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ABSTRACT Deep learning (DL)-based PV Power Forecasting (PVPF) emerged nowadays as a promising
research direction to intelligentize energy systems. With the massive smart meter integration, DL takes
advantage of the large-scale and multi-source data representations to achieve a spectacular performance
and high PV forecastability potential compared to classical models. This review article taxonomically dives
into the nitty-gritty of the mainstream DL-based PVPF methods while showcasing their strengths and
weaknesses. Firstly, we draw connections between PVPF and DL approaches and show how this relation
might cross-fertilize or extend both directions. Then, fruitful discussions are conducted based on three
classes: discriminative learning, generative learning, and deep reinforcement learning. In addition, this
review analyzes recent automatic architecture optimization algorithms for DL-based PVPF. Next, the notable
DL technologies are thoroughly described. These technologies include federated learning, deep transfer
learning, incremental learning, and big data DL. After that, DL methods are taxonomized into deterministic
and probabilistic PVPF. Finally, this review concludes with some research gaps and hints about future
challenges and research directions in driving the further success of DL techniques to PVPF applications.
By compiling this study, we expect to help aspiring stakeholders widen their knowledge of the staggering
potential of DL for PVPF.

INDEX TERMS Photovoltaic power forecasting, deep learning, big data, discriminative learning, generative
learning, deep reinforcement learning.

NOMENCLATURE
ABBREVIATIONS

AE Auto-Encoders.
AM Attention Mechanism.
BDDL Big Data Deep Learning.
BM Boltzmann Machines.
CDQN Continuous DQN.
CNN Convolutional Neural Network.
CWGAN-GP Conditional Wasserstein GAN with gradi-

ent penalty.
DBN Deep Belief Networks.
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DCGAN Deep Convolutional GAN.
DCIGN Deep Convolutional Inverse Graphics

Network.
DDPG Deep Deterministic Policy Gradient.
DDQN Double Deep Q Network.
DL Deep Learning.
DPVPF Deterministic photovoltaic Power

Forecasting.
DQN Deep Q Network.
DTL Distributed Transfer Learning.
GAN Generative Adversarial Network.
GRU Gated Recurrent Unit.
LSTM Long-Short Term Memory.
MLP Multilayer Perceptron.
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NTM Neural Turing Machine.
PPVPF Probabilistic photovoltaic Power Forecasting.
PVPF Photo-Voltaic Power Forecasting.
RBM Restricted Boltzmann Machines.
ResNet Residual Neural Network.
RNN Recurrent Neural Network.
SAE Sparse Autoencoders.
SG Smart Grid.
SimGAN Simulated GAN.
SOM Self Organizing Map.
VAE Variational Autoencoders.
WGANGP Wasserstein GAN with Gradient Penalty.

I. INTRODUCTION
The rapid expansion of Distributed Energy Resources (DERs)
is driven by the vast exploitation of carbon-intensive energy
sources and climate change concerns that threaten human sur-
vival and social progress [1]. Among all alternative sources,
solar energy, specifically, Photovoltaic (PV) solar energy,
has been getting the highest interest globally in the modern
electricity grid, with estimates to satisfy a quarter of electric-
ity needs by 2050 [2]. PV power plants’ deployment merits
include inexhaustibility in PV systems supply, long-life span,
and excellent economic viability in the mid and long term [3].
However, the discontinuity and time-varying behavior of PV
power flow bring into question the reliability and efficiency
of PV systems [4]. Moreover, the sudden weather changes
threaten the unit commitment and affect the demand and
supply balance [5]. Therefore, PV Power Forecasting (PVPF)
is a crucial factor for reliable power supply as it significantly
reduces the sensitivity of energy systems to weather inter-
mittency [6]. Consequently, the futuristic Smart Grid (SG)
paradigm has considerably spurred the adoption of accurate
PVPF techniques.

In this context, the energy community has been focusing on
developing effective forecasting techniques to meet various
technical challenges [7], [8]. With computer hardware and
software development, forecasting models take advantage
of High-Performance Computing (HPC) to achieve higher
effectiveness. PVPF plays a vital role in handling a series
of risk assessments and solving risk decision-making issues
for an uninterruptible energy supply. PVPF can be conducted
directly by predicting the PVPG [9], or indirectly by pre-
dicting the environmental factors encompassing the most

relevant frequencies originating from weather conditions,
such as solar irradiation (Fig. 1). Obviously, solar energy is
presented as the most significant and critical parameter in
concluding the characteristics of the solar units [10], [11].
Next, the predicted output is employed to deduce the PVPG
via a predetermined mathematical model. However, it has
been reported that direct PVPF leads to more accurate results
than indirect PVPF [12], [13]. Nevertheless, this review arti-
cle has considered both direct and indirect PVPF models.

Conceptually, the determination of PVPG lies in
1) Physical methods, 2) statistical methods 3) AI methods,
and 4) Hybrid methods as the combination between them,
as illustrated in Fig. 1. The physical models establish the
mathematical formulas for the PV Power Generation (PVPG)
equipment to conduct a deterministic closed-form solution
for PVPF [14]. Physical models employ Numerical Weather
Prediction (NWP) or ground measurement devices that meet
the appropriate calibrated service facilities [15]. In [16],
a physical model based on NWP has been adopted for solar
irradiation uncertainty forecasting. It has been empirically
proven that the suitable selection of the modeling window
length is critical for predicting the confidence intervals.
However, the proposed model has poor anti-interference
capabilities reflecting the unsatisfactory prediction perfor-
mance [16]. On the other hand, statistical forecasting is
carried out through extensive numerical patterns analysis
based on statistical theory. Statistical algorithms require a
data set acquisition to build their domain knowledge since
they neglect the investigated physical process. Moreover,
statistical and physical models were not significant enough
to be effective with unsatisfactory accuracy in numerous
non-trivial problems such as Renewable Energy (RE) fore-
casting and weather forecasting. AI, specifically Machine
Learning (ML) techniques consist of advanced complex
approaches to acquire knowledge expertise and lead to accu-
rate results and better generalization capabilities. Although
ML is a very promising domain for power systems due to the
abundance of computational resources and high-resolution
databases, ML techniques have only been accorded to a
few considerations compared to statistical and physical tech-
niques in PV systems [17].

Deep Learning (DL) is considered an evolution of
ML comprising multiple cornerstone-like models. More
broadly, DL has been given a significant emphasis in aca-
demic circles for the last decade but only recently has broken
into the industrial world for application-oriented research.

FIGURE 1. PVPF classification.
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FIGURE 2. Deep Learning: timeline and evolution.

Artificial Neural Networks (ANN) with multiple layers
(hence called ‘‘deep’’) of interconnected neurons have sprung
up and sparked a renewed interest in the research community,
resulting in a plethora of research papers. Non-deep learning
methods comprise one to three operational layers, whereas
DL methods stacks multiple layers (more than three) of sim-
ple modules hierarchically. Elaborately, DL is advantageous
to classical ML methods in distinguishing and learning mul-
tiple complexity levels due to three principle factors [18].

Firstly, the classical models heavily rely on a generation of
hand-crafted features to track data patterns. This task neces-
sitated manual design and feature learning, which are often
labor-intensive and ad-hoc [19]. Fortunately, DL methods
can intelligently learn from parse data representation using
a general learning process [18]. This eliminates the need for
domain expertise and hard core feature extraction adopted
in handed engineering- and shallow learning-based models.
More specifically, feature extraction-based DL is deducted
automatically and optimally configured using an end-to-end
pipeline to promote faster learning without being told to
do so explicitly [20]. Secondly, traditional ML techniques
such as Random Forest (RF) and Decision Trees (DT) might
not handle multidimensional data [19]. For such models,
the training time becomes terribly low for deep varying
level sizes [19]. Furthermore, the efficiency of these mod-
els can be unsatisfactory since the variable correlations are
neglected [19]. Fortunately, DL methods can efficiently be
fueled by massive amounts of data with a high level of
complexity and multidimensionality to predict nonlinear
behaviors accurately. Thus, DL models can achieve an
outstanding predictive performance without the need for
pre-defined relationships. Big Data technology uses DL to
process a large pool of datasets and offers a potential solu-
tion to overcoming the set problem. Thirdly, DL models can
hold and store more information within the neurons than the
basic ANN model [18]. This can allow learning distributed
representation (many-to-many relationships between types
of representations), enabling generalization to new combi-
nations of values not explicitly shown in learning data [18].
The former factors made the deployment of DL models more
application-oriented than ML, strengthening the pervasive
adoption rate by the advanced manufacturer.

A. THE DIRE NECESSITY OF DL IN PVPF
High-precision PVPF can potently promote the grid’s accom-
modation of PVPG by alleviating the negative impacts uncer-
tainties on the utility grid. However, it is quite challenging

to achieve satisfactory results with the classic prediction
models. Recently, DL has become a research hotspot for its
excellent ability to handle nonlinear Time Series (TS) energy
data [21]. Thus, the marriage of PVPF and DL gives an impe-
tus to build more sustainable and robust energy management
paradigms [20]. DL methods have been successfully used
in solar irradiance and solar power production forecasting.
Notably, Deep Neural Network (DNN) architectures provide
capabilities to learn hierarchical features from the data set
while providing a more efficient representation than shallow
models and improving generalization potential [22]. Hence,
by eliminating the unpredictability factor, the research com-
munity tends to make great strides towards accurate forecasts
and reliable decision-making [22].

