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ABSTRACT This study proposes an efficient prediction method for coronary heart disease risk based on
two deep neural networks trained on well-ordered training datasets. Most real datasets include an irregular
subset with higher variance than most data, and predictive models do not learn well from these datasets.
While most existing prediction models learned from the whole or randomly sampled training datasets, our
suggested method draws up training datasets by separating regular and highly biased subsets to build accurate
prediction models. We use a two-step approach to prepare the training dataset: (1) divide the initial training
dataset into two groups, commonly distributed and highly biased using Principal Component Analysis,
(2) enrich the highly biased group by Variational Autoencoders. Then, two deep neural network classifiers
learn from the isolated training groups separately. The well-organized training groups enable a chance to
build more accurate prediction models. When predicting the risk of coronary heart disease from the given
input, only one appropriate model is selected based on the reconstruction error on the Principal Component
Analysis model. Dataset used in this study was collected from the Korean National Health and Nutritional
Examination Survey. We have conducted two types of experiments on the dataset. The first one proved
how Principal Component Analysis and Variational Autoencoder models of the proposed method improves
the performance of a single deep neural network. The second experiment compared the proposed method
with existing machine learning algorithms, including Naive Bayes, Random Forest, K-Nearest Neighbor,
Decision Tree, Support Vector Machine, and Adaptive Boosting. The experimental results show that the
proposed method outperformed conventional machine learning algorithms by giving the accuracy of 0.892,
specificity of 0.840, precision of 0.911, recall of 0.920, f-measure of 0.915, and AUC of 0.882.

INDEX TERMS Coronary heart disease, deep neural network, machine learning, principal component
analysis, reconstruction error, variational autoencoder.

I. INTRODUCTION According to the report by the World Health Organization,
Coronary heart disease (CHD) is a type of Cardiovascular CHD is the top cause of death globally with regard to 2017; an
Disease (CVD), and 85% of CVD deaths are due to CHD. estimated 15.2 million people died from CHD as of 2016 [1].
It is also highly ranked in South Korea, being ranked second

The associate editor coordinating the review of this manuscript and of all deaths [2]. If suffering from CHD, a waxy substance
approving it for publication was Kathiravan Srinivasan . called plaque will be built up inside the coronary arteries that
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deliver oxygen and nutrients to the heart muscle. This plaque
narrows arteries, and the flow of oxygen-rich blood to the
heart muscle is limited [3]. Over time, heart arteries are more
narrowed and block the blood flow. Then, a heart attack or
sudden death can occur because of the blockage. It usually
progresses over many years without any symptoms.

Therefore, most people are diagnosed in the middle or
late stage after feeling some symptoms, such as chest pain,
shortness of breath, or fatigue. If CHD reaches serious con-
dition, the most advanced treatments are necessary, such as
stent surgery for keeping coronary arteries open and reducing
the occurring of a heart attack, and coronary artery bypass
grafting for supporting blood flow to the heart muscle, and
heart transplant [4]. In the early stage, a healthy diet, active
exercise, and appropriate medicines and care can help prevent
suffering from CHD.

Recently, many studies have been conducted to predict
the risk of CHD using machine learning and deep learning
approaches. The machine learning-based methods mainly
proposed single or ensemble classification algorithms [6],
and some of them used feature selection or feature extrac-
tion techniques to improve the performance [7], [13], [14].
Nowadays, deep learning techniques have been successfully
used to diagnose CHD [15]-[19]. Most existing methods first
split an experimental dataset into two parts for training and
testing. Then, they build predictive models from the whole
or randomly sampled training dataset using classification
algorithms. As a result, the models are more fitted on the
regularly distributed dataset and misclassify irregularly dis-
tributed (biased) data.

Therefore, we focused on this problem by using distinct
predictive models for the regular and biased inputs. In our pre-
vious study [20], the proposed method consisted of four deep
learning models, including two Stacked Autoencoder (SAE)
models and two deep neural network (DNN) models. First,
we divided a training dataset into two groups based on their
reconstruction errors given from the first SAE model. Next,
two DNN models were trained on these divided groups by
combining a reconstruction error-based new feature with
other risk factors to predict the risk of developing CHD. The
main idea was extracting the reconstruction error-based new
feature from the second SAE model for two DNN models.
In this study, the presented method does not perform feature
extraction for DNN models. Instead, it is focused on the
data distribution to improve the performance. It successfully
improved the performance of the previous study.

We propose a prediction method for CHD risk based on a
combination of DNN, Variational Autoencoder (VAE), and
Principal Component Analysis (PCA). We addressed the
following problems related to improving the prediction per-
formance: (1) Previous studies used the whole or randomly
sampled training datasets for model training. However, some
data can be significantly different from the same labeled
dataset. It degrades the performance of predictive models
if the training dataset includes this highly biased subset.
Therefore, the proposed method divides the training dataset
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into two groups, regular and highly biased using reconstruc-
tion error (RE) of the PCA. (2) The grouped highly biased
subset from the training dataset may not be sufficient for
model building due to accounts for a small percentage of the
total dataset. The proposed method decides this problem by
enriching the highly biased subset via two deep VAE models.

In this study, we improve the prediction performance by
preparing the training dataset efficiently by solving the pre-
viously mentioned problems. The main contributions of this
study are as follows:

« We propose a novel method for predictive analysis and
applied it to the Korea National Health and Nutrition
Examination Survey (KNHANES) dataset to predict
CHD risk. The proposed method consists of one PCA
and four deep learning models, including two VAE and
two DNN models. The combination of the used models
together is more effective. In other words, the perfor-
mance of a single DNN model was improved by using
these models.

o The proposed method was evaluated through two kinds
of experiments. First, each model was experimented
with independently and proved how they improve the
performance. Second, the proposed method contrasted
with several machine learning algorithms.

The rest of the paper is organized as follows. Section II
provides an overview of existing methods for CHD risk
prediction. The proposed method is detailed in Section III.
Section IV presents evaluation metrics, experimental dataset,
and parameter tuning of the compared algorithms. Section V
provides a performance evaluation of the compared algo-
rithms on the KNHANES dataset. Finally, Section VI con-
cludes the paper.

II. LITERATURE REVIEW OF CHD RISK PREDICTION
METHODS

The early detection of CHD increases the chance of success-
ful treatment. Many researchers have focused on finding and
inventing efficient algorithms to perform the CHD prediction
task. In this section, an overview of CHD prediction meth-
ods is provided. First, we talk about machine learning-based
methods used for CHD. Then, an overview of deep learning-
based CHD prediction methods is given. At last, CHD risk
prediction methods experimented on the KNHANES dataset
are discussed.

