proposed method.

FIGURE 6. Comparison between methods of ToF-like degradation on the dataset Moebius (a) the RGB,
(b) the ground truth, (c) bicubic, (d) AR, (e) LN, (f) RCG, (g) manifold, and (h) the proposed method.

Each vector fp was obtained from Sq, q = 1, 2, . . . ,Q,
on image X [22] in the proposed method (Q = P) as
shown in Figure 2. In addition, each vector fp is a point in a
k-dimensional manifoldMk embedded in the D-dimensional
Euclidean space with k ≤ D. The linear operator GGG can
vary in different tasks. In this study, GGG was considered an
AWGN noise (as mentioned in Section III) with three types of

degradation called undersampling, ToF-like, and Kinect-like
degradations.

In the practical experiments, a pixel value in the guidance
image was observed to be greater than its value in the depth
image. Therefore, when the opposite was found, the pixel
was infected as usual. According to Figure 2, it is possible
to modify this issue through thresholding before the patch
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TABLE 2. Quantitative comparison of the performance [in PSNR (dB)] (up-sampling without noise).

manifold is considered. This thresholding process is formu-
lated as below:

x(i) =

 x(i) if x (i) < g(i)
1
2
(x(i)− g(i))2 otherwise

(18)

when the problem occurs, the mean square error is obtained
for both images (depth image x and guidance image g).
From the multilinear algebra standpoint [40], a multi-

linear image provides a powerful theoretical-mathematical

framework for analyzing the multifactor formation of image
ensembles and handling the difficult problem of disentan-
gling the constituent elements or modes [41].

The proposed multilinear modeling technique employs an
image extension of the conventional matrix, and the multilin-
ear was used through the duplication of multiple matrices and
image reshapes.

However, it can also be utilized in this section by adding
a padding operation as introduced in [22]. Based on the
k-dimensional manifoldMk in the D-dimensional Euclidean

VOLUME 9, 2021 136119



A. K. Ali et al.: Depth Map Reconstruction and Enhancement With Local and Patch Manifold Regularized DDPs

TABLE 3. Quantitative comparison of the performance [in PSNR (dB)] (up-sampling without noise).

space, the following equations are established:

Mk = {ρ̂k (l) |l ∈ Rk
}(

ρ̂k , ϕ̂k
)
= argmin

(ρk ,ϕk )

P∑
p=1

∥∥fp − ρkϕk (fp)∥∥22 (19)

where ϕk : RD
→ Rk is an encoder, ρk : Rk

→ RD is a
decoder, whereas ρ̂k ϕ̂k : RD

→ RD is an auto-encoder (AE)
constructed from {f p}

P
p=1. Typically, the AE approaches are

widely used, since those are well-established methods for
manifold learning [42]. The properties of the manifold Mk
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FIGURE 7. The comparison of ToF-like degradation on dataset dolls. (a) RGB, (b) the ground truth, (c) bicubic,
(d) AR, (e) LN, (f) RCG, (g) manifold, and (h) the proposed method.

FIGURE 8. The comparison of kinect-like degradation on dataset art. (a) Degraded depth map, (b) AR, (c) LN, (d) RCG, (e) manifold, and (f) the proposed
method.

are determined by using the properties of ϕk and ρk . The
encoder-decoder framework provided a smooth manifold.

IV. EXPERIMENTAL RESULTS
This section reports experimental results and accordingly
makes a comparison between the proposed method and the
other state-of-the-art ones in terms of the performance. The
proposedmethod was analyzed in detail based onMiddlebury
Datasets [43] and NYU Depth Dataset [44], which are the
most widely used datasets for depth recovery.

A. IMPLEMENTATION DETAILS
The proposed method was implemented in two phases. First,
the DDPM method was executed on the PyTorch frame-
work [37] with the CNNweights initialized to zero. The local
manifold regularization parameters of the diffusion kernel
were set as below:
σp = 100, σx = 10, σr = 40 when the rate is 2×.
σp = 100, σx = 10, σr = 50 when the rate is 4×.
σp = 10, σx = 20, σr = 50 when the rate is 8×.
σp = 10, σx = 200, σr = 100 when the rate is 16×.

