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ABSTRACT Sliding mode controllers have wide practical applications due to their simple structure and
robustness to disturbance. Although various sliding mode controllers have been proposed, most relevant
studies have only investigated the conditions required to stabilize the system. For example, system stability
can be guaranteed if the parameters in the control law satisfy specific inequalities or boundary conditions.
However, the control power of a real system has a saturation limit, which increases the complexity of the
system. Moreover, even if a stable controller is identified, the response performance of the system may
not achieve the expected results. Therefore, the determination of the optimal parameters is a key step in
designing a slidingmode controller. This paper proposes an error-integral-type slidingmode controller whose
main characteristic is that irrespective of the system order, it only needs to determine three key parameters.
We used the Nelder–Mead simplex method to assist designers in searching for optimal controller parameters
more efficiently, even when the real system has the limitation of input saturation and the disturbance bound
is unknown. Finally, we performed numerical simulations on a magnetic levitation system to demonstrate
the feasibility and effectiveness of the proposed method.

INDEX TERMS Integral sliding mode controller, magnetic levitation system, optimal control, optimization
method, saturation, simplex method.

I. INTRODUCTION
The basic principles and design methods of a variable-
structure system (VSS) with sliding mode control (SMC)
were first proposed by Emelyanov and several core
researchers in the Soviet Union in the early 1950s [1]–[4].
Since the publication of the survey paper on VSS in IEEE
Transactions on Automatic Control in 1977 [5], SMC has
been extensively studied and used in practical applications
due to its simplicity and robustness with respect to external
disturbances and modeling uncertainties [6]–[8]. In particu-
lar, sliding mode controllers are a special class of VSSs, and
SMC is a type of nonlinear control method that alters the
dynamics of a closed-loop system by using a high-frequency
switching control law that forces the state trajectory to
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‘‘slide’’ along a cross section (manifold) of the system’s
normal behavior [6]–[9].

SMC design can be divided into two steps [10]: (1) con-
structing a switching surface (sliding surface, sliding func-
tion, and sliding vector) so that the system restricted to the
switching surface produces a desired behavior and (2) deter-
mining a control law that can drive the state trajectory toward
the sliding surface and maintain it there. The original SMC
design contains an ideal switching function, namely sign(s),
which must be achieved at an infinite switching frequency.
However, this switching frequency cannot be achieved in
a practical system. As a result, the real system trajectory
invariably fluctuates in a small space on both sides of the
sliding surface. This phenomenon is known as ‘‘chattering.’’
The chattering phenomenon is usually undesirable, or even
unallowable, because it may increase the actuator load or
excite the high-frequency resonance of the system. Many
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methods have been proposed to improve the chattering phe-
nomenon [11]–[16]. Of these, the simplest method is the
boundary layermethod proposed by Slotine and Sastry, which
has been widely applied in real SMC systems [11]. This
method replaces the discontinuous function, namely sign(s),
with a saturation function.

For any practical system, the input is always limited in
magnitude. Therefore, this limitation must be considered
while designing a sliding mode controller. Some researchers
have contributed in this regard. For example, Corradini
and Orlando proposed the use of a nonlinear surface for
manipulating actuator saturation [17]. Ferrara and Rubagotti
proposed an effective algorithm to handle saturation in a
higher-order sliding mode framework [18]. Bartoszewicz and
Nowacka proposed an optimal sliding surface to handle input
constraints [19]. However, the aforementioned methods are
conservative or limited in terms of the system order.