Machine learning-based approaches have been used com-
monly for predicting CHD. Soni ef al. compared several algo-
rithms, such as Decision Tree (DT), Naive Bayes (NB),
K-Nearest Neighbors (KNN), and Neural Network (NN) on
the Cleveland Heart Disease dataset using a free data min-
ing software named Tanagra. As a result, DT showed the
highest accuracy of 89%, followed by NB [6]. The authors
of [7] compared classification methods, namely NN, Support
Vector Machine (SVM), Classification based on Multiple
Association Rule (CMAR), DT, and NB to predict CHD
on two kinds of datasets consisted of ultrasound images of
Carotid Arteries (CAs) and Heart Rate Variability (HRV)
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of the electrocardiogram signal. First, they extracted feature
vectors from the CAs dataset, HRV dataset, and a combi-
nation of CA and HRV datasets. As a result, the extracted
vector from the CA+HRV dataset showed higher accuracy
than the separated feature vectors of CAs and HRV. As a
result, SVM and CMAR classifiers outperformed other com-
pared classifiers by the accuracy of 89.51% and 89.46%,
respectively. Gonsalves et al. studied NB, SVM, and DT
algorithms on the South African Heart Disease dataset with
462 instances. Based on 10-fold cross-validation, the NB
algorithm gave a promising result for detecting CHD with a
sensitivity of 63% and specificity of 76% [8]. Beunza et al.
compared DT, RF, SVM, NN, and Linear Regression (LR) on
the Framingham Heart Study dataset for predicting CHD risk.
According to the Area under the ROC Curve (AUC), the SVM
algorithm showed the highest performance with 75% [9].
Joloudari et al. implemented several data classification mod-
els, including Chi-squared Automatic Interaction Detection,
SVM, C5.0, and Random Tree (RT) for CHD prediction using
the Z-Alizadeh Sani dataset with 303 records from the UCI
machine learning repository [10]. As a result, the RT model
showed the best accuracy of 91.47% and an AUC of 96.70%.
These studies generally proposed and compared conventional
machine learning algorithms on publicly available heart dis-
ease datasets.

PCA has been widely used in the dimension reduction
of high-dimensional data. Recently, several studies have
used PCA as a feature extractor for improving classification
performance [13], [14]. The authors of [13] improved the
performance of SVM, NB, DT algorithms by reducing data
dimension from 10 to 6 using PCA on Cleveland heard dis-
ease dataset. In [14], the combination of Chi-square and PCA
showed promising results to detect CHD. First, they obtained
important features using the Chi-square test and reduced
their dimension using PCA. Another application of PCA is
to use it for detecting anomalies. Hoffmann [21] modeled
the distribution of the training dataset by kernel-PCA for
detecting an anomaly. The proposed approach computed the
RE in feature space and used it as a novelty measure. In [22],
the authors detected anomalies by computing errors when
reconstructing the original image on PCA projections for
hyperspectral imagery.

VAE is one kind of neural network that is not only used
as a generative model but also used as a classifier. In [23]
paper, VAE was proposed for generating synthetic electronic
health records (EHR). They confirmed the performance of
the LSTM model trained on the synthetic data is similar to
those trained on real EHRs containing over 250,000 records.
The authors of [24] paper used generated data from VAE
for missing data imputation to identify the abnormal carotid
arteries. They also removed a few labels from the test dataset
and generated the incomplete labels by the VAE. As a result,
VAE based classifier outperformed other supervised classi-
fiers, including SVM, LR, and RF algorithms.

Tama et al. proposed a two-tier ensemble model for
CHD prediction and evaluated it on the Z-Alizadeh Sani,
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Statlog, Cleveland, and Hungarian datasets [11]. The first-
tier was constructed by the RF, Gradient Boosting (GBM),
and Extreme Gradient Boosting Machine (XGBoost) classi-
fiers. These classifiers predicted CHD in a parallel manner,
and its output fed the second-tier. The final prediction was
made by Generalized Linear Model (GLM). The comparison
results showed the proposed method outperformed DT, RT,
Classification and Regression Trees (CART), RF, GBM, and
XGBoost algorithms on all datasets except the Cleveland
dataset. Wang et al. designed a two-level stacking based
model and evaluated it on the Z-Alizadeh Sani dataset [12].
The predicted outputs of the first level (base-level) classifiers,
including RF, Extra Trees (ET), AdaBoost, SVM, Multi-layer
Perceptron (MLP), XGBoost, Gaussian Process Classifica-
tion (GPC), NB, and LR were given as an input of the sec-
ond level (meta-level) classifier based on LR. The proposed
method outperformed the compared machine learning algo-
rithms by the accuracy, sensitivity, and specificity of 95.43%,
95.84%, and 94.44%. By using an ensemble approach, these
studies outperformed the single machine learning algorithms
on the Z-Alizadeh Sani dataset.

In recent years, deep learning techniques have been suc-
cessfully used to diagnose and predict disease. Deep learning
is derived from the conventional neural network but it is
designed for using numerous hidden layers without requiring
any human-designed rules [25]. Atkov et al. developed an
NN-based model with two hidden layers (four neurons in
each hidden layer) for predicting CHD using genetic and non-
genetic CHD risk factors [15]. The authors built ten predictive
models from different risk factors; the accuracy reached 93%
on 487 patients’ data in Central Clinical Hospital No. 2 of
Russian railways. Samuel et al. proposed a combination of
an Artificial Neural Network (ANN) and Fuzzy Analytic
Hierarchy Process (Fuzzy-AHP) techniques for heart fail-
ure risk prediction [16]. Fuzzy-AHP technique was used to
compute the global weights for the attributes based on the
fuzzy triangular membership function. Then, global weights
that represent the contributions of attributes were applied to
train the ANN. The performance of the proposed method
was evaluated on the Cleveland Heart Disease dataset with
297 patients. As a result, the proposed method showed an
accuracy of 91.10%, which is 4.4% higher than conventional
ANN. Darmawahyuni ef al. used DNN for CHD prediction
on the Cleveland Heart Disease dataset [17]. The authors
chose the number of hidden layers from one to five, and each
layer had a hundred neurons. The best-performed model had
three hidden layers, and its accuracy, sensitivity, and speci-
ficity reached 96%, 99%, 92%, respectively. Ayon et al. com-
pared LR, SVM, DNN, DT, NB, RF, and KNN for predicting
CHD [18]. The Statlog and Cleveland heart disease datasets
retrieved from the UCI machine learning repository were
used in an experimental study. As a result, the DNN with four
hidden layers (the number of neurons in hidden layers were
14, 16, 16, and 14, respectively) showed the highest accuracy
of 98.15%, sensitivity of 98.67%, and precision of 98.01%.
Khaneja et al. focused on the class imbalance problem using
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NNs with two hidden layers; each layer had 256 nodes [19].
The proposed method consisted of two identical NNs that
work together and share their weights. First, an input pair
was prepared by the combination of two records based on
the generation of random numbers. Next, the prepared pair
was given to the model, and the NNs received one sample
each from the pair. Then the distance was calculated from
outputs of these NNs and used in the calculation of loss.
In the experiment on the Framingham Heart Study dataset
that contains 4,240 samples with 16 columns, the accuracy
of the proposed method was 99.66%. M.A. Khan proposed an
Internet of Things (IoT) framework for CHD prediction based
on a deep Convolutional Neural Network (MDCNN) classi-
fier that optimized by an Adaptive Elephant Herd Optimiza-
tion (AEHO) algorithm [26]. First, the smart watch and heart
monitor devices were attached to a patient for monitoring the
blood pressure and Electrocardiogram (ECG). Then MDCNN
was utilized for classifying the received sensor data into nor-
mal and abnormal. It outperformed the compared algorithms
such as DNN and LR classifiers. And its accuracy reached
93.3%, 98.2%, and 96.3% on Cleveland, Framingham, and
Sensor datasets, respectively.