The DIP network was used as a good feature extractor, and
the DDPM was trained for 100 epochs by using the ADMM
optimizer [39]. The execution time was 2 hours for each
image per rate {2×, 4×, 8×, 16×}. The learning rate was
firstly set to 10−4. The second part (patches-manifold) of
the proposed method was implemented on TensorFlow 2.2.0,
and the patch size was set as s = 5. Furthermore, the low
dimensionality of nonlocal manifold was set as k = 6, and the
noise level was considered as σ = 0.05. The best number of
iterations is 9000. It took 2.5 to 3 hours for each image per rate
{2×, 4×, 8×, 16×} on Google Colab Pro with NVIDIA R©

GeForceTesla P100-PCIE GPU and 16 GB of RAM.We used
the source codes of DIP1 framework which is modified to
match to proposed idea. Since the proposed method uses
single images, the depth estimation network is trained in
a traditional way, with synthetic images and corresponding
ground truth depth maps, and in the test phase, the trained
network is applied directly to predict the depth maps. In the
training phase, we have used many cases of input images

1 https://github.com/DmitryUlyanov/deep-image-prior
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FIGURE 9. The comparison of kinect-like degradation on dataset dolls. (a) Degraded depth map, (b) AR, (c) LN, (d) RCG, (e) manifold, and (f) the
proposed method.

TABLE 4. Quantitative evaluations on the NYU dataset.

such as enlarged up to 100% and sometimes we cropped to
the original size. In addition, input images are horizontally
flipped, and the brightness of the image is randomly changed
using a scale factor chosen from a range of [0.5, 2.0].

B. PERFORMANCE ANALYSIS
The performance analysis results indicated the efficiency and
robustness of the proposed algorithm in comparison with the
other five state-of-the-art depth recovery methods: 1) bicubic,
2) thresholding on manifolds [1], 3) color-guided through
joint local and nonlocal structural low ranks (LN) [2], 4)
robust color guided (RCG) [3], and 5) color-guided autore-
gressive (AR) [4]. The upsampling performance was tested
in four different upsampling ratios: 2×, 4×, 8×, and 16×.
The performance evaluation of PSNR was measured by con-
sidering error metrics to show differences between the pro-
posed method and the other state-of-the-art techniques. The
proposed method was also compared with eight repressive
methods introduced by Saxena et al. [45], Eigen et al. [46],
Liu et al. [47], Godard et al. [48], Kuznietsov et al. [49],

Gan et al. [50], and Song and Kim [23]. According to Table 4,
nearly the best result was obtained.

Comparisons were drawn in the standard four metrics
defined as below:
• Average relative error (Abs Rel):

1
y

y∑
p=1

∣∣xp − x̂p∣∣
xp

• Root mean squared error (RMSE):√√√√1
y

y∑
p=1

(
xp − x̂p

)2
• Average (RMSE log) error:

1
y

y∑
p=1

|log10(xp)− log10(x̂p)|

• Threshold accuracy (δ): Percentageof xp s. t.
max( xpx̂p ,

x̂p
xp
) = δ < thr for thr = 1.25; 1.252; 1.253
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In all the above criteria xp denotes the value of pixel p in depth
image, x̂p denotes the predicted value for pixel p in depth
image, and y represents the total number of pixels.

C. ANALYSIS OF ADVANTAGES AND DISADVANTAGES OF
DIFFERENT MANIFOLD MODELING APPROACHES
This section discusses and analysis different parts and espe-
cially the role of manifold modeling in the proposed method.
All of these remedies provide a final depth recovery. Several
experiments are conducted to analyze the stability behavior
systematically. When the local manifold per se was used,
it yielded no strong results because it failed to refine the depth
from noise definitively.

In contrast, the patch manifold approach achieved favor-
able denoising performance. However, it plays an effec-
tive role in restoration applications such as upsampling and
reshaping. Figure 3 illustrates the performance of the pro-
posed depth reconstruction model. We used six images, each
image in four under-sampling rates (2×, 4×, 8×, 16×),
and the total test were 24 cases. If the number of iterations
increases, the results might be more stable.

Table 1 shows the PNSR with and without the use of a
patch manifold, which obviously shows the effectiveness of
using patch manifold. Evidently, the proposed model not only
managed to estimate the depth map but also used it for image
super-resolution.

D. EXPERIMENTS ON SYNTHETIC
DEGRADATIONS DATASETS
The test datasets included Art, Book, Dolls, Laundry,
Moebius, and Reindeer selected from the Middlebury’s
benchmark [43]. The proposed model was simulated in three
types of degradation, which are undersampling, ToF-like
degradation, and Kinect-like degradation.