With the whispered adoption of AdvancedMetering Infras-
tructure (AMI), massive amounts of stored information with
a variety of data types, complex relationships, and explosive
growth from PV stations will be continuously generated,
resulting in big or fast/real-time data streams. DL models
can handle the big amounts of data generated from weather
stations with Big Data Deep Learning (BDDL) to produce
accurate results. DL models take advantage of the increase of
computational power of Graphical Processing Units (GPUs)
to curry out massive data on stream for high-quality fore-
casts. DL independently extracts features as an efficient big
data-driven analytic scheme to process insufficient quality
data that contains noise, heterogeneous data. DL models can
efficiently handle the complexity, diversity, and integrity data
conundrums that encounter meteorological data integration to
improve the steadiness and security of power dispatch [20].

B. REVIEW NOVELTY AND CONTRIBUTIONS
The rising interest in DL underpinning PVPF systems inten-
sified the need for a taxonomic review to summarize the
most recent development in PVPF [23]. Fig. 2 illustrates the
milestones of the AI development from the early attempts
until the emergence of DL in 2010.

This paper’s primary motivation comes from providing a
unifying overview of the DL methods related to the PVPF
applications. This article seeks to foster the synergy between
the PVPF systems and DL methods. The main contribution
is to enable further work both by industry and academia to
speed up the practical adoption of DL techniques for PVPF.
A bibliometric and network analysis on the PVPF topic was
conducted to organize the data in a more reader-friendly
form from Web of Science (WoS) core collection database
and VOSviewer software [24]. The VOSviewer software
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FIGURE 3. Bibliometric analysis for the author-supplied keywords; The size of nodes presents the frequency of recurrence. The connections
between the nodes illustrate their co-occurrence in the same article. When the distance between the keywords is short, the keywords co-occur
more frequently with each other.

was employed to reveal the thematic content of the articles
set based on the identification of the keywords. Keywords
included by authors of the articles and occurred more than
three times in the WOS core database from 2015-2021 were
exported into Comma-Separated Values (CSV) format and
enrolled in the final analysis. Of the 150 keywords, the initial
search identified that 50met the threshold. The keyword com-
binations are employed in the systematic review protocol to
provide a broad overview of research trends in DL techniques
in PVPF systems. Fig.3 presents the mapping analysis of the
commonly-occurring term with the VOSviewer.

Using rigorous bibliometric indicators, Fig.3 shows that
the node covering the widest and most noticeable area is the
fields of ‘‘deep learning’’ and ‘‘prediction’’ with a smaller
size. From Fig.3, the emergent research topics are classified
into two core clusters: DL models and enabling technolo-
gies such as Deep Transfer Learning (DTL). These clus-
ters are devoted to organizing the paper content. To do so,
the recent DL architectures applied to PVPF and selected
from the period 2015 to 2021 have been analyzed. Further-
more, the development of Deterministic PVPF (DPVPF) and
Probabilistic PVPF (PPVPF) were presented. In this work,

we focus on reviewing the current signs of progress and
pointing out potential future directions of DL for PVPF.

Some existing works have studied PVPF and AI, listed
in Table 1 with a brief description of their related top-
ics and the differences with this review [22], [25]–[29].
In [30], a comprehensive review of RE forecasting meth-
ods has been conducted with a particular emphasis on wind
and solar energy. Specific focus of this review reports a
growing interest of studying DL techniques for forecasting
applications regarding their inherent feature extraction capa-
bilities. However, the review coverage includes both wind
and solar resources, which may lead to loose contributions
and explanations, especially when discussing the forecast-
ing architectures. In [6], Renewable Energy Sources (RES)
forecasting methods have been reviewed. In the RES con-
text, the authors provided the common understandings and
promising research insights, including hierarchical fore-
casting, probabilistic forecasting, and forecast combination.
Additionally, some helpful recommendations and common
research pitfalls for publishing high-quality journals were
provided. Nonetheless, the AI techniques adapted for RES
forecasting have not been discussed. More importantly, these
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TABLE 1. Summary and comparison of the related reviews on PVPF with our review paper.

works focus exclusively on the RES spectrum and do not
mainly focus on PVPF. Therefore, the key characteristics of
PV variability and how DL can solve the PV limitations are
scarce. In [31], the authors have reported the typical policies
related to solar forecasting for grid penetration. However, this
work has not been extended to intensively investigate DL
forecasting techniques. In [32], the concept of overarching
thinking is introduced to contradicts the basic classification
of predictivemethods into statistical,ML, or NWP.Moreover,
themain post-processingmethods for PVPFwere reviewed to
enhance the goodness of the forecasts. However, an in-depth
analysis of regression models is not provided. Paper [22] con-
ducted a review on direct PVPF with a special focus on sta-
tistical andMLmodels provided in the literature. The authors
of this review classified the data-driven techniques into per-
sistence methods, statistical approaches, ML approaches, and
hybrid techniques. Nevertheless, DL methods’ investigation,
their potential benefits, and shortcomings are not discussed
in detail [22]. In [25], the authors have been limited to
reviewing probabilistic forecasting for electricity consump-
tion and PVPG. This review reported that all the forecast-
ing engines essentially depend on the extreme forecasting
scenarios, leading to poor computability scalability in the
existing ML methods [25]. Therefore, every model should
be customized to well perform a forecasting task. However,
the DL models architectures were not explored elaborately.
Besides, the implementation factors of key issues of DL
approaches were not outlined. The authors in [29] have
extensively studied the BD models for PVPF. Thirty-eight
papers were deeply analyzed to enlist the most relevant
ML models. It can be pointed out the Extreme learning
machines achieved an excellent accuracy-computational time
tradeoff [29]. Nonetheless, the DL paradigms and their exe-
cutions were not covered. Besides, the notable techniques
for PVPF deployment were not explored explicitly. All the
related works partially cover the aims of this work. How-
ever, the related works paid less attention to results based
on DL methods. In contrast, we limit this holistic review to
the DL-based PVPF, leaving aside shallow ML and phys-
ical methods-based PVPF. Therefore, this study provides
insights not previously fully covered or evaluated by other
reviews [33].

This review gives a particular emphasis on the application
of DL methods to the PVPF. To the best of our knowledge,
different from the previous works, this is the first initiative to
give a bird’s eye view on the applications of DL for PVPF,
which is not adequately addressed in the existing literature.
To fill this gap, this review focuses on the use of DL for
PVPF applications. The main contributions of this review are
expounded as follows:
• First, we derive taxonomies for PVPF based on various
criteria such as the forecasting horizon, forecastingmod-
els, system features, and forecasting range.

• Second, the DL models-based PVPF are systematically
classified into learning-related. A comprehensive and
complete review of different algorithms applied in the
case of PVPF is provided to give critical insights into
their strengths and limitations. We aim to allow the
reader to readily distinguish the efficacy gaps at a
glimpse. Further, an evaluation and discussion of the role
of meta-heuristics in carrying out the functions required
in DL within the PVPF-realm have been conducted.

• Third, the enabling technologies for DL-based PVPF
were rigorously reviewed in a more comprehensive and
applicant-oriented manner, such as federated learning,
transfer learning, and BDDL, where previous works are
summarized logically.

• Fourth, pioneering works related to deterministic and
PPVPF have been deeply investigated.

• Fifth, a critical view over the existing research chal-
lenges are presented, and future directions in PVPF
studies to the deployment of competent, scalable, and
computationally effective algorithms based on DL are
discussed.

C. REVIEW STRUCTURE
The rest of this paper is structured as portrayed in Fig. 4.
Concretely, section II presents the review methodology.
Section III describes the popular taxonomies of PVPF tech-
niques. Section IV comprehensively investigated the DL
methods for PVPF. Section V presents the possible enabling
DL techniques for PVPF. Section VI discusses the signifi-
cant applications of DL techniques for PVPF. These applica-
tions cover DPVPF and PPVPF. In section VII, the possible
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FIGURE 4. Diagrammatic view of the organization of the paper.

future directions for empowering the PVPF performance by
emphasizing the undiscovered fields have been presented.
Section VIII concludes this review paper.

II. RESEARCH METHODOLOGY AND SYSTEMATIC
REVIEW PROTOCOL
To benefit reading, extensive searches have been performed to
fetch the most relevant content. For instance, the time horizon
is one of the essential tools to classify PVPF techniques.
Depending on the time domain, there are four distinguished
forecasting horizons as illustrated in Fig. 1; specifically,
Ultra-Short-Term (USTF) from seconds to one hour [34],
Short-Term (STF) with the prediction period from hours to
one day, Medium-Term spans up to a month ahead, and
long-Term predictions for a month to a year [12]. With the
aim of covering the largest number of articles regarding the
review topic, possible variations were also employed for this
selection. Hence, the search string utilized was: ’Deep learn-
ing’ AND ’Photovoltaic power’ AND ’Forecasting’ OR ’Pre-
diction’ OR ’Solar power’ OR ’Solar irradiance’ OR ‘deep
neural networks’ as shown in Fig.5.