Recently, several studies have been conducted using
the KNHANES dataset related to the Korean population.
Kim et al. developed a CHD prediction model based on
Fuzzy Logic and DT for Koreans [27]. The model used
the Framingham risk factors (gender, age, Systolic Blood
Pressure (SBP), Diastolic Blood Pressure (DBP), Total
Cholesterol (TCL), High-Density Cholesterol (HDL), obe-
sity, smoking) and diabetes as input. The proposed model
contrasted with NN, SVM, LR, and DT classifiers and gave
the highest accuracy and sensitivity scores with 69.51%
and 93.10%, respectively. Lim et al. proposed the optimized
DBN model to predict CHD risk on the KNHANES-VI
dataset with 748 instances using the Framingham risk fac-
tors [28]. The optimum number of nodes and layers in the
DBN was derived through the genetic algorithm. They com-
pared the result of the Optimized-DBN with NB, LR, RF,
and FRS algorithms. The proposed approach showed the
highest performance with an accuracy of 89.24%, specificity
of 74.40%, sensitivity of 85.49%, and AUC of 76.20%. Amar-
bayasgalan et al. proposed a deep learning-based CHD risk
prediction model (DAE-NNs) consisted of a Deep Autoen-
coder (DAE) and two DNN models [29]. The DAE-NNs used
the Framingham risk factors as an input of the model, and
it was evaluated on the fifth and sixth KNHANES datasets,
including 25,990 patients. First, the training dataset was
divided into two groups by a RE-based threshold from the
DAE model. Then, DNN classifiers were trained on each
group. As a result, the performance measurements, including
accuracy, f-measure, and AUC reached 83.53%, 84.36%, and
84.02%, respectively. NN with a feature correlation analysis
(NN-FCA) approach has been presented [30]. They have
performed a statistic-based feature selection for the sixth
KNHANES dataset with 4,146 records. The selected features
such as age, Body Mass Index (BMI), TCL, HDL, SBP, DBP,
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triglyceride, smoking status, and diabetes were given as an
input of the NN model with three hidden layers. Compared
to the results of the Framingham Risk Score (FRS) and LR
model, their proposed model has shown high performance
with an accuracy of 82.51% and AUC of 74.9%. According
to the KNHANES-VI dataset with 4,244 records, Kim et al.
proposed a CHD risk prediction method based on the Statis-
tics and Deep Belief Network (DBN) [31]. First, important
features such as age, SBP, DBP, HDL, diabetes, and smoking
were selected by the statistical analysis. Then, DBN with two
hidden layers was worked as a predictor using the selected
features. As a result, the Statistical-DBN outperformed NB,
LR, SVM, RF, and DBN, and its accuracy and AUC reached
83.9% and 79.0%, respectively. The authors of [20] pro-
posed a CHD risk prediction model using Autoencoder and
DNN models. The first Autoencoder model was trained on
a dataset labeled as risky for feature extraction. The second
Autoencoder model was trained on the whole dataset to select
an appropriate prediction model from two DNN classifiers.
They selected fourteen risk factors, such as age, knee joint
pain status, lifetime smoking status, waist circumference,
neutral fat, BMI, weight change in one-year status, SBP, TCL,
obesity status, frequency of eating out, HDL, marital status,
and diabetes from the KNHANES dataset using an Extremely
Randomized Tree classifier. As a result, the proposed method
outperformed machine learning algorithms; its accuracy, pre-
cision, recall, f-measure, and AUC score reached 86.33%,
91.37%, 82.90%, 86.91%, and 86.65%, respectively.

Most proposed methods in previous studies were based
on the whole training dataset. The proposed method in this
study is unlike them. It focuses on data distribution to prepare
training datasets efficiently using PCA and VAE models.
First, the training dataset is partitioned into two groups by
their divergence using the RE-based threshold estimated from
the PCA model. PCA is used to reduce the dimensional-
ity of a dataset by projecting high dimensional space into
lower-dimensional space. RE occurs when transforming back
the lower-dimensional representation of data to its original
dimension. In other words, data with high RE (highly biased)
and low RE (regular) are grouped separately. For VAE mod-
els, they employ to enrich the highly biased group by gen-
erating similar samples with normal (labeled as 0) and risky
(labeled as 1) data in the highly biased group. Finally, the first
DNN classifier learns from the regular group that includes
data with low RE, and the second DNN classifier learns from
the enriched highly biased group. At the prediction time, only
one appropriate classifier employs to predict CHD risk from
the given input. For selecting an appropriate DNN classifier,
the proposed method checks the given input is whether closer
to the highly biased group based on its reconstruction error on
the PCA model. First, input data is given to the PCA model
to get reconstruction error. If returned reconstruction error
exceeds the threshold calculated by equation (2), the DNN
model that was trained on the highly biased training group
will be used; otherwise, the DNN model based on the regu-
lar training group will predict the class label. By preparing
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well-ordered two training groups, the proposed method suc-
cessfully improved the performance of a single DNN classi-
fier that is based on the whole training dataset.

lll. THE PROPOSED METHOD FOR CHD RISK PREDICTION
The proposed method consists of three modules, as shown
in FIGURE 1. The first module (Preparation of two groups)
splits the whole training dataset into highly biased and regular
groups, the second module (Enrichment of the highly biased
training group) generates samples similar with both normal
and risky datasets in the highly biased group, and the third
module (CHD risk predictor) builds two DNN classifiers to
predict output from the given unseen data as normal or risky.