Therefore, this paper proposes an approach for designing
an optimal sliding mode controller for a system with input
saturation and an unknown disturbance bound. This method
uses the Nelder–Mead (N–M) algorithm to tune the param-
eters of the sliding mode controller such that the designer’s
pre-specified performance index reaches a minimum value.
The simplex method (also known as the downhill simplex
method) was originally proposed by Spendley, Hext, and
Himsworth [20] and later improved by Nelder andMead [21].
Hereafter, we refer to the improved method as the N–M
simplex method. This numerical method is easy to implement
and has been widely used to determine the minimum or max-
imum value of the objective function in a multidimensional
parameter space. In particular, the N–M simplex method does
not require the derivative of the objective function; thus,
it is highly suitable for discontinuities or problems in which
the objective functions include noise [22]–[26]. In addition,
the proposed method offers the following advantages: 1) The
algorithms used in linear and nonlinear searches for optimal
controller parameters are the same. 2) This method can be
used regardless of the stability of the open-loop system. 3) For
systems with uncertainties, this methodology can be used to
determine the optimal controller parameters.

The main contribution of this study is that the techniques
proposed herein can be used to simultaneously solve the
aforementioned problems. To demonstrate the feasibility and
effectiveness of the proposedmethodology, simulations of the
magnetic levitation control system with input saturation were
performed to evaluate controller performance.

II. SYSTEM DESCRIPTION
Fully complying with linear time-invariant conditions in
practical systems is rarely possible because most practical
systems are nonlinear. However, theories based on linear
time-invariant systems are mature and highly convenient to
use. Therefore, before designing a controller, the system is
usually linearized into an approximate linear time-invariant
mathematical model.

Let us consider an nth-order controllable system that is
described as follows:

ẋ = Ax+ Bu+ d(x, t) (1a)

y = Gx (1b)

where x = [x1 x2 . . . xn]T , u = [u1 u2 . . . umu ]
T , and y =

[y1 y2 . . . ymy ]
T denote the system state, control input, and

system output, respectively. Moreover, all elements of the
coefficient matrices A, B, and G are constant and known in
advance, and (A,B) is controllable. The disturbance is repre-
sented by d(x, t) and includes external disturbance, param-
eter uncertainty, and unmodeled dynamics. Let us assume
that d(x, t) can be decomposed into matched and unmatched
disturbances as follows:

d(x, t) = Bdm(x, t)+ Brdr (2)

where Br ∈ Rn×(n−mu), BTBr = 0, and dr is a constant
vector-type unmatched disturbance. The system state x and
output y are measurable. The control aims to converge the
output y to a constant vector yd . For design convenience, let
the error vector be defined as follows:

e = y− yd (3)

Then, we define a new state vector as follows:

z =W
∫ t

0
edτ , z(0) = 0my×1 (4)

where W indicates a weight matrix and has the following
form:

W = diag(w1,w2, . . . ,wmy ) (5)

Thus,

ż =We =W (y− yd ) =WGx−Wyd (6)

Wemultiply an appropriate weight matrixWwith the error
integrator (4) to ensure that the integral controller can still
reflect its effectiveness when the absolute value of the error
is too small.

Due to the introduction of new state variables, the system
(1) can be expanded as follows:

ẋp = Apxp+Bp (u+ dm(x, t))+ f (7)

where

xp=
[
x
z

]
, Ap=

[
A 0

WG 0

]
, Bp=

[
B
0

]
, f=

[
Brdr
−Wyd

]
(8)

The augmented system (7) must still be a controllable
system. Thus, G in the augmented system (7) must satisfy
the following condition:

rank
[
Ap ApBp · · · A

n+my−1
p Bp

]
= n+ my (9)

We design a sliding mode controller according to (7) and
(8). As the sliding vector includes z, namely the integrator
defined by (4), the proposed control law belongs to an integral
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sliding mode controller. The controller design process can
be divided into two steps: constructing a sliding surface and
determining a control law. The following text describes the
design of the sliding function. Because the sliding function
plays a major role in SMC systems, many techniques have
been proposed for designing the sliding function [27]–[29].
In this study, the Lyapunov method is used to design the
sliding function. This popular and simple method is based
on the principle of Lyapunov theory [28]. Let us assume
that the state feedback matrix Kp is obtained using the pole
assignmentmethod; thus, all the eigenvalues ofAp−BpKp are
present in the left half of the complex plane. Then, the control
input is selected as u = −Kpxp+v, and the system expression
in (7) can be rewritten as follows:

ẋp = Apxp + Bp
(
−Kpxp + v+ dm(x, t)

)
+ f

=
(
Ap − BpKp

)
xp + Bp (v+ dm(x, t))+ f (10)

where Āp = Ap − BpKp. Because Āp is a Hurwitz matrix,
a unique positive definite matrix P exists that satisfies the
following Lyapunov equation:

ĀT
p P+ PĀp = −I (11)

For analyzing the system stability, let us consider the fol-
lowing Lyapunov candidate function:

V1(xp) = xTp Pxp (12)

The time derivative of this function is expressed as follows:

V̇1(xp) = −xTp xp + 2xTp PBp (v+ dm)+ 2xTp PBrdr (13)

If the unmatched noise dr does not exist and BTp Pxp = 0,
the aforementioned function can be rewritten as follows:

V̇1(xp) = −xTp xp < 0, ∀xp 6= 0 (14)

The aforementioned equation indicates that V1(xp) is a
Lyapunov function, and we can ensure that lim

t→∞
xp(t) = 0.

Therefore, in the absence of dr , we can select the original
sliding function as follows:

s0 = C0xp = BTp Pxp ∈ Rmu×1 (15)

The stability of the closed-loop system without dr can be
guaranteed once the system is under the sliding mode s0 = 0.
To further simplify the control law and make the sys-

tem enter the sliding mode immediately from the beginning,
we assume the practical sliding function as follows:

s = Cxp − C1x(0) (16)

where

C=(C0BP)−1 C0=
[
C1 C2

]
, C1∈Rmu×n, C1∈Rmu×my

(17)

and

CBp = Imu (18)

In (16), we introduce an initial value termC1x(0). Because
this term does not appear in the equivalent control [30],
we do not need to consider it when analyzing the stability
of the sliding mode. In addition, because of adding the initial
value C1x(0), the system enters the sliding mode s

(
xp(0)

)
=

0 immediately after startup. Therefore, the system is not
affected by the matched disturbance dm throughout its oper-
ation. The system is only affected by the unmatched distur-
bance f. However, f is only a constant vector and thus does
not affect the system stability, except for causing a steady-
state error, that is, xp(∞) → x̄p, where x̄p is a constant
vector. Although the system indicates a constant error vector
x̄p, ẋp(∞) → 0 can be guaranteed. From the expression

xp =
[
x
z

]
and (3), we obtain the following equation:

ż(∞) = e(∞) = y(∞)− yd → 0 (19)

Therefore, we can reach the control goal.
Let us define a control law as follows:

u = −Kxp − (σ + δ)
s
‖s‖

(20)

where

K ≡
(
CBp

)−1 CAp = CAp (21)

The parameter σ is a known positive constant, and the
disturbance satisfies the boundary condition.

‖dm(·)+ Cf‖ < δ (22)

Consider the following Lyapunov function:

V2(s) =
1
2
sT s (23)

Differentiating V2(s) with respect to time yields the follow-
ing equation:

sT ṡ= sTC
(
Apxp+Bp (u+ dm(x, t))+ f

)
= sTC

(
Apxp + Bp

(
−CApxp − (σ + δ)

s
‖s‖

+dm(x, t)
)
+ f
)

= sT
(
− (σ + δ)

s
‖s‖
+ dm(x, t)+ Cf

)
<− (σ + δ) ‖s‖ + δ ‖s‖

=−σ ‖s‖ (24)

Therefore, the controller (20) guarantees that the sliding
mode s = 0 can be maintained after a limited time.
Because the original SMC law includes a discontinuous

function that usually causes an undesired chartering, the fol-
lowing equation can be obtained:

u = −Kxp − (σ + δ) sat(s, ε) (25)

where

sat(s, ε) =


s
‖s‖

, if ‖s‖ > ε

s
ε
, otherwise

(26)
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To reduce the number of controller parameters, we assume
that the plant and controller satisfy the following conditions:
(a) The nominal plant model of (1) is known, that is,

the matrices A, B, and G are known in advance.
(b) The weighting matrix W in (4) has the form W = wImy .