FIGURE 5. Search methodology based on keywords combinations using
Boolean operators AND/OR. The specific query searched was: (Prediction
OR Forecasting) AND (Deep learning) AND (Solar power OR Solar
irradiance OR Photovoltaic power).

The publications on each platform based on the keywords
were made on June 15, 2019, totaling 350 articles. The iden-
tification of the relevant research works is conducted accord-
ing to the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) [35]. We identified the main
academic research databases, including Google Scholar,
IEEE Xplore, Science Direct, and Nature. The identification

process of relevant papers from the early stage of the selection
to the final selected publications has been displayed in Fig. 6.

FIGURE 6. Flowchart of the paper selection process with respect to
PRISMA protocol.

To achieve a more complete and inclusive understanding,
this review paper contributes to the existing research papers
by answering the following five Research Questions (RQ):
RQ1: What is the popular taxonomies for PVPF?; RQ2:
What are the most up-to-date DL methods for PVPF?; RQ3:
What are the DL methods for deterministic and probabilis-
tic PVPF?; RQ4: How Big data and transfer learning can
enhance the PVPF accuracy?; RQ5: What are the research
frontiers and future research directions?

The answers to these questions consider multiple sources
of information to ensure the accuracy and objectivity of the
main findings of this paper. The inclusion criteria were as fol-
lows: (1) articles published in English-language documents
that were published between January 1, 2015, and August 01,
2021; (2) articles used a particular DL model for PVPF;

Fig. 7 presents a timescale variation on the frequency of
use of terms ‘‘Forecasting’’, ‘‘Deep learning’’, and ‘‘Pho-
tovoltaics’’ in scientific books from Google Books Ngram
Viewer. It can be seen from Fig. 7 that the popularity of
DL has significantly increased in the last years, while the
forecasting paradigm had decreased since 1980. This result
shows that forecasting applications must take advantage of
the increasing DL trend, especially for PV systems.

FIGURE 7. Frequency of contrasting words ‘‘deep learning’’, ‘‘forecasting’’,
and ‘‘photovoltaics’’ from Google Books Ngram Viewer results
(1800-2020).

III. OVERVIEW OF PVPF AND DL
To help readers better distinguish between the emerging
learning paradigms applied to PVPF, DL methods were clas-
sified into three classes: discriminative learning, generative

136598 VOLUME 9, 2021



M. Massaoudi et al.: Convergence of PVPF and DL: State-of-Art Review

FIGURE 8. Typical structure and functions of typical MLP, CNN, RNN, LSTM, GRU, AM, RBM, BM, DBN, AE, SAE, BiLSTM, ResNet, VAE, GAN, and DRL
(a) MLP architecture with a naive structure comprising two hidden layers (b) CNN with four convolutional layers (c) Schematic of a RNN block
(d) Underling gating structure of LSTM (e) Underling gating structure of GRU (f) Schematic of a AM block (j) Operating principle of an RBM where
the neurons form a bipartite graph (h) The conceptual structure of an BM (i) The DBN architecture stacking multiple RBMs structures hierarchically
(g) The inner structure of an AE (k) The schematic diagram of an SAE (l) The inner structure of an BiLSTM (m) ResNet mechanism as a CNN that
increases the depth of a network by stacking convolutional layers and using skip connections to in-crease the receptive field (n) The inner structure
of an VAE (o) The conceptual structure of an GAN, which creates lifelike artifacts from a target distribution (p) The architecture of an DRL, where the
initial state are fed to the primary network.

learning, and Deep Reinforcement Learning (DRL). A brief
review of the knowledge and understanding of these three
concepts is presented.We, then briefly discuss the potential of
well-established mature DL structures in PVPF. Furthermore,
we cursorily investigated several Hyperparameter Optimiza-
tion (HO) used for DL in PV systems.

A. DISCRIMINATIVE LEARNING
This subsection mainly introduces common DL models for
PVPG estimations: Multilayer Perceptron (MLP), Convolu-
tional Neural Network (CNN), Recurrent Neural Network
(RNN), and Generative Adversarial Network (GAN).

1) MLPs
MLP, also named Fully Connected Network (FCN) is
the quintessential DNN model [36]. Conceptually, this

MLP consists of three fully connected layers in a
feed-forward architecture, specifically, input layer, numbers
of intermediate (hidden) layers, and output layer, as shown
in Fig. 8(a) [8], [37]. By increasing the networkability,
the hidden layers computationally reveal underlying patterns
of data at deep levels of abstraction. With the use of non-
linear/linear activation functions, the MLP configuration can
resolve complex mappings between a set of observations
and response variables. The MLP mechanism is described
as follows [8]:

uk =
m∑
j=1

wkjxj (1)

yk = φ(uk + bk ) (2)

where xj, wkj and bk denote the neurons’ input, synap-
tic weight function, and bias term, respectively. 8 denotes
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the activation function. As a supervised learning algorithm,
the MLP network employs backpropagation to minimize the
cost function. Moreover, two common training methods are
used as part of MLP: Feed-forward Back-Propagation, and
Levenberg–Marquardt. The optimal selection of the training
algorithm can enhance the convergence speed and the model
accuracy.

Pioneering work is presented in [38], where it proves
that the typical MLP network is perfectly tailored for a
day-ahead PVPF. More importantly, the developed method
could offer prominent enhancement for one day-ahead PVPF
results, especially with TanhAxon activation function and
Levenberg–Marquardt learning rule. However, hyperparame-
ter tuning for a deepMLP involves a lot of complexity inmod-
eling, which could be a challenging issue. Such observations
are confirmed in [39], wherein the MLP performance mainly
hinges on offline training and the hyperparameters’ suitability
which require significant human labor for fine-tuning. From
the authors’ work in [39], a two-state model-based MLP and
knowledge-based Neural network (KBNN) were designed
for offline and online on-site deployment. Here, KBNN is
used to avoid data shortage by including prior analytical pre-
diction equations. Hence, the KBNN significantly the MLP
model with the insufficiency of labeled data. The approximate
MAPE is 11%. In [40], a DL-based mapping model between
the concurrent sky image and surface irradiation has been
introduced. Aside from the hybrid model, the sky images
were clustered in the preprocessing stage using K-means
clustering based on Convolutional Autoencoder (CAE) to
enhance the feature representation of high-dimensional data.
Despite the high complexity cost, the mapping modeling of
surface irradiance boosts the forecasting model performance.
In [41], an MLP model has been proposed for solar radiation
forecasting. Four types of uncertainties were presented; errors
from meters’ measurements, sarcastically of weather data,
ML uncertainties, and errors due to the forecasting range.
A reliability index has been comprehensively introduced to
assess the goodness of the forecasts [41]. Although the model
generalization to complex cases, the MLP model is restricted
to reveal patterns among sequential samples such as PV
generation data. This is mainly due to the fact that this config-
uration does not save the previous information in an internal
memory [42]. Consequently, the Time Series (TS) data are
trained independently, which may lead to poor accuracy [42].

2) CNNs
CNNs, popularly termed as ConvNet, are a popular class of
feed-forward networks designed to process grid-like struc-
tured data [28]. The core of the CNN network was con-
ceptualized based on three principal elements: convolution,
pooling computations, and Fully Connected Layers (FCL),
as shown in Fig. 8(b). These elements lead to a spectacular
features extraction capacity and robust feature representa-
tion [43]. The objective of the pooling layers is to merge
semantically similar features into a single one by applying
a specific function. This allows the pooling layer to reduce

the feature map dimension, accelerating the system con-
vergence [43]. While the convolutional layer extracts local
features from contiguous data. The layered structure of CNN
comprises one-dimensional CNN, two-dimensional CNN,
and three-dimensional CNN. For PVPF, one-dimensional
CNN is essentially used to process sequential data [28]. The
fully connected layers are usually the last few layers and are
used to summarize information.

In [44], the authors introduced a hybrid framework by inte-
grating a hybrid CNN-Long-Short Term Memory (LSTM)
network-based PVPF model. Using the hybrid paradigm,
CNN automatically filters out noise and extracts the valu-
able features, while LSTM efficiently handles sequential
inputs. More specifically, the authors have sought to exploit
the Multiple Relevant and Target variables Prediction Pat-
tern (MRTPP)method to optimize the distribution of the input
features. This promotes the forecasting engine’s efficiency
in capturing the nonlinear variation of PVPG for multi-step
prediction. However, the convolutional layer in CNN has a
convolutional kernel of constant size and a limited receptive
domain, which is limited to local feature learning. Whereas
in [45], the authors proposed a specialized CNN for 15-min
ahead minutely-averaged PVPF. The proposed model pro-
vides accurate predictions represented by a 5.7% forecast
skill without intensive hand-engineered features as input.
However, the major limitation of CNN cannot be fully suit-
able for capturing time dependencies.