A. PREPARATION OF TWO TRAINING GROUPS

In this module, two groups of training datasets are prepared
from the initial training dataset. The whole training dataset
is divided into two subsections by their divergence using the
PCA model. PCA is a dimensionality reduction technique that
transforms input variables into a lower-dimensional space
that contains most information of the input variables. It is pos-
sible to reconstruct back original space of the input from the
lower-dimensional data. RE is a difference between input data
and its inverse transformation (reconstruction) on the PCA
model. The proposed method uses RE for distinguishing the
highly biased subset from the training dataset. First, the PCA
model is trained on the whole training dataset. Thus, it is more
suitable for commonly distributed data than for highly biased
data. And it projects common data into lower dimensional
space with less information loss and reconstructs back with
a smaller error. It is possible to separate the highly biased
subset from the dataset based on the RE of the PCA model.
RE is calculated through the mean of the squared difference
between the input features and its reconstruction; it can be
defined as (1):

2

1
RE = ; Zz"lzl Hx,- —x/i HZ (1)

where n is the number of input features; x; is the i-th feature;
xlf is the reconstruction of the i-th feature.

First, we calculate the RE of the training dataset on the
PCA model. Then, a threshold to split training dataset is
estimated by the mean and standard deviation of these REs;
it can be described as (2):

— 1 —k 1 —k 2
TRE= Zi_lRE,'—i—\/E Zi:l (REi—~ ZileEi) 2)

where k is the number of instances in the training dataset;
REi is the reconstruction error of the i-th training instance.
As a result of this module, two different groups of training
datasets are prepared, as well as the RE-based threshold is
estimated for further analysis. Later, the threshold is also used
to select an appropriate CHD risk prediction model from the
DNN models trained on the prepared two groups.
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FIGURE 1. General architecture of the proposed method. Solid line
indicates the training process and dotted line shows the prediction steps.

B. ENRICHMENT OF THE HIGHLY BIASED TRAINING
GROUP

Instead of using prepared training groups directly, two VAE
models enrich the highly biased training group. The first VAE
model is for generating samples labeled as risky, remained
one is for generating samples labeled as normal. FIGURE 2
presents the process of enrichment of the highly biased train-
ing group using two VAE models. In this figure, datasets in
green are the results of the previous module (preparation of
two training groups). All data with the RE greater than or
equal to the TRE are assigned to the highly biased group.
And it is again bisected into the normal and risky sections
according to the class label. Each section is used to train
VAE models named VAE-normal and VAE-risky, as shown
in FIGURE 2.

VAE was first introduced by [32], and its architecture con-
sists of encoder and decoder parts. The encoder compresses
the data to the encoded space, also named latent space,
whereas the decoder decompresses them. In VAE, the encoder
part is trained to return mean and variance that describe the
normal distribution, and it encodes an input as a distribution
instead of encoding it as a fixed vector. The loss function
of the VAE is defined by two terms, such as the reconstruc-
tion loss calculated by the difference between original data
and its reconstructed output and the Kullback-Leibler (KL)
Divergence score that quantifies how much latent distribution
differs from the standard normal distribution. VAE minimizes
the loss during training to learn the latent distribution to be as
close as possible to the standard normal distribution. The loss
can be calculated as (3):

loss = % ijl(xz' —x{)* + KLI(N(1, 0)|INO, D] (3)
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Highly biased train
group
(RE >=TRE)

—| Regular group
(RE <TRE)

XITTTTTTITTTTITT]

X[ITTTTTTTTTTTITT]

FIGURE 2. Process of enriching the highly biased training group by VAE models.

where n is the number of instances; x; is the i-th instance;
xlf is the reconstruction of x;; 4 and o are mean and variance
of the latent distribution.

FIGURE 3 represents the architecture of the used two
VAE models. Each hidden layer uses the ReLu activation
function as given in (4), and the output layer uses the sigmoid
activation function shown in (5).

The ReLU activation function is usually used in hidden
layers. It can be described as (4):

0 ifx<0

ReLU(x) = X x>0

= max{0, x} “)
The sigmoid activation function converts input x into a

value between 0 and 1, and it is especially used to predict

the probability of output. It can be described as (5):

®

51gm01d(x) = 1_'_—_)‘
e

First, the input is encoded as a distribution over the latent
space. Second, an input of the decoder (z) is randomly sam-
pled from the latent distribution. Then, the sampled point
z is decoded to the output. In this study, the latent distri-
bution is chosen to be normal, and the encoder is trained
to return the mean and variance that describes the normal
distribution. To generate samples using the VAE model, ¢ is
sampled randomly from the standard normal distribution and
add it to the mean value (©) by multiplying it by the stan-
dard deviation (o) of its latent distribution for obtaining z,
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Sigmoid
ReLu ReLu |
|generate
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VAE-normal ]
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VAE-risky -
X
X X'
Relu Sigmoid
. Relu
—_— _— I —_—
—_— | Z= W+ o¢ _— —_—
] 7 7

12 12

FIGURE 3. Architecture of the VAE models used to generate samples.

as described in (6). Finally, the sampled point z is decoded
to get new data. The decoded output of z is a generated
sample.

Z=u+0¢& (6)
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where ¢ is the random value from the standard normal distri-
bution; 1 and o are the latent distribution’s mean and standard
deviation.

C. CHD RISK PREDICTOR
In this study, we use DNN model to predict CHD risk.
NN model was first proposed by Warren McCullough and
Walter Pitts in 1943 [33]. It has been applied successfully
to speech recognition [34], emotion recognition [35], disease
predictions [36], and so on.

Input layer  Hidden layer Output layer

hy = a(Zi (wyx) + b) |

FIGURE 4. Example of NN architecture with one hidden layer.

FIGURE 4 shows the NN example that has an input layer
with n neurons, a hidden layer with two neurons, and an
output layer with one neuron. The input layer is composed
of neurons that describe input features, whereas neurons in
hidden and output layers receive results of activation func-
tion that converts the weighted summation of the neurons
of the previous layer. The output of the NN represented in
FIGURE 4 can be written in (7):

y=atwna(y_ wix) +b)+wia(y | (wax)+b)+b)
@

where a is an activation function, w is the weight matrix, x is
the input vector, and b is the bias.

In the CHD risk predictor module, two DNN models are
trained on the prepared training groups by splitting the whole
training dataset. In practice, a dataset can include a subset that
is higher variance than most data. This highly biased subset
degrades the performance of predictive models. Therefore,
we isolate a highly biased subset from the common subset
using the RE of the PCA model. It also gives a possibility to
train two distinct predictive models targeted for regular input
and biased input separately. By using two distinct classifiers
for regular and biased distributions, it can classify the regular
as well as biased input data well. Moreover, we augmented
the biased section with new samples generated from VAE
models. As a result, the performance of the predictive model
trained on the biased section is more improved.