By using (8), we can determine the matrices Ap and Bp.
(c) The eigenvalues of matrix Āp in (11) only change

with a single parameter. For example, let Āp has
n + my multiple roots −λ or different roots such as
−λ,−1.01λ,−1.02λ, . . ., where λ > 0. Thus, we can
solve the unique positive definite matrix P satisfying the
continuous Lyapunov equation (11).

(d) The scalar parameter ρ is defined as follows:

ρ ≡ σ + δ (27)

Note that the parameter δ, which is defined in boundary
condition (22), is usually unknown in a practical system.

According to the aforementioned assumptions (a)-(d),
we define the vector of the controller parameters as follows:

p =
[
λ w ρ

]
(28)

Next, we can apply the proposed method to search for the
optimal controller parameters.

III. N–M SIMPLEX ALGORITHM
Nelder and Mead proposed a simplex method, which is
a numerical method for solving multidimensional uncon-
strained optimization problems [21]. We usually refer to this
method as the N–M simplex method or downhill simplex
algorithm to distinguish it from Dantz’s simplex method,
which is commonly used in linear programming.

The N–M simplex algorithm is designed to solve
N -dimensional unconstrained optimization problems of the
following form:

min
p∈RN

J (p) (29)

where J (p) is defined as an objective function (also called
the performance index, target function, and cost function).
Controllers are implemented using microcontrollers or indus-
trial computers. As such, with technological advancements
in hardware, controller execution has become increasingly
rapid. Regardless of whether the integral or the derivative
is used in the control law, even if a controller is realized
using the simplest numerical method, the discrete simulation
outcome will approach a continuous-type system. There-
fore, the continuous performance index was employed in
this study, as shown in (30a). The discrete form used in the
program implementation is presented in (30c):

J (p)=
1

(1t)2

∫ TM

0
t (‖e(t)‖ +W ‖u̇(t)‖) dt (30a)

≈
1

(1t)2

M∑
k=1

k1t
(
‖e(k)‖+W

‖u(k)−u(k − 1)‖
1t

)
1t

(30b)

=

M∑
k=1

k
(
‖e(k)‖ +

W
1t
‖u(k)− u(k − 1)‖

)
(30c)

where p is a vector comprising all the controller parameters,
such as those in (28); TM is the index calculation time; 1t is
the sampling time; M = TM

/
1t is a positive integer; e(k)

and u(k) represent the output error and control input at the
kth instant, respectively; W is the weighting of ‖u̇(t)‖ and
yields ‖e(t)‖ and ‖u̇(t)‖ at the closest order of magnitude
as possible such that ‖e(t)‖ and ‖u̇(t)‖ have a similar effect
on the performance index. Because the characteristics of the
performance index and the results of the optimization search
are not affected when the performance index is multiplied by
a positive constant, we multiply the continuous performance
index by 1

/
(1t)2 to simplify (30a) into the discrete perfor-

mance index (30c). To prevent chattering, the practical con-
trol law is adopted, as presented in (25). Moreover, because
actual control inputs have a saturation limit, even if the system
trajectory is maintained within the sliding layer, the system
may still converge to a limit cycle. To prevent chattering and
limit cycles, which are both undesirable, we add a penalty
function W ‖u̇(t)‖ to the performance index (30a).
After the form of the objective function is determined,

the N–M simplex method generates a sequence of simplices,
where each simplex is defined by N + 1 distinct vertices,
namely p0, . . . ,pN , whose corresponding function values are
J0, . . . , JN . The points p0, . . . ,pN are assumed to be sorted
such that J0 ≤ · · · ≤ JN−1 < JN , and p̄ represents the
centroid of points p0, . . . ,pN−1. In each iteration, simplex
transformations in the N–M simplexmethod are controlled by
the parameters α, β, and γ . These parameters should satisfy
the following conditions:

0 < β < 1, 0 < α < γ (31)