3) RNNs
RNNs are a special type of DNN based on control theory
composed of a chain of neurons whose output is connected
not only to the next layer but also to feedback connection,
as shown in Fig. 8(c) [46]. By sequencing TS data as an
input vector, the RNN cell allows the underlying information
to persist until feeding it back to the next prediction. Thus,
the RNN provides a quicker implementation and fast training.
The TS data passes through a cell in a sequential vector,
at each step the cell output value is concatenated with the
next time step data, and the output value of the cell serves
as input for the next time step. The process is repeated until
the last time step data. However, the most common drawback
of the vanilla RNNmodel is the limited capability of handling
long-term dependencies [46].

For TS data, RNNs based models form the core of most
sophisticated fancy TS applications, which allows them to be
perfectly tailored for PVPF andwidely depicted in pioneering
articles. To name a few, the authors in [47] proposed a deep
RNN to predict solar irradiation accurately. It is worth men-
tioning that five RNN categories were rigorously described,
specifically, the standard RNN, Deep RNN, stacked RNN,
Deep RNN with shortcut connections, and Deep RNN with
deep output layer. Compared with other benchmarks, using
realistic data from natural resources in Canada, the RNN
showed better accuracy when processing TS high-level fea-
tures. In [48], an LSTM-Convolutional network (LSTMC)
has been adopted for PVPF. The proposed approach results in
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RMSE of 0.621kW for short-term PVPF. Surprisingly, it can
be remarked that LSTMC model outperforms CNN-LSTM.
This paper demonstrates that extracting temporal correlations
first and then spatial correlations using this processing order
could improve the forecasting effectiveness. Despite the high
accuracy of the proposed model, it is concluded that a large
number of training samples is extremely needed for achieving
generalizability.

LSTM network is a special chain-like structure with mem-
ory cells proposed by Hochreiter and Schmidhuber [49].
The LSTM is a particular type of RNN that overcomes
the notorious vanishing gradient phenomenon in modeling
long-range temporal dependencies [50]. A typical LSTM cell
mainly consists of input gate it , forget gate ft , output gate ot ,
and one control gate ct to manage the information flow,
as shown in Fig. 8(d). Concretely, these gates are used to
control the update, maintenance, and deletion of informa-
tion contained in cell status. The operations on the memory
block are managed using adaptive multiplicative gates. The
LSTM gates, hidden outputs, and cell states are computed as
following [51]:

It = σ (WI xt + Uiht−1 + bI ) (3)

ft = σ (Wf xt + Uf ht−1 + bf ) (4)

ot = σ (Woxt + Uoht−1 + bo) (5)

c̃ = ft � ct−1 (6)

ht = ot � tanh(ct ) (7)

where xt and ct is the input sample at time t and the memory
unit, respectively. (bf , bI , bo),(Wf ,WI ,Wo), and (Uf , UI , Uo)
stands for the bias terms, weight vector, and input weights
for each gate respectively. The symbol � denotes Hadamard
product. ht−1 is the hidden layer for the respective gates
x in the current timestamp. σ activation function denotes
the element-wise calculation. The LSTM has an excellent
potential to process time-based information. For instance,
the authors in [52] employed an LSTM-based to perform
an hourly PVPF. The particle swarm optimization (PSO)
algorithm was employed to adjust the load dispatch. The
simulation results from the proposed model exhibit that it
considerably increases the accurateness of prediction a Mean
Absolute Percentage Error (MAPE) error of 15.87%. How-
ever, the computational cost is high compared to MLPmodel.

Gated Recurrent Unit (GRU) is considered as one of the
preferred single TS forecasters [46]. By using the recurrent
connections, the GRU architecture permits the network to
access the historical information. The GRU is a kind variant
of RNN that has gates that modulate the flow of information
inside the unit, as shown in Fig. 8(e). A typical GRU cell is
composed of only two gates, the reset gate rt = σ (wrxt +
U rht−1) and the update gate zt = σ (wzxt + U zht−1) [46].
σ is a smooth and differentiable function; bz,Wz, and Uz
are the bias, the input constant of the update gate (z),and
the previous activation constant, respectively. Nonetheless,
it is distinguished for its gate reduction strategy to acceler-
ate the learning process without lowering the performance.

Paper [53] employed GRU for PVPF. In their study, various
processing blocks were built based on the characteristics
of each block to promote the proposed approach accuracy.
Specifically, the Pearson coefficient is exploited to rank the
feature inputs according to their relevance to the PVPG.
Next, K-means clustering is used to group the training data
according to the similarities of input patterns. These groups
are utilized to generate an averaged PVPF output. The
proposed GRU architecture demonstrated its expertise in
capturing temporal dependencies. However, the average
training time is 365.40 seconds, which is painfully slow
compared to statistical techniques such as Auto-regressive
Integrated Moving Average (only 3.66 seconds). Bidirec-
tional LSTM (BiLSTM) is an improvement to one-way RNN
where the forward and backward hidden layers are com-
bined to access both the preceding and succeeding data [54].
Bidirectional Mechanism (BM) is a way of learning the
information from both directions, as shown in Fig. 8(l) [54].
In a nutshell, BiLSTM can handle the sequential modeling
challenge better than conventional LSTM by acquiring the
forward and reverse information from the cyclic feedbacks.
For instance, the authors in [55] proposed a BiLSTM model
to model nonlinear time dynamics for PVPF, which helps
in boosting the model performance significantly. The pro-
posed model can accurately detect meteorological changes
over time. Meanwhile, the real-world implementation of the
Bi-LSTM model requires memory-bandwidth-bound com-
putation, which compromises their application ability due
to high computation and storage. To combat this challenge
to a large extent, Attention Mechanism (AM) is associated
in the RNNs structures for better generalization ability by
mimicking the attention of the human brain [56].

AM puts more focus on the input sequence’s core elements
that affect the quality of the forecasts to learn the information
in the input sequence better. The principle idea of the AM
in DL is also to neglect the irrelevant data to the current
task and only to select the information that is more critical
to the current mission, as shown in Fig. 8(f). AM can be
categorized into spatial attention, channel attention, and self-
attention [57]. AM allows the forecasting models to pay more
attention to useful features, so AM is widely used in RNNs.
The computation of AM is initialized by a Query (Q) and
Keys (K ) as f (Q,Ki) = QTKi. The Softmax activation
function is used for weights standardization as [57]:

ai = Softmax(f (Q,Ki)) =
exp(f (Q,Ki))∑L
j=1 exp(f (Q,Kj))

(8)

The attention value is obtained by calculating the sum
Attention(Q,K ,V ) =

∑L
i ai ∗ Valuei, where L is the size

of the input sequence. In [58], the authors proposed a Convo-
lutional self-Attention Based LSTM (CA-LSTM) for PVPF.
The self AM is a special form of AM, which better captures
the syntactic and semantic information from the row of TS
data. The proposed model aims to fully use the features of
long sequence inputs, achieving an overall MAPE of 10%.
Thus, the AM successfully improves the traditional LSTM
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performance with a lower MAPE of 17%. Reference [59]
proposed an LSTM-based Temporal AM (TA-LSTM) for
solar generation forecasting. The proposed model employs
partial autocorrelation to follow the input lag. The TA-LSTM
produces a Root Mean Square Error (RMSE) of 0.26kW,
which seems to prove its high competitiveness compared to
the classic LSTM in PVPF. Meanwhile, the hyperparameter
list is increased, which leads to extensive hyperparameter
tuning. Despite the high suitability of this network for TS pro-
cessing of the gated RNN architectures, their massive storage
and computation requirements hinder their application abil-
ity, particularly for PVPF.

B. GENERATIVE LEARNING
In this section, we review the state-of-the-art DL architec-
tures. These ubiquitous DL architectures are Auto-Encoders
(AEs), Restricted Boltzmann Machines (RBMs), and Deep
Belief Networks (DBNs), and Generative Adversarial Net-
work, respectively.

1) RBMs AND DBN
The RBM (Restricted Boltzmann Machine) network
is energy-based stochastic neural networks, as shown
in Fig. 8(j). In a nutshell, this variant of Boltzmann
Machines (BM) has node connections both within layers
and between layers (Fig. 8(h)). The RBM model has the
potential to learn the input probability distribution in super-
vised/unsupervised learning. The RBM architecture has two
levels with symmetrical connections between them, one is the
visible layer v, which contains the input and output, and the
other is the hidden layer h with n units [18]. The visible and
hidden units that follows a joint distribution can be expressed
as:

P(v, h) =
exp(−E(v, h))

z
(9)

E(v, h) = v′wh+ α′v+ b′h (10)

and z =
∑

v,h E(v, h). Deep Belief Networks (DBN) is an
unsupervised greedy learning algorithm with a stacked RBM
units as shown in Fig. 8(i) [18]. TheDBNperforms layer-wise
training to learn probability distribution of the input vectors.
The DBN processing consists of using layer-by-layer unsu-
pervised pre-training to select the suitable initial parameters
and supervised fine-tuning mechanism to rebuild training
samples by tuning the parameters [60]. The RBM layers
were seen as feature extractors to generate a high-dimensional
abstraction of the inner relationships of the data.