The architecture of the proposed DNN models is the same
as each other, as shown in FIGURE 5. Each model has six
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hidden layers with 71, 51, 31, 11, 5, and 3 neurons, respec-
tively, and all of the hidden layers use the ReLU activation
function. The input layer consists of 12 neurons for CHD risk
factors to predict the target variable. The output layer uses
the sigmoid activation function for the binary classification
problem; it returns the probability associated with class 1 as
avalue from 0 to 1. Finally, a high probability class is selected
for the output result.

.l
o
e
c

O ReLu
O O RelLu
O RelLu
O O O O RelLu
O O O O ReL!
O O O O eLu
N0 Qe 0 0 O wm
OA7ON NS 8 2
: : O Output
O O . O Hidden layer 1':):;2
. 3 nodes
’ i Hidden ;
e : (@ fayer Hidden laye dden layer
O Hidden layer 31nodes
51 nodes
Hidden layer

71 nodes

FIGURE 5. Proposed DNN architecture.

FIGURE 6 shows the prediction steps. In the process of
CHD risk prediction, first, input data is given to the PCA
model, and its RE on PCA is calculated. If the RE exceeds the
threshold (TRE) estimated by (2), then DNN-biased trained
on the highly biased training group employs; otherwise,
the DNN-regular trained on regular training group with low
RE predict the CHD risk.

RE of the input
Input data PCAmodel |- onthe PCA
model

Used models:
1. PCA model for DNN model selection based on RE
2. DNN-regular and DNN-biased models for CHD risk prediction

[ DNN-biased

FIGURE 6. Steps to predict the CHD risk of the proposed method.

IV. EXPERIMENTAL STUDY

To evaluate the proposed method, we have conducted two
types of experiments. In the first type of experiment,
we proved how each model improves the prediction perfor-
mance. In other words, the purpose of this experiment is to
show the contribution of the performance improvement of
used models. Therefore, first, we trained a predictive model
based on DNN from the whole training dataset without any
other models, and it was used as a baseline model. In the pro-
posed method, we prepared training groups from the initial
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training dataset using PCA and VAE models to improve the
baseline model. We showed how the prediction performance
was improved using the PCA model first and then the VAE
model step by step. The following models were compared in
this experiment:

o The single DNN model trained on the whole training
dataset and its architecture was the same as the two
DNNs used in the proposed method. It was used as a
baseline model.

o Two DNN models that were trained on the training
groups divided by the PCA model (the first step of
preparing well-ordered training groups in the proposed
method).

o Two DNN models that were trained on the training
groups divided by the PCA model. However, the highly
biased training group was enriched by two VAE mod-
els (the second step of preparing well-ordered training
groups in the proposed method).

The comparison between the baseline model and the two-
DNN shows that the two-DNN improves the performance
of the single DNN model significantly. After that, we showed
the performance improvement of the two-DNN by enriching
the highly biased training group using generated samples
from VAE models.

In the second kind of experiment, we compared the
proposed method with machine learning-based algorithms,
including NB, RF, KNN, DT, SVM, and AdaBoost.

A. EVALUATION METRICS
This section describes performance measurements for pre-
diction models on the test dataset. The confusion matrix is
a table to visualize the performance of classification models
when data labels are available. It represents the total number
of correct (True Positives (TP) and True Negatives (TN)) and
incorrect predictions (False Positives (FP) and False Nega-
tives (FN)).
Accuracy is the proportion of correct predictions among all
data. It defined by (8):
TP +TN
accuracy = ®)
TP+ TN + FP + FN
True Positive Rate (TPR) known as ‘““Sensitivity” or
“Recall” is defined as the fraction of positive instances pre-
dicted correctly by the model, which is defined by (9):
TP
Recall = —— O]
TP + FN
Precision is a fraction of TP predictions among all positive
predictions. It evaluates the effectiveness of TP predictions.
Precision can be defined as (10):

.. P
Precision = ——— (10)
TP + FP
However, it is difficult to compare models with low preci-
sion with high recall or high precision with low recall. Thus,
F-measure is used to measure precision and recall together,
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where a high value indicates a good result. It can be defined
as (11):

2 % precision * recall
F — measure = — (11D
precision + recall

ROC curve is a graphical representation of the balance
between the TPR (y-axis) and FPR (x-axis) of a classifier.
It compares the performance of several classifiers together
and evaluates which model is better on average. It indicates
how much a classification model is capable of distinguishing
between classes [37]. If the model is perfect, the area under
the ROC curve (AUC) is close to 1. A model with a larger
AUC is better.

B. DATASET

KNHANES is a nationwide program to evaluate Koreans’
health and nutritional status. It has been continuously con-
ducted by the Korea Centers for Disease Control and Preven-
tion (KCDC) since 1998 [38]. KNHANES dataset consists
of 3 parts: medical examination, health survey, and nutrition
survey described in TABLE 1.

TABLE 1. KNHANES dataset survey contents.

Types Contents

Medical
examination

Basic examination, blood pressure
measurement, body measurement, blood test,
urine test, lung function test, chest x-ray, oral
health examination, Ear-Nose-Throat
examination, eye examination, grip test
Household survey, Subjective Health status,
medical use, Health checkup and vaccination,
Activity restrictions and quality of life, Damage
(accidents and poisoning), Hospitalization,
Outpatient use, Patient experience, Education
and economic activity, Obesity and weight
control, Drinking, Safety awareness, Mental
health, smoking, Physical activity, Women's
health

Dietary Survey, Food intake frequency survey,
food intake, Food stability survey

Health survey

Nutrition survey

We have analyzed samples spanning the years 2010-2015.
In this experiment, we used a total of 25,340 records without
a history of previous myocardial infarction or angina from
the KNHANES dataset. If a patient has been diagnosed with
myocardial infarction or angina and the first diagnosed age is
younger than the current age, we removed the record. The
final output of the proposed method is to predict whether
there is a risk of CHD from the given input. The final exper-
imental dataset consisted of 10,991 men and 14,349 women.
From them, 15,796 records were high risk, and 9,544 records
were normal. Risk factors including age, knee joint pain
status, waist circumference, neutral fat, BMI, weight change
in one-year status, SBP, TC, obesity status, frequency of
eating out, HDL, and marital status were used to predict CHD
risk [20]. The general descriptions of the risk factors used in
the experimental study are shown in TABLE 2.
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TABLE 2. Description of the CHD risk factors.