These parameters have typical values of α = 1, β =
0.5, and γ = 2. The values of α, γ , β, and −β yield
the reflection point pr , expansion point pe, outer contraction
point pc, and inner contraction point pcc, respectively. The
objection functions at these four points are denoted as Jr , Je,
Jc, and Jcc, respectively. If none of the four points represents
an improvement in the current worst point pN , the algorithm
shrinks the points p1, . . . ,pN toward the lowest p0, thereby
producing a new simplex. In the shrinking process, each
pi is replaced by p0 + 0.5 (pi − p0) for i = 1, . . . ,N .
A new iteration is automatically triggered after completing
the shrinking process. The iterative process is continued until
the specified termination criteria are satisfied (e.g., when the
iterations reach the allowed maximum number or when the
accuracy of the function value J0 is lower than the default
value).

We now explain the geometric phenomenon of the N–M
simplex method for a 2D parameter (i.e., N = 2) as an exam-
ple. A typical N–M simplex algorithm can generate a series
of simplices. Each simplex comprises three vertices, namely
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FIGURE 1. (a) Reflection point pr ; (b) expansion point pe; (c) outer
contraction point pc ; (d) inner contraction point pcc ; and (e) shrinking the
points. p1, . . . , pN .

p0, p1, and p2, and their corresponding object function values
J0, J1, and J2, respectively, where the vertices p0, p1, and p2
are ordered as J0 ≤ J1 < J2 and p̄ denotes the centroid
of p0 and p1. In each iteration, the N–M simplex method
examines one or more of the four different ζ values along
the line p̄ + ζ (p̄− pN ); in this example, N = 2. These four
values yield the reflection point pr , expansion point pe, outer
contraction point pc, and inner contraction point pcc. The
object function values at these points are denoted as Jr , Je,
Jc, and Jcc, respectively. If none of the four points represent
an improvement in the current worst point p2, the algorithm
shrinks points p1 and p2 toward the best point p0, thereby
producing a new simplex. In the shrinking process, each pi is
replaced by p0+0.5 (pi − p0) for i = 1, 2. Upon producing a
new simplex, a new iteration is automatically triggered. This
iterative process is continued until the specified termination
criteria are satisfied. Fig. 1 illustrates the different simplices
described in the aforementioned text.
1. Fig. 1(a) displays the simplex for the reflection point pr ,

which is expressed as follows:

pr = p̄+ α (p̄− p2) (32)

FIGURE 2. Schematic of the magnetic levitation system.

2. Fig. 1(b) depicts the simplex for the expansion point pe,
which is expressed as follows:

pe = p̄+ γ (p̄− p2) (33)

3. Fig. 1(c) illustrates the simplex for the outer contraction
point pc, which is expressed as follows:

pc = p̄+ β (p̄− p2) (34)

4. Fig. 1(d) shows the simplex for the inner contraction
point pcc, which is expressed as follows:

pcc = p̄− β (p̄− p2) (35)

5. Fig. 1(e) presents the simplex for shrinking the points p1
and p2. The following equation is obtained:

p′i = p0 + 0.5(pi − p0), i = 1, 2 (36)

The flowchart and pseudocode of the N–M simplex algo-
rithm are shown in Appendixes A and B, respectively.

IV. SIMULATION RESULTS
Let us consider a magnetic levitation system, whose
schematic is depicted in Fig. 2.

The symbol definition and simulation conditions for this
system are defined as follows:
xr (mm): real air gap
xd = 0.5 mm (desired gap)
ur (A): real control input
m = 0.5 kg (mass)
g = 9800 mm/s2 (acceleration of gravity)
kc = 54000 Nmm2/A2 (constant)

where ur is subjected to the following saturation condition:

ur =


5, if ur > umax = 5
ur , if umin ≤ ur ≤ umax

0, if ur < umin = 0

(37)

The dynamical equation of the magnetic levitation system
can be represented as follows [31]–[33]:

mẍr = mg− kc

(
ur
xr

)2

(38)
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or

ẍr = g−
kc
m

(
ur
xr

)2

(39)