In [61], the authors proposed an Integrating gray data
preprocessor and DBN for day-ahead PVPF. These contri-
butions are completed in [60], where the authors proposed
a day-ahead global solar radiation forecasting using func-
tional DBN. The performance enhancement of the devel-
oped technique relies on an embedding clustering layer and
knowledge functions from empirical models. These process-
ing units demonstrate a sophisticated and elongated iterative
fashion, thus improving the model robustness for longer time

dependencies [60]. Although the DBN model demonstrated
its efficiency in various forecasting tasks, the DBN architec-
ture is prone to model structure and parameter optimization
challenges.

2) AUTOENCODERS
Autoencoder (AE) architecture is one of the most ground-
breaking unsupervised learning models that learn character-
istics from unlabeled data representation [9]. AEs are loosely
inspired by the way the human brain works. Typical compo-
nents of the approach are the encoder and the decoder [20].
By minimizing the reconstruction error between the input
data at the encoding layer and its reconstruction at the
decoding layer. There are many types of AEs, and the most
commonly used ones are; Stacked Autoencoders (StAE),
Denoising Autoencoder (DAE), Sparse Autoencoders (SAE),
CAE, and Denoising CAE (DCAE), and Variational Autoen-
coders (VAE) [20]. An AE-LSTM network is proposed for
day-ahead PVPF for the next day at 15-min interval [62],
with a normalized RMSE of 4.56%. The proposed AE-LSTM
model jointly exploits the feature extraction of AE and
the sequential TS forecasting engine of LSTM. However,
the trans day weather volatility is poorly predicted by the for-
mal predictor. The authors of [63] established an AE-driven
DL model-based PVPF method to overcome the stochastic
behavior of PV power output, which achieves an optimal
R2 = 99.5%. Despite the ability of the proposed model to
provide accurate one-step and multi-step forecasting results,
the VAE shown in Fig. 8(n) is prone to the vanishing latent
variable problem.

3) GAN
GAN is an unsupervised pre-trained network consisting of
two competing neural networks: the generator G(z) and the
discriminator D(x), as presented in Fig. 8(o). By learning
the real data x distribution, G generates realistic scenarios
until they cannot be distinguished anymore from real data.
The fake data is generated from random noise using Gaus-
sian distribution. This operation is conducted by deliberately
introducing feedback at the back-fed input cell from the
input noisy variables pz(z). And D correctly distinguishes
whether the input data comes from the true data pdata(x) or the
generator. The two models are optimized simultaneously by
updating the network weights in an alternating manner. The
hyperparameters are tuned based on optimizing the loss and
varying the randomness. The objective function formulated
as [64]:

min
G
max
D
V (D,G) = Ex ∼pdata(z) [log(D(x))]

+Ez ∼pz(z) [log(1− D(G(z))] (11)

GAN has gradually attracted prominence in the PVPF
domain, especially for data augmentation purposes. For
instance, the authors in [64] employ Wasserstein GAN with
Gradient Penalty (WGANGP) for weather classification-
based PVPF. The WGANGP was utilized for data
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augmentation purposes by producing synthetic data that
follows the same heteroscedasticity of original data. The
newly generated data is fed to the CNN model to improve
its performance by ameliorating the feature representation.
A series of experiments on 33 meteorological weather types
were conducted and proved the effectiveness of themethod by
comparing it with other methods. However, the major caveat
of the GAN model lies in the fact that the GAN training is
relatively unstable.

C. DEEP REINFORCEMENT LEARNING
Recently, DRL has been introduced as a combination of DL
(DL), and Reinforcement Learning (RL) to better cope with
the dynamic changes of the unsteady PV environment [65].
By bridging DL and RL, DRL shows its great potential in
handling complex tasks and high scalability to suit com-
plicated and unfamiliar environments, particularly in power
systems [66]. As a goal-oriented learning method from the
environment feedback, the traditional RL extends its poten-
tial to store high-space actions and states with an intuitive
hierarchical feature extraction ability and nonlinear approx-
imation ability of DL architectures, as shown in Fig. 8(p).
Consequently, DLmodels intersection state information from
sequential PV data [67]. From the DRL scheme, the agent
continuously interacts with the state environment over a series
of trial-and-error processes to shape the optimal strategies
[68]. Several methods for the Q values updates were provided
in the literature, such as State-Action-Reward-State-Action
(SARSA) and Asynchronous-Advantage-Actor-Critic (A3C)
and Deep Q Net (DQL) [66]. In RL, the environment can be
modeled as a Markov Decision Process (MDP) expressed as
(S,A,P,R, γ ). Here, S, A, P, and R denote the discrete states
in the environment, a finite set of actions provided for the
agent, the state transition probability matrix, and the reward
function, respectively. γ presents the discount factor utilized
to quantify the importance of the future and present rewards.
Despite the ample opportunities of DRL, efforts to employs
the DRL in PVPF have been scarcely found in the literature.

Using the powerful representation ability of DNNs,
the value function is fitted to optimize the explosion of
continuous and integer state-action space problems. Mainly,
DRL provides high-dimensional input or large action sets to
solve intractable problems using self-adjustments and opti-
mization solutions. However, current DRL techniques are
dependent on massive training data and expensive computa-
tional requirements, which may be unacceptable in practical
PV advertising platforms. DRL models were roughly divided
into two main settings: Model-based, and Model-free-based.
The following subsections describe these concepts.

1) MODEL-BASED
Model-Based DRL (MDRL) expects that the agent under-
stands the system dynamics and how the system crosses
from one state to another one and how rewards are gen-
erated. This MDRL methods have been effective in terms
of data-efficiency, transferability, and universality [68].

However, MDRL is computationally expensive and ineffec-
tive in rapidly varied environments [68]. MDRL has been
proposed to solve the optimal action-selection policy [69].
MBRL employs an internal model to approximate the envi-
ronment, and the control behavior can be learned through this
model. It has been reported that model-based approaches are
more efficient than model-free approaches. However, MDRL
needs to save the state transition matrix and employing
Dynamic Programming (DP) algorithms leading to massive
calculation requirements [70]. This approach is not always
practicable, especially in complicated paradigms where the
agent has limited to no knowledge about its environment.
Authors in [71] applied an MDRL-based MuZero algorithm
to solve the scheduling problem of distributed microgrid, par-
ticularly for PV systems. The proposed approach combines
the Monte-Carlo tree search method with a learned NN to
efficiently learn a network model. However, Despite the high
sample efficiency of the proposed model, the model design is
complicated, especially for large PV systems.

2) MODEL-FREE BASED
Model-Free DRL (MFDRL) conducts the optimal policy
without explicitly learning the model of the environment.
It can be achieved by using three approaches: Value-Based
RL (VBRL), Policy-Based DRL (PDRL), and Actor-Critic
(AC) based [78]. VDRL is a prominent learning method to
deal with high-dimensional state space and discrete or con-
tinuous action spaces in optimization problems [79]. On the
other hand, PDRL architecture guarantees better convergence
and keeps relatively high efficiency in high-dimensional or
continuous action space [79]. However, agents require mil-
lions of time steps to learn tasks from many iterative systems.
Since updates occur in small steps, agents may under-explore
their environments or under-develop strategies, leading to
exploration shortcomings in some cases. AC is a fusion of
policy-based and value-based models to constitute an end-
to-end learning paradigm from perception to action [80].
Asynchronous advantage actor-critic (A3C) and deep deter-
ministic policy gradient, and twin delayed deep deterministic
policy gradient (TD3) were the standard representations of
AC method [79].

MFDRL is widely depicted for optimization and control of
PVPG in research works. To name a few, in [81], the authors
adopted a novel strategy that brings together DQN and CNN
to cope with the uncertainties of an isolated microgrid. Con-
cisely, the proposed DRL model optimizes the sum of diesel
generators’ generation cost and the penalty of non-served
power demand. However, the curse of dimensionality persists
with the DQN. A combination of Policy Dynamics based
Win or learn Fast-Policy Hill Climbing (PDWoLF-PHC) and
Back Propagation Neural Network (BPNN) network has been
adopted to tackle the RES uncertainties for fast-response
regulation units [82]. The proposed model optimizes the
coordinated control for the source-grid-load. Despite the high
efficiency of the proposed model for automatic generation
control, its deployment requires high exploration costs in a
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TABLE 2. Comparison between popular DL algorithms.

multi-area interconnected grid. A multi-agent Double Deep
Q Network and an Action Discovery (DDQN-AD) has been
proposed for distributed RES management [83]. However,
the proposed model is limited to homogeneous agents to
work effectively. Paper [84] proposed an automatic genera-
tion control-based AC strategy. The proposed method relies
on DQN to follow an isolated microgrid paradigm’s interac-
tion agent-environment without the need for RE forecasts.
However, the proposed system can only have determinis-
tic policies, limiting its feasibility in practical power grids.
To sum up, DRL is limited for optimization and control tasks,
enhancing the prediction systems’ efficiency. Nonetheless,
the forecasting problems remain unsolved entirely via DRL,
which requires more investigations.