1) UNDERSAMPLING DEGRADATION
In this implementation, H is considered as a degradation
matrix which is the blur operation on the ground truth through
a Gaussian kernel after the downsampling process is per-
formed in this case. The noise is assumed zero. The upsam-
pling tests are four upsampling ratios including 2×, 4×, 8×,
and 16× as shown in Table 2, which explains and shows
the comparison between different methods in PSNR values
by four upsampling rates. The best result is boldfaced. The
average of PSNR was obtained for the results of the proposed
method reported as 0.53 dB (2×), 2.10 dB (4×), 1.59 dB
(8×), and 1.60dB (16×).

Figure 4 and Figure 5 show the visual comparison between
methods with an 8× upsampling rate for Reindeer and Laun-
dry images. The first result (b) in both Figures, which can
be observed in the Bicubic, are very smooth. The results of
the AR method (c) cannot be kept by the large scale edges.
The LN result (d) is slightly jagged on the edges as shown
by the blue box on the Laundry because of being mixed by
two models using AR (d) and TV. The result of the RCG
method was not satisfactory, since the manifold is still nearly
over-smoothed.

FIGURE 10. The results of depth recovery on the dataset NYU. (a) Original
color image, (b) ground truth, (c) GDN, and (d) proposed method.

2) TOF-LIKE DEGRADATION
In this implementation, H represents the degradation matrix
similar to upsampling degradation discussed in Section 3. The
noise n indicates the white Gaussian noise to simulate this
degradation. The noise is first added with a variance of five
to the original depth.

After that, it was downsampled with four rates on datasets.
Table 3 reports the quantitative performance of recov-

ery to compare the proposed method with other models.
Figure 6 and Figure 7 show the comparison results on Moe-
bius and Dolls images under ToF-like degradation at an
8× upsampling rate. The Bicubic method can be seen as
noisy, and the result of the AR method is very blurring due
to its coefficients being so sensitive to noise. The results of
the LNmodel had no noise but led to over-smoothing with no
sharpness. The RCGmethod produced noticeable distortions,
especially in smooth regions. The manifold outperformed
other models but was still over-smooth images. The proposed
model obtained the best results even in the detailed regions
and smoothness. The results of which were closer to the
ground truth.

3) KINECT-LIKE DEGRADATION
In this implementation, H represents the matrix of degra-
dation like upsampling degradation without any noise to
simulate Kinect-like degradation by missing structures with
random missing on the original depth image. Figure 8 and
Figure 9 demonstrate the results on two depth test images
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FIGURE 11. The comparison on real world depth on dataset from NYU RGB-D. (a) Color image, (b) degraded depth map, (c) AR, (d) LN, (e) manifold,
and (f) the proposed method.

Dolls and Art. Nearly all methods yielded good recovery
outputs by random missing in flat areas.

E. PERFORMANCE EVALUATION EXPERIMENTS
ON OTHER DATASETS
In this implementation, the proposed method is tested on
the NYU depth v2 dataset [44]. H represents the matrix of
degradation like upsampling without any noise (n is zero).
The method was applied on four test images and compared
with the guided deep network (GDN), which was introduced
by Song and Kim [23]. According to Figure 10, the results
were better than those of GDN and closer to the ground
truth. It is also possible to compare the proposed method
with other models through the values of error metrics values.
Table 4 shows that nearly the best result was obtained. The
proposed model can also be implemented on the real world
depth, which was taken by the Kinect camera as presented
in Figure 11.

V. CONCLUSION
This study proposed a novel model for depth recovery from
the low-quality/low-resolution depth images affected by var-
ious kinds of degradations. The proposed method developed
the deep depth prior (DDP) framework by adding local and
nonlocal (patch) manifold regularization frameworks. The
hierarchy of convolution operations in DDP can be efficient
in image recovery. First, better reconstruction outputs than
those of several successful related methods were obtained
by fully exploiting the input color and depth images through
leveraging local manifolds used as regularizers. In the second
step, the output of the first model called DDPM was used
as the input in the patch-manifold stage. The optimization
problem was finally solved in an ADMM framework. These
methods were integrated to produce even better results and
analyze the stability behavior systematically. Since the pro-
posed approach is fast and highly efficient, it can be uti-
lized in real-time applications such as self-driving vehicles
(autonomous vehicles) and robotic navigation.

For future studies, there are still many more possible meth-
ods to implement encoder-decoder models, especially when
the back propagation optimization algorithm for the depth
recovery will yield high-quality outputs.
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