Risk factors Normal High risk
(9,544 records) (15,796 records)
Age (year) 38.95(17.28) 53.85(16.17)
Body mass index (BMI) 22.27 (3.24) 24.30 (3.38)
(kg/m2)
Total cholesterol (TC) (mg/dL)  86.32 (41.65) 192.78 (39.38)

High-density lipoprotein
cholesterol (HDL) (mg/dL)
Systolic blood pressure (SBP)

54.22 (10.17) 47.68 (12.13)

111.35 (14.43) 122.80 (17.07)

(mmHg)
Waist circumference (WC) 75.04 (9.09) 83.80(9.38)
(cm)
Neutral fat (NF) (mg/dL) 86.32 (41.65) 154.84 (117.59)
Obesity status
1. Underweight 999 424
2. Normal 6827 9280
3. Obesity 1718 6092
Knee joint pain status
1. Yes 603 2134
2. No 2476 8305
8. Non — applicable (below 6462 0
the 50 years of age)
9. No response 3 5
Weight change in one year
status
1. No change 5171 10459
2. Weight loss 956 2299
3. Weight gain 1868 2811
9. No response 1549 16
Frequency of eating out year
status
1. More than twice a day 664 1206
2. Once a day 1392 2363
3.5 to 6 times a week 2002 2016
4.3 to 4 times a week 944 1383
5.1to 2 times a week 2250 3292
6. 1 to 3 times a month 1735 3620
7. Less than once a month 555 1914
9. No response 2 2
Marital status
1. Married, living together 5786 11781
2. Married, living separately 36 99
3. Bereavement 444 1584
4. Divorced 185 537
8. Response refused 243 0
9. No response 0 0
88. Non — applicable 2850 1501

C. PARAMETER TUNING FOR COMPARED MACHINE
LEARNING ALGORITHMS
To compare the proposed method with other machine learning
algorithms, we used the sklearn library [39]. The following
Python implementations were used for the compared machine
learning algorithms:
o K-Nearest Neighbors: sklearn.neighbors.KNeighbors-
Classifier
« Naive Bayes: sklearn.naive_bayes.GaussianNB
o Support Vector Machine: sklearn.svm.SVC
o Decision Tree: sklearn.tree.DecisionTreeClassifier
o« Random Forest: sklearn.ensemble.RandomForest-
Classifier
o Adaboost: sklearn.ensemble.AdaBoostClassifier
We chose optimal values for input parameters of the com-
pared algorithms by changing values until decreasing the
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model performance. The configurations of the parameters for
each algorithm are shown in TABLE 3.

TABLE 3. Parameter configuration of the compared algorithms.

Algorithm Parameter configuration Optimal
values

NB Default configuration

KNN n_neighbors: The number of neighbors.

n_neighbors

n_neighbors parameter was configured —4

between 2 and 20.

DT criterion: “gini” for the Gini impurity
and “entropy” for the information gain
measurements; they were used to
identify the best decision tree splitting
candidate.

RF n_estimators: The number of trees in the
forest. It was configured between 10 and

criterion =
“entropy”

n_estimators

200 and increased by 10. - .80 L
CPp i « 2 criterion =
criterion: “gini” and “entropy” were “ontropy”
used for splitting criteria. Py
SVM kernel: It specifies the kernel type to be Kernel =
used in the algorithm. It must be one of “lincar”

“linear”, “poly”, “rbf”, or “sigmoid”.

n_estimators: The maximum number of

estimators at which boosting is n_estimators
terminated. It was configured between =90

10 and 200 and increased by 10.

AdaBoost

The proposed DNN model was trained with Adam opti-
mizer [40], a learning rate of 0.001, batch size of 32, and
epochs of 1000. Early stopping [41] with the validation accu-
racy as a stopping criterion and patience of 500 epochs is
applied. The proposed method uses 90% of data for training,
10% of the training set for validating, and remained 10% of
data for testing. For the VAE models, they trained with Adam
optimizer, a learning rate of 0.001, batch size of 8, and epochs
of 1000.

V. EXPERIMENTAL RESULTS

We conducted two types of experiments to evaluate the pro-
posed method. The first kind of experiment proved how the
components of the proposed method work together more
efficiently and improve the prediction performance. The com-
parison between the proposed method and machine learning
algorithms such as NB, RF, KNN, DT, SVM, and AdaBoost
was shown in the second kind of experiment.

A. RESULTS OF THE FIRST EXPERIMENT

In this section, the performance improvement of the sin-
gle DNN model that is the baseline model using two
DNN models learned from the prepared training groups is
detailed. We compared the baseline model to Two-DNN and
VAE-Two-DNN models.

The single DNN was trained on the whole training dataset.
The Two-DNN was trained on the highly biased and regular
training groups separated by the PCA model. For VAE-Two-
DNN, we enriched the highly biased training group with
samples generated from VAE models. There were 3,000 sam-
ples generated for each class label (normal and risky),
respectively.
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1) PREPARE HIGHLY BIASED AND REGULAR GROUPS BY
SPLITTING THE TRAINING DATASET USING PCA
According to the proposed method, the training dataset is
divided into two groups based on the PCA model. First,
the PCA model was trained on the whole training dataset,
and it fitted more for the common dataset. Therefore, the data
that is different from most data gives higher RE than com-
mon data on the PCA model. Based on this characteristic,
we distinguished the highly biased section of the training
dataset. By separating highly biased data and commonly dis-
tributed data, the dataset with high divergence can be modeled
independently to improve the prediction performance. In this
experiment, the number of principal components of the PCA
model was 6, which can explain 95% of the input variance.
Each group consisted of a dataset labeled as both risky and
normal. According to the partitioned groups in 10-fold cross-
validation, the highly biased group accounted for approx-
imately 9.07% of the whole training dataset (from 8.94%
to 9.42% in each fold), and about 82.6% was labeled as
risky. As shown in FIGURE 7, the mean values (and stan-
dard deviation in parentheses) of risk factors such as age,
waist circumference, neutral fat, body mass index, systolic
blood pressure, total cholesterol, and high-density lipoprotein
cholesterol were 47.66 (18.12), 80.12 (9.81), 123.90 (79.77),
23.40(3.28),117.52(15.71), 186.29 (33.19), 50.06 (10.74) in
G1 and 54.03 (16.64), 84.26 (12.87), 180.41 (218.29), 24.85
(4.79), 128.18 (24.91), 206.10 (55.52), 55.10 (20.15) in G2,
respectively. However, the deviation of risk factors in the
G1 was lower than G2, and about 60.3% were labeled as risky.
Moreover, we can see the average neutral fat, total choles-
terol, and systolic blood pressure increased significantly
in G2.

450.00
400.00
350.00
300.00

250.00

200.00

150.00 T

100.00 = i
50.00 T i i
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Age Age WC WC NF- NF- BMI BM' 2 %8 rc e P HD

X-
-G1 -G2 -G1 -G2 G1 G2 -G1 G2 G1 G2 G1 G2 G1 G2

average 47.6 54.0 80.1 84.2 123. 180. 23.4 24.8 117. 128. 186. 206. 50.0 55.1

FIGURE 7. Mean and standard deviation of risk factors for two training
groups (G1 is group of common subset and G2 is group of highly biased
subset).