D. HYBRID MODELS-BASED
The efficiency of stand-alone DL models can be unsatisfac-
tory in PVPF in different case scenarios due to inappropriate
HO, bias-overfitting conundrum, and unbearable complexity
in both computational and spatial dimensions. To bridge that
gap, the combination of two or more cross-discipline meth-
ods (a.k.a hybrid models) is commonly proposed to forecast
PVPG with an improved performance than the single DL
models [7]. This performance enhancement refers to the fact
that the single DLmodels have their strengths and limitations,
as reported in Table 2. Specifically, DL has some limitations,
including the lack of interpretability with DL outputs that we
cannot even fathom how they are generated yet, extensive

computation requirements, and the need for massive data to
efficiently perform the desired task. Hybrid models are often
preferred for solving the insurmountable PVPF problems
to eliminate or reduce the shortcomings of single models
by combining them with another model in order to obtain
impressive results [85]. Fig. 9 shows a comprehensive dis-
tribution of the reviewed papers in this review according to
the forecasting method.

As remarked in Fig. 9, the hybrid methods are by far
more deployed than the rest of DL models. For instance,
a Conv-GRU model has been proposed to predict the PVPG
accurately [86]. The proposed model provides a high ver-
satility to deal with the nonlinear behaviors to provide an
accurate PV output. A CNN-LSTMmodel has been proposed
for PVPF [87]. However, the extraction of positional and
temporal representation in the PV output requires explicit
recognition of patterns and regularities in data, challeng-
ing to compute due to the massive computational burden
in real-life application. An AE-LSTM model has been pro-
posed [9]. A DBN-based Auto-Regressive has been proposed
for nonlinear TS modeling [88], which provides decent per-
formance. But, the algorithm is fragile when faced with the
PV volatile behavior when applied to different locations and
not suitable for PVPF. An innovative USTF method has been
depicted in [34]. The authors’ work consists of implementing
of the underlying Local Sensitive Hash algorithm (LSH).
The used taxonomy considers four weather conditions:
clear, cloudy, rainy, and snowy weather. LSH profoundly
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FIGURE 9. Distribution of the selected papers per DL method.

investigates the coupling correlated weather features. The
methodology adopted for LSH system classifies the PV
power segments and generates a PPF output. In [34],
the authors exploited a hybrid method for an accurate
hourly PV power prediction based on a gradient-descent
Back-Propagation method (BP), Schema Frog Leaping Algo-
rithm (SFLA), and ANN named BP-SFLA-ANNs model.
Subsequently, their adopted BP-SFLA-ANNs model consists
of using SFLA to mediate between BP and ANNs models.
BPmodel provides the values of the primary hyperparameters
of ANNs to let the SFLA start from this initial selection to fur-
ther search for more suitable parameters of a typical ANNs.
The interaction between SFLA and the BP led to a superior
ANN accuracy and less computational burden compared to
an SFLA-ANNs without the initial tuning of BP. Further
applications of hybrid models in PVPF are listed in Table 3.

However, computational complexity is one of the main
weaknesses of the hybrid models due to using of two or more
techniques. Thus, the accuracy improvement should not com-
promise the computational complexity of mixed models. The
performance of a mixed model depends on the performance
of a single model.

E. HYPERPARAMETER OPTIMIZATION OF DL
ARCHITECTURES
The ever-increasing complexity of the newly developed DL
methods has raised an emerging resurgence of research
on HO. Awide range of hyper-tuning techniques was adopted
to support DL algorithms or provide an alternative for specific
optimization tasks. Automated hyperparameter selection is an

FIGURE 10. Meta-heuristic algorithms with Sine cosine algorithm [97],
Find fix exploit analyse [98], Electro-search algorithm [99], Selfish heard
algorithm [100], Emperor Penguins colony [101], Butterfly optimization
algorithm [102], Group counseling optimization [103], Volleyball premier
league algorithm [104], Jaya algorithm [105], Gaining sharing knowledge
based [106], Differential search algorithm [107], Backtracking search
optimization [108], Stochastic fractal search [109], Synergistic fibroblast
optimization [110].

essential step to save the rare resources of human expertise
and notorious efforts. Meta-heuristic techniques offer the
adequate tools to provide an optimal or near-optimal config-
uration of DL models due to their efficiency and scalability
for various complex applications. Meta-heuristic algorithms
can be divided into four distinguished categories, specif-
ically, evolution-based, swarm intelligence-based, physics-
based, and human behavior-based, as shown in Fig. 10.

For instance, Ant Colony Optimization algorithm has
been proposed for model tuning to accurately predict the
PVPG [111]. Paper [112] developed aCNN and a Salp Swarm
Algorithm (SSA) for PVPF. For different types of weather,
five CNN regression models are designed. Consequently,
the prediction engine is easy-to-implement even if the knowl-
edge of the hyperparameters was limited. Paper [54] adopted
a combination of BiLSTM, Sine Cosine Algorithm (SCA),
and complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) for solar irradiance forecast-
ing. Similarly, the authors in [113] established an improved
BiLSTM model with Genetic Algorithm (GA). However,
the proposed version of the BiLSTM model is susceptible to
the random weight initialization.

IV. DEEP LEARNING MODELS USED IN PVPF
APPLICATIONS
In this section, the notable techniques for PVPF have been
discussed, including DTL, BDDL, incremental learning,
online learning, and federated learning.

A. FEDERATED LEARNING BASED PVPF
As DL models based on a central server are suffering
from critical privacy-intrusive and security challenges, with-
out explicit awareness of the users, these concerns hold
particularly strong. Concerns about data awareness in
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TABLE 3. Related hybrid DL models.

PV systems may lead end-users to be progressively unwill-
ing to send their potentially private and personal data to
data centers, raising the problem about how DL algorithms
will be trained [114]. Federated Learning (FL) is regarded
as privacy-preserving collaborative learning that gained a
whispered emphasis from academics and practitioners due to
its significant contributions [115]. This emergent technology
permits various parties ideally, mobile devices, to coopera-
tively train a DL model on their combined sets, without any
participants having to reveal their local data to a centralized
server.

For the energy hub, FL seems to be the missing puz-
zle piece in the widespread adoption of SE. For instance,
the authors in [116] applied a secure FL method based on
Bayesian LSTM Model to address solar irradiation predic-
tion. The proposed model proves its efficiency in solving the
problem of sparse samples by using a distributed training
framework. Meanwhile, the missing and faulty data can con-
siderably hinder the training of the FL model. FL is still in
the early stages of development. There are many works to do
and a few structural achievements in the approval process that
still need to happen before the researchers could leverage the
FL technology to its full potential.

B. DEEP TRANSFER LEARNING IN PVPF
To further supplement the staggering potential of DL, Deep
Transfer Learning (DTL) based on Transfer Learning (TL)
and DL has been proposed to overcome the insufficiency
problem of the actual training data sets convergence issues
and isolated learning shortcomings [117]. DTL employs
the pre-existing knowledge acquired from a DNN model
for a particular task to solve related ones [118]. Con-
cretely, the sensor measurements are hardly sufficient and
sparsely generated [117]. Instead of learning any new task

from scratch, DTL is devoted to avoiding much expensive
data-labeling efforts using cross-domain data sets [119]. Fur-
thermore, the HO-based DL algorithms could be conducted
using TL [120]. This learning framework operates by trans-
ferring the knowledge gained by a DNN model in handling a
task (source problem) to solve another related task.We define
a source domain Ds and a target domain Dt with Ds 6= Dt .
A learning and source tasks (Ts Tt ) with Ts 6= Tt constitute a
DTL framework if ηt is a nonlinear function represented by a
DNN. The source and target domains is formulated as [119]:

Ds = {(xSj , y
s
i )}

M
i=1 (12)

Dt = {(x tj , y
t
j )}

N
j=1 (13)

With M and N are labeled samples in Ds and Dt , respec-
tively;Xs andXt denote the feature spaces of source and target
domains, respectively. xi denotes the data instance and yi is
the related class label. In [121], a Shared-Optimized-Layer
LSTM (SOL-LSTM) network has been proposed for PVPF.
The rationale of the proposed model design is to combine a
Sequential Model-Based Global Optimization (SMBO) with
the LSTM network. DTL can solve the data insufficiency
of the newly build PV plant by pre-training the hyperpa-
rameters in a similar source domain and fine-tuning in the
target domain. However, with the increase of the data’s vol-
ume, the SOL-LSTM performance significantly decreases.
In [120], a DNN has been proposed to tackle nonlinear
weather uncertainties for RES farms. However, the DTL
model seeks repeated access and preprocessing of a poten-
tially massive data set of source tasks to establish the nec-
essary knowledge base for the downstream target task. This
requirement may not be feasible in large PV systems due to
the lack of data-intensive computing resources. Therefore, it
is of great significance to merge DTL and BD solutions to
solve the data problems in large-scale PV systems.
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Although the DTL would significantly enhance the per-
formance of the DL-based PVPF, the research work on the
DTL use for PV systems is relatively limited contrary to other
areas such as fault detection in PV systems [122]. This may
be related to the essential need for data sets with minimum
reasonable similarity.