The following equations are defined: xr = xd + x and
ur = ud + u. Expanding the right-hand side of (39) into a
Taylor series about the operation point (xd , ud ), where g =
kc
m

(
ud
xd

)2
, the following equation is obtained:

ẍ =
2kcu2d
mx3d

x −
2kcud
mx2d

u+ d (40)

where d denotes the higher-order terms. The state and output
equations of the linearized system are defined as follows:

ẋ = Ax+ bu+ d (41a)

y = gx (41b)

where

x =
[
x1
x2

]
=

[
x
ẋ

]
(42a)

A =

 0 1

2kcu2d
mx3d

0

 (42b)

d =
[
0
d

]
(42c)

b =

 0

−
2kcud
mx2d

 (42d)

g = [1, 0] (42e)

Then, we define a new state as follows:

z=w
∫ t

0
edτ = w

∫ t

0
xdτ , z(0) = 0 (43)

The expanded linearized system is represented as follows:

ẋp = Apxp+bpu+ f (44a)

y = gpxp (44b)

where

xp =
[
x
z

]
, Ap =

[
A 0
w 0

]
, bp =

[
b
0

]
,

f =
[

0
−wxd

]
, gp =

[
g 0

]
(45)

We now design a sliding mode controller for the magnetic
levitation system according to the aforementioned descrip-
tion. First, by applying the pole assignment method, the feed-
back gain k can be found such that the eigenvalue of(
Ap − bpk

)
is a triple root −λ, where λ > 0. Thus, the Lya-

punov equation (11) has a unique positive definite solution P.
Then, let the sliding function can possess the following form:

s = cxp − c1x(0) (46)

FIGURE 3. Time responses of the magnetic levitation system controlled
by the four sets of controller parameters listed in Table 1.

where

c=
(
c0bp

)−1 c0=[ c1 c2
]
, c1 ∈ R1×n, c2 ∈ R (47)

The control law is designed as follows:

u = −kxp − ρ · sat(s, ε) = −cApxp − ρ · sat(s, ε) (48)

where the scalar parameter ρ is defined as in (28). The
controller must determine three parameter values, which are
represented by the vector p =

[
λ w ρ

]
. To avoid chattering,

we introduce a sliding layer in the actual control law. The
parameter ε of the sliding layer needs to only select a constant
so that all initial controllers do not produce chattering. There-
fore, the parameters to be searched in the simplex method do
not include ε.
Now, let us apply the N–M simplex method to search the

optimal parameters. In this example, we set the sampling time
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FIGURE 4. Time response of the magnetic levitation system controlled by
the sliding mode controller, whose parameters are searched using the
N–M simplex method.

FIGURE 5. Convergence graph of performance index J0 when the simplex
method based on the initial vertices given in Table 1 is used to search for
the controller parameters of the magnetic levitation system.

to 0.0005 s and the simulation time to 0–0.2 s. Because the
magnitudes of the error and control input of this system are
comparable, we consider the weightingW in the performance
index (30c) equal to 1t and express the norm as an absolute

TABLE 1. Initial controller parameters for the magnetic levitation system.

value. The final performance index is as follows:

J (p) =
400∑
k=1

k (|e(k)| + |u(k)− u(k − 1)|) (49)

Furthermore, because the proposed integral sliding mode
controller has three key adjustable parameters, namely λ,w,
and ρ, we must obtain four sets of parameter combinations
before we use the N–M simplex method to search for the
optimization parameters. In the following text, we present
the heuristic selection principles for the aforementioned three
parameters.

The parameter λ is considerably affected by the character-
istics of the open-loop system. For example, without loss of
generality, let us assume that the dominant pole of an open-
loop system located at the left half of the complex plane
is −λ0. If we wish to quicken the response of the closed-
loop system through a feedback controller, the dominant pole,
which is −λ, has a reference range between approximately
−λ0 and −2λ0 (the actual value still depends on factors
such as the power provided by the actuator, nonlinearity,
disturbance, and transient response performance).