FIGURE 8 shows the comparison between the Single-
DNN and Two-DNN. The accuracy, precision, recall, speci-
ficity, and f-measure of the Single-DNN were increased from
0.836, 0.867, 0.870, 0.772, 0.868 to 0.873, 0.900, 0.899,
0.826, and 0.899, respectively by using Two-DNN.
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TABLE 4. Results of the ROC curve analysis of the single-DNN and
two-DNN on the KNHANES dataset.

Models AUC p-value 95% CI
Single-DNN 0.821 2.51E-72 0.803-0.839
Two-DNN 0.862 2.13E-52 0.846-0.878

TABLE 4 shows the results of ROC curve analysis for
Single-DNN and Two-DNN models. We tested whether the
observed AUC differs significantly from the AUC of 0.5 by
Hanley and McNeil test [25]. For both of compared mod-
els, AUC (p-value<0.000001) was statistically significant.
TABLE 4 shows how the AUC of the single DNN model
improved from 0.821 to 0.862 using two DNN models.
It increased by 4.1% by separating a biased section from the
training dataset.

0.950

0.900

0.850
0.800
0.750
0.700

Accuracy Precision Recall Specificity F-measure
Single-DNN 0.836 0.867 0.870 0772 0.868
= Two-DNN 0.873 0.900 0.899 0.826 0.899

FIGURE 8. Comparison of Single-DNN and Two-DNN on the KNHANES
dataset.

2) ENRICH HIGHLY BIASED TRAINING GROUP USING
VARIATIONAL AUTOENCODERS

The distinguished highly biased training group is one of the
prepared groups based on the PCA model. It consists of
data with high RE and may not be sufficient for building
the model due to accounts for a small percentage of the
total dataset. In the experiment, 9.07% of the whole training
dataset belonged to the highly biased group. And 82.6% were
risky, 17.4% were normal in this group. The proposed method
decides this problem by enriching both risky and normal
instances in the highly biased training group via two deep
VAE models.

This section describes the performance improvement of
the Two-DNN model introduced in the previous section by
the enriched training group. We generated 3,000 samples for
each class label (normal and risky), respectively, using two
different VAE models. Even if 82.6% of the dataset was risky
in the highly biased group, the number of risky instances is
not big enough for training. Therefore, we used two VAE
models for data generation of both risky and normal data.
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FIGURE 9 shows the comparison of Two-DNN and
VAE-Two-DNN methods. In Two-DNN, there were two
DNN models independently trained on the divided train-
ing groups directly. For VAE-Two-DNN, the highly biased
training group was augmented by newly generated samples.
Then two DNN models were independently trained on these
groups. As a result, all performance of VAE-Two-DNN out-
performed Two-DNN. It increased accuracy, precision, recall,
specificity, and f-measure of Two-DNN by 1.9%, 1.07%,
2.12%, 1.77%, and 1.59%, respectively in VAE-Two-DNN.

0.940

0.920

0.900
0880
0.860
0840
0820
0.800
0.780
g Accuracy Precision eca icity F-measure

Two-DNN 0.873 0.900 0.899 0.826 0899
= VAE-Two-DNN 0.892 0911 0,920 0844 0915

FIGURE 9. Comparison of Two-DNN and VAE-Two-DNN on the KNHANES
dataset.

TABLE 5 shows the results of ROC curve analysis for
Two-DNN and VAE based Two-DNN methods. For all of the
compared methods, AUC (p-value<0.000001) was statisti-
cally significant. Although the Two-DNN improved the per-
formance of single DNN, the VAE-Two-DNN outperformed
the Two-DNN. In the case of Two-DNN, AUC was 0.862
(95% (I, 0.846-0.878), and it has been improved to 0.894
(95% CI, 0.881-0.906) by using VAE based enriched training
group (VAE-Two-DNN), shown in TABLE 5.

TABLE 5. Results of ROC curve analysis of two-DNN and VAE-two-DNN on
the KNHANES dataset.

Classifier AUC p-value 95%CI
Two-DNN 0.876 9.51E-94 0.862-0.889
VAE-Two-DNN 0.894 3.5751E-103 0.881-0.906

As a result, all of the steps in the proposed method
improved the prediction performance of the baseline model.

In the first step, the irregular dataset (highly biased) was
distinguished from the training dataset using RE from the
PCA model. Then, two DNN models were trained on the
separated groups one by one. When predicting the CHD risk
using these two models, the PCA model received the input
first and returned the RE error. If the returned RE was higher
than the threshold, a DNN model based on the irregular
training group predicted the CHD risk. In the opposite case,
a DNN model learned from the regular training group was
employed to predict CHD risk. In the second step, the irreg-
ular training group was enriched by samples generated from
the VAE models because it consisted of insufficient instances
to build a predictive model. After that, two DNN models were
trained on the regular and enriched highly biased training
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FIGURE 10. Performance improvement of the baseline model by the
proposed method step by step.

groups separately. FIGURE 10 shows the improvement of the
baseline model step by step.

B. RESULTS OF THE SECOND EXPERIMENT

We compared six machine learning algorithms such as KNN,
NB, DT, RF, AdaBoost, and SVM with the proposed method
using the 10-fold cross-validation. In order to compare them,
the whole training dataset was used without splitting to train
these six machine learning algorithms. TABLE 6 shows the
average confusion matrix obtained from the 10-fold cross-
validation. The parameter configurations of these algorithms
are shown in TABLE 3.

TABLE 7 shows the results of CHD risk prediction models
based on risk factors shown in TABLE 2, and the high-
est values of the performance are marked in bold. Accord-
ing to the compared machine learning algorithms, the RF
algorithm showed the highest performance than KNN, NB,
DT, SVM, and AdaBoost algorithms. Its accuracy, precision,
recall, specificity, f-measure were 0.827, 0.859, 0.863, 0.760,
and 0.861, sequentially. However, the results show that the
proposed VAE-Two-DNN method achieves the best perfor-
mance. The accuracy of the RF algorithm increased by 6.56%
in the proposed method. Also, it improved the specificity by
8.37%. 1t is a fraction of the true normal predictions over
the total amount of dataset labeled by normal. The recall
measures what proportion of the dataset labeled as risky was
predicted correctly, and the precision evaluates how many
percent of total risky predictions is correct. The proposed
VAE-Two-DNN incremented the recall, precision as well as
f-measure by 5.68%, 5.2%, and 5.44%, respectively. There-
fore, VAE-Two-DNN successfully improved the prediction of
both normal and risky cases.

FIGURE 11 shows the AUC of compared seven algo-
rithms together. The proposed VAE-Two-DNN method
outperformed the AUC of all compared algorithms by giving
the AUC of 0.882.