C. BIG DATA DEEP LEARNING FOR PVPF AND
CHALLENGES
As known, DL models are data-hungry, requiring a large data
to work effectively [123], [124]. Reciprocally, DL scales well
with growing amounts of data [125]. However, the compu-
tational efficiency of the actual calculators is considerably
limited, especially with the trend of increasing DNN size.
To bridge this gap, it is, thereby, generally not an option to
employ Big Data technologies for model training, especially
with the continuous flow of data pouring from monitoring
systems and smart devices [126]. Big Data and Analytics
provide the means to predict the weather conditions and
PVPG for PV systems to work at peak efficiency. Datamining
can truly be beneficial for enhancing the PVPF in a complex
ground-level infrastructure.

In [122], the authors have proposed a deep Feed-Forward
Neural Network (FFNN) with big data set from Australia.
A H2O package has been employed to combine non-deep and
deep learning methods with Apache Spark cluster-computing
framework. The simulation results proved that the lagged
information does not need more than the previous 24 hours
of historical information to provide and accurate results.
However, the grid search algorithm tuning of the trained
model may produce heavy computation requirements. Con-
sequently. An adequate selection of optimization algorithms
will be of utmost importance to establish cost-efficient pre-
diction tools.

In [124], the authors introduced a big data solution by com-
bining used physical and dynamical theories and intelligent
algorithms to solve big data problems. However, decent doc-
umentation of the used software (Sun4CastTM ) is missing.
Paper [127] proposed an annual rooftop solar irradiation anal-
ysis based Spark-based fuzzy partitioning LSTMmodel. The
proposed solution employs rooftop characteristics, horizontal
solar irradiation, visibility of the sky, and shading factor.
Hence, the simulations prove that ensemble models repre-
sented by RF overcome NN symbolized by extreme learning
machine ensembles with an accuracy of 92%. The authors
in [128] applied a big data forecasting tool based to solve
the PVPF problem, where, Pyspark package is employed to
implement the neural network model. The simulation results
produce an average RMSE = 0.03 MW with fast conver-
gence. Unfortunately, the computational complexity disables
the model from the transition from proof of concept to pro-
duction. Whereas a massive amount of engineering is needed
to deploy it in production. Big Data frameworks applied
to PV systems can contour several limitations such as data
privacy and security, multisource data integration, real-time

data processing to ensure that the data clearly conveys what
they need the DL to learn for real-world PV plants [129].

D. INCREMENTAL AND ONLINE LEARNING
Under the umbrella of DL, incremental and online Leaning
has emerged as a continuous evolving scheme to improve the
universality of the prediction engines for accurate regional
forecasting. Hence, the difference between these two algo-
rithms is quite challenging. Online Learning (OL) dynam-
ically trains or adapts the model using each incoming data
point at each time step, without saving [130]. Thus, OL is
used to handle large volumes of streaming data transmitted
at high velocity. Incremental Learning (IL) provides a fast
remodeling from batch learning of data at different time
intervals, and has the capability to integrate new knowledge
on-the-fly of the predefined model if the network deems to
be expanded. The incremental samples can be fed from the
available Samples (SIL) or even unseen classes (CIL).

Authors [131] established an online PVPF method to
handle concept drift. A model-agnostic online forecasting
(MAOF)-based LSTMmodel is used, generating anMAPE=
23.59%. However, the model produces a serious performance
degradation is particular case scenarios leading to stability
issues. The work in [132] applied an incremental learning
model for solar irradiance based-Regression Enhanced Incre-
mental Self-Organising Neural Network (RE-SOINN). The
proposed model is trained incrementally as new data come in
progressively. This architecture avoids the tedious retraining
process of DL models.

V. APPLICATION POTENTIAL IN PV POWER
FORECASTING
With the increasing spatiotemporally coupled uncertainties
in PVPG, PVPF becomes a desperate need to ensure grid
stability and weaken the uncertainty of solar PV power, hence
paving the way towards a large-scale economic deployment
of RES in the electricity grid. Conceptually, PVPF can be
broadly classified into two folds, point PVPF and inter-
val PVPF.

A. POINT PV POWER FORECASTING
Point forecasting, so-called deterministic forecasting,
is widely regarded as essential for optimal power system
management. Point forecasting models have been thoroughly
researched over the years, and the trend of developing more
accurate forecasts is still booming [133]. The average PVPG
Pt+k|t , is estimated to be produced from a PV system during
a specific time period, for the PVPG forecast made at time
step t , for a look-ahead time, t+ k , if it would function under
an equivalent constant PV power. The time horizon T , for
which the prediction is generated, defines the total length of
the forecast period. Deterministic PVPF provides accurate
and specific future values [134], [135]. Further, these meth-
ods are easy-to-use, deploy and evaluate using score metrics
such as RMSE, MAE, R, and MAPE [33]. Unsteady PVPG
threatens energy generation. However, spot forecasts do not
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TABLE 4. Selected recent works on DL-based PVPF.

include the uncertainties around the mean value. Therefore,
their results can be unreliable and misleading in particular
scenarios [12].

Table 4 presents several exemplary applications of deter-
ministic DL methods for PVPF. For instance, the authors
in [142] adopted a LSTM–CNN model. It produced the most
accurate forecasts over single LSTM and CNN, with a fore-
casting skill of 37%–45%. But, the computational burden is
ten times longer than the standalone LSTM. A deep Extreme
LearningMachine (ELM) has been applied in [143]. The pro-
posed model incorporated Enhanced Colliding Bodies Opti-
mization (ECBO), Variational Mode Decomposition (VMD),
and a ELM algorithms. However, the proposed model does
not shed light on uncertainty abstraction and reasoning.
Therefore the forecasting engine is found inefficient in deal-
ing with meteorological data pervaded with uncertainty.

B. PROBABILISTIC PV POWER FORECASTING
With the increasing PV power uncertainties, Proba-
bilistic Deep Learning (PDL) has become the de-facto
solution to lessen negative impacts on power sys-
tem reliability and economic efficiency from stochastic
PV generation [144]. PPVPF can provide an estimated inter-
val where various possible PVPG values for a specific time
are generated to quantify the intrinsic uncertainties associated
with point forecasts [144], [145]. PPVPF draws excellent
attention to balancing authorities for its ability to provide pre-
diction interval, quantile, density, or conditional probability
distribution of future predicted power [146]. From the liter-
ature, the most overwhelming PPVPF methods lie in con-
ditional quantile regression (QR) and conditional expectile
regression [147]. For instance, An Improved quantile

CNN has been proposed for indirect PVPF to compute con-
sistent quantile estimates [148]. The simulation results indi-
cate that two-stage training strategy has a positive influence
on enhancing forecasting accuracy. A deep QR-CNN-based
Wavelet Transform (WT) has been exploited to model
DPVPF and PPVPF [149]. The CNN-WT efficiently provides
a wider view of a prediction. The proposed model is tested
using TS data collected by Elia, Belgium’s transmission
system operator. The erage Coverage Error (ACE) obtained
varies from−1.02 to 0.43 for a prediction horizon of 15 min.

In [147], the authors propose a Robust Self-Attention
Multi-horizon (RSAM) model for PPVPF using QR. How-
ever, the QR generates a non-differentiable loss function that
threatens the model stability and robustness. The proposed
model employs a self-attention-based transformer model.
However, the problem of crossing quantile curves is fre-
quently observed, particularly when considering a dense
set of quantiles or using a small data set. Furthermore,
the DNN is naturally deterministic and limited to PPVPF.
Therefore, Bayesian probability is often integrated with DL
models to provide prediction intervals associated with fore-
casted point values [150], [151]. Substantial research has
shown that PPVPF is scarcely investigated compared to
deterministic PVPF. A number of DL techniques have
been exploited in the literature for PPVPF. For instance,
paper [152] presents a Robust Self-Attention Multi-horizon
(RSAM). The proposed model indicates an 18.60% improve-
ment compared to the conventional LSTM. A Traditional
Encoder Single Deep Learning (TESDL) framework has
been proposed, which provides a 27% improvement in accu-
racy factor [153]. Reference [154] exploited an SAE and
Lower Upper Bound Estimation Method for PPVPF. It was
found that the wind speed, weather temperature, weather

136608 VOLUME 9, 2021



M. Massaoudi et al.: Convergence of PVPF and DL: State-of-Art Review

relative humidity, global horizontal radiation, and diffuse
horizontal radiation can effectively predict PV energy pro-
duction. Despite their importance, PPVPF may ignore the
interdependence shape of forecast errors among look-ahead
timesteps, and may lose their potential in practical use in
the time-dependent and multi-stage decision-making pro-
cesses, such as the trading strategies design in a multi-market
environment.

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
The last section concludes this review with rigorous inves-
tigations and guidelines for future studies. The main find-
ings and the research frontiers of this study are enlisted as
following:
• There is a desperate need to convince the PV experts that
DL concept is efficient and satisfactory to gain accep-
tance by operators and stakeholders. This high-tech
concept needs to overcome several weaknesses to win
broader acceptance and confidence from the energy hub.
This poor DL integration can be explained by various
reasons from the industrial perspective. For instance,
DL limitations lie in poor generalization potential in
learning evolving operating conditions. with the high
complexity of the atmospheric condition, designing an
ideal DL method is beyond the bounds of possibility.
To build PV industry trust, DLmodels have to overcome
the lack of representativeness of the train sets and the
potential adversarial attacks.