The parameter w is related to the speed of error con-
vergence. The larger the value of w, the faster is the error
convergence. Therefore, we attempt at selecting the initial
value of w between 10λ0 and 100λ0.
Finally, ρ ≡ σ + δ. To avoid chattering, the actual

application uses the control law presented in (25). Because
the second term in (25) is−ρ · sat(s, ε), the high-gain control
force is used in the sliding mode controller to fight against
the disturbance. Because of the high gain, the aforementioned
term reaches saturation if ‖s‖ > ε. For the controller to main-
tain a reasonable high-gain characteristic, when determining
the value of ρ, we can select a value between approximately
50umax and 200umax. According to the aforementioned sys-
tematic empirical method, four sets of parameters for the
sliding mode controller of the magnetic levitation system,
which construct the initial simplex, are listed in Table 1.
In this example, when the width ε of the boundary layer is
equal to 1, the four sets of controller parameters in the initial
simplex will not cause chattering in the system. Therefore,
we set ε as 1 in the optimization search process.

The control results for the aforementioned four sets of
controllers are presented in Table 1 and Fig. 3.

Then, we use the aforementioned four parameter sets as
the four vertices of the initial simplex. The iteration of the
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FIGURE 6. Flowchart of the N–M simplex algorithm.

searching loop is terminated if 100 iterations are completed
or if the following condition is met:

Jn − J0
J0

< 10−4 (50)

The result obtained using the N–M simplex optimal search
method is displayed in Fig. 4, where the calculation process
ends after 56 iterations and the resulting parameters are λ =
59.862, w = 5597.5, and ρ = 705.23. The corresponding
performance index is J = 4310.4, which is considerably
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lower than the corresponding values for the initial four param-
eter sets.

V. CONCLUSION
Sliding mode controllers have been widely used in the con-
trol field due to their simple algorithm and robustness to
disturbance. This paper proposes a design method for an
error-integral-type sliding mode controller. The main char-
acteristics of the proposed controller are that it needs to
determine only three key parameters regardless of the system
order. Most previous studies have only discussed the inequal-
ities or boundary conditions that the controller parameters
must satisfy to ensure system stability. However, in practical
applications, even if the closed-loop system is stable, its
response performance or state trajectory may not be suitable.
Theoretically, each controller parameter contains an infinite
number of choices, and all parameters affect the system
response. Therefore, the determination of the optimal param-
eters of the controller has become an important step in design-
ing a superior controller. To address this problem, we used the
N–M simplex method to assist the designer in determining
the optimal controller parameters more efficiently. Finally,
we performed a numerical simulation on amagnetic levitation
system to illustrate the feasibility and effectiveness of the
proposed method.

APPENDIX A
FLOWCHART OF THE N–M SIMPLEX ALGORITHM
See Figure 6.

APPENDIX B
PSEUDOCODE OF THE N–M SIMPLEX ALGORITHM
Define α= 1, β = 0.5, and γ = 2
Choose the initial p0, . . . ,pN and calculate J0, . . . , JN
while true

Sort p0, . . . ,pN such that J0 ≤ · · · ≤ JN

p̄ = 1
N

N−1∑
i=0

pi

if termination criteria are satisfied
Terminate execution of while loop

end
pr = p̄+α (p̄− pN ) (Reflection)
Calculate Jr

if Jr < J0
pe = p̄+γ (p̄− pN ) (Expansion)
Calculate Je
if Je < Jr
pN = pe
JN = Je

else
pN = pr
JN = Jr

end
else if Jr < Jn

pc = p̄+ β (p̄− pN ) (Outer contraction)
Calculate Jc

if Jc < Jr
pN = pc
JN = Jc

else
pN = pr
JN = Jr

end
else

pcc = p̄− β (p̄− pN ) (Inner contraction)
Calculate Jcc
if Jcc < JN
pN = pcc
JN = Jcc

else
for i = 1, . . . ,N

pi = 0.5 (p0 + pi) (Shrink)
Calculate Ji

end
end

end
end
Print out p0 and J0
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