TABLE 8 shows the results of ROC curve analysis for all
compared algorithms. The AUC of the proposed method was
0.881 (95% CI, 0.867-0.896), and it improved the highest
AUC of compared algorithms (AUC of RF) by 7.2%.
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TABLE 6. Average confusion matrix obtained from the 10-fold
cross-validation.

True class True class

IKNN Positive [Negative INB Positive [Negative

Positive (1312.8 [277.3 Positive (1289.1 [319.3

INegative [266.8 [677.1 INegative 290.5 [635.1

Predicted
class
Predicted
class

True class True class

SVM IPositive [Negative IRF Positive [Negative

Positive (1347.8 [325.2 Positive (1363.8 [223.5

Negative [231.8  629.2 Negative [215.8  [730.9

Predicted
class
Predicted
class

True class True class
IAdaBoost [Positive [Negative DT Positive [Negative
[Positive  |1349.2 [220.2 Positive |1279  [304.4

INegative [230.4 [734.2 INegative [300.6 650

Predicted
class
Predicted
class

True class
IVAE-  [Positive [Negative
Two-
IDNN

IPositive [1449.8 [143.2

INegative |129.8 [811.2

Predicted
class

08+

True Positive Rate
o
EY

£
=

—— KNN (Mean AUC = 0.765 )

02: /J 75 NB (Mean AUC = 0.732 |
¥ 5 DT (Mean AUC = 0.745 )
- ~=- SVM (Mean AUC = 0.751 )
+— RF {Mean AUC = 0.810 )
/. —s— AdaBoost (Mean AUC = 0.809 )
0.01 —— VAE based Two-DNN (Mean AUC = 0.882 )
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FIGURE 11. Average AUC of the compared seven algorithms together.

The comparative evaluation of the proposed method and
existing CHD risk prediction methods on our experimental
dataset are limited because the existing methods are not pub-
licly available. Therefore, we did not run existing methods
on our experimental dataset, and a comparison was made by
taking the results from the papers. VI shows the comparison
of the existing methods in previous studies and the proposed
method on the KNHANES dataset, and the highest values of
evaluation scores are marked in bold.

VOLUME 9, 2021

TABLE 7. Results of compared algorithms on the KNHANES dataset.

Classifier Accura  Precision Recall  Specificit F-
cy y measure

KNN 0.785 0.825 0.829  0.702 0.827
NB 0.759 0.802 0.812  0.652 0.807
DT 0.761 0.807 0.810  0.674 0.808
SVM 0.780 0.805 0.852  0.650 0.828
RF 0.827 0.859 0.863  0.760 0.861
AdaBoost 0.822 0.859 0.854  0.763 0.857
VAE-Two-  0.892 0.911 0920 0.844 0.915
DNN

TABLE 8. Results of the ROC curve analysis for compared algorithms on
the KNHANES dataset.

Classifier AUC p-value 95%CI
KNN 0.765 4.29E-52 0.745-0.786
NB 0.732 2.36E-33 0.711-0.753
DT 0.745 2.51E-38 0.721-0.762
SVM 0.751 2.02E-40 0.730-0.771
RF 0.810 1.90E-72 0.793-0.830
AdaBoost 0.809 5.35E-68 0.790-0.827
VAE-Two- 0.882 1.34E-56 0.867-0.896
DNN

TABLE 9. Comparative evaluation of different algorithms in previous
researches and the proposed method on the KNHANES dataset.

Algorithm Accuracy Precision Recall F- AUC
measure

Fuzzy logic and decision 0.695 0.699 - - 0.594
tree [27]
Neural network and 0.825 - - - 0.749
feature correlation
analysis [30]
Statistical deep belief 0.839 - 0.876 - 0.79
network [31]
Optimized deep belief 0.774 - 0.855 0.829
network [28]
DAE-DNNs [29] 0.825 0.895 0.797 0.843  0.840
AE-DNNs [20] 0.863 0913 0.829 0.869  0.866
VAE-Two-DNN 0.892 00911 0920 0915  0.894
(proposed)

VI. CONCLUSION

In this study, we proposed the CHD risk prediction method
based on two DNN models and applied it to the KNHANES
dataset. The proposed method addressed preparing an effi-
cient training dataset by distinguishing and enriching the
highly biased subset that degrades the model performance
using the PCA and VAE models. First, we grouped the
highly biased subset from the whole training dataset using
the PCA model. This is because the highly biased subset of
the training dataset degrades the performance of predictive
models. It is possible to improve the performance of a single
predictive model trained on the whole training dataset by two
different predictive models trained on the highly biased and
remained common subsets. Therefore, to address this issue,
we suggested using RE from the PCA model. As a result, the
performance of CHD risk predictor based on the single DNN
(accuracy: 0.836, precision: 0.867, recall: 0.870, specificity:
0.772, f-measure: 0.868, AUC: 0.821) improved by using two
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DNN models learned from the partitioned training using the
PCA model (accuracy: 0.873, precision: 0.90, recall: 0.899,
specificity: 0.826, f-measure: 0.899, AUC: 0.862).

For improving the prediction performance by enriching
the insufficient number of instances in the highly biased
training group, the proposed method was designed to use
two deep VAE models. The performance of CHD risk pre-
dictor based on two DNN models learned from the parti-
tioned training groups was improved by using VAE based two
DNN models learned from the enriched highly biased training
group and regular training group (accuracy: 0.892, precision:
0.911, recall: 0.920, specificity: 0.844, f-measure: 0.915,
AUC: 0.882).

To evaluate the proposed method, the proposed method
was compared with various machine learning algorithms. The
evaluation results showed that the proposed method improved
the accuracy, specificity, f-measure, and AUC of NB, SVM,
DT, KNN, AdaBoost, and RF by (13.3,19.2,18.3,7.5), (11.2,
19.4,16.5,5.4),(11.2,12.0, 16.5,5.4),(10.7, 14.2, 15.0, 5.5),
(7.0, 8.0, 10.7, 2.5), and (6.6, 8.4, 10.4, 2.1), respectively.

In shortly, this study proposed the comprehensive predic-
tion method using PCA, VAE and DNN models. The two
DNN trained on the partitioned training groups according to
the PCA significantly improves the performance. Moreover,
the proposed method raises the performance again using the
VAE-based enriched training group. We show the perfor-
mance improvement of the proposed method by using PCA
and VAE models in the first experiment, and comparison
between the proposed method and other machine learning
algorithms in the second experiment.

The limitation of the proposed method is that it does not
allow missing values. Therefore, we will focus on handling
missing values by generating new values using the VAE
model in our future study. Also, the reconstruction error-
based threshold was estimated by the mean and standard devi-
ation of the reconstruction errors of the training dataset on the
PCA model. Finding the optimal threshold is challenging in
this module.
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