• The time resolution for a large extent of the research
works emphasizes the STF-based PVPF. However,
theMTF and LTF are essential for energy trading, strate-
gic planning, and degradation-rate-impacted energy
potentials of PV panels. Nevertheless, the performance
validity expires in amore extended periodwith increased
error values compared to STF forecasts.

• The hybrid models possess immense potentialities in
PV paradigms. Consequently, the number of papers that
address the hybridization of DL is ever-growing. How-
ever, the model hybridization entails an elevated com-
putational burden. Almost half of the reviewed papers
for forecasting applications incorporate hybrid models.
It can be deduced from the related works that GRU and
LSTM architectures have been frequently deployed in
the model fusion due to their suitability in time series
data. The hybrid models’ high accuracy should not com-
promise their reasonable complexity.

• The shortage of PV skilled professionals and experts
to deploy DL techniques presents a severe problem
that impedes the vast deployment of these techniques.
The major concern for PV practitioners is the lack of
clear guidance rules for algorithms’ structure and HP
tuning. Therefore, finding near-optimal solutions can
be a cumbersome problem for non-qualified operators.
As DL jobs are in high demand, matching DL and PV
technology landscape is relatively limited. More impor-
tantly, it is quite hard to find qualified man-labor in

both domains of interest. Getting sufficient professional
knowledge in both DL and PV technologies requires
personal initiative due to the lack of resources in these
infancy subjects.

• The explainability and interpretability of the proposed
PV systems is a severe challenge for their practical
feasibility. DLmodels operate in a ‘‘black-box’’ fashion,
impeding their whispered adoption due to the lack of
explainability. The poor visibility of model performance
may lead to manufacturing problems especially due
to safety-critical concerns. Nevertheless, interpretable
DL methods have scarcely been applied and tested in
PVPF, where the transparency and understandability of
the decision logic of the forecasting engine are not
guaranteed.

• The data mining and big data analytics are essential for
the cost-effectiveness of predictive modeling in PV sys-
tems. The data accumulated from weather stations are
processed in a continuous flow or stream with various
formats, sizes, and variability. Big data analytics is a
means to improve data power stability. However, most
research papers do not shed light on the utilization of
DL models in actual PV plants.

• PVPF is recently proposed to mitigate energy uncertain-
ties. However, the proposed methods may face several
implementation issues, as reported in Table 2. In fact,
most of the proposed methods were still in the proof-
of-concept stage without passing to real-world applica-
tions. The implementation barrier lies in the laborious
DL adjustment in terms of storage, dimension, search
capacity, and convergence settings for actual standalone
or grid-connected PV systems.

• The available DL models were commonly validated
in the Standard Test Conditions (STC). Nonetheless,
very little work has been done for real-world validation,
where the performance accuracy dramatically decreases
for real PV systems.

• Data privacy awareness presents the key enabler for the
integrity and reliability of forecasting systems. There is a
pressing need to protect data privacy from vulnerabilities
and cyber intrusions for promoting the DL deployment.
For instance, false data detection tools are needed to
preserve the forecasting engine and achieve effective
decision-making. FL-based PVPF presents a prospective
direction towards a Secure and Resilient grid [116].
However, the studies aiming to cover data-driven cyber-
security technologies-based PVPF are exceedingly rare
in the literature.

• The proposed techniques often operate for a spe-
cific time frame over a specific geographical area.
For instance, DL models can outperform the bench-
marks for the forecasting situation under scrutiny. But,
this model could not perform equally in other PV
areas with different topographies and weather patterns.
In fact, DL is hitherto inefficient in regional PVPF and
limited to the technical characteristics of PV plants.
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Designing general models that could transfer learning
from local PV plant to another is a potential solution
towards model universality.

• The online prediction tools are seldom investigated for
PV plants despite their importance in real PV systems.
Online prediction effectively adapts to newly incoming
information. More concretely, offline DL methods fail
with unpredictable conditions during the process. Online
PVPF can obtain near-optimal predictions and promotes
model stability. This requires an engagement of suffi-
cient storage space of the infrastructure and an adequate
frequency for model updates.

• Another challenge is pre and post-processing of data.
Data preprocessing and error post-processing is a seri-
ous concern, especially with the sheer size of data.
The unfathomable amounts of data lead to noise and
imprecise knowledge problems such that they can
be difficult to surmount. Data preprocessing usually
includes data normalization, faulty and missing data
filtering, data resolution adjustment, data augmenta-
tion correlation analysis data clustering, and graph
constriction. While, post-processing procedures usu-
ally include various pruning routines, rule filtering,
or even knowledge integration. Paper [32] taxono-
mized post-processing techniques for solar forecast-
ing into four classes: deterministic-to-deterministic,
probabilistic-to-deterministic, deterministic-to-probabi-
listic, and probabilistic-to-probabilistic post-processing.
In this paper, the authors reported that post-processing
is vital for consistency, quality, and value in the
PVPF context [32].

• The integration of satellite and ground-based mea-
surements is rarely being studied. The reason for
this shortage may refer to the limited access to
satellite images which prohibits the data collection.
Despite satellite-derived irradiance datasets provide spa-
tial diversity, the obtained accuracy is relatively low in
the presence of poor datasets. Designing a data-light
DL systems is a potential solution to overcome the
large data requirements barrier and achieve satisfactory
results.

• Standardizing forecast evaluation towards an universal
functional form is mandatory to facilitate the selec-
tion of the suitable model among others. Quantifying
predictability presents a tiresome task due to a large
number of error metrics. The diversified score crite-
ria may inhibit attaining a statistical consensus of the
model’s goodness. Unifying the score metrics is essen-
tial to gain the industry and end-users acceptability in
real-world problems. The standardized criteria alleviate
the costs of the prediction system and the economic
impact. Although error metrics standardization seems
an intuitively appealing task, research works are limited
towards that goal.

• Hierarchical TS Forecasting (HTSF) is deemed suit-
able to achieve excellent performance in PVPF through

explanatory variables. However, the use of HTSF is
limited. HTSF follows a hierarchical aggregation struc-
ture at different levels by reconciling incoherent fore-
casts according to their proximity from individual TS.
Therefore, the relationships within the hierarchy are
preserved. This entails a problem of coherency at differ-
ent granularity levels of the time-varying observations.
Therefore, the adjustment between upper and lower lev-
els is vital to ensure the consistency of the forecast.
DL is particularly well-positioned to predict the TS data
of all nodes in the hierarchy and reconcile them [155].
However, to the authors’ best knowledge, HTSF is still
not applied to PV systems.

• Forecasting with multimodal and multilevel information
fusion is scarcely discussed.Multimodal learning allows
learners tomerge the information from different sources.
In the PV context, the multimodal data may include sky
images and cloud motion speed records. These hetero-
geneous data from different modalities present comple-
mentary information frommultiple sources. Information
fusion from different modalities with strong end-to-end
governance standards can significantly enhance the pre-
diction accuracy, boosting interest towards concepts to
model in this area.

• Smart meters (SM) sensing may bring rigorous chal-
lenges to forecasting accuracy, especially with their
short service life span. A meter failure can bring a
plethora of problems for simple causes such as internet
loss, software flaws, and hardware malfunctions. How-
ever, manually checking all SM on a regular basis can
be labor-intensive. DL can efficiently work for early
detection of inaccurate SM, towards longer-lasting SM.
The careful investigation of the data reliability and sens-
ing tampering early on helps in producing more robust
predictions.

• The performance of DL methods depends on the acces-
sibility of abundant quality of PV data to meet power
quality standards. However, thesemodels run slowly and
have narrow boundaries of the frequency domain divi-
sion in the production environment. The DL deployment
lies in three major aspects: portability, scalability, and
computational cost. Operationalizing and robustifying
DL are still tedious tasks that mandate fruitful research
in this direction.

VII. CONCLUSION
With the inevitable emergence of the Smart Grid, DL-as-
a-service plays an essential and indispensable role in the
bulk penetration of Photovoltaic (PV) energy across efficient
PV Power Forecasting (PVPF) systems. This paper provides
a comprehensive review of the recent PVPF involving DL.
We took a deeper dive into the well-known architectures for
PVPF. Three types of emerging learning methods are clas-
sified, specifically, discriminative learning, generative learn-
ing and deep reinforcement learning. The DL methods have
their own merits and numerous shortcomings, which may be
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covered by optimal hyperparameter tuning. Different PVPF
strategies concerning time horizons have been described in
the study. A vast majority of case studies from the literature
demonstrated that hybridization and assembling straighten
DL techniques leading to better accuracy and high robustness.
It is hoped that this review paper would help researchers
and practitioners to improve forecasting accuracy through
moving DL models from the nascent stage to real-world
applications and to come up with more precise PV energy
forecasts.
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